Coherent detection in optical fiber

Coherent detection in optical fiber
Coherent detection in optical fiber

Coherent detection in optical fiber systems

Ezra Ip*, Alan Pak Tao Lau, Daniel J. F. Barros, Joseph M. Kahn

Stanford University, 366 Packard Building, 350 Serra Mall, Stanford, CA 94305-9515, USA.

*Corresponding Author: wavelet@https://www.360docs.net/doc/8d14556680.html,

Abstract: The drive for higher performance in optical fiber systems has

renewed interest in coherent detection. We review detection methods,

including noncoherent, differentially coherent, and coherent detection, as

well as a hybrid method. We compare modulation methods encoding

information in various degrees of freedom (DOF). Polarization-multiplexed

quadrature-amplitude modulation maximizes spectral efficiency and power

efficiency, by utilizing all four available DOF, the two field quadratures in

the two polarizations. Dual-polarization homodyne or heterodyne

downconversion are linear processes that can fully recover the received

signal field in these four DOF. When downconverted signals are sampled at

the Nyquist rate, compensation of transmission impairments can be

performed using digital signal processing (DSP). Linear impairments,

including chromatic dispersion and polarization-mode dispersion, can be

compensated quasi-exactly using finite impulse response filters. Some

nonlinear impairments, such as intra-channel four-wave mixing and

nonlinear phase noise, can be compensated partially. Carrier phase recovery

can be performed using feedforward methods, even when phase-locked

loops may fail due to delay constraints. DSP-based compensation enables a

receiver to adapt to time-varying impairments, and facilitates use of

advanced forward-error-correction codes. We discuss both single- and

multi-carrier system implementations. For a given modulation format, using

coherent detection, they offer fundamentally the same spectral efficiency

and power efficiency, but may differ in practice, because of different

impairments and implementation details. With anticipated advances in

analog-to-digital converters and integrated circuit technology, DSP-based

coherent receivers at bit rates up to 100 Gbit/s should become practical

within the next few years.

?2008 Optical Society of America

OCIS codes: (060.0060) Fiber optics and optical communications; (060.1660) Coherent

communications; (060.2920) Homodyning; (060.4080) Modulation; (060.5060) Phase

modulation; (060.2840) Heterodyne.

References and links

1. C.E. Shannon, “A mathematical theory of communication,” Bell. Syst. Tech. J. 27, 379?423 (1948).

2.J. M. Geist, “Capacity and cutoff rate for dense M-ary PSK constellations,” in MILCOM 1990, (Monterey,

CA, USA, 1990), pp. 768?770.

3.K.-P. Ho, “Exact evaluation of the capacity for intensity-modulated direct-detection channels with optical

amplifier noises,” IEEE Photon. Technol. Lett. 17, 858?860 (2005).

4.P.P.Mitra and J.B. Stark, “Nonlinear limits to the information capacity of optical fiber communications,”

Nature 411, 1027–1030 (2001).

5.J. M. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM

Systems,” ,” J. Sel. Top. Quantum Electron. 10, 259–271 (2004).

6.V. Jungnickel, A. Forck, T. Haustein, S. Schiffermuller, C. Helmolt, F. Luhn, M. Pollock, C. Juchems, M.

Lampe, S. Eichnger, W. Zirwas, E. Schulz, “1 Gbit/s MIMO-OFDM transmission experiments,” in

Proceedings of IEEE Conference on Vehicular Technol. (Institute of Electrical and Electronics Engineers, Dallas, 2005), pp. 861–866.

(C) 2008 OSA21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 753

7.K. Kikuchi, “Coherent detection of phase-shift keying signals using digital carrier-phase estimation,” in

Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2006), Paper OTuI4.

8.T. Pfau, S. Hoffmann, R. Peveling, S. Bhandard, S. Ibrahim, O. Adamczyk, M. Porrmann, R. Noé and Y.

Achiam, “First real-time data recovery for synchronous QPSK transmission with standard DFB lasers,”

IEEE Photon. Technol. Lett. 18, 1907–1909 (2006).

9. A. Leven, N. Kaneda, U.-V. Koc and Y.-K. Chen, “Coherent receivers for practical optical communication

systems,” in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical

and Electronics Engineers, Anaheim, 2007), Paper OThK4.

10.S. J. Savory, G. Gavioli, R. I. Killey, P. Bayvel, “Transmission of 42.8 Gbit/s polarization multiplexed

NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation,” in Proceedings of

IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers,

Anaheim, 2007), Paper OTuA1.

11.K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa and T. Sugawara, “40 Gbit/s, 16-ary (4

bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41, 430–432, (2005).

12.J. Hongo, K. Kasai, M. Yoshida and M. Nakazawa, “1-Gsymbol/s 64-QAM coherent optical transmission

over 150 km,” IEEE Photon. Technol. Lett. 19, 638–640 (2007).

13.T. Foggi, E. Forestieri, G. Colavolpe and G. Prati, “Maximum-likelihood sequence detection with closed-

form metrics in OOK optical systems impaired by GVD and PMD,” J. Lightwave Technol. 24, 3073–3087 (2006).

14.M. Nazarathy and E. Simony, “Multichip differential phase encoded optical transmission,” IEEE Photon.

Technol. Lett. 17, 1133–1135 (2005).

15. D. Divsalar and M. Simon, “Multiple-symbol differential detection of MPSK,” IEEE Trans. Commun. 38,

300–308 (1990).

16.S. Benedetto and P. Poggiolini, “Theory of polarization shift keying modulation,” IEEE Trans. Commun.

40, 708?721 (1992).

17.S. Betti, F. Curti, G. de Marchis and E. Iannone, “Multilevel coherent optical system based on Stokes

parameters modulation,” J. Lightwave Technol. 8, 1127?1136 (1990).

18. E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightwave

Technol., 25, 2675-2692 (2007).

19. E. Ip and J.M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J.

Lightwave Technol. 25, 2033-2043 (2007).

20. E. Ip and J.M. Kahn, “Carrier synchronization for 3- and 4-bit-per-symbol optical transmission,” J.

Lightwave Technol. 23, 4110–4124 (2005).

21.S. Tsukamoto, K. Katoh and K. Kikuchi, “Coherent demodulation of optical multilevel phase-shift-keying

signals using homodyne detection and digital signal processing,” IEEE Photon. Technol. Lett. 18, 1131–

1133 (2006).

22.G. P. Agrawal, Fiber-Optic Communiation Systems, 3rd ed. (Wiley, New York, 2002).

23.J. R. Barry and J.M. Kahn, “Carrier synchronization for homodyne and heterodyne detection of optical

quadriphase-shift keying,” J. Lightwave Technol. 10, 1939–1951 (1992).

24.R. Noé, “Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with

feedforward carrier recovery,” J. Lightwave Technol. 23, 802?808 (2005).

25.J. Rebola and A. Cartaxo, “Optimization of level spacing in quaternary optical communication systems,”

Proc. SPIE 4087, 49?59 (2000).

26.J. J. Bussgang and M. Leiter, “Error rate approximations for differential phase-shift keying.” IEEE Trans.

Commun. Systems 12, 18–27 (1964).

27.J. G. Proakis, “Probabilities of error for adaptive reception of M-phase signals,” IEEE Trans. Commun.

Tech. 16, 71–81 (1968).

28.S. Benedetto and P. Poggiolini, “Multilevel polarization shift keying: optimum receiver structure and

performance evaluation,” IEEE Trans. Commun. 42, 1174–1186 (1994).

29.J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2001).

30.M. Suzuki and N. Edagawa, “Dispersion-managed high-capacity ultra-long-haul transmission,” J.

Lightwave Technol. 21, 916?929 (2003).

31. E. Forestieri and G. Prati, “Exact analytical evaluation of second-order PMD impact on the outage

probability for a compensated system,” J. Lightwave Technol. 22, 988?996 (2004).

32. C. D. Poole, R. W. Tkach, A. R. Chraplyvy and D. A.Fishman, “Fading in lightwave systems due to

polarization-mode dispersion,” IEEE Photon. Technol. Lett. 3, 68–70 (1991).

33.H. Bülow, W. Baumert, H. Schmuck, F. Mohr, T. Schulz, F. Küppers and W. Weiershausen, “Measurement

of the maximum speed of PMD fluctuation in installed field fiber,” in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, San Diego, 1999), Paper OWE4.

34. C. D. Poole, “Statistical treatment of polarization dispersion in single-mode fiber,” Opt. Lett. 13, 687–689

(1988).

(C) 2008 OSA21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 754

35.N. Gisin, J.-P. Von der Weid and J.-P. Pellaux, “Polarization mode dispersion of short and long single-

mode fibers,” J. Lightwave Technol. 9, 821–827 (1991).

36.G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single-mode fibers,” J.

Lightwave Technol. 9, 1439–1456 (1991).

37.H. Bülow, “System outage probability due to first- and second-order PMD,” IEEE Photon. Technol. Lett.

10, 696–698 (1998).

38.H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson and P. Andrekson, “A comparison between different

PMD compensation techniques,” J. Lightwave Technol. 20, 368–378 (2002).

39. F. Buchali and H. Bülow, “Adaptive PMD compensation by electrical and optical techniques,” J.

Lightwave Technol. 22, 1116–1126 (2004).

40.R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Sch?pflin, C. Flingener, E. Gottwald, C.

Scheerer, G. Fischer, T. Weyrauch and W. Haase, “Polarization mode dispersion compensation at 10, 20,

and 40 Gb/s with various optical equalizer,” J. Lightwave Technol. 17, 1602–1616 (1999).

41.S. Lee, R. Khosravani, J. Peng, V. Grubsky, D. S. Starodubov, A. E. Willner and J. Feinberg, “Adjustable

compensation of polarization mode dispersion using a high-birefringence nonlinearly chirped fiber Bragg

grating,” IEEE Photon. Technol. Lett. 11, 1277–1279 (1999).

42.T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata and K. Okamoto,

“Planar lightwave circuit polarization-mode dispersion compensator,” IEEE Photon. Technol. Lett. 14,

507–509 (2002).

43.J. Wang and J. M. Kahn, “Performance of electrical equalizers in optical amplified OOK and DPSK

systems,” IEEE Photon. Technol. Lett. 16, 1397–1399 (2004).

44. C. Vinegoni, M. Karlsson, M. Petersson and H. Sunnerud, “The statistics of polarization-dependent loss in

a recirculating loop,” J. Lightwave Technol. 22, 968?976 (2004).

45. A. H. Gnauck, P. J. Winzer and S. Chandrasekhar, “Hybrid 10/40-G transmission on a 50-GHz Grid

through 2800 km of SSMF and seven optical add-drops,” IEEE Photon. Technol. Lett. 17, 2203?2205

(2005).

46.G. Goldfarb and G. Li, “Chromatic dispersion compensation using digital IIR filtering with coherent

detection,” IEEE Photon. Technol. Lett. 19, 969?971 (2007).

47.N. Amitay and J. Salz, “Linear Equalization Theory in Digital Data Transmission over Dually Polarized

Fading Radio Channels,” Bell. Syst. Tech. J. 63, 2215–2259 (1984).

48.J. Salz, “Digital transmission over cross-coupled linear channels,” AT&T Tech. J. 64, 1147–1159 (1985).

49.H. Meyr, M. Moeneclaey and S. Fechtel, Digital Communication Receivers. (John Wiley, New York,

1997).

50.R.D. Gitlin and S. B. Weinstein, “Fractionally spaced equalization: an improved digital transversal

equalizer,” Bell. Syst. Tech. J. 60, 275–296 (1981).

51.G. Ungerboeck, “Fractional tap-spacing equalizer and consequences for clock recovery in data modems,”

IEEE Trans. Commun. 24, 856–864 (1976).

52.S. Qureshi, “Adaptive equalization,” Proceedings of the IEEE 73, 1349–1387 (1985).

53. B. Widrow and S. D. Stearns, Adaptive Signal Processing, (Prentice Hall, Englewood Cliffs, NJ, 1985).

54. A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, (Prentice Hall, Englewood Cliffs, NJ,

1989).

55. A. Mecozzi, C. B. Clausen and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed

optical pulse transmission,” IEEE Photon. Technol. Lett. 12, 392?394 (2000).

56.I. Shake, H. Takara, K. Mori, S. Kawanishi and Y. Yamabayashi, “Influence of inter-bit four-wave mixing

in optical TDM transmission,” Electron. Lett. 34, 1600?1601 (1998).

57.R.-J. Essiambre, B. Mikkelsen and G. Raybon, “Intra-channel cross-phase modulation and four-wave

mixing in high-speed TDM systems,” Electron. Lett. 35, 1576?1578 (1999).

58. A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park and A. H. Gnauck, “Cancellation of timing and amplitude

jitter in symmetric links using highly dispersed pulses,” IEEE Photon. Technol. Lett. 13, 445?447 (2001).

59. A. Striegler and B. Schmauss, “Compensation of intrachannel effects in symmetric dispersion-managed

transmission systems,” J. Lightwave Technol. 22, 1877?1882 (2004).

60.N. Alic and Y. Fainman, “Data-dependent phase coding for suppression of ghost pulses in optical fibers,”

IEEE Photon. Technol. Lett. 16, 1212?1214 (2004).

61.I.B. Djordjevic and B. Vasic, “Constrained coding techniques for suppression of intrachannel nonlinear

effects in high-speed optical transmission,” J. Lightwave Technol. 24, 411?419 (2006).

62.X. Wei and X. Liu, “Analysis of intrachannel four-wave mixing in differential phase-shift keying

transmission with large dispersion,” Opt. Lett.28, 2300?2302 (2003).

63. A. P. T. Lau, S. Rabbani and J. M. Kahn are preparing a manuscript to be called “On the statistics of intra-

channel four-wave-mixing induced phase noise in phase modulated systems.”

64.J. P. Gordon and L.F. Mollenauer, “Phase noise in photonic communications systems using linear

amplifiers,” Opt. Lett. 15, 1351?1353 (1990).

65.K.-P. Ho, Phase-Modulated Optical Communication Systems, (Springer, New York, 2005).

66.K.-P. Ho, “Statistical properties of nonlinear phase noise,” in Advances in Optics and Laser Research3,

(Nova Science Publishers, New York, 2003).

(C) 2008 OSA21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 755

67. A. P. T. Lau and J. M. Kahn, “Design of inline amplifiers gain and spacing to minimize phase noise in

optical transmission systems,” J. Lightwave Technol. 24, 1334?1341 (2006).

68. A.P.T. Lau and J.M. Kahn, “Power profile optimization in phase-modulated systems in presence of

nonlinear phase noise," IEEE Photon. Technol. Lett. 18, 2514?2516 (2006).

69.K.-P. Ho and J. M. Kahn, “Detection technique to mitigate Kerr effect phase noise,” J. Lightwave Technol.

22, 779?783 (2004).

70. D.-S. Ly-Gagnon and K. Kikuchi, “Cancellation of nonlinear phase noise in DPSK transmission,” 2004

Optoelectronics and Communications Conference and International Conference on Optical Internet

(OECC/COIN2004), paper 14C3-3 (2004).

71.X.Liu, X. Wei, R. E. Slusher and C. J. McKinstrie, “Improving transmission performance in differential

phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation," Opt. Lett. 27, 1616?1618 (2002).

72.K. Kikuchi, M. Fukase and S.-Y. Kim, “Electronic post-compensation for nonlinear phase noise in a 1000-

km 20-Gbit/s optical QPSK transmission system using the homodyne receiver with digital signal

processing,” in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2007), Paper OTuA2.

73.G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran and S. Bigo, “Transmission of 40 Gb/s QPSK

with coherent detection over ultra-long distance improved by nonlinearity mitigation,” in Proceedings

ECOC 2006, Cannes, France, 2006, Postdeadline paper Th4.3.4.

74.G. Zhu, L. Mollenauer and C. Xu, “Experimental demonstration of post-nonlinearity compensation in a

multispan DPSK transmission,” IEEE Photon. Technol. Lett. 18, 1007?1009 (2006).

75.K.P. Ho, “Mid-span compensation of nonlinear phase noise,” Opt. Comm. 245, 391?398 (2005).

76. A. P. T. Lau and J. M. Kahn, “Signal design and detection in presence of nonlinear phase noise,” J.

Lightwave Technol. 25, 3008?3016 (2007).

77. A.G. Green, P.P. Mitra, L.G. L. Wegener, “Effect of chromatic dispersion on nonlinear phase noise,” Opt.

Lett. 28, 2455?2457 (2003).

78.S. Kumar, “Effect of dispersion on nonlinear phase noise in optical transmission systems,” Opt. Lett. 30,

3278?3280 (2005).

79.K.-P. Ho and H.C. Wang, “On the effect of dispersion on nonlinear phase noise,” Opt. Lett. 31, 2109?2111

(2006).

80.S. Kumar and L. Liu, “Reduction of nonlinear phase noise using optical phase conjugation in quasi-linear

optical transmission systems,” Opt. Express 15, 2166?2177 (2007).

81. D. Boivin, G.-K. Chang, J. R. Barry and M. Hanna, “Reduction of Gordon-Mollenauer phase noise in

dispersion-managed systems using in-line spectral inversion,” J. Opt. Soc. Am. A. B 23, 2019?2023 (2006).

82.P. Serena, A. Orlandini and A. Bononi, “Parametric-Gain approach to the analysis of single-channel

DPSK/DQPSK systems with nonlinear phase noise,” J. Lightwave Technol. 24, 2026?2037 (2006).

83.K.P. Ho and H.C. Wang, “Comparison of nonlinear phase noise and intrachannel four-wave mixing for RZ-

DPSK signals in dispersive transmission systems,” IEEE Photon. Technol. Lett. 17, 1426?1428 (2005).

84. F. Zhang, C. A. Bunge and K. Petermann, “Analysis of nonlinear phase noise in single-channel return-to-

zero differential phase-shift keying transmission systems,” Opt. Lett. 31, 1038?1040 (2006).

85. F. Zhang, C. A. Bunge, K. Petermann and A. Richter, “Optimum dispersion mapping of single-channel 40

Gbit/s return-to-zero differential phase-shift keying transmission systems,” Optics Express 14, 6613?6618 (2006).

86.X. Zhu, S. Kumar and X. Li, “Analysis and comparison of impairments in differential phase-shift keying

and on-off keying transmission systems based on the error probability,” Appl. Opt. 45, 6812?6822 (2006).

87. C. Henry, “Theory of the phase noise and power spectrum of a single mode injection laser,” J. Quantum

Electron. 19, 1391–1397 (1983).

88.M. Tur, B. Moslehi and J. W. Goodman, “Theory of laser phase noise in recirculating fiber-optic delay

lines,” J. Lightwave Technol. 3, 20–31 (1985).

89. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949, (1958).

90. F.M. Gardner, Phaselock Techniques, 3rd ed. (John Wiley, Hoboken, NJ, 2005).

91.M. A. Grant, W. C. Michie, M. J. Fletcher, “The performance of optical phase-locked loops in the presence

of nonnegligible loop propagation delay,” J. Lightwave Technol. 5, 592–597 (1987).

92.K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier

phase estimation,” J. Sel. Top. Quantum Electron. 12, 563?570 (2006).

93.M. G. Taylor, “Accurate digital phase estimation process for coherent detection using a parallel digital

processor,” in Proceedings ECOC 2005, Glasgow, UK, 2005, Paper Tu4.2.6.

94. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh and K. Kikuchi, “Coherent detection of optical quadrature

phase-shift keying signals with coherent phase estimation,” J. Lightwave Technol. 24, 12–21, (2006).

95. F. J. Foschini, R. D. Gitlin and S. B. Weinstein, “On the selction of a two-dimensional signal constellation

in the presence of phase jitter and Gaussian noise,” Bell. Syst. Tech. J. 52, 927–965 (1973).

96. A. Bahai, B. Saltzberg and M. Ergen, Multi-carrier Digital Communications: Theory and Applications of

OFDM, 2nd Ed. (Springer, New York, 2004).

97.R. Prasad, “OFDM for wireless communications systems,” (Artech House Publishers, Boston, 2004).

(C) 2008 OSA21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 756

98.W. Shieh, X. Yi, and Y. Tang, “Experimental demonstration of transmission of coherent optical OFDM

Systems,” in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical

and Electronics Engineers, Anaheim, 2007), Paper OMP2.

99.W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett.

42, 587?589 (2006).

100.N. Cvijetic, L. Xu and T. Wang, “Adaptive PMD compensation using OFDM in long-haul 10 Gb/s DWDM systems,” in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical

and Electronics Engineers, Anaheim, 2007), Paper OTuA5.

101.A. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for optical dispersion compensation,” in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of

Electrical and Electronics Engineers, Anaheim, 2007), Paper OTuA4.

102.W. Henkel, G. Taubock, P. Odling, P. O. Borjesson and N. Petersson, “The cyclic prefix of OFDM/DMT – an analysis,” IEEE International Seminar on Broadband Communications, (Institute of Electrical and

Electronic Engineers, Zurich, 2002).

103.D. J.F. Barros and J. M. Kahn are preparing a manuscript to be called “Optimized dispersion compensation using orthogonal frequency-division multiplexing.”

104.W. Shieh, X. Yi, Y. Ma and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Optics Express 15, 9936?9947 (2007).

105.C. Cover and J. Thomas, Elements of Information Theory. (John Wiley, New York, 1991).

106.C. Y. Wong, R. S. Cheng, K. B. Letaief and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” J. Sel. Top. Commun. 17, 1747?1758 (1999).

107.B. S. Krongold, K. Ramchandran and D. L. Jones, “Computationally efficient optimal power allocation algorithms for multicarrier communication systems,” IEEE Trans. Commun. 48, 23?27 (2000).

108.J. Jang, K. B. Lee and Y.-H. Lee, “Transmit power and bit allocations for OFDM systems in a fading channel,” in Proceedings of IEEE GLOBECOM, (Institute of Electrical and Electronics Engineers, San

Francisco, 2003), pp. 858?862.

109.S. Wu and Y. Bar-Ness, “OFDM systems in the presence of phase noise: consequences and solutions,”

IEEE Trans. Commun. 52, 1988?1996 (2004).

110.A. G. Armada and M. Calvo, “Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system,” IEEE Commun. Lett. 2, 11?13 (1998).

111.S. Wu and Y. Bar-Ness, “A phase noise suppression algorithm for OFDM based WLANs,” IEEE Commun.

Lett. 6, 535?537 (2002).

112.H. Ochiai and H. Imai, “On the distribution of the peak-to-average power ratio in OFDM signals,” IEEE Trans. Commun. 49, 282?289 (2001).

113.A. J. Lowery, “Fiber nonlinearity mitigation in optical links that use OFDM for dispersion compensation,”

IEEE Photon Technol. Lett. 19, 1556?1558 (2007).

114.A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,”

Optics Express 15, 12965?12970 (2007).

115.A. J. Lowery, S. Wang and M. Premaratne, “Calculation of power limit due to fiber nonlinearity in optical OFDM systems,” Optics Express 15, 13282?13287 (2007).

116.D.-S. Ly-Gagnon, “Information recovery using coherent detection and digital signal pocessing for phase-shift-keying modulation formats in optical communication systems,” M.S. Thesis, University of Tokyo

(2004).

1. Introduction

An important goal of a long-haul optical fiber system is to transmit the highest data throughput over the longest distance without signal regeneration. Given constraints on the bandwidth imposed by optical amplifiers and ultimately by the fiber itself, it is important to maximize spectral efficiency, measured in bit/s/Hz. But given constraints on signal power imposed by fiber nonlinearity, it is also important to maximize power (or SNR) efficiency, i.e., to minimize the required average transmitted energy per bit (or the required signal-to-noise ratio per bit). Most current systems use binary modulation formats, such as on-off keying or differential phase-shift keying, which encode one bit per symbol. Given practical constraints on filters for dense wavelength-division multiplexing (DWDM), these are able to achieve spectral efficiencies of 0.8 bit/s/Hz per polarization. Spectral efficiency limits for various detection and modulation methods have been studied in the linear [1?3] and nonlinear regimes [4,5]. Noncoherent detection and differentially coherent detection offer good power efficiency only at low spectral efficiency, because they limit the degrees of freedom available for encoding of information [5].

(C) 2008 OSA21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 757

The most promising detection technique for achieving high spectral efficiency while maximizing power (or SNR) efficiency, is coherent detection with polarization multiplexing, as symbol decisions are made using the in-phase (I) and quadrature (Q) signals in the two field polarizations, allowing information to be encoded in all the available degrees of freedom. When the outputs of an optoelectronic downconverter are sampled at Nyquist rate, the digitized waveform retains full information of the electric field, which enables compensation of transmission impairments by digital signal processing (DSP). A DSP-based receiver is highly advantageous because adaptive algorithms can be used to compensate time-varying transmission impairments. Advanced forward error-correction coding can also be implemented. Moreover, digitized signals can be delayed, split and amplified without degradation in signal quality. DSP-based receivers are ubiquitous in wireless and digital subscriber line (DSL) systems at lower data rates. In such systems, computationally intensive techniques have been demonstrated, such as orthogonal frequency-division multiplexing (OFDM) with multiple-input-multiple-output (MIMO) transmission in a real-time 1 Gbit/s wireless link [6]. Continued hardware improvements will enable deployment of DSP-based coherent optical systems in the next few years.

Experimental results in coherent optical communication have been promising. Kikuchi demonstrated polarization-multiplexed 4-ary quadrature-amplitude modulation (4-QAM) transmission at 40 Gbit/s with a channel bandwidth of 16 GHz (2.5 bit/s/Hz) [7]. This experiment used a high-speed sampling oscilloscope to record the output of a homodyne downconverter. DSP was performed offline because of the unavailability of sufficiently fast processing hardware. The first demonstration of real-time coherent detection occurred in 2006, when an 800 Mbit/s 4-QAM signal was coherently detected using a receiver with 5-bit analog-to-digital converters (ADC) followed by a field programmable gate array [8]. In 2007, feedforward carrier recovery was demonstrated in real time for 4-QAM at 4.4 Gbit/s [9]. Savory showed the feasibility of digitally compensating the chromatic dispersion (CD) in 6,400 km of SMF without inline dispersion compensating fiber (DCF), with only 1.2 dB OSNR penalty at 42.8 Gbit/s [10]. Coherent detection of large QAM constellations has also been demonstrated. For example, 16-ary transmission at 40 Gbit/s using an amplitude-phase-shift keying (APSK) format was shown by Sekine et al [11]. In 2007, Hongo et al demonstrated 64-QAM transmission over 150 km of dispersion-shifted fiber [12].

This paper provides an overview of detection and modulation methods, with emphasis on coherent detection and digital compensation of channel impairments. The paper is organized as follows: in Section 3, we review signal detection methods, including noncoherent, differentially coherent and coherent detection. We compare these techniques and the modulation formats they enable. In Section 4, we compare the bit-error ratio (BER) performance of different modulation formats in the presence of additive white Gaussian noise (AWGN). In Section 5, we review the major channel impairments in long-haul optical transmission. We show how these can be compensated digitally in single-carrier systems, and we compare digital compensation to traditional compensation methods. In Section 6, we review OFDM, which is a multi-carrier modulation format. Finally, in Section 7, we compare implementation complexities of single- and multi-carrier systems.

2. Notation

In this paper, we represent optical signal and noise electric fields as complex-valued, baseband quantities, which are denoted as ()t

E subscript. In Section 3, photocurrents are represented as real passband signals as ()t

I subscript. After we derive the canonical model for a coherent receiver, in all subsequent sections, we write all signals and noises as complex-valued baseband quantities, with the convention that the output of the optoelectronic downconverter is denoted by y, the transmitted symbol as x, the output of the linear equalizer as x~, and the phase de-rotated output prior to symbol decisions as x?. Signals that occupy one polarization only are represented as scalars and are written in italics as shown; while dually

(C) 2008 OSA21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 758

polarized signals are denoted as vectors and are written in bold face, such as k y . Unless stated otherwise, we employ a linear (x , y ) basis for decomposing dually polarized signals. In Section 5 dealing with impairment compensation, matrix and vector quantities are denoted in bold face.

3. Optical detection methods

3.1 Noncoherent detection

Fig. 1. Noncoherent receivers for (a) amplitude-shift modulation (ASK) and (b) binary

frequency-shift keying (FSK).

In noncoherent detection, a receiver computes decision variables based on a measurement of signal energy . An example of noncoherent detection is direct detection of on-off-keying (OOK) using a simple photodiode (Fig. 1(a)). To encode more than one bit per symbol, multi-level amplitude-shift keying (ASK) – also known as pulse-amplitude modulation – can be used. Another example of noncoherent detection is frequency-shift keying (FSK) with wide frequency separation between the carriers. Fig. 1(b) shows a noncoherent receiver for binary FSK.

The limitations of noncoherent detection are: (a) detection based on energy measurement allows signals to encode only one degree of freedom (DOF) per polarization per carrier, reducing spectral efficiency and power efficiency, (b) the loss of phase information during detection is an irreversible transformation that prevents full equalization of linear channel impairments like CD and PMD by linear filters. Although maximum-likelihood sequence detection (MLSD) can be used to find the best estimate of the transmitted sequence given only a sequence of received intensities, the achievable performance is suboptimal compared with optical or electrical equalization making use of the full electric field [13].

3.2 Differentially coherent detection

Fig. 2. Differentially coherent phase detection of (a) 2-DPSK (b) M -DPSK, M > 2.

In differentially coherent detection, a receiver computes decision variables based on a measurement of differential phase between the symbol of interest and one or more reference symbol(s). In differential phase-shift keying (DPSK), the phase reference is provided by the previous symbol; in polarization-shift keying (PolSK), the phase reference is provided by the signal in the adjacent polarization. A binary DPSK receiver is shown in Fig. 2(a). Its output photocurrent is:

()()(){}s s s DPSK T t E t E R t I ?=*Re , where ()t E s is the received signal, R is the responsivity of each photodiode, and T s is the symbol period. This receiver can also be used to detect continuous-phase frequency-shift

(t E s ()t I i DPSK ,()

t I q DPSK ,

(1)

(a) (b) (t E s ()t DPSK

()t E s (a) (b) (C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 759

keying (CPFSK), as the delay interferometer is equivalent to a delay-and-multiply demodulator. A receiver for M -ary DPSK, M > 2, can similarly be constructed as shown in Fig. 2(b). Its output photocurrents are:

()()(){}s s s i DPSK T t E t E R t I ?=*21,Re , and ()()(){}

s s s q DPSK T t E t E R t I ?=*21,Im . A key motivation for employing differentially coherent detection is that binary DPSK has

2.8 dB higher sensitivity than noncoherent OOK at a BER of 10?9 [5]. However, the constraint that signal points can only differ in phase allows only one DOF per polarization per carrier, the same as noncoherent detection. As the photocurrents in Eq. (1) to (3) are not linear functions of the E -field, linear impairments, such as CD and PMD, also cannot be compensated fully in the electrical domain after photodetection.

A more advanced detector for M -ary DPSK is the multichip DPSK receiver, which has multiple DPSK receivers arranged in parallel, each with a different interferometer delay that is an integer multiple of T s [14,15]. Since a multichip receiver compares the phase of the current symbol to a multiplicity of previous symbols, the extra information available to the detector enables higher sensitivity. In the limit that the number of parallel DPSK receivers is infinite, the performance of multi-chip DPSK approaches coherent PSK [15]. In practice, the number of parallel DPSK receivers required for good performance needs to be equal to the impulse duration of the channel divided by T s . Although multi-chip DPSK does not require a local oscillator (LO) laser, carrier synchronization and polarization control, the hardware complexity can be a significant disadvantage.

3.3 Hybrid of noncoherent and differentially coherent detection

A hybrid of noncoherent and differentially coherent detection can be used to recover information from both amplitude and differential phase. One such format is polarization-shift keying (PolSK), which encodes information in the Stokes parameter. If we let ()()()t j x x x e t a t E φ= and ()()()t j y y y e t a t E φ= be the E -fields in the two polarizations, the

Stokes parameters are 221y x a a S ?=, ()δcos 22y x a a S = and ()δsin 23y x a a S =, where

()()()t t t y x φφδ?= [16]. A PolSK receiver is shown in Fig. 3. The phase noise tolerance of PolSK is evident by examining S 1 to S 3. Firstly, S 1 is independent of phase. Secondly, S 2 and S 3 depend on the phase difference ()()t t y x φφ?. As ()t x φ and ()t y φ are both corrupted by the same phase noise of the transmitter (TX) laser, their arithmetic difference ()t δ is free of phase noise. In practice, the phase noise immunity of PolSK is limited by the bandwidth of the photodetectors [16]. It has been shown that 8-PolSK can tolerate laser linewidths as large as 01.0≈Δb T ν [17], which is about 100 times greater than the phase noise tolerance of coherent 8-QAM (Section 5.3.3). This was a significant advantage in the early 1990s, when symbol rates were only in the low GHz range. In modern systems, symbol rates of tens of GHz, in conjunction with tunable laser having linewidths <100 kHz, has diminished the advantages of PolSK. Recent results have shown that feedforward carrier synchronization enables coherent detection of 16-QAM at b T νΔ ~10?5 [18], which is within the limits of current technology. As systems are increasingly driven by the need for high spectral efficiency, polarization-multiplexed QAM is likely to be more attractive because of its higher sensitivity (Section 4).

(2)

(3) (C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 760

()()()??????=t E t E t y x s E ()t 1()

t 2()

t 3 Fig. 3. Polarization-shift keying (PolSK) receiver.

3.4 Coherent detection

The most advanced detection method is coherent detection, where the receiver computes decision variables based on the recovery of the full electric field , which contains both amplitude and phase information. Coherent detection thus allows the greatest flexibility in modulation formats, as information can be encoded in amplitude and phase, or alternatively in both in-phase (I) and quadrature (Q) components of a carrier. Coherent detection requires the receiver to have knowledge of the carrier phase, as the received signal is demodulated by a LO that serves as an absolute phase reference. Traditionally, carrier synchronization has been performed by a phase-locked loop (PLL). Optical systems can use (i) an optical PLL (OPLL) that synchronizes the frequency and phase of the LO laser with the TX laser, or (ii) an electrical PLL where downconversion using a free-running LO laser is followed by a second-stage demodulation by an analog or digital electrical VCO whose frequency and phase are synchronized. Use of an electrical PLL can be advantageous in duplex systems, as the transceiver may use one laser as both TX and LO. PLLs are sensitive to propagation delay in the feedback path, and the delay requirement can be difficult to satisfy (Section 5.3.1). Feedforward (FF) carrier synchronization overcomes this problem. In addition, as a FF synchronizer uses both past and future symbols to estimate the carrier phase, it can achieve better performance than a PLL which, as a feedback system, can only employ past symbols. Recently, DSP has enabled polarization alignment and carrier synchronization to be performed in software.

Fig. 4. Coherent transmission system (a) implementation, (b) system model.

A coherent transmission system and its canonical model are shown in Fig. 4. At the transmitter, Mach-Zehnder (MZ) modulators encode data symbols onto an optical carrier and perform pulse shaping. If polarization multiplexing is used, the TX laser output is split into

k

x ,1x ,2k ,1k ,2(a) (b) Transmitter

(C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 761

two orthogonal polarization components, which are modulated separately and combined in a polarization beam splitter (PBS). We can write the transmitted signal as:

()()()()()()+?=??????=k t t j s k t tx tx tx s s e kT t b P t E t E t φωx E 2,1,, where s T is the symbol period, t P is the average transmitted power, ()t b is the pulse shape (e.g., non-return-to-zero (NRZ) or return-to-zero (RZ)) with the normalization ()∫=s T dt t b 2

, s ω and ()t s φ are the frequency and phase noise of the TX laser, and []T k k k x x ,2,1,=x is a 2×1 complex vector representing the k -th transmitted symbol. We

assume that symbols have normalized energy: 12=??

????k E x . For single-polarization transmission, we can set the unused polarization component k x ,2 to zero.

The channel consists of N A spans of fiber, with inline amplification and DCF after each span. In the absence of nonlinear effects, we can model the channel as a 2×2 matrix:

()()()()()()()()()()ωωωωωH h =?????????????=2221121122211211H H H H t h t h t h t h t F , where ()t h ij denote the response of the i -th output polarization due to an impulse applied at the j -th input polarization of the fiber. The choice of reference polarizations at the transmitter and receiver is arbitrary. Eq. (5) can describe CD, all orders of PMD, polarization-dependent loss (PDL), optical filtering effects and sampling time error [19]. In addition, a coherent optical system is corrupted by AWGN, which includes (i) amplified spontaneous emission (ASE) from inline amplifiers, (ii) receiver LO shot noise, and (iii) receiver thermal noise. In the canonical transmission model, we model the cumulative effect of these noises by an equivalent noise source ()()()[]T t n t n t 21,=n referred to the input of the receiver.

The E -field at the output of the fiber is ()()()[]T s s s t E t E t 2,1,,=E , where:

()()()()()t E e kT t c x P t E l sp t t j k m s lm k m r l s s s ,21

,,+?=+=φω. Under the assumption of Fig. 4 where inline amplification completely compensates propagation loss, t r P P = is the average received power, ()()()t h t b t c lm lm ?= is a normalized pulse shape, and ()t E l sp , is ASE noise in the l -th polarization. Assuming the N A fiber spans are identical and all inline amplifiers have gain G and spontaneous emission factor n sp , the two-sided power spectral density (psd) of ()t E l sp , is ()()G n N f S s sp A Esp 1?=ω W/Hz [20].

The first stage of a coherent receiver is a dual-polarization optoelectronic downconverter that recovers the baseband modulated signal. In a digital implementation, the analog outputs are lowpass filtered and sampled at s KT M T =1, where K M is a rational oversampling ratio. Channel impairments can then be compensated digitally before symbol detection.

(5)

(4) (6)

(C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 762

3.4.1 Single-polarization downconverter

Fig. 5. Single-polarization downconverter employing a (a) heterodyne and (b) homodyne design.

We first consider a single-polarization downconverter, where the LO laser is aligned in the l -th polarization. Downconversion from optical passband to electrical baseband can be achieved in two ways: in a homodyne receiver, the frequency of the LO laser is tuned to that of the TX laser so the photoreceiver output is at baseband. In a heterodyne receiver, the LO and TX lasers differ by an intermediate frequency (IF), and an electrical LO is used to downconvert the IF signal to baseband. Both implementations are shown in Fig. 5. Although we show the optical hybrids as 3-dB fiber couplers, the same networks can be implemented in free-space optics using 50/50 beamsplitters; this was the approach taken by Tsukamoto [21]. Since a beamsplitter has the same transfer function as a fiber coupler, there is no difference in their performances.

In the heterodyne downconverter of Fig. 5(a), the optical frequency bands around IF LO ωω+ and IF LO ωω? both map to the same IF. In order to avoid DWDM crosstalk and to avoid excess ASE from the unwanted image band, optical filtering is required before the downconverter. The output current of the balanced photodetector in Fig. 5(a) is:

()()()()(){}()t I t E t E R t E t E R t I l sh l LO l s l het ,,,2221,Im 2+=???????=?, where ()()()t t j l LO l LO LO LO e P t E φω+=,, is the E -field of the LO laser, and l LO P ,, LO ω and ()t LO φ are its power, frequency and phase noise. ()t I l sh , is the LO shot noise. Assuming s LO P P >>, ()t I l sh , has a two-sided psd of ()LO Ish qRP f S = A 2/Hz.. Substituting Eq. (6) into Eq. (7), we get:

()()()()())()()()t I t E t t y t t y P P R t I l sh l sp IF lq IF li r l LO l het ,',,,cos sin 2+++=ωω, where LO s IF ωωω?= is the IF, ()()()t t t LO s φφφ?= is the carrier phase, and ()t y li and ()t y lq are the real and imaginary parts of:

()()()∑∑=?=k m t j s lm k m l e

kT t c x t y 21,0φ. The term ()t E P R l sp r LO ',,2 in Eq. (8) is sometimes called LO-spontaneous beat noise , and

()()()(){}

t t j l sp l sp LO LO e t E t E φω+?=,',Im has a two-sided psd of ()f S Esp

21. It can similarly be shown that the currents at the outputs of the balanced photodetectors in the homodyne downconverter (Fig. 5(b)) are: (7)

(8)

(9)

(a) (b)

l het ,,()t i ()t q l het ,,

()t I i l hom ,,()

t I q l hom ,,(C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 763

()()()()()()()t I t E t y P P R t E t E R t I li sh li sp li r l LO i l hom ,',,2221,,++=???????=, and ()()()()()()()t I t E t y

P P R t E t E R t I lq sh lq sp lq r l LO q l hom ,',,2423,,++=???????=, where ',li sp E and ',lq sp E are white noises with two-sided psd ()f S Esp 21; and li sh I , and lq sh I , are white noises with two-sided psd ()f S Ish 21. Since it can be shown that thermal

noise is always negligible compared to shot noise and ASE noise [22], we have neglected this term in Eq. (10) and (11). In long-haul systems, the psd of LO-spontaneous beat noise is typically much larger than that of LO shot noise; such systems are thus ASE-limited. Conversely, unamplified systems do not have ASE, and are therefore LO shot-noise-limited.

If one were to demodulate Eq. (8) by an electrical LO at IF ω, as shown in Fig. 5(a), the resulting baseband signals ()t I i l het ,, and ()t I q l het ,, will be the same as Eqs. (10) and (11) for the homodyne downconverter in Fig. 5(b), with all noises having the same psd’s. Hence, the heterodyne and the two-quadrature homodyne downconverters have the same performance

[23]. A difference between heterodyne and homodyne downconversion only occurs when the transmitted signal occupies one quadrature (e.g. 2-PSK) and the system is LO shot-noise-limited, as this enables the use of a single-quadrature homodyne downconverter that has the optical front-end of Fig. 5(a), but has LO s ωω=. Its output photocurrent is

()()()

()t I t E t y P P R l sh l sp lq r l LO ,',,2++. Compared to Eq. (11), the signal term is doubled

(four times the power), while the shot noise power is only increased by two, thus yielding a sensitivity improvement of 3 dB compared to heterodyne or two-quadrature homodyne downconversion. This case is not of practical interest in this paper, however, as long haul systems are ASE-limited, not LO shot-noise-limited. Also, for good spectral and power efficiencies, modulation formats that encode information in both I and Q are preferred. Hence, there is no performance difference between a homodyne and a heterodyne downconverter provided optical filtering is used to reject image-band ASE for the heterodyne downconverter. Since the two downconverters in Fig. 5 ultimately recover the same baseband signals, we can combine Eqs. (10) and (11) and write a normalized, canonical equation for their outputs as: ()()()()t n e kT t c x t y l k m t j s lm k m l +?=∑∑=21,φ,

where ()t n l is complex white noise with a two-sided psd of:

()s s nn T N f S ==0. s γ is the signal-to-noise ratio (SNR) per symbol. The values of s γ for homodyne and heterodyne downconverters in different noise regimes are shown in Table 1. For the shot-noise limited regime using a heterodyne or two-quadrature homodyne downconverter, s γ is simply the number of detected photons per symbol. We note that Eq. (12) is complex-valued, and its real and imaginary parts are the two baseband signals recovered in Fig. 5. For the remainder of this paper, it is understood that all complex arithmetic operations are ultimately implemented using these real and imaginary signals.

The advantages of heterodyne downconversion are that it uses only one balanced photodetector and has a simpler optical hybrid. However, the photocurrent in Eq. (8) has a bandwidth of BW IF +ω, where BW is the signal bandwidth (Fig. 6(a)). To avoid signal distortion caused by overlapping side lobes, ω

IF needs to be sufficiently large. Typically,

(10) (11) (12)

(13)

(C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 764

BW IF ≈ω, thus a heterodyne downconverter requires a balanced photodetector with at least twice the bandwidth of a homodyne downconverter, whose output photocurrents in Eqs. (10) and (11) only have bandwidths of BW (Fig. 6(b)). This extra bandwidth requirement is a major disadvantage. In addition, it is also difficult to obtain electrical mixers with baseband bandwidth as large as the IF. A summary of homodyne and heterodyne receivers is given in Table 2. A comparison of carrier synchronization options is given in Table 3. Table 1. SNR per symbol for various receiver configurations. For the ASE-limited cases, s n is

the average number of photons received per symbol, N A is the number of fiber spans, and n sp is

the spontaneous emission noise factor of the inline amplifiers. For the LO shot-noise-limited cases, s r n n η= is the number of detected photons per symbol, where η is the quantum

efficiency of the photodiodes.

. Fig. 6. Spectrum of a (a) heterodyne and (b) homodyne downconverter measured at the output

of the balanced photodetector.

Table 2. Comparison between homodyne and heterodyne downconverters .

Homodyne Heterodyne No. of balanced photodetectors per

polarization required for QAM

2 1 Minimum photodetector bandwidth BW 2BW

Table 3. Comparison of carrier synchronization options. All three can be used with either homodyne or

heterodyne downconversion.

Optical PLL Electrical PLL FF Carrier Recovery Can the transceiver use

same laser for TX and LO?

No Yes

Yes Does propagation delay

degrade performance?

Yes Yes

No Carrier phase estimate

depends on past or future

symbols?

Past only Past only Past and future Implementation Analog Analog or digital Analog [24] or digital

3.4.2 Dual-polarization downconverter

In the single-polarization downconverter, the LO needed to be in the same polarization as the received signal. One way to align the LO polarization with the received signal is with a polarization controller (PC). There are several drawbacks with this: first, the received polarization can be time-varying due to random birefringence, so polarization tracking is required. Secondly, PMD causes the received Stokes vector to be frequency-dependent. When

(a) (b)

IF IF ω(C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 765

a single-polarization receiver is used, frequency-selective fading occurs unless PMD is first compensated in the optical domain. Thirdly, a single-polarization receiver precludes the use of polarization multiplexing to double the spectral efficiency.

A dual-polarization downconverter is shown inside the receiver of Fig. 4(a). The LO laser is polarized at 45° relative to the PBS, and the received signal is separately demodulated by each LO component using two single-polarization downconverters in parallel, each of which can be heterodyne or homodyne. The four outputs are the I and Q of the two polarizations, which has the full information of ()t s E . CD and PMD are linear distortions that can be compensated quasi-exactly by a linear filter.

Fig. 7. Emulating (a) direct detection, (b) 4-DPSK detection and (c) PolSK detection with optoelectronic downconversion followed by non-linear signal processing in the electronic domain. The signals E x (t ) and E y (t ) are the complex-valued analog outputs described by Eq. (12) for each polarization. We note that in the case of the heterodyne downconverter, the non-linear operations shown can be performed at the IF output(s) of the balanced photoreceiver.

The lossless transformation from the optical to the electrical domain also allows the receiver to emulate noncoherent and differentially coherent detection by nonlinear signal processing in the electrical domain (Fig. 7). In long-haul transmission where ASE is the dominant noise source, these receivers have the same performance as those in Fig. 1?3. A summary of the detection methods discussed in this section is shown in Table 4.

Table 4. Comparison between noncoherent, differentially coherent and coherent detection. For the first two detection methods, direct detection refers to the receiver implementations shown in Figs. 1?3, while homodyne/heterodyne refers to the equivalent implementations shown in Fig. 7. Noncoherent Detection Differentially Coherent Detection

Direct Hom./Het. Direct Hom./Het. Coherent Detection Require LO?

No Yes No Yes Yes Require Carrier

Synchronization?

No No No No Yes Can compensate CD

and PMD by a linear

filter after

photodetection?

No Yes No Yes Yes Degrees of freedom per

polarization per carrier

1 1

2 Modulation formats

supported ASK, FSK, Binary PolSK DPSK, CPFSK, Non-binary PolSK PSK, QAM, PolSK, ASK,

FSK, etc.

(a)

(c) )

(t 2()

t 3()t 1()t DD (b)

()t y i DPSK ,()

t y q DPSK ,(C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 766

4. Modulation formats

In this section, we compare the BER performance of different modulation methods for single-carrier transmission corrupted by AWGN. We assume that all channel impairments other than AWGN – including CD, PMD, laser phase noise and nonlinear phase noise – have been compensated using techniques discussed in Section 5. Since ASE and LO shot noise are Gaussian, the performance equations obtained are valid for both long haul and back-to-back systems, when the definition of SNR defined by Table 1 is used. Owing to fiber nonlinearity, it is desirable to use modulation formats that maximize power efficiency. Unless otherwise stated (PolSK being the only exception), the formulae provided assume transmission in one polarization, where noise in the unused polarization has been filtered. This condition is naturally satisfied when a homodyne or heterodyne downconverter is used. For noncoherent detection, differentially coherent detection and hybrid detection, the received optical signal needs to be passed through a polarization controller followed by a linear polarizer.

Since the two polarizations in fiber are orthogonal channels with statistically independent noises, there is no loss in performance by modulating and detecting them separately. The BER formulae provided are thus valid for polarization-multiplexed transmission provided there is no polarization crosstalk. Polarization multiplexing doubles the capacity while maintaining the same receiver sensitivity in SNR per bit. We write the received signal as:

k k k n x y +=, where k x is the transmitted symbol and k n is AWGN. For the remainder of this paper, our notation shall be as follows:

M is the number of signal points in the constellation.

()M b 2log = is the number of bits encoded per symbol.

T T s b = is the equivalent bit period. ??

??????????=22k k s n E x E γ is the SNR per symbol in single-polarization transmission. ????????????=22k k s E E n x γis the SNR per symbol in dual-polarization transmission (e.g.

polarization-multiplexed or PolSK). b s b γγ= is the SNR per bit

The maximum achievable spectral efficiency (bit/s/Hz) of a linear AWGN channel is governed by the Shannon capacity [1]:

()s

b γ+=1log 2max . If N D identical channels are available for transmission, and we utilize them all by dividing the available power equally amongst the channels, the total capacity is ()D s D N N b γ+=1log 2, which is an increasing function of N D . Hence, the best transmission strategy is to use all the dimensions available. For example, suppose a target spectral efficiency of 4 bits per symbol is needed. Polarization-multiplexed 4-QAM, which uses the inphase and quadrature components of both polarizations, has better sensitivity than single-polarization 16-QAM.

ASK with noncoherent detection

Optical M -ary ASK with noncoherent detection has signal points evenly spaced in nonnegative amplitude [25]. The photocurrents for different signal levels thus form a

(15)

(14)

(C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 767

quadratic series. It can be shown that the optimal decision thresholds are approximately the geometric means of the intensities of neighboring symbols. Assuming the use of Gray coding, it can be shown that for large M and γb , the BER is approximated by [5]:

()()()?????????????????≈1212311M M b erfc M M b M P b ASK b γ. DPSK with differentially coherent detection

Assuming the use of Gray coding, the BER for M -ary DPSK employing differentially coherent detection is [26]:

()()[]()()∫∫??++≈πππηχχηγχηγχπM b b DPSK b d d b b b M P 0sin cos 1exp sin cos 11sin 11.

For binary DPSK, the above formula is exact, and can be simplified to [27]: ()()b DPSK b P γ?=exp 212. For quaternary DPSK, we have [27]:

()()()()[]22101exp 21,4βααββα+??=I Q P DPSK b , where ()2112?=b γα and ()2112+=b γβ. ()y x Q ,1 and ()x I 0 are the Marcum Q function and the modified Bessel function of the zeroth order, respectively.

Polarization-Shift Keying (PolSK) PolSK is the special case in this section where the transmitted signal naturally occupies both polarizations. Thus, polarization multiplexing cannot be employed to double system capacity. The BER for binary PolSK is [16]:

()()b PolSK b P γ?=exp 212. For higher-order PolSK, the BER is well-approximated by [28], ()()()??????????????????+?≈∫?10tan tan cos 11011θθθθθπθdt t f t n F b M P PolSK b , where

()()()()t t b t F b cos 1cos 1exp 211+???

=γθ, and ()()()()()t b t b t t f b b cos 11cos 1exp 2

sin ++??=γγθ. n , 0θ and 1θ are related to the number of nearest neighbors and the shape of the decision boundaries on the Poincaré sphere. Table 5 shows their values for 4-PolSK and 8-PolSK. Square 4-PolSK denotes the constellation where the signal points lie at the vertices of a square

(16)

(17) (18)

(19) (20)

(21) (22) (23) (C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 768

enclosed by the Poincaré square. In tetrahedral 4-PolSK and cubic 8-PolSK, the signal points lie at the vertices of a tetrahedron and a cube enclosed by the Poincaré square, respectively.

Table 5. Parameters for computing the BER in polarization-shift keying (PolSK).

PSK with coherent detection

Assuming the use of Gray coding, the BER for M -ary PSK employing coherent detection is given approximately by [29]:

()???????

???????≈M b erfc b M P b PSK b πγsin 1. For the special cases of BPSK and QPSK, we have the exact expressions: ()()()b PSK b PSK b erfc P P γ2142==. QAM with coherent detection

Assuming the use of Gray coding, the BER for a square M -QAM constellation with coherent detection is approximated by [29]:

()()???

???????????????≈12312M b erfc M M

b M P b QAM b γ. The BER performance of 8-QAM with the signals points arranged as shown in Fig. 8 is [20]: ()???????

?+≈33316118b QAM b erfc P γ. Fig. 8. 8-QAM constellation.

Using Eq. (16) to (27), we compute the SNR per bit required for each modulation format discussed to achieve a target BER of 10?3, which is a typical threshold for receivers employing forward error-correction coding (FEC). The results are shown in Table 6. In Fig. 9, we plot spectral efficiency vs SNR per bit with polarization multiplexing to obtain fair comparison with PolSK (we also show results for 12-PolSK and 20-PolSK [28]). Since polarization-multiplexed ASK, DPSK and PSK all have two DOF (one per polarization), as is the case with PolSK, they all have similar slopes at high spectral efficiency. Because QAM

(24) (26) (27) (25)

0002

10b b b 001

010

100110011

111

101Bit encoding (C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 769

uses all four available DOF for encoding information, it has better SNR efficiency than the other formats, and exhibits a steeper slope at high spectral efficiency.

Table 6. SNR per bit (in dB) required to achieve BER=10?3. Single-Polarization Transmission

Bits per Symbol Constellation Size M ASK with Direct Detection DPSK with Interferometric Detection PSK with Coherent Detection QAM with Coherent

Detection PolSK 1 2 9.8 7.9 6.8 6.8 7.9 2 4 15.0 9.9 6.8 6.8 8.0 3 8 20.0 13.1 10.0 9.0 9.4 4 16 25.0 17.4 14.3 10.5

Fig. 9. Spectral efficiency vs. SNR per bit required for different modulation formats at a target

BER of 10?3. We assume polarization multiplexing for all schemes except PolSK. Also shown

is the Shannon limit (15), which corresponds to zero BER.

5. Channel impairments and compensation techniques in single-carrier systems

In this section, we review the major channel impairments in fiber-optic transmission. We present the traditional methods of combating these, and show how compensation can be done electronically with coherent detection in single-carrier systems. Impairment compensation in multi-carrier systems is discussed in Section 6.

5.1 Linear impairments

5.1.1 Chromatic dispersion

CD is caused by a combination of waveguide and material dispersion [22]. In the frequency domain, CD can be represented by a scalar multiplication:

()()()I H ???????+??=33226121s fiber s fiber L L j CD e ωωβωωβω, where fiber L is the length of the fiber, β2 is the dispersion parameter, β3 is the dispersion slope, and s ω is the signal carrier frequency. Uncompensated CD leads to pulse broadening, causing intersymbol interference (ISI). Long-haul systems use DCF to compensate CD optically [22]. However, inexact matching between the β2 and β3 of transmission fiber and DCF dictates the need for terminal dispersion compensation at high bit rates, typically 40

(28)

SNR per bit (dB)

S p e c t r a l E f f i c i e n c y (b i t s p e r s y m b o l )(C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 770

Gbit/s or higher [30]. In reconfigurable networks, data can be routed dynamically through different fibers, so the residual dispersion can be time-varying. This necessitates tunable dispersion compensators.

5.1.2 Polarization-mode dispersion

Fig. 10. First-order polarization-mode dispersion.

Polarization-mode dispersion (PMD) is caused by random birefringence in the fiber. In first-order PMD, a fiber possesses a “fast axis” along in polarization and a “slow axis” in the orthogonal polarization (Fig. 10). These states of polarization are known as the principal states of polarization (PSPs), and can be any vector in Stokes space in general. First-order PMD can be written as [31]:

()211DR R H ?=ωPMD , where ()22,DGD DGD j j e e diag τωτω?=D is a diagonal matrix with DGD τ being the differential group delay between the two PSPs, and 1R and 2R are unitary matrices that rotate the reference polarizations to the fiber’s PSPs, which are elliptical in general. When a signal is launched in any polarization state other than a PSP, the receiver will detect two pulses at each reference polarization. Ignoring CD and other effects, the impulse response measured by a polarization-insensitive direct-detection receiver is ()()()()21222DGD DGD t a t a t h τδτδ+??+??=, where a 2 is the proportion of transmitted energy falling in the slow PSP. In this simple two-path model, we see that PMD can lead to frequency-selective fading [32]. In contrast to CD, which is relatively static, PMD (both the PSPs and the DGD) can fluctuate on time scales on the order of a millisecond [33]. Thus PMD compensators thus need to be rapidly adjustable. The statistical properties of PMD have been studied in [34?36], and it has been shown that DGD τ has a Maxwellian distribution, whose mean value DGD τ grows as the square-root of fiber length. In SMF, DGD τ is typically of order km /ps 1.0. PMD is a significant impact on systems at bit rates of 40 Gbit/s and higher, because DGD τ can be a significant fraction of the symbol period. Uncompensated PMD can result in system outage [37].

One method of combating PMD is to use a tunable PC at the transmitter to ensure the input signal is launched into a PSP [38]. Receiver-based compensators for first-order PMD use a continuously tunable PC followed by a variable retarder, which inverts the DGD of the fiber [38,39]. By cascading multiple first-order PMD compensators, one can retrace the PMD vector of the transmission fiber. Such a device can compensate higher-order PMD [40]. Optical PMD compensators have been constructed using nonlinear chirped fiber Bragg gratings [41], planar lightwave circuits (PLC) [42] and polarization-maintaining fibers (PMF) twisted mechanically [40]. Compensation of DGD τ as large as 1.7 symbols was demonstrated by Noé et al [40]. A major limitation of optical PMD compensation is that device performance

(29)

(C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 771

depends on the degree of tunability, and increasing the number degrees of freedom can require costly hardware. However, optical PMD compensators are transparent to the data rate and modulation format of the transmitted signal, and have been successfully employed for very high-data-rate systems, where digital compensation is currently impossible.

Electronic PMD equalization has gained considerable recent interest. Buchali and Bülow studied the use of a feedforward equalizer (FFE) with decision feedback equalizer (DFE) to combat PMD systems using direct detection of OOK [39]. As with electronic CD compensation in direct detection of OOK [43], the loss of phase during detection prevents quasi-exact compensation of PMD.

5.1.3 Other linear impairments

In addition to CD and PMD, a fiber optic link can also have polarization-dependent loss (PDL) due to anisotropy of network components such as couplers, isolators, filters, multiplexers, and amplifiers [44]. In DWDM transmission, arrayed waveguide gratings (AWG), interleavers and reconfigurable add-drop (de)multiplexers (ROADMs) cause attenuation at the band edges of a channel. When a signal has to pass through cascaded elements, bandwidth narrowing can be problematic. This is a major challenge in 40 Gbit/s RZ-DPSK at 50 GHz channel spacing [45]. Bandwidth narrowing can be equalized by tunable optical equalizers, but such devices are costly, introduce loss, and are difficult to make adaptive.

5.1.4 Compensation of linear impairments and computational complexity

Since a dual-polarization downconverter linearly recovers the full electric field, CD and PMD can be compensated quasi-exactly in the electronic domain after photodetection. One approach is to use a tunable analog filter. However, as in the case of optical compensators, it is difficult to implement the desired transfer function exactly, and analog filters are also difficult to make adaptive. In addition, parasitic effects like signal reflections can lead to signal degradation.

With improvements in DSP technology, digital equalization of CD and PMD is becoming feasible. When the outputs of a dual-polarization downconverter are sampled above the Nyquist rate, the digitized signal contains a full characterization of the received E -field, allowing compensation of linear distortions by a linear filter. CD compensation using a digital infinite impulse response (IIR) filter was studied by [46]. Although an IIR filter allows fewer taps, it is more difficult to analyze, and may require greater receiver complexity because of the need to implement time-reversal filters. In this paper, we concentrate on CD and PMD compensation using a finite impulse response (FIR) filter.

Fig. 11. Digital equalization for a dually polarized linear channel.

Linear equalization using an FIR filter for dually polarized coherent systems was studied in [47,48]. The canonical system model is shown in Fig. 11. The analog outputs of a dual-polarization downconverter are passed through anti-aliasing filters with impulse responses ()t p and then sampled synchronously at a rate of s KT M T =1, where K M is a rational oversampling ratio. We assume that the sampling clock has been synchronized using well-known techniques [49]. In theory, the use of a matched filter in conjunction with symbol rate

~~k x ,1k

x ,2(C) 2008 OSA 21 January 2008 / Vol. 16, No. 2 / OPTICS EXPRESS 772

实业有限公司简介

公司简介怎么写 一, 首先介绍一下你们公司的名字,什么性质的,什么时间成立的,有多少员工,主要产品是什么及它的应用范围,自成立以来取得什么样的成绩(包括销售方面、技术创新方面、人员培训方面等等),在未来几年内的发展规划等等。注意千万不要写成泛文,要写得有理有据,还要突出重点,具有很强的吸引力。 二, 1,公司背景 如何成立,建立人,公司的历史,内容发展 2,公司服务内容或者产品介绍 3,公司员工和公司的结构介绍 4,公司的顾客群或者范围介绍 5,公司近期内的重大发展介绍 6,公司的年度报表简介 不过最重要的,建议你弄明白看这个公司简介的对象是谁,知己知彼才能百战百胜。不知道对象是谁就提笔写东西,是很不明智的。我给你的是比较常用的方式,不适用于所有对象群体。 三, 1.要体现出你的公司的独特个性。 2.不能学习别人的,才会有自己的个性。 上海富蔗化工有限公司座落于中国经济、金融、贸易中心--上海。公司位于上海西北部-上海桃浦化工工业园区。是集化学科研,开发,生产,销售,服务为一体

的综合型企业。本公司在奉贤,南汇,松江等工业园区及江浙一带均有生产和联营企业基地。我公司拥有先进的生产设备,完善的产品检测手段和质量保证体系。我公司的员工具有较强的责任感。经过多年的发展,现已形成有机中间体、医药中间体、化工溶剂和化工助剂四大类上百个品种。公司业务涉及医药、农药、染料、涂料、制革等各行业。公司年销售额在数千万人民币左右。我公司与世界各大化工、医药原料供应厂商有着密切的联系,并与其保持着良好的合作关系,能够稳定、成立以来,发挥自身优势,健全销售网络,注重企业形象,开创了上海首家在网络上以小包装零售业带动大批发销售的多元化经营模式,并且不断增加原料品种的配套措施,赢得广大客户的一致好评。企业产品市场辽阔,远销日本、美国、欧洲、印度,东南亚等地。我们富蔗人本着“求实、高效、创新”的团队精神,参与到激烈的市场竞争中来,以一流的产品质量,优惠的产品价格,令人满意的销售服务,赢得您的支持与信赖。我们愿同四海知音、各界同仁携手共同发展。企业使命: ----立足化工行业,开拓进取。诚信服务,以质量和信用为本。规范管理,引进先进、科学方法。加强合作,建立良好关系。开发新品,发展实业,优化产业结构。创立品牌,报效国家,为经济发展、环境保护和社会进步做出贡献。富蔗承诺,为您负责。 [正派] 经营是富蔗的一贯原则[创新] 进取是富蔗的生存基础 [团队] 协作是富蔗的致胜法宝 深圳市国冶星光电子有限公司是目前国内少数大型综合性LED光电产品生产性高科技企业之一,公司集科研、开发、生产、销售、服务为一体,专业生产发光二极管、数码、点阵、(室内、室外、半户外)模块、背光源、贴片(SMD)LED等全系列光电产品,产量大、品质高,产品广泛应用于家电、手机、公共场所、交通、广告、银行等,为大型家电、手机厂的配套供应商。 公司拥有先进的专业生产设备、世界领先的全自动SMD生产线及一系列品质保证测试设备(自动固晶机、自动焊线机、模造机、自动切割机、自动分光机、自动装带机、冷热冲击机、可程式恒温恒湿机、定点型恒温恒湿机、环境测试机、电脑分析显微镜等),拥有高素质的管理队伍,高水平的技术、开发人员及一大批训练有素的熟练工人。生产原材料均采用当今国外知名企业产品,现有市场已覆盖全国各地,海外业务拓展已具规模,

小学奥数之容斥原理

五.容斥原理问题 1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( ) A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种 2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是 解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( ) A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。 分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+ a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤ 再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。 然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。 故只解出第二题的学生人数a2=6人。 3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。 假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)

深圳市大诠实业有限公司简介及产品介绍

深圳市大诠实业有限公司简介 深圳市大诠实业有限公司大诠旗下网络变压器厂于2007年6月成立,公司主要生产脉冲变压器、滤波器、磁环线圈等磁性元件。2016年注册属于大诠实业的自主网络滤波器品牌NMS.工厂面积5000多平方米,前期项目总投资三百多万元人民币,目前年产值达6000多万元人民币。 公司属于内资企业,总部设于深圳市龙华新区大浪街道,现有员工300人左右。其中一些工厂在云南文山市环城西路中部,下辖13个分厂约7000人。大诠实业东莞工厂位于广东省东莞市高埗镇芦溪村银涌工业区创鸿基工业园四楼。公司目前正处于高速发展时期,是同行客户信得过的企业。 大诠优势 所有产品均符合全球业界各项质量及环保规定。公司拥有一个经验丰富的管理团队,有一批爱岗敬业,开拓进取,团结一心,坦诚从事之优秀员工,有公正严明的规章制度及相对完善的管控体系。 公司经过多年的锤炼,积累了丰富的集生产加工,开发,品质,后勤保障等各种管控经验,有多渠道固定之客户群,客户遍布珠三角,长三角以及欧美,东南亚等发达国家和地区。也有永久持续,品质交期稳定之产品前段供应链。 大诠文化 愿景:成为全球网络变压器最具领导地位的生产商! 使命:为网络通讯行业提供最具竞争力的多元化网络变压器! 理念:与员工共成长,与客户求共赢!以质量创品牌,以诚信谋发展! 精神:开拓、创新,立足市场求发展;优质、高效,专心服务为用户! 价值观:以人为本,客户至上,诚信经营,大家共赢! 工作作风:产前准备严格核对;生产过程严格要求; 员工作业严格规范;出厂成品严格把关。 服务宗旨:每位客户的满意是环宇人存在价值的最好体现! 大诠产能(300K/天) 12PIN(超薄)SMD 20K/天 16PIN (常规)SMD 50K/天 24PIN(小)SMD 60K/天 24PIN(大)SMD 20K/天 48PIN(常规)SMD 10K/天 18PIN(单排常规)DIP 5K/天 36PIN(单排常规)DIP 10K/天 24PIN(双排常规)DIP 10K/天 48PIN(双排常规)DIP 15K/天 设备仪器列表 序号设备名称数量用途序号设备名称数量用途 1 TCP 1 集高压测试、综合测试、外 观检验、包装于一体的设 备。 14 切脚机 6 DIP产品切脚设备 2 射频网络分 析仪 1 产品特性测试15 显微镜8 产品局部放大,用于分析产品异 常。

2015国家公务员考试行测:数学运算-容斥原理和抽屉原理

【导读】国家公务员考试网为您提供:2015国家公务员考试行测:数学运算-容斥原理和抽屉原理,欢迎加入国家公务员考试QQ群:242808680。更多信息请关注安徽人事考试网https://www.360docs.net/doc/8d14556680.html, 【推荐阅读】 2015国家公务员笔试辅导课程【面授+网校】 容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠 的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数 目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是 A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、 数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一 门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现 两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1 次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩ C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

雷达原理复习

第一章绪论 1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 β任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角α,仰角 在圆柱坐标系中表示为:水平距离D,方位角α,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表2.2cm,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标:

壹玖公司简介

壹玖公司简介 河南壹玖实业有限公司成立于2014年7月的,壹玖实业是一家融实体企业经营与商业培训为一体的民营企业,由董事长袁国顺先生创立的“免费商业模式”培训为切入点的,企业家智慧及资源密集体。 壹玖实业是河南唯一一家以企业发展落地为基础,从商业模式学习切入、实操落地的新经济生态大系统,致力于中小企业未来根本核心竞争力的研究,通过帮助企业商业模式升级带动企业稳定,飞速发展,在行业里脱颖而出。 壹玖实业以河南为中心向全国乃至世界辐射,截止2016年底已在全国发展100家事业部,力争三年内发展1000家,目前已拥有中小企业家会员1万多人。挽救濒临倒闭民营中小企业120家以上,盘活10亿以上烂尾楼项目15个。间接帮助社会多创造10万个以上就业机会。河南壹玖实业有限公司目前正致力于帮助会员企业打造更具竞争力的免费商业模式,以振兴民族经济为己任,用免费模式,让奇迹发生,助推中华民族伟大复兴的中国梦早日实现。 公司自成立至2016年年底,已拥有高素质员工500多人,参股、控股多家公司及项目,初步形成了以中原为核心,辐射全国的战略布局。直接影响到的企业家会员超过1万名,间接影响到的企业超过8万余家。 壹玖实业以袁国顺老师为核心的企业家领导团队,用自身经营企业20多年的经验帮助会员企业。壹玖系统可以彻底帮助您解决现在面临的企业问题,为您的企业装上更具竞争力的武器,更轻松的经营企业。壹玖资本,等您加入!

袁国顺,河南壹玖实业集团董事长,一个实实在在践行免费模式的企业家! l38O年25月6日9622 分電联年月日分,找袁国顺老师。“企业的一切问题都是老板的问题,老板行,一切都行!”“企业家不是努力不够,而是思维不够。” 袁国顺先生搏击商海二十年,运用哲学、逻辑学和心理学,从自己和他人成功或失败中剖析深层次的原理,形成了独特新颖而且具有现实指导意义的新的商业思维模式。“一花独放不是春,百花盛开春满园”。为了帮助哪些和他一样在商海中打拼的企业家少走弯路,袁国顺先生走上讲台,帮助多家企业创造了行业神话和奇迹。 壹玖资本自助式大平台主办的“聚世界资本、创商海经济”广东峰会上,国内顶级讲师、河南壹玖实业有限公司董事长袁国顺出场便语出惊人。他指出,在竞争激烈的当下,免费模式可以帮助企业实现腾飞。“中国企业家普遍认为免费就是无常付出、倒贴,其实这只是表象。根据企业产品特性,设定一个免费的时间段做铺垫,调试时间的浓度来让客户形成惯性消费行为,最终变成你的企业的忠实客户。” 纵观整个社会经济发展,50年前,开工厂能盈利,30年前做贸易很赚钱,现在互联网如此发达、产品库存极其庞大的情况下,很多企业家必须遵循当下互联网经济的规律——平台分享、合作共赢。如果企业家还停留在“机制、约定、管理员工、经营方法”的层面,企业是很难发展的,这也是为什么传统企业最近几年举步维艰的原因,当然这不是企业家的过错,也不是社会的过错,而是整个经济的发展到了新的周期。 袁国顺在接受采访时表示:请广大企业家不要认为免费就是打劫、白送,而是根据你的企业产品特性,设定一个免费的时间段做铺垫,调试时间的浓度来让客户形成惯性消费行为,最终变成你的企业的忠实客户。 来自全国各地近600个企业家参加峰会连续三天的“顶尖免费商业模式”学习。其中不乏广东商业巨头,如广药集团高管、喜喜传媒、国龙集团高管等。在为期三天的峰会中,还举办了壹玖资本广东分公司的启动仪式。广东壹玖资本负责人汪先付在接受采访时表示,“我们实战峰会灌输的是一种商业模式:弱化员工能力,强化模式的价值。”而公司的互助经济大平台不是简单的企业家培训、关系的抱团,而是默契的利益共同体。 平台里的企业家必须有共同的理念和价值观,“免费模式”只是系统里的一环,它要实现的并不是真正的免费,而是通过免费来延伸利润链条。

国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲

2015国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲 容斥原理和抽屉原理是国家公务员测试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末测试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C -A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到:公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

实业集团公司简介范文

实业集团公司简介范文 实业公司最为明显的一个特点就是它所提供的商品绝对是实体存在的,或者拥有自己的工厂或者实体的公司为依赖的,现在就和小编一起来看看实业集团公司简介范文,仅供参考。 实业集团公司简介范文1 宁德市南阳实业有限公司简介 企业现有规模:公司成立于1995年,目前注册资本9300万元,已投入资金6.28亿元,拥有员工1100人,其中各类专业技术人员126人。通过20xx年的发展,紧紧围绕以生猪养殖为主产业,配套发展种猪生产、饲料加工、生猪屠宰、无公害猪肉连锁专卖、肉食品加工、粮食储备贸易、生物有机肥生产、饲料临海码头建设和仓储物流等13个经营实体。目前实现年生产销售优质种猪2万头、商品猪18万头、优质饲料6万吨、定点屠宰生猪12万头、连锁专卖无公害猪肉8500吨、猪肉加工食品9800吨、粮食储备贸易5万吨、生物有机肥1万吨,预计20xx年创综合产值8.2亿元。实现了猪肉产品从基地到餐桌质量安全保障一条龙生产目标,形成了福建省唯一特色生猪产业集群发展的企业。

企业荣誉:公司先后被评定为农业产业化国家重点龙头企业,国家扶贫龙头企业、国家生猪活体储备基地、全国农产品加工示范企业,是福建省高新技术企业、福建省品牌农业企业金奖。公司通过了ISO9001:20xx国际质量标准认证,产品通过农业部质量安全中心认证等。“海暘及图”商标和无公害猪肉分别被认定为“中国驰名商标”、“福建省著名商标”和“福建省名牌产品”。 企业发展目标:规划通过三年产业发展建设,实现年出栏商品猪50万头、销售种猪5万头、年产饲料15万吨、屠宰生猪50万头、年销售放心肉2万吨、深加工猪肉5万吨、年粮食储备贸易5万吨、年产有机肥10万吨、年码头储运货物60万吨。再增投资6亿元,实现总投资12.3亿元,带动就业3000人,实现综合产值21亿元的目标。 企业行业地位:目前出栏生猪规模为全省第一位,达到年出栏生猪50万头、种猪5万头的目标后,养殖规模将进入全国前二十强,种猪育猪水平进入全国最先进行列,实现全国唯一的生猪产业集群模式发展企业。 企业在建项目:20xx-20xx年在建已动工项目4个,计划总投资3.9亿元。 1、七都淡坪原种猪场项目,投资6100万元,建设年出栏1万头种猪、4万头商品猪规模的原种猪场,计划于20xx年12月建成投产。

崇和实业公司介绍

崇和实业宣传册文案 市场部 2014年7月17日 走近崇和

企业简介 上海崇和实业有限公司(以下简称崇和实业)自创建以来,一直专注于船舶装备、海洋产业,先后投资了船舶修造、船舶设计、船舶贸易、船舶核心设备、船舶融资租赁、船舶管理、海洋采矿、海上风电、极地捕捞、远海养殖等领域,已发展成为一家复合化经营的综合性企业。崇和实业依托技术创新、金融创新,整合船舶装备、海洋经济产业链,形成了“技术、金融、装备、运维”四位一体的新型企业模式,正逐步迈向前瞻性、专业化,国内领先的整船装备与海洋投资综合服务商。 发展历程 崇和实业于本世纪初介入船舶行业,主要投资有: 2003年投资船厂开展船舶修造业务; 2005年投资成立船舶设计研究院,其目前已成为国内知名、民营最具规模的特种船舶设计院之一; 2008年投资成立船舶贸易公司,主营船舶经纪与进出口代理,以及国外大型船用主机等设备的代理销售; 2011年投资成立船舶融资租赁公司,成为国内第一家专业致力于船舶行业的准金融机构,主营特种船舶的融资租赁业务,服务涵盖二手船与新造船,成立翌年被评为上海浦东新区重点航运服务企业; 2012年联合中国北方机车车辆工业集团公司(中国北车集团)合资成立北车船舶与海洋工程发展有限公司,主营工程总承包和造船总承包业务; 2012年投资海洋渔业和远洋渔船,并与上海水产集团合作,进行深海鱼类产品销售。 2013年与中国国际商会共同发起成立工程船舶委员会,帮助国内特种船舶、工程船舶相关企业“走出去”,为成员单位开展海外业务提供支持与保障。 2013年投资海洋矿业和国内首艘滨海采矿船,参与国内首个海洋采矿项目,并与印尼国家锡矿公司形成战略合作,共同开采海洋锡矿。 2014年投资海洋风电领域,并投资建造了具备“国内领先、国际先进”自主知识产权的国内最大自升式海上风电安装平台。

集合与容斥原理

第一讲集合与容斥原理 数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。它的概念与方法已经有效地渗透到所有的现代数学。可以认为,数学的所有内容都是在“集合”中讨论、生长的。 集合是一种基本数学语言、一种基本数学工具。它不仅是高中数学的第一课,而且是整个数学的基础。对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。集合的划分反映了集合与子集之间的关系,这既是一类数学问题,也是数学中的解题策略——分类思想的基础,在近几年来的数学竞赛中经常出现,日益受到重视,本讲主要介绍有关的概念、结论以及处理集合、子集与划分问题的方法。 1.集合的概念 集合是一个不定义的概念,集合中的元素有三个特征: (1)确定性设A是一个给定的集合,a是某一具体对象,则a或者是A的元素,或者不是A的元素,两者必居其一,即a∈A与a?A仅有一种情况成立。 (2)互异性一个给定的集合中的元素是指互不相同的对象,即同一个集合中不应出现同一个元素. (3)无序性 2.集合的表示方法 主要有列举法、描述法、区间法、语言叙述法。常用数集如:R , ,应熟记。 N, Z Q 3.实数的子集与数轴上的点集之间的互相转换,有序实数对的集合与平面上的点集可以互相转换。对于方程、不等式的解集,要注意它们的几何意义。 4.子集、真子集及相等集 (1)A?? B A?B或A=B; (2)A?B?A?B且A≠B; (3)A=B?A?B且A?B。 5.一个n阶集合(即由个元素组成的集合)有n2个不同的子集,其中有n2-1个非空子集,也有n2-1个真子集。 6.集合的交、并、补运算 x∈} A B={A |且B x∈ x x∈} A B={A |或B x x∈ x?} A∈ {且A =| I x x 要掌握有关集合的几个运算律: (1)交换律A B=B A,A B=B A; (2)结合律A (B C)=(A B) C, A ( B C)=(A B) C;

抽屉原理

网易新闻 微博 邮箱 闪电邮 相册 有道 手机邮 印像派 梦幻人生 更多博客博客首页 博客话题 热点专题 博客油菜地 找朋友 博客圈子 博客风格 手机博客 短信写博 邮件写博 博客复制摄影摄影展区 每日专题搜博文搜博客随便看看关注此博客选风格不再艰难搬家送Lomo卡片注册登录显示下一条| 关闭86012747lktd的博客andrsw@https://www.360docs.net/doc/8d14556680.html, QQ:86012747 导航 首页日志相册音乐收藏博友关于我日志86012747 加博友关注他 最新日志 倒推法解题数的整除奇数、偶数质数、合数小学数学思维训练5-5.组合图小学数学思维训练5-6.公约数博主推荐 相关日志 随机阅读 7大细节破译男人是否来电?破解《黎明之前》口碑形成之谜收租婆的忧伤谁人知?禁看湖南卫视引发的大哭与大笑独家:超闪亮水晶配饰BlingBling惹人爱Selina剃头俞灏明植皮偶像明星也难做首页推荐 毛利:烂人完美标本游资为什么炒作农产品?美国人忙着捡便宜兽兽亮相车展遭围攻洗澡时发现婆婆是双性恋为何有些物种要变性更多>> 抽屉原理抽屉原理习题(初一) 抽屉原理习题默认分类2008-04-17 16:03:44 阅读217 评论0 字号:大中小订阅

简单 1.在一米长的线段上任意点六个点。试证明:这六个点中至少有两个点的距离不大于20厘米。 2.在今年入学的一年级新生中有370多人是在同一年出生的。请你证明:他们中至少有两个人是在同一天出生的。 3.夏令营有400个小朋友参加,问:在这些小朋友中, (1)至少有多少人在同一天过生日? (2)至少有多少人单独过生日? (3)至少有多少人不单独过生日? 4.学校举行开学典礼,要沿操场的400米跑道插40面彩旗。试证明:不管怎样插,至少有两面彩旗之间的距离不大于10米。 5.在100米的路段上植树,问:至少要植多少棵树,才能保证至少有两棵之间的距离小于10米? 6.在一付扑克牌中,最少要拿多少张,才能保证四种花色都有? 7.在一个口袋中有10个黑球、6个白球、4个红球。问:至少从中取出多少个球,才能保证其中有白球? 8.口袋中有三种颜色的筷子各10根,问: (1)至少取多少根才能保证三种颜色都取到? (2)至少取多少根才能保证有两双颜色不同的筷子? (3)至少取多少根才能保证有两双颜色相同的筷子? 9.据科学家测算,人类的头发每人不超过20万根。试证明:在一个人口超过20万的城市中,至少有两人的头发根数相同。 10.第四次人口普查表明,我国50岁以下的人口已经超过8亿。试证明:在我国至少有两人的出生时间相差不超过2秒钟。 11.证明:在任意的37人中,至少有四人的属相相同。

雷达的工作原理及相控阵雷达

问:有源相阵控雷达和无源相阵控雷达的区别是什么? h t p:/b s.t i e x u e.n e t/] [ 转自铁 血社区 答:区别就是无源是只有单个或者几个发射机子阵原只能接收,而有源是每个阵原都有完整的发射和接收单元! 机载雷达经历了从机械扫描形式到相控阵电子扫描,再到最新的保形"智能蒙皮"天线的发展过程,电子扫描雷达在作战使用中的优势在哪里?未来的综合式射频(RF)传感器系统的总体特点和关键技术是哪些?您将从本文中得到启发 近50多年来,机载雷达不断采用新的技术成果,性能不断提高,其中重要的有全向多脉冲射频(MPRF)模式和高分辨率多普勒波束锐化(DBS)技术在雷达中的实际应用。目前,由于在信号处理和砷化镓微波集成电路领域技术的进步,雷达作为战术飞机主传感器的地位仍然会继续保持下去。 电子扫描技术的发展 雷达波束天线电子扫描应用的第一步是无源电子扫描阵列(ESA),其主要优点是实现了波束的无惯性扫描,在作战中有助于对辐射能量的控制。现役的此种类型的雷达有美国空军的B1-B和俄罗斯的米格-31装备的雷达,在研的有法国装备其"阵风"战斗机的RBE-2雷达。 有源ESA的出现是技术上的又一进步。它的每一个阵元中都有一个RF发射机和灵敏的RF接收机,在各个发射/接收(T/R)模块内都有一个功率放大器、一个低噪声放大器和用砷化镓技术制造的相位振幅控制装置。有源ESA雷达技术放弃了传统的中心式高功率发射机,除了具有无源相控阵雷达的优点外,还提高了能量的使用效率并具有自适应波束控制、强抗干扰能力和高可靠性等优点。 h t p:/b s.t i e x u e.n e t/] 血社区 [ 转自铁 西方国家第一代有源相控阵雷达系统接近定型的有美国装备F-22和日本装备 FS-X的雷达。英、法和德国共同研制的AMSAR项目也确定使用先进的有源相控阵雷达技术,为其后续的欧洲战斗机雷达的升级改装做准备。从今天的角度来看,雷达技术未来的下一个发展方向是保形"智能蒙皮"阵列,它把有源ESA技术和多功能共用RF孔径结合了起来,在天线阵元的安排上,与飞机机身的结构巧妙地配合,实现宽波段和多功能。保形天线阵列有高性能的处理器并使用空-时自适应处理技术有效地抑制了外部的噪声、干扰和杂波并能以最优化的方式来探测所感兴趣的目标。虽然有许多相关的技术问题需要解决,但保形"智能蒙皮"技术并非是个不切实际的解决方案,预计在20~25年的时间内就可以达到实用阶段。 在10~15年内,对战术飞机射频传感器(包括雷达)未来所执行的任务来说,最迫切的需要是增加功能、提高性能,并且还要注重经济性和可维护性。美国的"宝石路"计划已经证明,航空电子系统通过采用通用模块、资源共享和传感器的空间重构(重构的设备包括雷达、电子战及通信-导航-识别等射频传感器)可以做到系统的造价和重量减小一半,而可靠性提高三倍。它所确立的综合模块化航空电子的设计原则已用于JSF战斗机的综合传感器系统(ISS)和多重综合式射频传感器工程的设计中,欧洲类似的用于未来战术飞机的综

公司简介房地产公司简介

公司简介模板-房地产公司简介模板 房地产公司简介怎么写? 信阳市园林实业发展有限责任公司 简介 信阳市园林实业发展有限责任公司成立于1998年,注册资金5000万元,是一家集房地产开发、建筑装饰工程、物业管理、酒店经营、金融服务为一体的综合性集团公司。 公司自成立之初,始终坚持“创品牌、跻身一流企业”为经营目标,秉承“用心文化、追求卓越”为经营理念,注重打造以“学习型、服务型、创新型”为核心的企业文化精神。经过十余载不懈的努力,打造出了一支具有活力和进取精神的专业化队伍,企业竞争力不断增强,

企业发展空间不断拓展,从而快速平稳步入良性循环发展轨道。截至目前,公司净资产过亿元,从业人员逾百人,公司法人治理架构健全。园林实业公司已迅速成长为在信阳具有良好声誉和非凡影响力的知名企业。 园林实业发展公司在不断发展壮大的同时,不忘回报社会。始终以“致富思源、富而进取、义利兼顾、德行并重”为己任,自觉承担社会责任,常年致力于公益事业。近几年来为希望工程共捐款捐物40余万元;为下岗职工、贫困人群、弱势群体维护社会治安等捐款捐物万元;为抗击各种自然灾害、流行病共捐款捐物万元;为信阳市政建设、公共事业捐款145万元;为希望工程资助贫困大学生、新建乡村校学共捐赠万元;数年来共累计向社会捐款捐物近500余万元、纳税近1600余万元。 公司的发展和善行善举,得到了社会各界的肯定和赞誉。园林实业公司先后被授予“河南省房地产开发优秀企

业”、“河南省银行业优质客户”、“重合同守信用企业”、“十佳非公有制企业”、“重点保护非公有制企业”、“纳税先进企业”、“光彩事业阳光工程先进单位”、“ 纳税贡献奖”、“社会奉献奖”等荣誉称号,xx年元月在北京人民大会堂被中国房地产协会授予“xx年度中国房地产最具影响力诚信品牌企业”,被中国房地产协会列入会员单位,且于2016年被世界杰出华商大会授予副理事长单位。 作为一个脚踏实地的本土企业,园林实业公司将始终以开发高品质地产为发展核心,始终坚持“居住改变生活,创造地产精品”的开发理念,以提升园区服务价值,在实现企业持续健康发展的同时,不断为员工创造平台,为客户创造价值,为社会创造温馨优雅的人居文化,为城市打造艺术精品。房地产公司简介百纳行房地产源于深圳,其核心成员在深圳从事房地产行业十几载,有着丰富的房地产营销策划经验。2016年来到郴州,成立百纳行房地产,提供项目选取、

抽屉原理和容斥原理

I .抽屉原则 10个苹果放入9个抽屉中,无论怎么放,一定有一个抽屉里放了2个或更多个苹果.这 个简单的事实就是抽屉原则.由德国数学家狄利克雷首先提出来的.因此,又称为狄利克雷原则. 将苹果换成信、鸽子或鞋,把抽屉换成信筒、鸽笼或鞋盒,这个原则又叫做信筒原则、 鸽笼原则或鞋盒原则.抽屉原则是离散数学中的一个重要原则,把它推广到一般情形就得到下面几种形式: 原则一:把m 个元素分成n 类(m >n ),不论怎么分,至少有一类中有两个元素. 原则二:把m 个元素分成n 类(m >n ) (1)当n |m 时,至少有一类中含有至少 n m 个元素; (2)当n |m 时,至少有一类中含有至少[n m ]+1个元素. 其中n m 表示n 是m 的约数,n m 表示n 不是m 的约数,[ n m ]表示不超过n m 的最大整数. 原则三:把1221+-+++n m m m 个元素分成n 类,则存在一个k ,使得第k 类至 少有k m 个元素. 原则四:把无穷多个元素分成有限类,则至少有一类包含无穷多个元素. 以上这些命题用反证法极易得到证明,这里从略. 一般来说,适合应用抽屉原则解决的数学问题具有如下特征:新给的元素具有任意性. 如10个苹果放入9个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果. 对一个具体的可以应用抽屉原则解决的数学问题还应搞清三个问题: (1)什么是“苹果”? (2)什么是“抽屉”? (3)苹果、抽屉各多少? 用抽屉原则解题的本质是把所要讨论的问题利用抽屉原则缩小范围,使之在一个特定

重叠问题(容斥原理,包含与排除)

包含与排除 例题1,(1)五年级一班参加体育兴趣小组的有30人,参加文艺兴趣小组的有25人,两项活动都参加的有13人,全班每人至少参加一项活动。问这个班有多少人? (2)三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱队又参加舞蹈队的有14人。这两队都没有参加的有10人。请算一算,这个班共有多少人? 1,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。这个文艺组一共有多少人? 2,某班在一次测验中有26人语文获优,有30人数学获优,其中语文、数学双优的有12人,另外还有8人语文、数学均未获优。这个班共有多少人? 3,第一小组的同学们都在做两道数学思考题,做对第一题的有15人,做对第二题的有10人,两题都做对的有7人,两题都做错的有2人。第一小组共有多少人? 例题2,(1)五年级一班有42人,参加体育兴趣小组的有30人,参加文艺兴趣小组的有25人,全班每人至少参加一项活动。问这个班两项活动都参加的有多少人? (2)一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。两样都会的有多少人?

(3)3,某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得不对? 1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。其中语文成绩优秀的有65人,数学优秀的有87人。语文、数学都优秀的有多少人? 2,一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。问这两种棋都会下的有多少人? 3,学校开展课外活动,共有250人参加。其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。问这250名同学中,象棋组、乒乓球组都不参加的有多少人? 例题3,(1)四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人? (2)全班46名同学,仅会打乒乓球的有28人,会打乒乓球又会打羽毛球的有10人,不会打乒乓球又不会打羽毛球的有6人。仅会打羽毛球的有多少人? 1,40人都在做加试的两道题,并且至少做对了其中的一题。已知做对第一题的有30人,做对第二题的有21人。只做对第一题的有多少人?

人教版初中《抽屉原理和容斥原理》竞赛专题复习含答案

人教版初中《抽屉原理和容斥原理》竞赛专题复习含答案 抽屉原理和容斥原理 24.1 抽屉原理 24.1.1★在任意的61个人中,至少有6个人的属相相同. 解析 因为一共有12种属相,把它看作12个抽屉,61151612?? +=+=????,根据抽屉原理知, 至少有6个人的属相相同. 评注 抽屉原理又称鸽笼原理或狄里克雷原理.这一简单的思维方式在解题过程中却可以有很多颇具匠心的运用.抽屉原理常常结合几何、整除、数列和染色等问题出现.许多有关存在性的证明都可用它来解决. 抽屉原理1 如果把1n +件东西任意放入n 个抽屉,那么必定有一个抽屉里至少有两件东西. 抽屉原理2 如果把m 件东西任意放人n 个抽屉,那么必定有一个抽屉里至少有女件东西,这里 ,1,m m n n k m m n n ??? =? ??? +????? ?是的位不是的位当数时; 当数时. 其中[]x 表示不超过x 的最大整数 ,例如[]33=,[]4.94=,[]2.63-=-等等. 24.1.2★从2,4,6,…,30这15个偶数中任取9个数,证明:其中一定有两个数之和是34. 解析 把2,4,6,…,30这15个数分成如下8组(8个抽屉); (2)(4,30),(6,28),(8,26),(10,24),(12,22),(14,20),(16,18). 从2,4,6,…,30这15个数中任取9个数,即是从上面8组数中取出9个数.抽屉原理知,其中一定有两个数取自同一组,这两个数的和就是34. 24.1.3★★在1,2,3, …,100这100个正整数中任取11个数,证明其中一定有两个数的比值不超过 32 ; {}1,{2,3},{4,5,6},{7,8,9,10}, {11,12,…,16},{17,18,…,25}, {26,27,…,39},{40,41,…,60}. {61,62,…,91},{92,93,…,100}. 从1,2,…,100中任取11个数,即是从上面10组中任取11个数,由抽屉原理知,其中 一定有两个数取自同一组,这两个数的比值不超过 32 . 24.1.4★求证:任给五个整数,必能从中选出三个,使得它们的和能被3整除. 解析 任何数除以3所得余数只能是0、1、2,分别构造3个抽屉:{0}、{1}、{2}.(1)若这五个自然数除以3后所得余数分别分布在这3个抽屉中,从这三个抽屉中各取1个,其和必能被3整除.(2)若这5个余数分布在其中的两个抽屉中,根据抽屉原理,其中一个抽

深圳市源天成实业有限公司简介

深圳市源天成实业有限公司 Shenzhen Natural Resource Industrial Co.,Ltd 成立于2014年1月14日 总部位于深圳市南海区南海大道万融大厦B座201 深圳市源天成实业有限公司致力于改善中国食品安全为己任,以“源自天成,健康直供”为出发点,从食品源头把关,优化产品供应链,成为健康食品的提供者。主要产品有原生态种植的有机大米杂粮、农场直供的有机蔬菜、原产地直采的新鲜水果、澳洲进口牛肉和原装进口红酒。 公司由总经办为核心,下设肉品事业部、果蔬事业部及米面粮油事业部等三大产品研发与销售部门;另有市场部、电商部、供应链部门作为营销功能的部门,深入开展品牌的市场运作。 作为国内领先的生鲜产品电子商务平台,源天成商城的模式在目前生鲜产品电子商务的七种模式中属于垂直电商运营模式,由于垂直电商的专注,比别人更关注细分领域,所以也就比其他平台更懂用户。源天成生鲜垂直电商平台涵盖新鲜水果、有机蔬菜、健康大米、澳洲牛肉、进口红酒、五谷杂粮、蜂蜜茶饮等七大品类,以丰富的产品组合,以及灵活的生鲜惠、抢鲜团的购买形式深受家庭喜爱;特别是在生鲜配送、售后服务环节,以“不满意再送一份”的特色服务,赢得客户好评。 另外,在线下超市、社区O2O的业务中正积极拓展,应行业特点要求,我们将用户数据打通、产品打通、服务打通,符合互联网思维的数据链条产生后,用户才会获得更好的体验。基于这些技术支持和创新,已经开展商务餐配送、水果拼盘配送等业务。源天成进口澳洲牛肉已入驻百佳超市四大连锁店,以天然牧场直供、严格食品检测体系、全程冷链、新鲜直达的标准,为用户提供优质的进口牛肉; 坐落在深圳市南山区南海大道工业五路万海大厦A座107号的‘源天成健康生活体验馆’为深圳客户提供优质的产品体验服务,集餐饮、健购物、康饮食讲座于一体,向客户全方位演绎鲜榨果汁、纯正牛排、有机蔬菜、健康美食的养生理念。 发展历史 深圳市源天成实业有限公司于2014年在深圳市前海合作区注册成立,在大宗粮食进口和货运代理业务方面具有较强实力。 公司上下众志成城,经历一年飞速发展,公司在粮油、生鲜、餐饮等业务模块上日趋成熟。在国内拥有6000多亩的有机农业生产示范基地,农科院科研技术人员深入到田间地头,引入先进的科学技术指导生产,严把田间种植管理、生产加工、包装及物流配送等各个环节,从而保证所有出品达到欧洲食品标准;

高中数学抽屉原理容斥原理

高中数学抽屉原理容斥原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一

个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。 3.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。 4.已给一个由10个互不相等的两位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。 5.在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点。 6.在任意给出的100个整数中,都可以找出若干个数来(可以是一个数),它们的和可被100整除。 7.17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目。

相关文档
最新文档