基于复合控制算法的三相光伏并网逆变系统的研究

基于复合控制算法的三相光伏并网逆变系统的研究
基于复合控制算法的三相光伏并网逆变系统的研究

单机版-研旭光伏并网逆变器说明书_图文(精)

研旭光伏并网逆变器 YXSG-2.5KSL , YXSG-3KSL , YXSG-5KSL 安装使用手册 目录 1、安全说 明 (3) 2、产品描 述 (5) 2.1光伏并网系 统 .................................................................................................................... 6 2.2电路结构 ............................................................................................................................ 7 2.3特点 . .. (7)

2.4逆变器外观描 述 (8) 3、安 装 .......................................................................................................................................... 10 3.1 安装须 知 ......................................................................................................................... 10 3.2 安装流程说明 .. (11) 3.3安装准备 .......................................................................................................................... 12 3.4 选择合适的安装场 地 ..................................................................................................... 12 3.5 安装逆变 器 (14) 3.6 电气连 接 (14) 4、 LCD 操作说 明 . ......................................................................................................................... 21 4.1 按键功能说明 .. (21) 4.2 界面介 绍 (22) 5、故障排 除 (27) 5.1 初始化失败 ..................................................................................................................... 27 5.2 LCD 显示故 障 (27)

用于三相PWM并网逆变器的改进型幅相控制方法_英文_

J Shanghai Univ(Engl Ed),2008,12(6):560–564 Digital Object Identi?er(DOI):10.1007/s11741-008-0617-1 The improved PAC method for a three-phase PWM grid-connected inverter LI Jie( ),MA Yi-wei( ),CHEN Guo-cheng( ),WANG De-li( ), YU Jun-jie( ) Shanghai Key Laboratory of Power Station Automation Technology,Shanghai University,Shanghai200072,P.R.China Abstract In this paper,a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up,the starting voltage prediction control and the current feed-forward control are proposed and used,which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method. Keywords three-phase pulse width modulation(PWM)grid-connected inverter,phase and amplitude control(PAC),starting voltage prediction control,current feed-forward control Introduction Three-phase pulse width modulation(PWM)grid- connected inverters can realize feeding electric energy to grid with unity power factor without harmonious pollution.Therefore,it can be applied to many situa- tions,such as solar photovoltaic generation,wind power generation and the energy-regeneration application[1?2]. The current control methods of three-phase PWM grid- connected inverters can be divided into two sorts,the direct current control and the indirect current control. The direct current control includes the hysteresis cur-rent control,the space-vector control,etc.[3?4]These methods can obtain faster current response,but the con- trol structure and algorithm are comparatively complex. The indirect current control is also called the phase and amplitude control(PAC).It has advantages that the control is simple without current feedback and its cost is low[5?6].However,comparing with the direct current control,its current dynamic response is not very fast. Recent research about PAC mainly involved in improv-ing the dynamic performance of the system in operation and design of system parameters[2,7].None of them re-fer to improving startup the dynamic performance of the system.However,in some situations(such as eleva-tors and port machines),grid-connected inverters have to start and stop frequently.The dynamic performance of the system in startup makes an important impact on the quality of electric power fed into grid. In this paper,based on the research concerned[7?8], a15kW three-phase PWM grid-connected inverter us-ing PAC is designed.Moreover,to solve the problem of heavy inrush current and slow dynamic response when system starts up,the starting voltage prediction control and the current feed-forward control are presented.The experimental results proved the validity of the proposed methods. 1Structure of main circuit and operat-ing principle 1.1Structure of main circuit The main circuit structure of a three-phase PWM grid-connected inverter consists of a bridge recti?er made up of six IGBTs with anti-parallel diodes,DC link capacitance and series inductances. As shown in Fig.1,The AC output ports of the sys- tem are directly connected to the gird,while the DC in-put ports are connected to E G(E G is a renewable power supply)in series with an isolation diodes V D which en- sure the energy can only?ow into the grid.Before the system runs,all the IGBTs(V1~V6)are blocked.En-ergy can’t be fed into the grid and the supply-side cur- rent is zero.After the system runs,the DC link voltage is held on the set voltage by controller and all the IGBTs are switched on or o?by the given PWM rule.Then en-ergy is fed into the grid. Received Nov.21,2007;Revised Apr.15,2008 Project supported by the Shanghai Education Committee Scienti?c Research Subsidization(Grant No.05AZ30),and the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20060280018) Corresponding author CHEN Guo-cheng,Prof.,E-mail:gchchen@https://www.360docs.net/doc/8614468356.html,

太阳能光伏并网控制逆变器工作原理及控制方法

2015年6月15日 22:28 太阳能光伏并网控制逆变器工作原理及控制方 摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为"光热"和"光伏"两种,其中光热式热水器在我国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的"光生伏打现象"。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。 本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分: 其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

三相并网逆变器数学模型

一. 三相线电压到三相相电压的转化 1()31()31() 3 a a b ca b b c ab c ca bc U U U U U U U U U =-=-= - 二. 三相静止坐标到两相静止坐标的转化(恒功率) 2[0.5()]3 2()] 3 2 alf a b c beta b c = -+= - 三. 两相静止坐标到两相旋转坐标的转化(恒功率) cos*sin*sin*cos*d alf beta q alf beta =+=-+ 四. 两相旋转坐标到两相静止坐标的转化(恒功率) cos*sin*sin*cos*alf d q beta d q =-=+ 五. SVPWM 的算法 1. 扇区N 的计算 A=beta U , alf beta U -, C=a lf b eta U -当A>=0,A=1,否则A=0; B>=0,B=1,否则B=0;当C>=0,C=1,否则C=0;那么扇区N=A+2B+4C 。 2.XYZ 的计算 dc X U = ,32alf beta dc U Y T U += ,32alf beta dc U Z T U -+ = 当T1+T2>=T 时,1112 T T T T T =+,2212 T T T T T = +

https://www.360docs.net/doc/8614468356.html,R1_Val, CCR2_Val, CCR3_Val 的计算 六. 有功无功解耦控制 * *()()*()()*id d d d pd d q d iq q q q pq q d q k U i i k i R Li E s k U i i k i R Li E s ωω=-++-+=-+ +++

太阳能光伏并网逆变器的设计原理框图

随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,必须完成从补充能源向替代能源的过渡。光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。 在光伏并网系统中,并网是核心部分。目前并网型系统的研究主要集中于DC-DC和DC-AC 两级能量变换的结构。DC-DC变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。其中DC-AC是系统的关键设计。 太阳能光伏并网系统结构图如图1所示。本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器。前级用于最大功率追踪,后级实现对并网电流的控制。控制都是由DSP芯片TMS320F2812协调完成。 图1 光伏并网系统结构图 逆变器的设计 太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将发出的直流电逆变成单相交流电,并送入电网。同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。并且具有完善的并网保护功能,保证系统能够安全可靠地运行。图2是并网逆变器的原理图。

图2 逆变器原理框图 控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。驱动电路起到提高脉冲的驱动能力和隔离的作用。保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。 在实现同频的条件下可用矢量进行计算,从图3可以看出逆变器输出端存在如图3a所示的矢量关系,对于光伏并网逆变器的输入端有下列基本矢量关系式: Vac=Vs+jωL·IN+RS·IN (1) 式中Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。 图1 光伏并网系统结构图 图3 控制矢量图 在网压Vac(t)为一定的情况下,IN(t)幅值和相位仅由光伏并网逆变器输出端的脉冲电压中的基波分量Vs(t)的幅值,及其与网压Vac(t)的相位差来决定。改变Vs(t)的幅值和相位就可以控制输入电流IN(t)和Vac(t)同相位。PWM整流器输入侧存在一个矢量三角形关系,在实际系统中RS 值的影响一般比较小,通常可以忽略不计得到如图3b所示的简化矢量三角形关系,即下式: (2) 在一个开关周期内对上式进行周期平均并假设输入电流能在一个开关周期内跟踪电流指令即可推导出下式: (3)式中K= L/TC,TC为载波周期。 从该模型即可以得到本系统所采用的图4所示的控制框图。此方法称为基于改进周期平均模型的固定频率电流追踪法。

风电场模型并网控制系统实验指导书V1-精品

风电场模型并网控制系统实验指导书V1-精品 2020-12-12 【关键字】情况、方法、环节、条件、文件、质量、模式、监控、运行、系统、机制、有效、平衡、合理、快速、配合、保持、建立、掌握、了解、规律、位置、关键、安全、稳定、网络、基础、需要、环境、能力、方式、作用、标准、结构、主体、总体布局、速度、关系、设置、分析、调节、形成、保护、满足、严格、管理、确保、服务、指导、带动、方向、巩固、扩大、实现、提高、中心、核心、重要性 风电场模型并网控制系统 实验指导书 主编 XX 上海浪腾工业自动化有限公司

2014年5月

实验一了解风电场模型并网控制系统试验平台 一、实验目的 对风电场模型并网控制系统进行剖析,通过对照使用说明书与实物,了解本试验平台的主体结构及各细节,巩固、扩大课堂所学知识,并从中体会学习风电场模型并网控制系统试验平台的实验方法。要求: 1、了解试验平台的用途,总体布局,以及试验平台的主要性能和技术指标; 2、对照试验平台使用说明书,分析仿真器、控制器和SCADA工作原理; 3、了解和分析试验平台主要部件的工作原理。 二、实验原理及方法 本实验利用并网控制系统试验平台中的仿真器、控制器和SCADA讲解真实环境下风电场并网的工作原理。主要方法是打开仿真器、控制器和SCADA,参照使用说明书,并配以实物进行观察,通过联合操作仿真器、控制器和SCADA,观察试验平台的各个动作。 三、风电场模型并网控制系统用途及布局 1、风电场模型并网控制系统用途 风场模型并网控制系统试验平台,构建了一个采用风速、温度及海拔等参数为依据的虚拟风况环境模型,以单台风力发电机组在风场特定微观位置为目标而建立的一个风电场群,用于测试风力发电机组工况运行状态。学生可通过本试验台了解风场侧风力发电机主控以及中控侧SCADA的工作原理,并可在试验台进行相关地风力发电机工况的模拟实验,本试验台同时可供电气专业学生了解学习基于工业现场的电气控制、数据采集及网络通讯等知识。 2、风电场模型并网控制系统的主要技术指标 仿真器输入额定电压 AC220V 仿真器PLC额定电压 DC24V 仿真器PC额定电压 AC220V 控制器输入额定电压 AC220V 控制器PLC额定电压 DC24V 控制器PC额定电压 AC220V SCADA网络通讯板额定电压 AC220V SCADA串口服务器额定电压 AC220V SCADA串多模转换器额定电压 DC24V SCADA数据交换机额定电压 DC24V SCADA客户机额定电压 AC220V SCADA服务器额定电压 AC220V 3、风电场模型并网控制系统的主体结构 图1是风电场模型并网控制系统试验台原理结构图,图2是风电场模型并网控制系统试验台现场布置图。风电场模型并网控制系统主要由仿真控制系统、主控制系统和SCADA系统组成。仿真控制系统包含风模型系统软件、力模型系统软件、温度和湿度及海拔系统模型

毕业设计-单相光伏并网逆变器的控制原理及电路实现

第一章绪论 1.1 光伏发电背景与意义 作为一种重要的可再生能源发电技术,近年来,太阳能光伏(Photovoltaie,PV)发电取得了巨大的发展,光伏并网发电已经成为人类利用太阳能的主要方式之一。目前,我国已成为世界最大的太阳能电池和光伏组件生产国,年产量已达到100万千瓦。但我国光伏市场发展依然缓慢,截至2007年底,光伏系统累计安装100MWp,约占世界累计安装量的1%,产业和市场之间发展极不平衡。为了推动我国光伏市场的发展,国家出台了一系列的政策法规,如《中华人民共和国可再生能源法》、《可再生能源中长期发展规划》、《可再生能源十一五发展规划》等。这些政策和法规明确了太阳能发电发展的重点目标领域。《可再生能源中长期发展规划》还明确规定了大型电力公司和电网公司必须投资可再生能源,到2020年,大电网覆盖地区非水电可再生能源发电在电网总发电量中的比例要达到3%以上。对于这一目标的实现,光伏发电无疑会起到非常关键的作用。 当下,我国地方和企业正积极共建兆瓦级以上光伏并网电站,全国已建和在建的兆瓦级并网光伏电站共11个(2008年5月前估计),典型的如甘肃敦煌10MW 并网光伏特许权示范项目,青海柴达木盆地的1000MW大型荒漠太阳能并网电站示范工程,云南石林166MW并网光伏实验示范电站。可以预见,在接下来的几年里,光伏并网发电市场将会为我国摆脱目前的金融危机提供强大的动力,光伏产业依然会持续以往的高增长率,光伏市场的前景仍然令人期待。光伏并网发电系统是利用电力电子设备和装置,将太阳电池发出的直流电转变为与电网电压同频、同相的交流电,从而既向负载供电,又向电网馈电的有源逆变系统。按照系统功能的不同,光伏并网发电系统可分为两类:一种是带有蓄电池的可调度式光伏并网发电系统;一种是不带蓄电池的不可调度式光伏并网发电系统。典型的不可调度式光伏并网发电系统如图1-1所示。

三相光伏并网逆变器的设计

三相光伏并网逆变器的设计毕业设计开题报告 1 选题的目的和意义 随着社会生产的曰益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。地球中的化石能源是有限的,总有一天会被消耗尽。随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。其中太阳能资源在我国非常丰富,其应用具有很好的前景。 光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。存阳光充足时,太阳能发出的电可供使用,而不使用市网电;在阳光不充足或光伏发电量达不到使用量时,由控制部分自动调节,通过市网电给予补充。此系统主要用于输电线路调峰电站以及屋顶光伏系统。 光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。给出了硬件主回路并对各部分的功能进行了分析,同时选用Tl公司的DSP芯片TMs320F2812作为控制CPU,阐述了芯片特点及选择的原因。并对并网逆变器的控制及软件实现进行了研究。文中对于光伏电池的最大功率跟踪(MPPT)技术作了闸述并提出了针对本设计的实现方法。最后对安全并网的相关问题进行了分析探讨。 2 本选题的国内外动向 太阳能光伏并网发电始于20世纪80年代,由于光伏并网逆变器在并网发电中所起的核心作用,世界上主要的光伏系统生产商都推出了各自商用的并网逆变器产品。这些并网逆变器在电路拓扑、控制方式、功率等级上都有其各自特点,其性能和效率也参差不齐。目前在国内外市场上比较成功的商用光伏并网逆变器主要有以下几种: 1.德国SMA公司的Sunny Boy系列光伏逆变器艾思玛太阳能技术股份公司(SMA SolarTechnology AG)是全球光伏逆变器第一大生产供应商,并引领着全球光伏领域的技术创新和发展。该公司推出的Sunny Boy系列光伏组串逆变器是目前为止并网光伏发电站最成功的逆变器,市场份额高达60%。其在国内的典型工程包括大兴天普“50kWp大型屋顶光伏并网示范电站"、深圳国际园林花卉博览园1MWp光伏并网发电工程等。 2.奥地利Fronius公司的IG系列光伏逆变器Fronius是专业生产光伏并网逆变器和控制器

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器 设计方案 目录 1. 百千瓦级光伏并网特点 (2) 2 光伏并网逆变器原理 (3) 3 光伏并网逆变器硬件设计 (3) 3.1主电路 (6) 3.2 主电路参数 (7) 3.2.1 变压器设计............................................................................. 错误!未定义书签。 3.2.3 电抗器设计 (7) 3.3 硬件框图 (10) 3.3.1 DSP控制单元 (11) 3.3.2 光纤驱动单元 (11) 3.3.2键盘及液晶显示单元 (13) 3 光伏并网逆变器软件 (13)

1. 百千瓦级光伏并网特点 2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。 百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。 在技术指标上,主要会影响: 1.并网电流畸变率 在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。 2.电磁噪声 由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。由于系统的dv/dt、di/dt和电流幅值较大,其EMI和EMC的指标实现可能存在技术难度,由于系统的噪声可能影响其电流、功率的检测和计算精度,在最大功率跟踪和孤岛效应识别等方面的影响还难以预计。 在技术指标上,主要考虑: 1)主电路工艺结构设计 2)散热工艺结构设计 3)驱动方式设计

一文看懂光伏逆变器工作原理!

一文看懂光伏逆变器工作原理! 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原

理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

光伏并网逆变器的电流锁相改进方案及实现

光伏并网逆变器的电流锁相改进方案及实现 摘要:基于光伏发电并网逆变器控制中电流锁相的重要性和复杂性,提出了带预锁相和遗忘算法的电流锁相方案,该方案可采用硬件锁相和软件锁相两种方式实现。建立了以MC56F8345 型DSF 为控制核心的PWM 逆变器数字化并网实验平台,对改进后的电流锁相方案进行验证。实验结果表明,该方案很好地实现了逆变器输出电流与电网电压的同步锁相控制,且输出电流的幅值、相位、频率均符合控制要求,可稳定、可靠地并网发电,并能实现网侧单位功率因数。关键词:光伏发电;并网逆变器;电流锁相1 引言在光伏发电系统中,并网逆变器输出电流的控制十分重要。有效控制逆变器输出电流可实现网侧功率因数可调。控制电流时,电流锁相十分关键,必须对电网电压的频率和相位进行实时检测,并以此控制逆变器输出电流与电网电压保持同频同相,即同步锁相。若不能稳定、可靠地锁相,则在逆变器与电网连接(并网)过程中会 产生很大的环流,对设备造成冲击,缩短设备使用寿命,严重时还会损坏设备。因此,研究光伏发电并网逆变器电流锁相改进方案及数字化实现具有现实意义。 2 光伏并网逆变器电流矢量控制策略光伏发电并网系统结构框图如图1 所示。图中上半部分为系统主电路,下半部分为系统控制电路。控制过程如下:根据PV 的输出电压、电流,由MPPT 算法获得Ud 参考值,与Ud 实际值比较后经电压调节器得到有功电流(d 轴电流)参考值。φ*为给定功率因数角,为无功电流(q 轴电流)参考值。若要求单位功率因数,则φ*=0,=0。 电流闭环控制通常采用电流矢量控制。图2 示出电流矢量控制的矢量关系图。 u,i.e 分别为逆变器输出电压、输出电流和电网电压的空间矢量。旋转坐

深度干货:三相逆变器并网优势详解

深度干货:三相逆变器并网优势详解 首先,我们需要了解到单相电与三相电的区别,从波形上来看区分如下: 1.定义: 三相电:三相交流电源,是由三个频率相同、振幅相等、相位依次互差120°的交流电势组成的电源,(如图) 单相电:单相电即一根相线(俗称火线)和一根零线构成的电能输送形式(如图) 2.三相电之于单相电的优势 1)从使用角度考虑,三相电的电压更高,可以驱动大功率的电器,例如,三相电可以驱动鼠笼式感应电动机,这种点击结构简单,维修制造方便,耐用,在工业上有重要用途,所以工业用电一般都是三相电。其次,采用三相电就有了更多的电压选择,因为三相电可以接出单相电,而单相电不能接出三相电。 2)从安全角度考虑,三相电可以提供更好的电压等级,相对较安全,假设电压是380V如果是单相的话就是一根线是380V,一根线是0V,但是如果是三相的话,两根线都是220V,电压等级的下降,在绝缘,线径等一系列安全问题上都有优势。 3)从物理学角度考虑,单相瞬时功率曲线是起伏的,不够稳定,而三相电机瞬时功率是一条直线,相当于平均功率,相对稳定。再者,因为三相电势三个相位互相差123度的单相电,由于这个原因,4更显就可以传输3倍的单相电能。

4)从经济角度考虑,对企业而言,使用的电压越高,电费就越便宜。对归家而言,如果是单相发电,全国一样要建输电塔,一样要挖电缆沟,和三相输电成本差不多,但是三相输电效率要高很多,相同成本下,三相电的输电能力比单相的强。 3.三相并网发电与单相并网发电比较 三相并网发电即逆变器连接的三相电网,单相并网发电即逆变器连接的是单相电网。 从上表的比较中可以看出,三相并网发电系统应用场合广,逆变器功率密度高,输出电能质量好,三相平衡对电网影响小,电网负担轻,电能利用率高,将会越来越多的应用于各个场合的发电系统中,为此,欧姆尼克作为户用系统的金牌供应商,推出了全新系列的小功率三相光伏并网逆变器,为户用并网系统提供了新的,智能化的新概念解决方案。 4.三相机 小功率智能光伏并网逆变器,相比于传统的户用单相户用并网逆变器优势如下: 1) 应用范围更广, 不光为户用屋顶提供智能化的解决方案,还可以适用于小型的工商业电站,使用户能有更多的选择。

太阳能逆变器开发思路和方案

太阳能逆变器开发思路和方案 内容摘要:摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 摘要:针对光伏并网发电系统中关键部件逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网.光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 关键词:光伏并网发电系统;逆变器;拓扑结构;最大功率点跟踪;孤岛效应 O 引言由于传统能源的枯竭和人们对环境的重视,电力系统正面临着巨大变革,分布式发电将成为未来电力系统的发展方向。其中,光伏发电以其独特的优点,被公认为技术含量高.最有发展前途的技术之一。但是光伏发电系统存在着初期投资大.成本较高等缺点,因而探索高性能.低造价的新型光电转换材料与器件是其主要研究方向之一。另一方面,进一步减

少光伏发电系统自身损耗.提高运行效率,也是降低其发电成本的一个重要途径。逆变器效率的高低不仅影响其自身损耗,还影响到光电转换器件以及系统其他设备的容量选择与合理配置。 因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素,研究其结构与控制方法对于提高系统发电效率.降低成本具有极其重要的意义 [5] 。 本文从电网.光伏阵列以及用户对于并网逆变器的要求出发,分析了不同的逆变器拓扑结构与控制方法,比较了其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状.亟待解决的技术问题进行了综合,进一步指出了光伏发电系统中并网逆变器高效可靠运行的发展方向。 1 光伏发电系统对逆变器的要求光伏并网发电系统一般由光伏阵列.逆变器和控制器3 部分组成。逆变器是连接光伏阵列和电网的关键部件,它完成控制光伏阵列最大功率点运行和向电网注入正弦电流两大主要任务。 1 .1 电网对逆变器的要求逆变器要与电网相连,必须满足电网电能质量. 防止孤岛效应和安全隔离接地3 个要求。 为了避免光伏并网发电系统对公共电网的污染,逆变器应输出失真度小的正弦波。影响波形失真度的主要因素之一是逆变器的开关频率。在数控逆变系统中采用高速 DSP 等新型处理器,可明显提高并网逆变器的开关频率性能,它已成为实际系统广泛采用的技术之一;同时,逆变器主功率元件的选择也至关重要。小

太阳能光伏并网逆变器的设计原理框图概要

太阳能光伏并网逆变器的设计原理框图 随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,太阳能必须完成从补充能源向替代能源的过渡。光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。 在光伏并网系统中,并网逆变器是核心部分。目前并网型系统的研究主要集中于DC-DC和DC-AC两级能量变换的结构。DC-DC变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。其中DC-AC是系统的关键设计。 太阳能光伏并网系统结构图如图1所示。本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器。前级用于最大功率追踪,后级实现对并网电流的控制。控制都是由DSP芯片TMS320F2812协调完成。 图1 光伏并网系统结构图

逆变器的设计 太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将太阳能电池板发出的直流电逆变成单相交流电,并送入电网。同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。并且具有完善的并网保护功能,保证系统能够安全可靠地运行。图2是并网逆变器的原理图。 图2 逆变器原理框图

控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。驱动电路起到提高脉冲的驱动能力和隔离的作用。保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。 在实现同频的条件下可用矢量进行计算,从图3可以看出逆变器输出端存在如图3a所示的矢量关系,对于光伏并网逆变器的输入端有下列基本矢量关系式: Vac=Vs+jωL·IN+RS·IN (1) 式中Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。

三相光伏并网逆变器及控制系统的设计

三相光伏并网逆变器及控制系统的设计 发表时间:2019-01-16T11:17:41.947Z 来源:《防护工程》2018年第31期作者:任婧玮汪子涵[导读] 现在新能源的开发与使用逐渐受到了世界各国的关注,解决新能源需求、环境保护及经济发展之间的互锁关系日益成为世界各国的头等难题。国网安徽省电力有限公司濉溪县供电公司安徽淮北 235100 摘要:本文介绍了基于L型滤波器三相光伏并网逆变器的主电路拓扑结构。在该拓扑结构数学模型的基础上,设计了三相光伏并网逆变器双闭环控制系统的结构。选择电压电流双闭环PI控制及SVPWM调制策略,通过实验分析验证系统的可靠性和实用性。 关键词:逆变器;PI控制;SVPWM 0 引言 现在新能源的开发与使用逐渐受到了世界各国的关注,解决新能源需求、环境保护及经济发展之间的互锁关系日益成为世界各国的头等难题。太阳能作为技术含量最高、最有发展前景的新能源,具有普遍、无害性、巨大以及长久等优点[1-3]。太阳能发电系统包括光伏电池发电装置与变换器装置,系统输出的电能供给用户负载使用。而并网逆变器作为光伏并网发电的核心,对其进行控制策略的研究具有很高的现实意义[4-6]。本文以两级式非隔离三相并网逆变器的拓扑结构为研究对象,分析了太阳能光伏电池的数学模型和输出特性,然后对双闭环并网控制系统及逆变调制策略进行研究,最后进行实验,验证了理论的正确性。 1 光伏并网逆变器的系统结构 本文采用L型滤波器实现并网逆变器与电网的连接。如图1所示为三相并网逆变器的拓扑结构图,其中ea、eb、ec为三相配电网电压,中性点为O点,逆变器交流侧输出电流为ia、ib、ic,逆变器输出交流和配电网侧等效电感为L,等效线路电阻为R,三相全桥拓扑结构3个桥臂的中点输出电压为Ua、Ub、Uc,T1~T6为IGBT开关管器件,C为输入直流侧滤波与稳压电容,Udc为输入直流侧电压,idc为直流母线侧电流。

相关文档
最新文档