基于Pro_MECHANICA的机床支承件的振动模态分析_李玲芳 (1)

基于Pro_MECHANICA的机床支承件的振动模态分析_李玲芳 (1)
基于Pro_MECHANICA的机床支承件的振动模态分析_李玲芳 (1)

第23卷 第3期 湖 南 文 理 学 院 学 报(自 然 科 学 版) Vol. 23 No. 3 2011年9月 Journal of Hunan University of Arts and Science(Natural Science Edition) Sep. 2011

doi: 10.3969/j.issn.1672?6146.2011.03.015

基于Pro/MECHANICA 的机床支承件的

振动模态分析

李玲芳1, 罗佑新1, 彭梁峰2

(1. 湖南文理学院 机械工程学院, 湖南 常德, 415000; 2. 昆明机床股份有限公司 技术中心, 云南 昆明, 650203)

摘 要: 通过三维软件Pro/E 建立了机床滑座与床身的三维模型, 采用Pro/MECHANICA 软件建立了有限元计算模型. 通过模态分析, 计算了滑座与床身1至3阶的固有频率和振型, 分析了各阶振动模态的特点, 所得结果有利于机床支承系统的动态特性分析和整体设计.

关键词: Pro/MECHANICA; 机床支承件; 模态分析; 振型

中图分类号: TH 122 文章编号: 1672-6146(2011)03-0054-04

Modal analysis of machine tool supporting system based on Pro/MECHANICA

LI Ling-fang 1, LUO You-xin 1, PENG Liang-feng 2

(1. Department of Mechanical Engineering, Hunan University of Arts& Science, Changde 415000, China; 2. Technical

Center, Kunming Machine Tool Company Limited, Kunming 650203, China.)

Abstract: 3D models of machine tool’s slide and bed were built-up by the software Pro/E and the FEA models were established by Pro/MECHANICA. By the modal analysis, the 1st to 3rd ordered natural frequency and vibration mode of slide and bed were calculated. The analysis of vibration feature is useful to the dynamic analysis and overall design of machine tool supporting system.

Keywords: Pro/MECHANICA; supporting system; modal analysis; vibration mode

收稿日期: 2011-08-30

基金项目: 国家自然科学基金(50845038); 湖南省教育厅项目(09C701); 湖南省“十一五”重点建设学科(机械设计及理

论)(湘教通2006180); 湖南省普通高校学科带头人(湘教通[2008]315).

作者简介: 李玲芳(1981-), 女, 讲师, 硕士, 主要研究方向为机械CAD/CAM 技术. E-mail: yourvicky@https://www.360docs.net/doc/8014285917.html,

机床支承件的作用有支撑、基准和尺寸容量(包容工件的轮廓), 要求高刚度化、高阻尼精度、高耐磨性、热变形和内应力小. 并且其动态性能直接影响到生产效率和工件的加工精度, 所以必须具有足够的动态刚度和静态刚度[1].

要用精确方法来计算其动态性能比较难, 因为机床支撑件结构多样而且复杂, 只能依靠数值方法的分析去接近实际情况. 在各种方法中, 使用FEA (Finite Element Analysis)方法建立机械动力系统的数学模型是主要方法之一, 完全能得到近似于实际动态性能结果[2-3]. 有限元软件Pro/MECHANICA Structure 能够完成的任务可以分为两大类: 第一类为设计验证, 或者称为设计校核, 例如进行设计模型的应力应变检验, 这也是其它有限元分析软件所仅能完成的工作. 第二类为模型的设计优化, 这是Pro/MECHANICA 区别于其它有限元软件最显著的特征. 利用该软件对机床支承件中的滑座和床身进行有限元分析, 计算出其固有频率和振型, 为滑座的表面振动响应分析做必要的准备, 也为这些支承件的设计提供了理论依据.

1 机床滑座有限元模型建立和计算

1.1 振动模态分析的基本方程

有限元模型的自由振动方程[3]可写为:

第3期 李玲芳, 等 基于Pro/MECHANICA 的机床支承件的振动模态分析 55

()()()()M t C t t t ++= x

x Kx f , (1) 式中: M 为系统质量, C 为系统阻尼, K 为系统刚度矩

阵; (

)t x 及()t x 为节点的速度和加速度; ()t x 分别为系统节点的位移响应向量, ()t f 为激励力向量. 固有频率以及主振型是振动系统的自然属性, 可通过研究无阻尼自由振动来进行求解. 由式(1)可得:

()()0M t t += x Kx . (2) 将它的解假设为以下形式:

0sin ()t t ω=?x Φ, (3) Ф为N 阶向量, ω为向量振动频率, t 为时间变量, t 0为由初始条件确定的时间常数. 将式(3)代人式(2), 可得到一个广义特征值方程, 即:

20M ω?= K ΦΦ. (4) 求解以上方程可以确定Ф和ω, 得到n 个特征解(ω12,

1), …(ω22, 2), (ωn 2, Фn ). 其中, 特征向量1, 2, …Фn 代表固有振型, 特征值ω1, ω2, ωn 代表固有频率. 1.2 建立几何模型

Pro/Engineer 软件以参数化著称, 是参数化技术的最早应用者, 在目前的三维造型软件领域中占有重要地位, Pro/Engineer 作为当今世界机械CAD/ CAE/CAM 领域的新标准而得到业界的认可和推广. 利用Pro/Engineer 软件建立的机床滑座几何模型如图1所示.

1.3 定义材料属性

机床滑座在工作时承受立柱和主轴箱的巨大

压力, 是机床支承件中的重要部件, 所以必须具有较高的强度. 材料选择为HT300, 质量密度7 340 g/dm 3, 弹性模量1.25 GPa, 泊松比0.27. 在菜单管理器中定义上述材料属性(图2). 1.4 建立约束

滑座的导轨对滑座的约束为Z G 和X 、Y

, 双电

机驱动的齿条机构约束了滑座的Y G

, 滑座和导轨之

间的压板限制了滑座的X G 和Z

. 打开MEC STRUCT 菜单, 选择Constraints—New—Surface, 在选项中定义以上约束, 如图3所示.

1.5 网格划分

首先选择mesh 菜单, 对模型进行网格定义与划分, 再对网格质量进行检查, 直到模型中没有红色网格为止(红色网格表示不合格网格). 图4所示为滑座的有限元网格模型.

1.6 建立分析任务, 进行有限元计算

选择

Analyses/Studies—Analyses and Design

图1 滑座几何模型

图2 定义材料属性

图3 滑座约束

图4 滑座有限元网格模型

56 湖 南 文 理 学 院 学 报(自 然 科 学 版) 2011年

Studies—File—New Modal..., 在模态分析任务定义对话框中设定分析任务后进行计算分析. 1.7 有限元模态分析结果

模态分析用于振动测量和结构动力学分析. 可测得比较精确的固有频率、模态振型、模态阻尼、模态质量和模态刚度. 可用模态试验结果去指导有限元理论模型的修正, 使理论模型更趋完善和合理. 在有限元模态分析结果中,低阶模态对振动系统的影响较大, 所以在求解过程中一般不求出全部的振动模态, 而是仅对前三阶模态进行计算. 图5至图7分别为滑座零件的前三阶振型图.

1.8 分析结果

从滑座的三阶模态振动频率表(表1)可知, 滑座零件的整体固有频率都在220 Hz 以上, 远高于正

常工作频率, 由此可以看出其刚性较高. 由振型图

来看, 虽然两侧的中间量最大, 但由于滑座是沿Y 轴方向做对称振动, 可以保证滑座不会左右摆动, 而是只有前端微小垂向位移. 该落地式镗铣床在加工过程中滑座前端微小的位移没有影响到立柱及主轴箱, 所以对加工精度影响较小, 满足了机床滑座的设计要求.

表1 三阶模态振动频率表 频阶 频率/Hz 一阶振动 228.32 二阶振动 270.54 三阶振动

345.75

2 机床床身有限元模型建立和计算

2.1 建立几何模型

利用Pro/Engineer 软件建立的机床床身几何模型如图8所示.

2.2 定义材料属性

床身材料同样选择为HT300,材料性能参数同前所述.

2.3 约束定义

床身地脚螺钉约束了床身各向的动作, 如图9所示.

图5 滑座的一阶振动模态

图6 滑座的二阶振动模态

图7 滑座的三阶振动模态 图8 床身的几何模型

图9 床身约束图

第3期 李玲芳, 等 基于Pro/MECHANICA 的机床支承件的振动模态分析 57

2.4 网格划分

过程同1.5所述, 床身的有限元网格模型如图10所示.

2.5 建立分析任务, 进行有限元计算

建立分析任务过程同1.6所述. 2.6 机床床身有限元模态分析结果

与机床滑座一样, 由于低阶模态对振动系统的

影响较大, 对机床床身有限元模型的求解, 同样无需求出振动系统的全部振动模态, 因此本文也仅计算了前三阶模态. 图11—13分别为床身的前三阶振型图.

由有限元模态分析计算结果可知该床身共有三阶模态在500 Hz 以内. 则机床床身的危险工作频率在250~400 Hz. 2.7 分析结果

从床身的三阶模态振动频率(表2)可知, 零件整体固有频率都在250 Hz 以上, 远高于正常工作频率, 由此可以看出其刚性较高. 由一阶振型图来分析, 虽然沿导轨方向中间量最大, 但由于床身地脚螺钉提供了非常牢固的约束, 床身不会左右摆动, 在加工过程中不会影响加工精度. 由二阶振型图可看出, 振动变形最大在床身的两个边缘, 这对机床加工精度的影响更小, 所以, 此设计满足设计需要.

表2 三阶模态振动频率表 频阶 频率/Hz 一阶振动 274 二阶振动 315 三阶振动

388

3 结论

通过对滑座的三阶振动模态的有限元分析可以得知, 机床滑座的设计满足设计要求, 具有很好的刚性, 危险工作频率为200~360 Hz. 通过对床身的三阶振动模态的有限元分析可以得知, 机床的床身的设计满足设计要求, 具有很好的刚性, 安全系数较高, 其危险工作频率为250~400 Hz.

在新产品的开发中, 利用有限元分析软件解决一些工程技术问题是工程设计过程中不可缺少的重要环节. 通过对机床支承系统进行模态分析, 进一步了解了重要受力构件的各阶振动特点, 这为产品的进一步改进更新提供可靠的理论依据.

参考文献:

[1] 诸乃雄. 机床动态设计原理与应用[M]. 上海: 同济大

学出版社, 1987: 127

[2] 张学玲, 徐燕申. 基于有限元分析的数控机床床身结

构动态优化设计方法研究[J]. 机械强度, 2005, 27 (3): 353-357

[3] 师汉民, 谌刚, 吴雅. 机械振动系统[M]. 武汉: 华中

理工大学出版社, 1990: 286.

(责任编校: 江 河

)

图11 床身的一阶振动模态 图12 床身的二阶振动模态

图13 床身的三阶振动模态 图10 床身网格划分

工程振动——模态分析、多自由度系统振动响应

1.复习模态分析理论 1.1单自由度系统频响函数(幅频、相频、实频与虚频、品质因子等) 系统的脉冲响应函数h(t)与系统的频响函数H(ω)是一对傅里叶变换对,与系统的传递函数H(s)是一对拉普拉斯变换对。即有: i ()()e d t H h t t ωω-∞ =? -∞ 1i () ( )e d 2π t h t H ωωω -∞ =?-∞ ()()e d 0 st H s h t t -∞ =? 1 i () ( )e d i 2πi st h t H s σωσ+∞=? -∞ 复频率响应的实部 2 1(/)R e [()]22 2 [1(/) ](2/)n H n n ωωωωω ξωω-= -+ 复频率响应的虚部 2/Im [()]22 2 [1(/)](2/) n H n n ξωω ωωω ξωω =- -+ 单自由度系统频响函数的各种表达式及其特征1 (w )2H k m w j k η=-+,对频响函数特征的描述 采用的几种表达式 1)幅频图:幅值与频率之间的关系曲线 2)相频图:相位与频率之间的关系曲线 3)实频图:实部与频率之间的关系曲线 4)虚频图:虚部与频率之间的关系曲线 5)矢端轨迹图(Nyquist 图) 1.2单自由度结构阻尼系统频响函数的各种表达形式 频响函数的基本表达式:11111 ()22222100 H m k k m j k j j ωω ηωωηωη = = ?=? -+-+-Ω+ 频响函数的极坐标表达式:()|()|j H H e ?ωω=,w H () —幅频特性, a rc ta n 21η?? ? -= ? ? ?-Ω? —相频特性。 频响函数的直角坐标表达式: ()()() R I H H jH ωωω=+, ()() 211()222 1R H k ωη -Ω= ? -Ω+—实频特性, () 1()22 2 1I H k η ωη -=? -Ω+—虚频特性 频响函数的矢量表达式:()()()R I H H ωωω=+H i j 1.3单自由度结构阻尼系统频响函数各种表达式图形及数字特征 幅频特性:1|()|0H k ωη = 固有频率:0D ωω= 阻尼比:00 B A ω ωω ηω ω -?== 相频特性

数控铣床的工作原理【详解】

数控铣床的工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 数控机床是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作数控折弯机并加工零件。 数控机床的机床本体与传统机床相似,由主轴传动装置、进给传动装置、床身、工作台以及辅助运动装置、液压气动系统、润滑系统、冷却装置等组成。但数控机床在整体布局、外观造型、传动系统、刀具系统的结构以及操作机构等方面都已发生了很大的变化,这种变化的目的是为了满足数控机床的要求和充分发挥数控机床的特点。 ⑵、CNC单元 CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。CNC单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。 ⑶输入/输出设备 输入装置将各种加工信息传递于计算机的外部设备。在数控机床产生初期,输入装置为穿孔纸带,现已淘汰,后发展成盒式磁带,再发展成键盘、磁盘等便携式硬件,极大方便了信息输入工作,现通用DNC网络通讯串行通信的方式输入。 输出指输出内部工作参数(含机床正常、理想工作状态下的原始参数,故障诊断参数等),一般在机床刚工作状态需输出这些参数作记录保存,待工作一段时间后,再将输出与原始资料作比较、对照,可帮助判断机床工作是否维持正常。

振动试验时传感器的安装

振动试验时传感器的安装 唐永革 随着改革开放政策的继续贯彻加之国产设备的不断完善,电动振动台将会在科研及应用领域发挥更大的作用。怎样正确使用电动振动台,已成为从事环境试的工程技术人员和操作人员不可忽视的问题。现结合实例,谈谈就怎样使用电动振动台提高振动试验再现性。 一.必须明确的概念(GB/T2423.10) 1.固定点:固定点是指试验样品和夹具或试验样品和振动台(如果振动台装有附加台面时,则指试验样品和附加台面)点接触的部分,此处在实际使用中通常定试验样品的地方,如果实际安装结构的一部分作夹具使用(诸如减震架、托架等届试验样品本身所带)则应取其和振动台点接触的那部分作固定点,而不能用试验样品和安装结构点接触那部分作固定点。 2.测量点:在GB/T2423.10中附录中规定了两种类型的测量点,主要点就是检查测量位于振动台、夹具或试验样品上所承受的实际振动量值,该点尽可能要接近固定点,在任何情况下,检测点上的传感器都要和固定点刚性连接,因为试验的要求就是通过许多检测点来保证的。 3.检测点:在振动试验中,所选择的用以监视和测量台面振动量值和试验样品(或试验样品某一薄弱环节)响应的传感器的安装点。 4.基准点:是从检测点中选定的点,为了满足GB/T2423要求,该点的信号是用来作控制试验用的. 5.控制点:在振动试验中用以控制振动量值(该量值是试验样品标准所规定的值)的传感器的安装点,该点也必须是固定点中具有代表性的点。 控制点可分单点控制和多点控制. 二.如何选择控制点、检测点、监测点的位置 1.控制点的位置:控制点必须选择在与试验样品安装点直接点接触的固定点的最近处。 (1)由于电动振动台的台面较小,加之原台面不易直接安装试验样品,一般使用者都安装了附加台面,并且在安装时充分利用了原台面上的所有安装孔,都和附加台面进行了刚性固定连结,把它看成与原台面合成了一个新的整体,这是

模态分析中的几个基本概念模态分析中的几个基本概念分析

模态分析中的几个基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 固有频率也称为自然频率( natural frequency)。物体做自由振动时,其位移随时间按正弦或余弦规律变化,振动的频率与初始条件无关,而仅与系统的固有特性有关(如质量、形状、材质等),称为固有频率,其对应周期称为固有周期。 物体做自由振动时,其位移随时间按正弦规律变化,又称为简谐振动。简谐振动的振幅及初相位与振动的初始条件有关,振动的周期或频率与初始条件无关,而与系统的固有特性有关,称为固有频率或者固有周期。 物体的频率与它的硬度、质量、外形尺寸有关,当其发生形变时,弹力使其恢复。弹力主要与尺寸和硬度有关,质量影响其加速度。同样外形时,硬度高的频率高,质量大的频率低。一个系统的质量分布,内部的弹性以及其他的力学性质决定 模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT 及振型文件Jobnmae.MODE 中,输出内容中也可以包含缩减的振型和参与因子表,这取决于对分析选项和输出控制的设置,由于振型现在还没有被写到数据库或结果文件中,因此不能对结果进行后处理,要进行后处理,必须对模态进行扩展。在模态分析中,我们用“扩展”这个词指将振型写入结果文件。也就是说,扩展模态不仅适用于Reduced 模态提取方法得到的缩减振型,而且也适用与其他模态提取方法得到的完整振型。因此,如果想在后处理器中观察振型,必须先扩展模态。谱分析中的模态合并是因为激励谱是其实是由一系列的激励组合成的一个谱,里面的频率不会是只有一个,而不同的激励频率对于结构产生的结果是不一样的,对于结果的贡献也是不一样的,所以要选择模态组合法对模态进行组合,得到最终的响应结果。

振动试验台技术参数指标及分析

振动试验台技术参数指标及分析 1、动圈的函数关系 激振力和加速度、负载质量的函数关系,F=m*a F,振动激振力(N);m,负载质量(KG),包括产品、台面、振动动圈、夹具的质量和;a,加速度(m/s2) 加速度和频率、振幅的函数关系,a=(2πf)2*D/1000 速度和频率、振幅的函数关系,V=2πf*D/1000 a,加速度;f,频率(Hz);D,振幅(mm)(O-P);V,速度(m/s)。 2、振动工作原理 1.5-38Hz,A=1.2G 38HZ-50HZ,D=0.4MM 50-500HZ,A=2G 2.5-200HZ,0.015G2/HZ 200-500HZ,-6DB/OCT A=2.16GRMS 3.5-25Hz1.2MM(0-P) 25-500Hz3.0G 每分钟1个OCT 3、应用概述 电动振动试验台是根据载流导体在磁场中受力而发生运动的原理,采用先进的机械结构和先进的工艺制作,主要特点为:磁路采用双磁路强磁场结构,动圈采用无骨架绕组,动圈支撑系统采用悬臂支架和空气弹簧支撑,功放采用先进的开关放大电路,系统保护功能齐全,采用智能式控制,冷却形式为强迫风冷。该系统技术指标符合相关标准,充分满足航天、航空、仪器、仪表、汽车、摩托车零部件等各个领域进行产品研制和生产可靠性试验的需要。

电动振动试验台各项技术指标均符合GB/T 13310-91《电动振动台技术条件》和企标Q/320502SN001-2002《DV、DC系列电动振动试验系统》的要求。 4、结构与特点 宽频带电动振动台,工作频率范围5~4000Hz,既可作正弦振动也可作随机振动,其结构是(1)由驱动线圈、骨架、台面构成活动系统;(2)活动系统的支撑导向系统;(3)磁路系统等部分组成。在活动系统支撑结构中采用了独特的摇臂式导向和轴向空气弹簧悬挂方式,因此具有横向负载强,波形精度高的特点,即使在额定负载下也能达到额定的25mmP-P 位移值。 磁路由磁缸、中心磁极、上下极板以及励磁线圈构成。直流电流输入励磁线圈。 磁缸悬挂于耳轴结构上,可以垂直、水平90°旋转,因此很容易选择试验所需的振动方向。在耳轴结构里采用隔振弹簧和直线导向的悬挂方式,结构中的隔振装置消除了内外部振动相互干扰的影响。 用T型内六角扳手拧紧台体左右上部耳轴压盖固定螺钉,如不压紧,则在振动中振动台体会发生倾斜,造成工作不正常。 在做5~20Hz,位移大于10mmP-P的振动试验,若台体产生共振时,可以旋紧悬挂系统左右耳轴座内上下各两只内六角螺钉,其余情况均为松开状态。 试件安装在台面上后,必须调整台面高度(即调整气室里空气量),使台面螺钉平面与台面高度指示尺相平,若螺钉平面高于台面高度指示尺,则使充气阀放气(少许),若螺钉平面低于台面高度指示尺,则从充气阀处充气(附件中有打气筒)。(见图3)

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

ANSYS— 弹性平面问题、振动模态分析

ANSYS ——有限元分析 弹性平面问题、振动模态分析 1、弹性平面问题 1、1.题目一:(见图一所示) 图1 已知条件: 1.5a m =,0.4c m =,0.5d m =,6/q kN m =,5F kN =; 1、1.1解题的总体思路 由于单元体是一个300×140的,为了方便计算,采用直接建模法,先创建一个30×14的单元体结构,在挖去15×4的单元,建立如下模型(见图二所示) 图2 并且对模型进行加载和约束,左边为固定端约束,右下角为端约束。荷载分别为均布荷载和一个集中力荷载。 1、1.2运行结果 此节只显示运行的结果和简单的解释,详细的命令见1、1.3节命令流中各个命令的注解。 1、各个节点的位移和扭矩 主要列举了具有代表意义的节点,由于节点有15×31个,所以只列出约束处的

节点的位移和扭矩。 只列出了31节点的位移,其他约束处的位移都为0 结果显示出:Ux=0.017236mm Uy=0mm 2、受力后与受力前变形图(放大)【见图3所示】 图3 3、X方向的变形图【见图4所示】 图4 4、Y方向的变形图【见图5所示】

图5 5、内力图【见图6所示】 图6 结论: 节点31处是最容易收到破坏的,因此再设计时应注意此处的设计。 1、1.3命令流 /PREP7 N,1,0,0!确定第一个节点 N,31,300,0!确定第31个节点 FILL,1,31!在1到31节点中插入节点 NGEN,15,31,1,31,1,0,10!复制上述节点15行,每行间距为10 ET,1,PLANE42!常量的设置 MP,EX,1,200E9 MP,NUXY,1,0.3 E,1,2,33,32 !创建第一个单元 EGEN,30,1,1 !复制1到31个单元的建立 EGEN,14,31,1,30 !所有的单元创建 EDELE,151,165 !下面都是挖去中间的面 EDELE,181,195 EDELE,211,225 EDELE,241,255

试验模态分析的两种方法

试验模态分析的两种方法 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 试验模态分析主要有以下两种方法,OROS模态分析软件MODEL 2 完全具备了这两种常用的模态方 法。 锤击法模态测试 用于满足锤击法结构模态试验,以简明、直观的方法测量和处理输入力和响应数据,并显示结果。提供两种锤击方法:固定敲击点移动响应点和固定响应点移动敲击点。用力锤来激励结构,同时进行加速度和力信号的采集和处理,实时得到结构的传递函数矩阵。能够方便地设置测量参数,如触发量级、测量带宽和加窗类型,同时对最优的设置提供建议指导。 激振器法模态测试 主要是通过分析仪输出信号源来控制激振器,激励被测试件,输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SIMO)与多点同时激励法(MIMO)。 1)几何建模 结构线架模型生成,节点数和部件数没有限制,测量点DOF自动加到通道标示;建立几何模型,以3维方式显示测量和分析结果。结构模型可以作为单个部件的装配,及采用不同的坐标系(直角、圆柱、球体坐标系),要求除点的定义外,还可定义线和面,真实的显示试验结构。结构线架模型生成,节点数和部件数没有限制,测量点自由度自动加到通道标示。

数控铣床操作中常见问题分析及应对策略

数控铣床操作中常见问题分析及应对策略 引言中职数控技术应用专业主要培养企业需的具有数控技术应用专业知识和操作技能的生产一线的初、中级技能型人才。其主要的就业岗位为数控机床操作工。因此,对学生的操作技能训练,就显得尤为重要;为使中职数控专业的学生能迅速熟练掌握数控铣床的操作技能,提高实训教学的效率和质量,现就华中“世纪星”HNC-21数控系统数控铣床操作中常见问题分析及应对策略谈谈自己的体会。 一、数控铣床操作中常见的问题及原因分析; 数控专业学生在操作实训中经常出现这样或那样的问题,尤其是初学者出现的问题更多;产生这些问题的原因主要是由机床的故障、数控系统不稳定、编程错误或工艺不合格以及学生操作失误四个方面引起的。下面仅就学生操作中出现问题以及产生的具体原因进行归纳分析如下: 1、回参考点时出现超程现象:这是因为数控铣床的X、Y、Z三轴中的某轴距离参考点太近,回参考点时各轴按系统设置的较快 速度移动,由于惯性作用,伺服机构撞到行程限开关,必定会产生超程急停报警。在初学者中,要数Z轴出现超程次数最多,这是因为我校数控铣床采用机用平口钳作为夹具,安装在工作台上,为了避免撞倒现象,刀具一般放置在平口钳上方,造成Z轴离参考点更近,且回参考点操作时,又是先使正轴面参考点故出现上述情况。 2、解除超程操作无效。通过多次观察发现,学生按住超程解除键后,当工作状态显示为“手动”或“手摇”时,就松开了超程 解除键,超程轴还没有向超程的反方向移动,行程限位开关还没有释放造成电磁继电器重新动作断电报警。其根本原因是学生没有弄清行程限位开关的工作原理,提前松开“超程解除”键造成的。 3、要编辑修改程序第一行的指令或参数时,按下“编辑程序”键后,该行显示红色亮条,不能对该行的字母或数字进行修改。 这是因为该程序已装入加工缓冲区,命令行显示“程序开始”,已做好加工准备,因此,第一行不允许修改,当然其它行可以编辑修改。 4、程序校验后,命令行显出“XX行语法错”检查该行语法发现不了语法错误的原因,无法修改。这是指令输入时,数字“1”和 “0”与字母“I”和“O”没有分清楚,输入错误造成语法错误。而数字“1”和“0”与字母“I”和“O”在屏幕上显示的字形没有明显的区别,因而难于发现错误。 5、程序校验后,显示程序正常;而加工时,出现报警,命令行显示“XX行刀具干涉”。这是在校验程序时,没有输入刀补值或 刀补表中有原来的刀补值且较小,所以检验时程序正常;加工时,再输入刀补值时,由于编程时建立刀具补偿的路径太短,或者是刀补值设置不合理,所以造成刀具干涉。 6、程序校验后,显示程序正常,而加工时,子程序不能运行。子程序不能运行的情况较多,且通过程序校验,容易检查出来, 多数是编程错误造成的。在学生中实训中发现最多的是程序单没有错误校验时没有出错提示其根本原因是将调用子程序指令“M98”输入为G98或者根本没有输入“M98”指令,而G98是每分钟进行方式指令,是正确指令,在程序校验中,不能检验出错误,造成程序中根本没有调用指令,所以子程序不能运行。 7、加工时,发生“撞刀”现象。产生这种现象有两大类原因,一是编程错误引起的,二是由于操作失误引起的。由操作失误引 起“撞刀”又分为两种情况,(1)换刀后忘记“对刀”,而造成“撞刀”(2)“对刀”时,在长度补偿里输入的数值错误而引起的。 应对策略 (一)当学生遇到上述问题时,教师不要忙于帮助解决,而应当让学生试着分析问题产生的原因,并启发他们找到解决问题的办法。在这个过程中,教师应尽量要求学生自己思考,自己操作,以培养其独立分析问题及解决问题的能力。 (二)教师现场指导学生操作,解决上述问题。其具体的解决方法为: 1、回参考点时,要先检查各轴的位置是否正常,离参考点太近的,要通过“手动”或“手摇“方式调整相应的轴的位置,防止 离参考点距离太近,再进行回参考点操作,就可以避免超程现象发生。 2、向学生介绍行程限位开关的工作原理,并强调超程解除操作时,要先查看故障报警显示,并弄清是那根轴超程。再按住超程 解除键,不得提前松开,要等超程轴向超程反方向移动一段距离后,行程限位开关真正释放后,再松开“超程解除”键,就完成了超程解除操作。 3、要修改有红色亮条显示的第一行,应先按“停止运行”键后,使该程序退出“加工开始”状态,再按“编辑程序”键,红色 亮条消失时,就可对第一行修改。

振动测试台技术参数

振动测试台技术参数: :【類別】三軸[()軸,垂直水準]() 吸合式電磁振動臺 :【振動臺以頻率分】 :【振動臺控制模式】全功能標準控制 :【振動方向】三軸[個台體,垂直(上下軸)水準(左右或前後軸)] :【振動方式】三軸[個台體,垂直(上下軸)水準(左右或前後軸)] ①二组独立輸出皆可用二组个別单独振动 ②可二组一起振动(另买垂直台体或水平台体) ③二组一起振动(只控制组振幅及加速度,第组跟着一起做)批量及生产线时非常有用,可省钱省时高效 率 :【振动波形】三轴[(轴)上下(前后左右)] ①垂直+水平可单独做半波 ②垂直+水平可单独做全波 ③垂直+水平可分一组做半波另一组全波 ④垂直+水平可二组同时做(半波或全波) :【振动频率】可任意设定(±) :【最大试验负载()】未指定以100kg为主 ■100kg(振幅5.2mm最大加速度22g)未指定以此机型出货 :【振动台面尺寸】() ①频率共振最好增加倍稳定性 ②防磁漏:地带面積(30cm):让磁漏減 ③台面上通孔(以实体为主): :有个(10mm) :绑带通孔*个:夾具(治具)通孔*个 ④:量测试螺丝孔*个(5mm) :【台体(高)】超低台体更低更穩定(每少公分穩定)(市面目前本司高度最低) ①■垂直**50CM ■水平台体**50CM ■台面**500mm ②越低越穩定越高失真越大误差越大 ③防共振设计(増加种防共振专业技术) ④中心轴防尘专业技术 ⑤中心轴増加:过流(倍)过耐热度耐湿耐爆耐尘 ⑥吸合式电磁振动台元件组成: :高电感电磁圈 :超高电感矽钢片片下片片上片产生器 :弹簧钢片:特殊处理 :支撑架 :底座 :台面 :护套 ⑦不会受总質量变动,改变承重或激振力 ⑧因台面底座支撑架弹簧钢片,一体合成配合电磁圈,更有效提高均匀穩定性,不受不规则物品的限制, 产生不均匀及中心点穩定问題,减少治具费用 ⑨振动方式:中心水平线为,往上振往下振,真正符合振幅幅度()的要求,解决高频圆形电磁振动台缺点 ⑩真正解决:各高频式电磁振动台很难解决(在时5mm20g重量100kg以内)不受影响的技术 ⑾防塵(可试用高塵地方)耐超低温耐高温耐湿度(防静电) :【振幅】(可任意调范围): -5.2mm (不准碰撞情況) :在无负荷下,最大位移为5mm(),此情況不可碰撞, :在最大负荷一半情況下,最大位移可达到为5mm() :在最大负荷情況下,最大位移可达到为5mm()要指定 ※此情況不可碰撞,小于此位移值,试验机本身足以负荷 ①频率可做到5mm:不准碰撞情況 :在频率且无负荷下,最大位移为5mm(),此情況不可碰撞, :在频率且无负荷下,最大位移为4mm(),此情況不可碰撞 :在频率且在最大负荷一半情況下,最大位移可达到为5mm(),小于此位移值 :在频率且在最大负荷情況下,其振动平台的最大位移量测值为5mm,此情況不可碰撞,小于此位移值,试验机本身足以负荷 ②频率以振幅为主 ③频率为5mm,最大加速度可做到0.01g 为5mm,最大加速度可做到12.25g :最大加速度可任意调: 22g(220m) ①频率可做到20g ②频率以最大加速度为主

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

振动试验台操作方法

振动试验台操作方法 一、振动试验台产品用途: 振动试验台适用于汽车零部件、电子元器件、组件、医药、食品、家具、礼品、陶瓷、包装等行业实验室及生产线上对样品进行相关振动试验。如环境接收试验,品质鉴定试验,可靠性鉴定试验,耐久试验,振动模拟分析,材料特性试验,疲劳试验,振动防止改善等。模拟产品在制造、组装、运输及使用过程中所遭受的振动环境,以评定其结构的耐振性、可靠性和完好性。 用于模拟电工、电子、汽车零部件以及其它涉及到运输的产品和货物在运输过程中的环境,检测其产品的耐振性能。艾思荔实现振动试验需要的所有功能:正弦波、调频、扫频、可程式、倍频、对数、最大加速度,调幅、时间空制,通过升级可实现全功能电脑控制,简易定加速度/定振幅。设备通过连续无故障运转3个月测试,性能稳定,质量。 二、振动试验台机械式: 振动试验台可分为不平衡重块式和凸轮式两类。不平衡重块式是以不平衡重块旋转时产生的离心力来激振振动试验台台面,激振力与不平衡力矩和转速的平方成正比。这种振动试验台可以产生正弦振动,其结构简单,成本低,但只能在约5Hz~100Hz的频率范围工作,最大位移为6mm峰-峤值,最大加速度约10g,不能进行随机振动,凸轮式振动试验台运动部分的位移取决于凸轮的偏心量和曲轴的臂长,激振力随运动部分的质量而变化。这种振动试验台在低频域内,激振力大时,可以实现很大的位移,如100mm。但这种振动试验台工作频率仅限于低频,上限频率为20Hz左右。最大加速度为3g左右,加速度波形失真很大。振动试验台由于其性能的局限,今后用量会越来越小。 三、振动试验台电液式: 振动试验台的工作方式是用小的振动试验台驱动可控制的伺服阀,通过油压使传动装置产

机翼模型的振动模态分析

机设1305 彭鹏程1310140521 一个简化的飞机机翼模型如图所示,该机翼沿延翼方向为等厚度。有关的几何尺寸见下图,机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r =886 kg/m。对该结构进行振动模态的分析。 (a) 飞机机翼模型 (b) 翼形的几何坐标点 振动模态分析计算模型示意图 解答这里体单元SOLID45 进行建模,并计算机翼模型的振动模态。 建模的要点: ⑴首先根据机翼横截面的关键点,采用连接直线以及样条函数< BSPLIN >进行连接以形成一个由封闭线围成的面; ⑵在生成的面上采用自由网格划分生成面单元(PLANE42); ⑶设置体单元SOLID45,采用< VEXT>进行Z 方向的多段扩展; ⑷设置模态分析< ANTYPE,2>,采用Lanczos 方法进行求解< MODOPT,LANB >; ⑸在后处理中,通过调出相关阶次的模态; ⑹显示变形后的结构图并进行动态演示。 给出的基于图形界面的交互式操作(step by step)过程如下。 (1) 进入ANSYS(设定工作目录和工作文件) 程序→ANSYS →→ANSYS Interactive →Working directory ( 设置工作目录) →Initial jobname(设置工作文件名):Modal→Run (2) 设置计算类型 ANSYS Main Menu:Preferences…→Structural →OK (3) 选择单元类型 ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete →Add…→Structural solid:Quad 4node 42 →Apply →solid →Brick 8node 45→OK →Close (4) 定义材料参数 ANSYS Main Menu:Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic:EX:0.26E9(弹性模量),PRXY:0.3(泊

振动测试技术模态实验报告

研究生课程论文(2016-2017学年第二学期) 振动测试技术 研究生:

模态试验大作业 0 模态试验概述 模态试验(modal test)又称试验模态分析。为确定线性振动系统的模态参数所进行的振动试验。模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。 模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。由于振动在机械中的应用非常普遍。振动信号中包含着机械及结构的内在特性和运行状况的信息。振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。 模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。 为获得系统动态特性,常需要测量系统频响函数。目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分,瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。 振动信号的分析和处理技术一般可分为时域分析、频域分析、时频域分析和时间序列建模分析等。这些分析处理技术从不同的角度对信号进行观察和分析,为提取与设备运行状态有关的特征信息提供了不同的手段。信号的时域分析包括时域统计分析、时域波形分析和时域相关分析。对评价设备运行状态和

大型振动台夹具的模态分析及结构改进

第31卷第5期苏州大学学报(工科版)Vol.31No.5 2011年10月JOURNAL OF SOOCHOW UNIVERSITY(ENGINEERING SCIENCE EDITION)Oct.2011文章编号:1673-047X(2011)-05-0056-04 大型振动台夹具的模态分析及结构改进 孙晓洁1,陈俊2,王安柱1,朱忠奎1 (1.苏州大学城市轨道交通学院,江苏苏州215021;2.东菱振动试验仪器有限公司,江苏苏州215011) 摘要:振动台夹具是振动台上用以固定被试件的关键结构件,首先应满足被试件的安装要求,其次为了能在试验频率范围内对被试件开展振动试验,其结构模态应有尽量高的固有频率,并避免与试件发生共振耦合。在设计夹具的基础上,分析其前十阶的固有模态,并根据其固有频率的高低改进了结构,使得模态符合试验要求。 关键词:振动台;夹具;模态;固有频率 中图分类号:TH16;U467文献标识码:A 0引言 对于大型振动台夹具,首先要确定出对夹具的固有频率和振型的要求,夹具设计完成后应对固有频率进行校验,根据验算结果对夹具进行改进设计并最终使夹具满足设计要求[1]。在振动环境中,夹具的第一阶固有频率应高于最高试验频率,还应避免发生夹具与产品的共振耦合[2]。本文据此进行了大型振动台夹具的结构改进。 据上所述,设计夹具时需计算结构的固有频率。建立结构的力学模型时可将产品合理简化为杆、梁、板、壳等构件的组合,理论上应将这些构件作为多自由度系统进行动力学分析,它们各自有其固有频率,夹具整体的固有频率与各组成构件的固有频率有一定的数学关系,准确的数值可通过理论计算和试验验证的方法获得[3]。对于大型复杂夹具,理论计算过于繁琐,直接对样品进行振动试验验证增大了设计成本。现在,工程上广泛应用有限元分析软件对构件进行动力学分析,这是精确、实用的技术分析方法之一。 本文采用ANSYS有限元软件对振动台夹具进行模态分析以解得振动台夹具的固有频率,分析其合理性并进行结构改进。 1大型振动台夹具的模态分析 1.1振动台夹具 振动台夹具的作用主要包括:①按照试验要求,可靠地装夹试件;②实现在振动台面上的安装;③将振动台的运动和能量不失真地传递到试件上,避免出现共振和隔振现象。在设计振动夹具时应选用刚度大、阻尼大的材料;还应在要求的重量范围内尽量减轻结构质量以降低轴向共振频率;并且使夹具的重心、试件的重心、激振力的中心这三个点在一条直线上,以避免引起振动台面的不平衡。最终使结构的基频达到设计要求[3-4]。 1.2初始结构的模态分析 根据振动台夹具的设计要求确定设计结构后,利用ANSYS软件进行模态分析,计算出结构的固有频率和相应振型。 收稿日期:2011-03-14 作者简介:孙晓洁(1989-),女,硕士研究生,主要研究方向为车辆工程。

各种模态分析方法总结及比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选项。然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

振动系统的模态分析

理论力学振动系统模态分析实验 一.实验目的: 1.了解数字化测试技术的原理和做法。学习模态分析原理。 2.学会用“锤击发”测量振动系统的模态参数与振型。 二.实验仪器: 1.MSC-1型弹性力锤。 2.Yj9A压电加速度传感器。 3.Zj-601A型震动教学试验仪。 三.实验装置示意图: 四、实验原理: 本实验测试对象是弹性梁。实验步骤与原理是:由力锤锤击被测物体,锤体内的力传感器与被测物体上的加速度计同时记录下脉冲激励与被测物体的响应,震动教学试验仪放大并转化为电压,经接口箱,传入计算机的采集分析系统记录。数据采集完毕后,动用分析系统,首先对数据进行传递函数分析,然后,进入模态分析,根据振动理论,分析系统在确定阶数后,进行质量或振型归一,自动生成分析结果并可以生成振动的动画显示,各阶频率、模态质量、模态刚度、模态阻尼比同时列出。

五、实验步骤: 1.准备工作:先将梁分画成所需的单元格,节点编号,将加速度计固定在梁的 五分之二处(避免放在节点处)。 2. 设备连接:将力锤与加速度计与电荷放大器连接,按力锤与加速度计的灵 敏度分别调好电荷放大器上的旋钮,并选好相应的滤波上限开关。再将二信号输出端与接口箱相应频道相连。 3. 进入计算机采集分析系统参数设置部分,设定实验名称与各频道单位。 4. 进入计算机采集分析系统菜单中模态分析部分,画出被测对象的几何图形 及节点号,给出约束条件。 5. 进入计算机采集分析系统的信号采集部分,开始实验。 6.对17个测试位置依次进行敲击,没一个测试点进行三次。以减小误差。 7.调用采集的数据,打开分析界面,调入波形。进行函数分析,模态拟合。 8.振型编辑,质量归一,至此分析完毕,显示动画 9输出数据及计算结果,保存动画截图。

悬臂梁地振动模态实验报告材料

实验 等截面悬臂梁模态测试实验 一、 实验目的 1. 熟悉模态分析原理; 2. 掌握悬臂梁的测试过程。 二、 实验原理 1. 模态分析基本原理 理论上,连续弹性体梁有无限多个自由度,因此需要无限多个连续模型才能描述,但是在实际操作中可以将连续弹性体梁分为n 个集中质量来研究。简化之后的模型中有n 个集中质量,一般就有n 个自由度,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。这就是说梁可以用一种“模态模型”来描述其动态响应。 模态分析的实质,是一种坐标转换。其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。这一坐标系统的每一个基向量恰是振动系统的一个特征向量。也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。 多次锤击各点,通过仪器记录传感器与力锤的信号,计算得到第i个激励点与定响应点(例如点2)之间的传递函数 ω ,从而得到频率响应函数矩阵中的一行 频响函数的任一行包含所有模态参数,而该行的r 阶模态的频响函数 的比值,即为r 阶模态的振型。 2. 激励方法 为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。传递函数分析实质上就是机械导纳,i 和j 两点之间的传递函数表示 [] ∑==N r iN r i r i r H H H 1 21 ... [] Nr r r N r r r r ir k c j m ???ωω? (2112) ∑ =++-=[]{}[] T r ir N r r iN i i Y H H H ??∑==1 21 ...

相关文档
最新文档