磁约束磁控溅射源的工作特性测试

磁约束磁控溅射源的工作特性测试
磁约束磁控溅射源的工作特性测试

文章编号:1673-9965(2010)01-017-04

磁约束磁控溅射源的工作特性测试*

弥谦,雷琳娜,袁建奇

(西安工业大学陕西省薄膜技术与光学检测重点实验室,西安710032)

摘要:为了提高靶材利用率,将磁约束原理应用在磁控溅射技术中,设计了一款直流矩形平面磁控溅射源.测量了磁约束磁控溅射源原理样机靶面磁场强度,研究了不同工作真空度下的伏安特性以及磁控溅射电源工作在不同模式下靶电压与工作真空度之间的关系,确定了磁控溅射源正常工作时的最佳工艺参数,为磁约束磁控溅射源原理样机的结构改进提供依据.实验表明:磁控溅射靶稳定工作的电压范围是300~700V,靶电流可达到1.2A,最高工作真空度为2Pa.

关键词:磁约束;磁控溅射源;靶源特性测试;靶材利用率

中图号:T N305.92文献标志码:A

磁控溅射镀膜已经成为工业生产中最主要的技术之一,在机械、电子、能源、信息等领域得到广泛的应用[1-2].由于传统的平面磁控溅射在沉积薄膜的过程中主要在跑道环的区域溅射,靶材利用率只有20%~30%[3],生产成本居高不下.为了提高靶材利用率,溅射速率和溅射的均匀性,许多公司和个人都从不同角度提出了自己的设计,如SOL-ERAS公司的/分流设计0、/表面增强剥蚀0(Sur-face Pro filing Enhancement)技术,Singulus Technolog ies开发出的/智能阴极0(Smart Cath-o de)技术[3].采用这些方法,靶材利用率有所提高,同时也造成了磁控溅射源结构复杂,溅射速率下降等问题[4-7].文中将磁约束磁场约束等离子体的原理应用在磁控溅射技术中,将等离子体有效地约束在矩形靶面上方,在正交电磁场的作用下,溅射发生在整个靶面区域,有效地提高了靶材利用率.

1磁约束磁控溅射源的工作原理

磁控溅射是在二极溅射的基础上以增加磁场来改变电子的运动方向,束缚和延长电子运动轨迹,提高电子对工作气体的电离几率,达到提高溅射速率的目的[1]./磁约束0即磁镜效应.当带电粒子在两端强中间弱的磁场中运动时,会在强磁场处被反射回来,如同光遇到平面镜被反射一样,这种两端强中间弱的磁场被称为磁镜[8].

磁镜效应是磁矩不变性的一个重要应用,假设有一个如图1所示的磁场,磁场由两边向中间逐渐减弱.若带点粒子开始时处于磁场中的A点,运动速度为V0,跟磁场的夹角为H0.它在平行于磁场和垂直与磁场的两个方向上的速度分量分别为V M 和V L.当带电粒子从磁场较弱的区域向磁场较强的区域运动时,就是从图中A点运动到B点时,由

于磁矩L=

w L

B

是常数,而B点磁场比A点磁场

强,因而在B点时的W L应该比A点时大.W L= 1

2

mV2L,所以说带电粒子运动到B点,它的垂直速度分量要增大.由于总能量W=W L+W M是一定的,因而W L的增大是以W M的减小为代价的.当带电粒子继续前进时,W M=0.这表明粒子的纵向速度为0,不能再继续沿磁力线前进而被反射回去.好像光线照到镜子上被反射回来一样.处于中间区域的等离子体当它们沿着磁力线向两端运动时,遇

第30卷第1期西安工业大学学报Vo l.30No.1 2010年02月Jo urnal o f Xi.an T echnolo g ical U niver sity F eb.2010

*收稿日期:2009-11-18

基金资助:陕西省教育厅科研计划项目(03JS033)

作者简介:弥谦(1963-),男,西安工业大学教授,主要研究方向为薄膜技术.E-m ail:m iqianm i@https://www.360docs.net/doc/8d14577207.html,.

到强磁场被反射回来,这样等离子体就可以被约束在两面/镜子0之间的中间区域而不损失掉

.

图1 磁镜装置的磁场位形Fig.1 M ag net ic field config ur atio n o f

mag netic mir ro r system

磁约束磁控溅射源是基于磁约束原理的一款新型磁控溅射源.其原理示意图如图2所示.磁体N,S 极分别放置在靶的两侧.溅射源在工作的过程中,工作气体(Ar)被电离形成A r +

离子和电子,电子被约束在磁极之间的区域来回往复运动,增加了工作气体的电离率,在电场的作用下,A r +离子加速轰击靶材,溅射出靶材原子沉积在基片上形成薄膜.由于等离子体被约束在整个靶面上方,沉积薄膜的过程中溅射发生在整个靶面,从而提高了溅射的速率和靶材利用率

.

1-基片;2-磁力线;3-等离子体;

4-溅射靶材5-永磁体;6-靶冷却水;7-导磁体

图2 磁约束磁控溅射源原理示意图Fig.2 Schemat ic of magnetic confinement

sputter ing tar get so ur ce

2 溅射靶工作特性测试

使用高斯计对测试靶靶面水平磁场强度进行了测量,绘制出靶面磁场强度分布曲线图;通过实验得出不同工作真空度下磁控溅射靶的伏安特性曲线;研究了磁控溅射电源在不同工作模式下靶电

压与工作真空度之间的关系.

2.1 靶面磁场强度测量

磁控溅射沉积薄膜的过程中,靶面水平磁场分量起到至关重要的作用.对于大多数靶来说,场强在20~50mT 之间变化时,溅射功率接近线性增长[1].为此,按图3所示方向,使用高斯计对靶面磁场的强度分布进行了逐点测量.为了提高测量的精度,测量中使用了坐标仪,使得测量方向保持严格的直线方向和相同的间隔.

图3 测量靶面磁场方向示意图Fig.3 Directio n o f measurement

测量结果如图4和图5所示,靶平面X 轴方向磁场强度分布较平缓,场强差较小,与垂直于靶面的电场形成正交的电磁场.场强在42~48m T 之间,Y 轴方向磁场强度两端强,中央弱,符合磁约束磁控溅射源对磁场的要求.

图4 矩形靶面X 轴上的磁场强度分布F ig.4 M ag netic density distr ibution

along X ax is of tar get surface

图5 矩形靶面Y 轴上的磁场强度分布F ig.5 M ag netic density distr ibution

along Y axis o f targ et sur face

18

西 安 工 业 大 学 学 报 第30卷

2.2 溅射靶伏安特性

使用M S -20K 直流磁控溅射电源,设置磁控溅射电源工作在恒流模式下,使用纯度为99.99%的Ar 气为工作气体.在本底真空为5@10-3Pa,增加气体流量的同时不断增加设定的电流值,溅射源起弧.待放电稳定,依次由小到大调节靶电流记录相应的靶电压值,再由大到小调节靶电流记录相应的靶电压值,两次测量的靶电压存在微小偏差,取其平均值.分别记录真空度为6Pa,4Pa,2Pa 时的靶电压与靶电流的变化关系.实验结果如图6所示.实验表明,在不同的工作真空度下,磁约束磁控溅射源的伏安特性曲线趋于一致.对于一定的工作真空度,靶电压随靶电流的增大而增大;对于一定的靶电压,放电电流随真空度的下降而增大.放电过程中辉光非常稳定,磁控溅射源工作实况如图7所示,稳定工作的电压范围是300~700V 之间,靶电流可达到1.2A.表明磁控溅射源具有较宽的稳定工作范围

.

图6 不同工作真空度的伏安特性曲线Fig.6 I -U char act eristics in different vacuum

level

图7 磁约束磁控溅射源工作照片F ig.7 T he w or king state of mag netic confinement sputt er ing t arg et so ur ce

2.3 工作真空度与电压之间的关系

工作真空度是磁约束磁控溅射源工作时的一个重要参数,测量靶电压与工作真空度之间的关系可以得到靶电压稳定工作时所需要的工作真空度

范围.为了检验磁约束磁控溅射源工作的稳定性,

分别检测了电源工作在不同模式下的工作真空度与靶电压的关系.当本底真空度为5@10-3

Pa,不断增加氩气流量,电源工作在恒流模式下,设置电流I 分别为0.4A,0.6A,0.8A 时,改变工作真空度,记录靶电压变化值.如图8所示,恒流模式下的工作真空度与靶电压的关系.同样,设置电源工作在恒功率模式下(P =0.2kW)绘制靶电压与工作真空度的关系曲线如图9所示.

图8 恒流模式下的工作真空度与靶电压关系Fig.8 T he r elatio n betw een tar get v oltage and vacuum in constant -cur rent dr iv ing model

图9 恒功率模式下的工作真空度与靶电压关系Fig.9 T he r elatio n betw een tar get v oltage and vacuum in constant -po wer dr iv ing model

实验表明:电源工作在恒流和恒功率模式下磁控溅射源工作稳定;在不同的靶电流下,靶电压随工作真空度的下降而下降;随着靶电流的增加,辉光稳定增强.这是因为,当氩气流量增大(工作真空度下降)的时候,气体放电等离子体的密度增加,气体放电的等效电阻减小,故靶电压减小.反之,当气

体流量不断减小(工作真空度上升)的时候,等效电阻不断增大,靶电压增大.同理,在恒功率模式下,工作真空度下降时,放电等离子体的密度增大,等效电阻减小,由于功率恒定,则靶电压随工作真空度的降低而减小.

3 结论

本文通过对磁约束磁控溅射源原理样机靶面

19

第1期 弥谦等:磁约束磁控溅射源的工作特性测试

磁场的测量,伏安特性的测试以及工艺参数的研究,得出以下结论:

1)磁约束磁控溅射源稳定工作时,放电等离子体被约束在矩形靶面上方,溅射发生在整个靶面区域;

2)磁控溅射源稳定工作时的电压范围在300 ~700V之间;靶电流可达到1.2A,最高工作真空度为2Pa;

3)磁控溅射电源工作在不同模式下溅射源放电稳定.通过对磁约束磁控溅射源工作特性的研究,为磁约束磁控溅射源沉积薄膜的工艺参数优化奠定基础.

参考文献:

[1]Kelly P J,A rnell R D.M ag netr on Sputtering:A Re-

v iew o f Recent Develo pments and A pplicatio ns[J].

Vacuum,2003,12(68):283.

[2]杨武保.磁控溅射镀膜技术最新进展及发展趋势预测

[J].石油机械,2005,33(6):73.

Y A NG Bao-wu.A Rev iew o f M agnetr on Sputtering

and the Future of the T echno log y[J].China Petr ole-

um M achinery,2005,33(6):73.(in Chinese)

[3]刘翔宇,赵来.磁控溅射镀膜设备中靶的优化设计

[J].真空,2003,4:16.

ZH A O Yu-x iang,ZH A O L ai.Optim izing T arg et De-

sign in M ag netr on Sput tering Deposition o f T hin Film

[J].V acuum,2003,4:16.(in Chinese)[4]赵嘉学,金凡亚.常见磁控溅射靶材利用率及其计算

方法的探讨[J].核聚变与等离子体,2007,27(1):66.

ZH AO Jia-x ue,JIN Fan-ya.T he Discussion o f Co m-

mon M agnetro n Sputtering T a rget M ater ial U tiliza-

tion Rat io and the Calculation M etho d[J].T echno lo-

gy of Fusion and Plasma Physics,2007,27(1):66.(in

Chinese)

[5]邱清泉,励庆孚.矩形平面直流磁控溅射装置工作区

域磁场分析[J].西安交通大学学报,2007,41(12):

41.

Q IU Q ing-quan,L I Q ing-fu.M ag net ic Field in Wor k-

ing Region of Rectangular P lanar DC M ag netro n

Sputter ing A ppar atus[J].Journal o f Xi`an Jiaot ong

U niver sity,2007,41(12):41.(in Chinese)

[6]赵新民,狄国庆.加磁场对靶材利用率的影响[J].真

空科学与技术,2003,23(2):104.

ZH A O Xin-min,DI G uo-qing.Influence of Ex ternal

M ag netic Field on U tilization Ratio of T arg et M ater-i

als in M ag netr on Sputter ing[J].V acuum Science and

T echno lo gy,2003,23(2):104.(in Chinese)

[7]G erman J R.M agnetro n Sputter ing for Enhanced Per-

for mance of Sputter T ar gets[J].IBM T echnical D is-

closure Bulletin,1993,36(11):414.

[8]朱士尧.等离子体物理基础[M].北京:科学出版社,

2003.

ZH U Sh-i Rao.Plasma Physics[M].Beijing:Science

Pr ess,2003.(in Chinese)

Characteristics of Magnetic Confinement

Sputtering Target Source

MI Qian,L EI L in-na,YUA N J ian-qi

(Shaanxi Pro vince T hin Film T echnolo g y and O ptica l T est O pen Key L abo rato ry,

Xi.an T echnolog ical U niv ersity,Xi.an710032,China)

Abstract:In order to improve the utilization factor o f targ et,the team a new DC planar magnetro n sputtering targ et source is designed using theory o f m agnetic confinement.Its oper ating principle is discussed.Mag netic density on the surface of test tar get is m easured.I-U characteristics in different vacuum level and the relation betw een targ et voltage and vacuum are detected and discussed.The best technolo gical parameter is explored.T hese results can be used fo r the reference of the test equipment modification.T he w ho le surface of target is sputtered w hen the target w or ks in the conditions o f targ et voltage from300V to700V,the targ et current1.2A and the top vacuum2Pa.

Key words:mag netic confinement;m ag netron sputtering;char acteristic test;utilization factor of target

(责任编辑、校对张立新) 20西安工业大学学报第30卷

射频同轴电缆特性阻抗Zc的测试

射频同轴电缆特性阻抗Z C 的测试 胡 树 豪 这里介绍射频同轴电缆特性阻抗Z C 的6种测试方法。它们同样也适合于双绞线,只不过仪器要转换为差分系统而已。 一、λ/4线接负载法 1、测试方法与步骤: ·待测电缆一段,长约半米(无严格要求),两端装上连接器。扫频范围由仪器低频扫到百余兆赫即可。对于其它长度的电缆,扫频范围请自定。 ·仪器工作在测反射(或回损)状态,作完校正后画面应选阻抗圆图。 ·在测试端口接上待测电缆,电缆末端接上精密负载。 ·画面不外三种情况: 轨迹集中为一点,则Z C = Z 0(测试系统特性阻抗,一般为50Ω)。 轨迹呈圆弧或圆圈状,在圆图右边,则Z C > Z 0 。 轨迹呈圆弧或圆圈状,在圆图左边,则Z C < Z 0 。 ·将光标移到最接近实轴的点上,记下此点的电阻值R in (不管电抗值)。 n i C R Z Z 0= 例如:R in = 54Ω,则Z C = 52Ω,若R in = 46Ω,则Z C = 48Ω。 若轨迹不与实轴相交,则扫频范围不够或电缆太短;若交点太多,则扫频范围太宽或电缆太长。 2、优点 轨迹直观连续,不易出错。 连接器的反射可以通过λ/4线抵消。 3、缺点 必须截取短样本。 必须两端装连接器。 电缆质量必须较好,否则不同频率的测试结果起伏较大,不好下结论。 4、物理概念与对公式的理解 λ/4线有阻抗变换作用,其输入阻抗Z in 与负载阻抗Z L 之间满足Z in = Z C 2/Z L 关系。 现在Z L = Z 0,Z in = R in ,代入展开即得上面的Z C 计算公式。 λ/4线的阻抗变换公式是众所周知的,但作为特性阻抗的测试方法却未曾见。在测阻抗曲线试验中发现,与实轴相交的这一点是可用来测特性阻抗的;因为它把矛盾扩大了,反而更容易测准。由于曲线是很规矩的,不易出错。但必须用第一个交点,即除原点以外的最低频率的与实轴最近的一点,用第二点就可能出问题。换句话说,待测电缆的电长度应为λ/4的奇数倍,不能是偶数倍。 二、λ/8线开、短路法 1、测试方法与步骤: ·样本与扫频方案 对于已装好连接器的跳线,长度已定,只能由长度定扫频方案而对于电缆原材料,则可以按要求频率确定下料长度。此时待测电缆一头装连接器即可。

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

测试系统的特性

第4章测试系统的特性 一般测试系统由传感器、中间变换装置和显示记录装置三部分组成。测试过程中传感器将反映被测对象特性的物理量(如压力、加速度、温度等)检出并转换为电信号,然后传输给中间变换装置;中间变换装置对电信号用硬件电路进行处理或经A/D变成数字量,再将结果以电信号或数字信号的方式传输给显示记录装置;最后由显示记录装置将测量结果显示出来,提供给观察者或其它自动控制装置。测试系统见图4-1所示。 根据测试任务复杂程度的不同,测试系统中每个环节又可由多个模块组成。例如,图4-2所示的机床轴承故障监测系统中的中间变换装置就由带通滤波器、A/D变换器和快速傅里叶变换(Fast Fourier Transform,简称FFT)分析软件三部分组成。测试系统中传感器为振动加速度计,它将机床轴承振动信号转换为电信号;带通滤波器用于滤除传感器测量信号中的高、低频干扰信号和对信号进行放大,A/D变换器用于对放大后的测量信号进行采样,将其转换为数字量;FFT分析软件则对转换后的数字信号进行快速傅里叶变换,计算出信号的频谱;最后由计算机显示器对频谱进行显示。 要实现测试,一个测试系统必须可靠、不失真。因此,本章将讨论测试系统及其输入、输出的关系,以及测试系统不失真的条件。 图4-1 测试系统简图 图4-2 轴承振动信号的测试系统

4.1 线性系统及其基本性质 机械测试的实质是研究被测机械的信号)(t x (激励)、测试系统的特性)(t h 和测试结果)(t y (响应)三者之间的关系,可用图4-3表示。 )(t x )(t y )(t h 图4-3 测试系统与输入和输出的关系 它有三个方面的含义: (1)如果输入)(t x 和输出)(t y 可测,则可以推断测试系统的特性)(t h ; (2)如果测试系统特性)(t h 已知,输出)(t y 可测,则可以推导出相应的输入)(t x ; (3)如果输入)(t x 和系统特性)(t h 已知,则可以推断或估计系统的输出)(t y 。 这里所说的测试系统,广义上是指从设备的某一激励输入(输入环节)到检测输出量的那个环节(输出环节)之间的整个系统,一般包括被测设备和测量装置两部分。所以只有首先确知测量装置的特性,才能从测量结果中正确评价被测设备的特性或运行状态。 理想的测试装置应具有单值的、确定的输入/输出关系,并且最好为线性关系。由于在静态测量中校正和补偿技术易于实现,这种线性关系不是必须的(但是希望的);而在动态测量中,测试装置则应力求是线性系统,原因主要有两方面:一是目前对线性系统的数学处理和分析方法比较完善;二是动态测量中的非线性校正比较困难。但对许多实际的机械信号测试装置而言,不可能在很大的工作范围内全部保持线性,只能在一定的工作范围和误差允许范围内当作线性系统来处理。 线性系统输入)(t x 和输出)(t y 之间的关系可以用式(4-1)来描述 )()(...)()()()(...)()(0111101111t x b dt t dx b dt t x d b dt t x d b t y a dt t dy a dt t y d a dt t y d a m m m m m m n n n n n n ++++=++++------ (4-1) 当n a ,1-n a ,…,0a 和m b ,1-m b ,…,0b 均为常数时,式(4-1)描述的就是线性系统,也称为时不变线性系统,它有以下主要基本性质: (1)叠加性 若 )()(11t y t x →,)()(22t y t x →,则有

阻抗测试方法

成品阻抗测试方法: 1、仪器设置: 网络分析仪:CENTER:200MHz SPAN:2MHz(视被测电缆的长度进行设定)MEAS:S12 或S21 FORMA T:Phase 直通校准 注意:校准完毕为一条数值为零的直线,SPAN更改不同的数值需要重新校准。 2、电容测量仪测试电容值。(数值现实稳定可以读取数值)。 3、相位差的测量: 网络分析仪连接被测电缆,显示相位值,按照以下方式进行读取数值: 打开菜单MARKER SERACH,target value设置为0,打开multi target search , 记录两个标记点的频率值(注意:选择红圈内数值最接近的标记点)。 如上图所示:应选择标记点1、2。 δf=(f m -f n )/m-n 4、按照特性阻抗的公式: 平均特性阻抗=1000/(δf*c) δf单位为MHz, C为测量的电容值:单位nf。 注意事项:1、测试频率差时被测电缆的接头状态必须和测试电容的接头状态保持一致。 2、target value设置为0,以避免产生误差。 3、保证校准状态有效。

相对传播速度的测量方法: 1:相对传播速度的定义:信号在介质中的传播速度与自由空间的传播速度之比。 2、仪器的设置: 网络分析仪进行测试: CENTER:200MHz SPAN:1MHz MEAS:S12 或S21 FORMA T:Group delay 直通校准 校准后为一条数值为零的直线。 3、连接被测电缆,打开Marker Factions ,将统计功能打开。读取平均值即为延迟时间t。 4、按照下列公式计算相对传播速度: V =L/(t?c) ?100% V:相对传播速度。L:电缆的实际长度(米)c=3.0?108米/秒 t :延迟时间(秒)。 电缆相位及电长度测试及计算方法: 1、仪器的设置: 网络分析仪设置: CENTER:要求测试频点SPAN:10MHz(或者按照通知单要求设置起始终止频率)MEAS:S12 或S21 FORMA T:Extend Phase 直通校准 校准后为一条数值为零的直线。 2、连接被测电缆,读取要求频率点的数值。

磁性材料基本特性的研究

实验报告 姓名:什么情况班级:F10 学号:51 实验成绩: 同组姓名:实验日期:2011- 指导老师:助教批阅日期: 磁性材料基本特性的研究 【实验目的】 1.了解磁性材料的磁滞回线和磁化曲线概念,加深对铁磁材料的主要物理量矫顽磁力、剩磁和磁导率的理解; 2.利用示波器观察并测量磁化曲线与磁滞回线; 3.测定所给定的铁磁材料的居里温度. 【实验原理】 1.磁化性质 一切可被磁化的物质叫作磁介质。磁介质的磁化规律可用磁感应强度B、磁化强度M、磁场强度H来描述,它们满足一定的关系 μr的不同一般可分为三类,顺磁质、抗磁质、铁磁质。 对非铁磁性的各向同性的磁介质,H和B之间满足线性关系,B =μH,而铁磁性介质的m 、B 与H 之间有着复杂的非线性关系。一般情况下,铁磁质内部存在自发的磁化强度,当温度越低自发磁化强度越大。如图一所示。 图一B~ H曲线图二μ~ T曲线 它反映了铁磁质的共同磁化特点:在刚开始时随着H的增加,B缓慢的增加,此时μ较小;而后便随H的增加B急剧增大,μ也迅速增加;最后随H增加,B趋向于饱和,而此时的μ值在到达最大值后又急剧减小。图一表明了磁导率μ是磁场H的函数。B-H曲线表示铁磁材料从没有磁性开始磁化,B随H的增加而增加,称为磁化曲线。从图二中可看到,磁导率μ还是温度的函数,当温度升高到某个值时,铁磁质由铁磁状态转变成顺磁状态,在曲线上变化率最大的点所对应的温度就是居里温度T C。 2.磁滞性质 铁磁材料除了具有高的磁导率外,另一重要的特性是磁滞现象.当铁磁材料磁化时,磁

感应强度B不仅与当时的磁场强度H有关,而且与 磁化的历史有关,如图3所示.曲线OA表示铁磁材 料从没有磁性开始磁化,B随H的增加而增加,称 为磁化曲线.当H值到达某一个值H S时,B值几乎 不再增加,磁化趋于饱和.如使得H减少,B将不 再沿着原路返回,而是沿另一条曲线AC'A'下降,当 H从-H S增加时,B将沿着A'CA曲线到达A形成一 闭合曲线.其中当H = 0时,|B| = Br,Br称为剩余 磁感应强度.要使得Br为零,就必须加一反向磁场, 当反向磁场强度增加到H = -H C时,磁感应强度B为零,达到退磁,HC称为矫顽力.各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料. 3.用交流电桥测量居里温度 铁磁材料的居里温度可用任何一种交流电桥测量。本实验采用如图所示的RL交流电桥, 图三RL交流电桥 在电桥中输入电源由信号发生器提供,在实验中应适当选择不同的输出频率ω为信号发生器的角频率。选择合适的电子元件相匹配,在未放入铁氧体时,可直接使电桥平衡,但当其中一个电感放入铁氧体后,电感大小发生了变化,引起电桥不平衡。但随着温度的上升到某一个值时,铁氧体的铁磁性转变为顺磁性,CD两点间的电位差发生突变并趋于零,电桥又趋向于平衡,这个突变的点对应的温度就是居里温度。实验中可通过桥路电压与温度的关系曲线,求其曲线突变处的温度,并分析研究在升温与降温时的速率对实验结果的影响。4.用示波器测量动态磁化曲线和磁滞回线

交流阻抗怎么测量

交流阻抗怎么测量 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 (1)交流阻抗:交流阻抗即阻抗,在电子学中,是指电子部件对交流激励信号呈现出的电阻和电抗的复合特性;在电化学中,是指电极系统对所施加的交流激励信号呈现出的电阻和电抗的复合特性。阻抗模的单位为欧姆,阻抗辐角(相角)的单位为弧度或度。 (2)交流阻抗谱:在测量阻抗的过程中,如果不断地改变交流激励信号的频率,则可测得随频率而变化的一系列阻抗数据。这种随频率而变的阻抗数据的集合被称为阻抗频率谱或阻抗谱。阻抗谱是频率的复函数,可用幅频特性和相频特性的组合来表示;也可在复平面上以频率为参变量将阻抗的实部和虚部展示出来。测量频率范围越宽,所能获得的阻抗谱信息越完整。RST5200电化学工作站的频率范围为:0.00001Hz~1MHz,可以很好地完成阻抗谱的测量。 (3)电化学阻抗谱:电化学阻抗谱是一种电化学测试方法,采用的技术是小信号交流稳态测量法。对于电化学电极体系中的溶液电阻、双电层电容以及法拉第电阻等参量,用电化学阻抗谱方法可以很精确地测定;而用电流阶跃、电位阶跃等暂态方法测定,则精度要低一些。另外,像扩散传质过程等需要用较长时间才能测定的特性,用暂态法是无法实现的,而这却是电化学阻抗谱的长项。 (4)电化学阻抗谱测量的特殊性:就测量原理而言,在电化学中测量电极体系的阻抗谱与在电子学中测量电子部件的阻抗谱并没有本质区别。通常,我们希望获得电极体系处于某一状态时的电化学阻抗谱。而维持电极体系的状态,须使电极电位保持不变。通常认为,电极电位变化50mV以上将会破坏现有的状态。因此,在电化学阻抗谱测量中,必须注意两个关键点,即:偏置电位和正弦交流信号幅度。 (5)正弦交流信号的幅度:为了避免对电化学电极体系产生大的影响以及希望其具有较好的线性响应,正弦交流信号的幅度通常可设在2~20mV之间。 (6)自动去偏:在电化学阻抗谱测量过程中,由于偏置电位不一定等于开路电位以及少量的非线性作用,在工作电极电流中还会含有直流成分。去除这个直流成分(偏流),可扩大交流信号的动态范围、提高信噪比。RST5200电化学工作站,可在测量过程中动态地调整去偏电流,使获得的阻抗谱数据更精准。另外,在软件界面的状态栏中,可实时显示工作电极的极化电流,供操作者参考。 以上为交流阻抗的相关说明,下面我们就实验设置过程中遇到的专业名词

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2)

简支梁振动系统动态特性综合测试方法分析

目录 一、设计题目 (1) 二、设计任务 (1) 三、所需器材 (1) 四、动态特性测量 (1) 1.振动系统固有频率的测量 (1) 2.测量并验证位移、速度、加速度之间的关系 (3) 3.系统强迫振动固有频率和阻尼的测量 (6) 4.系统自由衰减振动及固有频率和阻尼比的测量 (6) 5.主动隔振的测量 (9) 6.被动隔振的测量 (13) 7.复式动力吸振器吸振实验 (18) 五、心得体会 (21) 六、参考文献 (21)

一、设计题目 简支梁振动系统动态特性综合测试方法。 二、设计任务 1.振动系统固有频率的测量。 2.测量并验证位移、速度、加速度之间的关系。 3.系统强迫振动固有频率和阻尼的测量。 4.系统自由衰减振动及固有频率和阻尼比的测量。 5.主动隔振的测量。 6.被动隔振的测量。 7.复式动力吸振器吸振实验。 三、所需器材 振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。 四、动态特性测量 1.振动系统固有频率的测量 (1)实验装置框图:见(图1-1) (2)实验原理: 对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。 (图1-1实验装置图) (3)实验方法: ①安装仪器 把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。 ②开机 打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。 ③测量 打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

电路基础实验实验十一rlc元件阻抗特性的测定

实验十一 R、L、C元件阻抗特性的测定 实验成员: 班级: 整理人员:

实验十一 R 、L 、C 元件阻抗特性的测定 一、实验目的 1.验证电阻,感抗、容抗与频率的关系,测定R~f ,X L ~f 与X C ~f 特性曲线。 2.加深理解R 、L 、C 元件端电压与电流间的相位关系。 二、原理说明 1.在正弦交变信号作用下,电阻元件R 两端电压与流过的电流有关系式 在信号源频率f 较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值信号源频率无关,其阻抗频率特性R~f 如图9-1。 如果不计线圈本身的电阻R L ,又在低频时略去电容的影响,可将电感元件视为电感,有关系式 I jX U L L ? ? = 感抗 fL X L π2= 感抗随信号源频率而变,阻抗频率特性X L ~f 如图9-1。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式 I jX U C C ? ? - = 容抗 fC X C π21 = 容抗随信号源频率而变,阻抗频率特性X C ~f 如图9-1. 2.单一参数R 、L 、C 阻抗频率特性的测试电路如图9-2所示。 途中R 、L 、C 为被测元件,r 为电流取样电阻。改变信号源频率,测量R 、L 、

C 元件两端电压U R 、U L 、U C ,流过被测元件的电流则可由r 两端电压除以r 得到。 3.元件的阻抗角(即相位差φ)随输入信号的频率变化而改变同样可用实验方法测得阻抗角的频率特性曲线φ~f 。 用双踪示波器测量阻抗角(相位差)的方法。 将欲测量相位差的两个信号分别接到双踪示波器Y A 和Y B 两个输入端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如图9-3所示,荧光屏上数的水平方向一个周期占n 格,相位差占m 格,则实际的相位差φ(阻抗角)为 度n 360m ? ? =φ 三、实验设备 四、实验内容 1.测量R 、L 、C 元件的阻抗频率特性。

第三章测试装置的基本特性

第三章测试装置的基本特性 第一节测试装置的组成及基本要求 一、对测试系统的基本要求 测试过程是人们获取客观事物有关信息的认识过程。在这一过程中,需要利用专门的测试系统和适当的测试方法,对被测对象进行检测,以求得所需要的信息及其量值。对测试系统的基本要求自然是使测试系统的输出信号能够真实地反映被测物理量的变化过程,不使信号发生畸变,即实现不失真测试。任何测试系统都有自己的传输特性,如果输入信号用x(t)表 示,测试系统的传输特性用h(t)表示,输 出信号用y(t)表示,则通常的工程测试问 题总是处理x(t)、h(t)和y(t)三者之间的 关系,如图2-1所示,即 1)若输入x(t)和输出y(t)是已知量, 图3-1 则通过输入、输出可推断出测试系统的传 输特性h(t)。 2)若测试系统的传输特性h(t)已知,输出y(t)亦已测得,则通过h(t)和y(t)可推断出对应于该输出的输入信号x(t)。 3)若输入信号x(t)和测试系统的传输特性h(t)已知,则可推断出测试系统的输出信号y(t)。 本章主要讨论系统传递(传输)特性的描述方法。 二、测试系统的组成 一个完善的测试系统是由若干个不同功能的环节所组成的,它们是实验装置、测试装置(传感器、中间变换器)、数据处理装置及显示或记录装置,如图2-2所示。 当测试的目的和要求不同时,以上四个部分并非必须全部包括。如简单的温度测试系统只需要一个液柱式温度计,它既包含了测量功能,又包含了显示功能。而用于测量 图3-2

机械构件频率响应的测试系统,则是一个相当复杂的多环节系统,如图2-3所示。 实验装置是使被测对象处于预定状态下,并将其有关方面的内在特性充分显露出来,它是使测量能有效进行的一种专门装置。例如,测定结构的动力学参数时,所使用的激振系统就是一种实验装置。它由信号发生器、功率放大器和激振器组成。信号发生器提供正弦信号,其频率可在一定范围内变化,此正弦信号经功率放大器放大后,去驱动激振器。激振器产生与信号发生器的频率相一致的交变激振力,此力通过力传感器作用于被测对象上,从而使被测对象处于该频率激振下的强迫振动状态。 测试装置的作用是将被测信号(如激振力、振动产生的位移、速度或加速度等)通过传感器变换成电信号,然后再经过后接仪器的再变换、放大和运算等,将其变成易于处理和记录的信号。测试装置是根据不同的被测机械参量,选用不同的传感器和相应的后接仪器而组成的。例如图中采用测力传感器和测力仪组成力的测试装置,同时又采用测振传感器和测振仪组成振动位移(或振动速度、振动加速度)的测试装置。 数据分析处理装置是将测试装置输出的电信号进一步分析处理,以便获得所需要的测试结果。如图中的双通道信号分析仪,它可对被测对象的输入信号(力信号)x (t )与输出信号(被测对象的振动位移信号)y (t )进行频率分析、功率谱分析、相关分析、频率响应函数分析、相干分析及概率密度分析等,以便得到所需要的明确的数据和资料。 显示或记录装置是测试系统的输出环节,它将分析和处理过的被测信号显示或记录(存储)下来,以供进一步分析研究。在测试系统中,现常以微处理机、打印机和绘图仪等作为显示和记录的装置。 在测试工作中,作为整个测试系统,它不仅包括了研究对象,也包括了测试装置,因此要想从测试结果中正确评价研究对象的特性,首先要确知测试装置的特性。 理想的测试装置应该具有单值的、确定的输入、输出关系。其中以输出和输入成线性关系为最佳。在静态测量中,虽然我们总是希望测试装置的输入输出具有这种线性关系,但由于在静态测量中,用曲线校正或输出补偿技术作非线性校正尚不困难,因此,这种线性关系并不是必须的;相反,由于在动态测试中作非线性校正目前还相当困难,因而,测试装置本身应该力求是线性系统,只有这样才能作比较完善的数学处理与分析。一些实际测试装置 ,

简述系统动态特性及其测定方法

简述系统动态特性及其测定方法 系统的特性可分为静态特性和动态特性。其中动态特性是指检测系统在被测量随时间变化的条件下输入输出关系。一般地,在所考虑的测量范围内,测试系统都可以认为是线性系统,因此就可以用一定常线性系统微分方程来描述测试系统以及和输入x (t)、输出y (t)之间的关系。 1) 微分方程:根据相应的物理定律(如牛顿定律、能量守恒定律、基尔霍夫电 路定律等),用线性常系数微分方程表示系统的输入x 与输出y 关系的数字方程式。 a i 、 b i (i=0,1,…):系统结构特性参数,常数,系统的阶次由输出量最高微分阶次决定。 2) 通过拉普拉斯变换建立其相应的“传递函数”,该传递函数就能描述测试装 置的固有动态特性,通过傅里叶变换建立其相应的“频率响应函数”,以此来描述测试系统的特性。 定义系统传递函数H(S)为输出量与输入量的拉普拉斯变换之比,即 式中S 为复变量,即ωαj s += 传递函数是一种对系统特性的解析描述。它包含了瞬态、稳态时间响应和频率响应的全部信息。传递函数有一下几个特点: (1)H(s)描述系统本身的动态特性,而与输入量x (t)及系统的初始状态无关。 (2)H(S)是对物理系统特性的一种数学描述,而与系统的具体物理结构无关。H(S)是通过对实际的物理系统抽象成数学模型后,经过拉普拉斯变换后所得出的,所以同一传递函数可以表征具有相同传输特性的不同物理系统。 (3)H(S)中的分母取决于系统的结构,而分子则表示系统同外界之间的联系,如输入点的位置、输入方式、被测量以及测点布置情况等。分母中s 的幂次n 代表系统微分方程的阶数,如当n =1或n =2 时,分别称为一阶系统或二阶系统。 一般测试系统都是稳定系统,其分母中s 的幂次总是高于分子中s 的幂次(n>m)。

实验7.8.9.RLC特性阻抗测试

实训项目七 R 、L 、C 元件阻抗特性的测定 一、实验目的 1.验证电阻、感抗、容抗与频率的关系,测定R ~f 、L X ~f 、C X ~f 特性曲线。 2.加深理解R 、L 、C 元件端电压与电流间的相位关系。 二、原理说明 1.在正弦交变信号作用下,电阻元件两端电压与流过的电流有关系式 I R U = 在信号源频率f 较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值与信号源频率无关,其阻抗频率特性R ~f 如图3-20。 如果不计线圈本身的电阻1R ,又在低频时略去电容的影响,可将电感元件视为纯电感,有关系式, I jX U L = 感抗 fL X L π2= 感抗随信号源频率而变,阻抗频率特性L X ~f 如图3-20所示。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式, I jX U C -= 容抗 fC X C π21 = 容抗随信号源频率而变,阻抗频率特性C X ~f 如图3-20。 图3-20 阻抗特性测试电路 2.单一参数R 、L 、C 阻抗率特性的测试电路如图3-20所示。 图中R 、L 、C 为被测元件,r 为电流取样电阻。改变信号源频率,测量R 、L 、C 元件两端电压R U 、L U 、C U 流过被测元件的电流则可由r 两端电压除以r 得到。 元件的阻抗角(即相位差?)随输入信号的频率变化而改变,同样可用实验方法测得阻

抗角频率特性曲线?~f 。 3.用双踪示波器测量阻抗角(相位差)的方法。 将欲测量相位差的两个信号分别接到双踪示波器A Y 和B Y 两个端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如下图3-21所示,荧光屏上数得水 平方向一个周期占n 格,相位差占m 格,则实际的相位差?(阻抗角)为n m 360?=?。 图3-21 相位差测定波形图 三、实验设备 四、实验内容 1.测量单一参数R 、L 、C 元件的阻抗频率特性。 实验线路如图3-20所示,取mH L K R 10,1=Ω= ,Ω==200,1r F C μ。通过电缆线将函数信号发生器输出的正弦信号接至电路输入端,作为激励源U ,并用交流毫伏表测量,使激励电压的有效值为U =3V ,并在整个实验过程中保持不变。 改变信号源的输出频率从200Hz (用频率计测量),并使开关S 分别接通R 、L 、C 三个元件,用交流毫伏表分别测量R U 、r U ;L U 、r U ;C U 、r U ,并通过计算得到各频率点时的R 、L X 、C X 之值,记录表中。

(完整版)测试装置的基本特性

第二章测试装置的基本特性 本章学习要求 1.建立测试系统的概念 2.了解测试系统特性对测量结果的影响 3.了解测试系统特性的测量方法 为实现某种量的测量而选择或设计测量装置时,就必须考虑这些测量装置能否准确获取被测量的量值及其变化,即实现准确测量,而是否能够实现准确测量,则取决于测量装置的特性。这些特性包括静态与动态特性、负载特性、抗干扰性等。这种划分只是为了研究上的方便,事实上测量装置的特性是统一的,各种特性之间是相互关联的。系统动态特性的性质往往与某些静态特性有关。例如,若考虑静态特性中的非线性、迟滞、游隙等,则动态特性方程就称为非线性方程。显然,从难于求解的非线性方程很难得到系统动态特性的清晰描述。因此,在研究测量系统动态特性时,往往忽略上述非线性或参数的时变特性,只从线性系统的角度研究测量系统最基本的动态特性。 2.1 测试系统概论 测试系统是执行测试任务的传感器、仪器和设备的总称。当测试的目的、要求不同时,所用的测试装置差别很大。简单的温度测试装置只需一个液柱式温度计,而较完整的动刚度测试系统,则仪器多且复杂。本章所指的测试装置可以小到传感器,大到整个测试系统。 玻璃管温度计 轴承故障检测仪 图2.1-1 在测量工作中,一般把研究对象和测量装置作为一个系统来看待。问题简化为处理输入量x(t)、系统传输特性h(t)和输出y(t)三者之间的关系。常见系统分析分为如下三种情况: 1)当输入、输出能够测量时(已知),可以通过它们推断系统的传输特性。-系统辨识 2)当系统特性已知,输出可测量,可以通过它们推断导致该输出的输入量。-系统反求 3)如果输入和系统特性已知,则可以推断和估计系统的输出量。-系统预测 图2.1-2 系统、输入和输出 2.1.1 对测试系统的基本要求 理想的测试系统应该具有单值的、确定的输入-输出关系。对于每一输入量都应该只有单一的输出量与之对应。知道其中一个量就可以确定另一个量。其中以输出和输入成线性关系最佳。许多实际测量装置无法在较大工作范围内满足线性要求,但可以在有效测量范围内近似满足线性测量关系要求。一般把测试系统定常线性系统考虑。 2.1.2 线性系统及其主要性质 若系统的输入x(t)和输出y(t)之间的关系可以用常系数线性微分方程来描述 a n y(n)(t)+a n-1y(n-1)(t)+…+a1y(1)(t)+a0y(0)(t) = b m x(m)(t)+b m-1x(m-1)(t)+b1x(1)(t)+b0x(0)(t) (2.1-1)

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

特性阻抗之原理与应用

特性阻抗之原理與應用 Characteristic Impedance 一、前題 1、導線中所傳導者為直流(D.C.)時,所受到的阻力稱為電阻(Resistance),代表符號為R,數值單位為“歐姆”(ohm,Ω)。其與電壓電流相關的歐姆定律公式為: R=V/I;另與線長及截面積有關的公式為:R=ρL/A。 2、導線中所傳導者為交流(A.C.)時,所遭遇的阻力稱為阻抗(Impedance),符號為Z,單位仍為Ω。其與電阻、感抗及容抗等相關的公式為: Z =√R2 +(XL—Xc)2 3、電路板業界中,一般脫口而出的“阻抗控制”嚴格來說并不正确,專業性的說法應為“特性阻抗控制”(Characteristic Impedance Control)才對。因為電腦類PCB線路中所“流通”的“東西”并不是電流,而是針對方波訊號或脈沖在能量上的傳導。此種“訊號”傳輸時所受到的“阻力”另稱為“特性阻抗”,代表的符號是Zo。計算公式為:Zo = √L/C ,(式中L為電感值,C為電容值),不過Zo的單位仍為歐姆。只因“特性”的原文共有五個章節,加上三個單字一并唸出時拗口繞舌十分費力。為簡化起見才把“特性”一字暫時省掉。故知俗稱的“阻抗控制”,實際上根本不是針對交流電“阻抗”所進行的“控制”。且即使要簡化掉“特性”也應說成Controlled Impedance,或阻抗匹配才不致太過外行。 圖1 PCB元件間以訊號(Signal)互傳,板面傳輸線中所遭遇的阻力稱為“特性阻抗” 二、需做特性阻抗控制的板類 電路板發展40年以來已成為電機、電子、家電、通信(含有線及無線)等硬體必備的重要元件。若純就終端產品之工作頻率,及必須阻抗匹配的觀點來分類時,所用到的電路板約可粗分為兩大類:

磁铁的材质及性能

磁铁的材质及性能 一、磁铁的种类 磁铁的种类很多,一般分为永磁和软磁两大类,我们所说的磁铁,一般都是指永磁磁铁,永磁磁铁又分二大分类: 第一大类是:金属合金磁铁包括钕铁硼磁铁(Nd2Fe14B)、钐钴磁铁(SmCo)、铝镍钴磁铁(ALNiCO) 第二大类是:铁氧体永磁材料(Ferrite) 1、钕铁硼磁铁:它是目前发现商品化性能最高的磁铁,被人们称为磁王,拥有极高的磁性能,其最大磁能积(BHmax)高过铁氧体(Ferrite)10倍以上。其本身的机械加工性能亦相当之好,工作温度最高可达200摄氏度。而且其质地坚硬,性能稳定,有很好的性价比,故其应用极其广泛。但因为其化学活性很强,所以必须对其表面凃层处理。(如镀Zn,Ni,电泳、钝化等)。 2. 铁氧体磁铁:它主要原料包括BaFe12O19和SrFe12O19。通过陶瓷工艺法制造而成,质地比较硬,属脆性材料,由于铁氧体磁铁有很好的耐温性、价格低廉、性能适中,已成为应用最为广泛的永磁体。 3. 铝镍钴磁铁:是由铝、镍、钴、铁和其它微量金属元素构成的一种合金。铸造工艺可以加工生产成不同的尺寸和形状,可加工性很好。铸造铝镍钴永磁有着最低可逆温度系数,工作温度可高达600摄氏度以上。铝镍钴永磁产品广泛应用于各种仪器仪表和其他应用领域。 4、钐钴磁铁(SmCo):依据成份的不同分为SmCo5和 Sm2Co17。由于其材料价格昂贵而使其发展受到限制。钐钴(SmCo)作为稀土永磁铁,不但有着较高的磁能积(14-28MGOe)、可靠的矫顽力和良好的温度特性。与钕铁硼磁铁相比,钐钴磁铁更适合工作在高温环境中。 二、磁铁使用注意事项 下面是关于磁铁的使用注意事项,在使用磁铁产品之前请您务必先行阅读。 1.磁铁在使用过程中应确保工作场所洁净,以免铁屑等细小杂质吸附在磁铁表面影响产品的正常使用。 2.钕铁硼磁铁适宜存放在通风干燥的室内,酸性、碱性、有机溶剂、水中、高温潮湿的环境容易使磁体产生锈蚀,镀层脱落磁体粉化退

实验二-二阶系统的动态特性与稳定性分析

实验二-二阶系统的动态特性与稳定性分析

自动控制原理 实验报告 实验名称:二阶系统的动态特性与稳定性分析班级: 姓名: 学号:

实验二二阶系统的动态特性与稳定性分析 一、实验目的 1、掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态 )对系统动态2、分析二阶系统特征参量(ξ ω, n 性能的影响; 3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质; 4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 5、学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink实现方法。 二、实验内容 1、构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。 2、用Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。 3、搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、

峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响; 4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、 将软件仿真结果与模拟电路观测的结果做比较。 三、实验步骤 1、 二阶系统的模拟电路实现原理 将二阶系统: ωωξω2 2)(22 n n s G s s n ++= 可分解为一个比例环节,一个惯性环节和一个积分环节 ωωξω221)() ()()(2C C C C s C C 2 22 6215423 2 15423 2 2154215426316 320 n n s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++= ++=++== 2、 研究特征参量ξ对二阶系统性能的影响 将二阶系统固有频率5 .12n =ω 保持不变,测试阻尼

阻抗测试

PCB的差分阻抗测试技术 作者: 周英航上网日期: 2006年11月10日打印版订阅 关键字:PCB电路板TDR真差分TDR特征阻抗Coupon 为了提高传输速率和传输距离,计算机行业和通信行业越来越多的采用高速串行总线。在芯片之间、板卡之间、背板和业务板之间实现高速互联。这些高速串行总线的速率从以往USB2.0、LVDS以及FireWire1394的几百Mbps到今天的PCI-Express G1/G2、SATA G1/G2 、XAUI/2XAUI、XFI的几个Gbps乃至10Gbps。计算机以及通信行业的PCB客户对差分走线的阻抗控制要求越来越高。这使PCB生产商以及高速PCB设计人员所面临的前所未有的挑战。本文结合PCB行业公认的测试标准IPC-TM-650手册,重点讨论真差分TDR测试方法的原理以及特点。 IPC-TM-650手册以及PCB特征阻抗测试背景 IPC-TM-650测试手册是一套非常全面的PCB行业测试规范,从PCB的机械特性、化学特性、物理特性、电气特性、环境特性等各方面给出了非常详尽的测试方法以及测试要求。其中PCB板电气特性要求在第2.5节中描述,而其中的2.5.5.7a(IPC-TM-650官方网站下载链接https://www.360docs.net/doc/8d14577207.html,/4.0_Knowledge/4.1_Standards/test/2-5-5-7a.pdf)则全面的介绍了PCB特征阻抗测试方法和对相应的测试仪器要求,重点包括单端走线和差分走线的阻抗测试。 TDR的基本原理及IPC-TM-650对TDR设备的基本要求 1.TDR的基本原理 图1是一个阶跃信号在传输线(如PCB的走线)上传输时的示意图。而传输线是通过电介质与GND分隔的,就像无数个微小的电容的并联。电信号到达某个位置时,就会令该位置上的电压产生变化,就像是给电容充电。因此,传输线在此位置上是有对地的电流回路的,因

相关文档
最新文档