abaqus屈曲分析实例

abaqus屈曲分析实例
abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,第2步做极限强度分析。

第1步:屈曲分析

载荷步定义如下:

Step 1-Initial

Step 2- Buckle

并在Model-Edit Keywords 的图中位置加入下面的文字,输出屈曲模态 *nodefile, global=yes U,

Create job 名称为“Buckling”

点击continue,完成第1步的计算。

第2步:极限强度分析

将“buckle”分析步替换为“riks”分析步

在Basic选项卡中,Nlgeom:选择打开

在Instrumentation选项卡中,定义如下参数,然后点击OK

定义一个新计算工作,输入名称,点击continue

在Parallelization选项卡,选择2个CPU,如下所示,点击OK。

在此编辑Model-edit keywords,删除“第1步”加入的文字“*nodefile, global=yes U,”,并在下图位置加入下段文字:

*imperfection, file=buckling, step=1

1, 2.5

点击OK,再保存文件。最后提交计算。

提取计算结果

进入visualization Module

点击Create XY data

选择ODB filed output,点击continue

选项卡,选择跨中载荷加载点,最后点击save。

重复上一步操作,Position 选择 Unique Nodal , U :spatial displacement 选择 U3,再点击elements/nodes 选项卡,选择板格中心点,最后点击save 。

点击Create XY data, 选择operate on XY data,点击continue

择保存的Point load曲线,点击最后一行Create XY Data与Save as。

abaqus压杆屈曲分析

a b a q u s压杆屈曲分析 Revised by Petrel at 2021

压杆屈曲分析1.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。 本文利用abaqus对一定截面不同长细比下的H型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。钢构件的截面尺寸如图1-1所示。 构件的材料特性:,, 图1-1 2.长细比计算 通过计算截面几何特性,截面绕y轴的回转半径为,长细比取值及杆件长度见表1: 表1 50 60 80 100 120 150 180 (m) 1.92 2.30 3.07 3.84 4.60 5.76 6.90 3.模型分析

ABAQUS非线性屈曲分析的方法有riks法,generalstatics法(加阻尼),或者动力法。非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。 4.建模计算过程 建模计算过程以长细比为50的构件为例,其余构件建模计算过程与之类似。 4.1buckle分析 1在buckle分析中创建part模块,创建的模型为三位可变形壳体单元,截面参数见图1-1,构件长度1.92。如图4-1示 图4-1 2定义材料特性及截面属性并将其赋予单元。材料定义为弹塑性,泊松比0.3,屈服强度,弹性模量;腹板和翼缘板为壳单元,厚度分别为0.008和0,01。材料定义见图4-2

abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,笫2步做极限强度分析。 第1步:屈曲分析 载荷步定义如下: Step 1-Initial Step 2- Buckle

? Re Mbs M^nce C^wvoini live 2oc*$ *l^*?4 tjdp V :i.Jsa&# 录 +r A AJIu fffiC? fe3 Ha ? ;r????y fa-t n>rr ?: OfEYcm v Se?今 gh 3, gqcvKeiry C*p*?9r ? ? O?lec? ■ %?no?v C5 廉 H5Wr> MM fa Tin* Forti Sv Al€ *dep6?? ve^ tbjUx9)lo t JeiWA Tc?D -^lQZlll?hQ we' E ejewwiw b>w* biE Glcte 」r?>w* 69D eJe*MKi r?jw* bee CWfcr*?9*^ s£ Zac? “ Iraftet H U 匕“rb ? 2 更 K?4dCu^u!R? 虫 Hntwr GUput b 伽》ezi5 &■心 AcUxv? V H H?*?ctnr? 易 htecMtlar. hra, 日 CcrtadCcrtra 0 C?Wl >?wt K Ccctect sub lx 權 CwMoarSt Hj fiUdi _n ,.. ? ?! ? MCg WtW Swtfc lk2 pe**j". liwar p?nwbia?ko ▼ freque." 拯 sufAuun The 11?-51>^ )L>4ldH9jjn-2 “9 wioZ S *0 Sxe U>* oil^ 51 “ed S iU* TO . 0 . -ISO -MO mtb rew :t no 心 &逐Ply OCCOIIMV * 巧恪tc ?:?L -5Moe>?* bw tZfft to ?D7cp 炉、?ZlHWr? Me" “乡“r?x HMldrann ?2 vd 乡 tygeJa* 400 0 0 with x*w :? ?o tfi* oc

基于ABAQUS的钢管轴心受压非线性屈曲分析

一.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。而影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。 本文主要针对任意轴对称的圆形钢管截面,利用ABAQUS有限元非线性分析软件,对其在轴心受压情况下进行特征值屈曲分析和静态及动态的非线性屈曲分析(考虑材料弹塑性和初始缺陷的影响)。通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载,并且由弯曲失稳的临界荷载得出的构件荷载位移曲线。同时再进行非线性分析时,需要施加初始扰动,以帮助非线性分析时失稳,可以通过特征值屈曲分析得到的初始弯曲模态来定义初始缺陷;最后由可以将特征值屈曲分析得到的临界荷载作为非线性屈曲分析时所施加荷载的参考。 二.结构模型 用ABAQUS中的壳单元建立轴心受压模型,采用SI国际单位制(m)。 1.构件的材料特性: E= 2.0×1011N m2,μ=0.3, f y=2.35×

108N m2,ρ=7800kg m3,钢管半径:60mm,厚度:3mm,长度:2.5m。 2.钢管的截面尺寸及钢管受到的约束和荷载施加的模型图如图2-1及图2-2所示。 图2-1 图2-2 三.建模步骤(Buckle分析) (1)创建部件 在创建part模块中命名构件的名字为gang guan,创建的模型为三维可变形壳体单元,如图3-1所示。截面参数见图2-1,构件长度2.5m。 图3-1

采用ABAQUS进行屈曲后屈曲和破坏分析

| w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Buckling, Postbuckling, and Collapse Analysis with Abaqus | w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Day 1 ?Lecture 1Basic Concepts and Overview ?Workshop 1Buckling and Postbuckling Analyses of a Crane Structure ?Lecture 2 Finite Element Formulation ?Lecture 3Finite Element Implementation in Abaqus ?Lecture 4Eigenvalue Buckling Analysis ?Workshop 2Eigenvalue Buckling of a Ring Subjected to External Pressure ?Workshop 3 Elastic Buckling of Ring-Supported Cylindrical Shell under Hydrostatic Pressure

| w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Buckling, Postbuckling, and Collapse Analysis with Abaqus Day 2 ?Lecture 5 Regular and Damped Static Solution Procedures for Postbuckling Analyses ?Workshop 4Nonlinear Buckling of Ring-Supported Cylindrical Shell under Hydrostatic Pressure ?Workshop 5Static Buckling Analysis of a Circular Arch ?Lecture 6Modified Riks Static Solution Procedure for Postbuckling Analyses ?Workshop 5Static Buckling Analysis of a Circular Arch (continued)?Lecture 7Dynamic Analysis Solution Procedures for Postbuckling Analyses ?Workshop 5Static Buckling Analysis of a Circular Arch (continued)?Workshop 6Tube Crush Dynamic Analysis ?Lecture 8Putting It All Together… ?Workshop 7Capstone Workshop: Lee’s Frame Buckling Problem ?Workshop 8 Buckling and Postbuckling Analyses of a Stiffened Panel | w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Legal Notices The Abaqus Software described in this documentation is available only under license from Dassault Systèmes and its subsidiary and may be used or reproduced only in accordance with the terms of such license. This documentation and the software described in this documentation are subject to change without prior notice. Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation. No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiary.? Dassault Systèmes, 2011. Printed in the United States of America Abaqus, the 3DS logo, SIMULIA and CATIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries. Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus 6.11 Release Notes and the notices at: https://www.360docs.net/doc/8014818550.html,/products/products_legal.html.

本人学习abaqus五年的经验总结 让你比做例子快十倍

第二章 ABAQUS 基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外 丢失。 [3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几 何模型上。 载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance) 是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件 上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上, 对求解过程和输出结果的控制参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD 模型文件,方法是:点击主菜单 File→Import→Part。网 格部件不包含特征,只包含节点、单元、 面、集合的信息。创建网格部件有三种方法:(1)导入 ODB 文件中的网格。(2)导入INP 文件中的网格。(3)把几何部件转化为网格部件,方法是:进 入Mesh 功能模块,点击主菜单Mesh→Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初 始分析步之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型:—Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析

abaqus压杆屈曲分析78112

压杆屈曲分析 1.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际 2 压杆截面尺寸(单位:m) 图1-1 2.长细比计算 通过计算截面几何特性,截面绕y轴的回转半径为i y=0.0384m ,长细比取

值及杆件长度见表1: 表1 3.模型分析 ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。 4.建模计算过程 建模计算过程以长细比为50的构件为例,其余构件建模计算过程与之类似。 4.1 buckle分析 1 在buckle分析中创建part模块,创建的模型为三位可变形壳体单元,截面参数见图1-1,构件长度1.92。如图4-1示

(整理)基于ABAQUS复合材料薄壁圆筒的屈曲分析.

基于ABAQUS复合材料薄壁圆筒的屈曲分析 由于玻璃钢复合材料的薄壁圆筒结构具有强度高、重量轻、刚度大、耐腐蚀,电绝缘及透微波等优点,目前已广泛应用于航空航天和民用领域中。工程中广泛使用的这些薄壁圆筒,当它们受压缩、剪切、弯曲和扭转等荷载作用时,最常见的失效模式为屈曲。因此,为了保证结构的安全,需要进行屈曲分析。 对结构进行屈曲分析,涉及到较复杂的弹(塑)性理论和数学计算,要通过求解高阶偏微分方程组,才能求解失稳临界荷载,而且只有少数简单结构才能求得精确的解析解。因此,只能采用能量法、数值方法和有限元方法等近似的分析方法进行分析。近20年来,随着计算机和有限元方法的迅猛发展,形成了许多的实用分析程序,提高了对复杂结构进行屈曲分析的能力和设计水平。ABAQUS 就是其中的杰出代表。 1.屈曲有限元理论 有限元方法中,对结构的屈曲失稳问题的分析方法主要有两类:一类是通过特征值分析计算屈曲载荷,另一类是利用结合Newton—Raphson迭代的弧长法来确定加载方向,追踪失稳路径的几何非线性分析方法,能有效分析高度非线性屈曲和后屈曲问题。 1.1线性屈曲 假设结构受到的外载荷模式为。,幅值大小为,结构内力为Q,则静力平衡方程应为 进一步考察结构在载荷作用下的平衡方程,得到 由于结构达到保持稳定的临界载荷时有,代入上式得 该方程对应的特征值问题为 如果忽略几何刚度增量的影响,屈曲分析的方程又可进一步简化为 该方程即为求解线性屈曲的特征值方程。为屈曲失稳载荷因子,为结构失稳形态的特征向量。

1.2非线性屈曲 非线性屈曲分析方法多采用弧长法进行分步迭代计算,在增量非线性有限元分析中,沿着平衡路径迭代位移增量的大小(也叫弧长)和方向,确定载荷增量的自动加载方案,可用于高度非线性的屈曲失稳问题。与提取特征值的线性屈曲分析相比,弧长法不仅考虑刚度奇异的失稳点附近的平衡,而且通过追踪整个失稳过程中实际的载荷、位移关系,获得结构失稳前后的全部信息,适合于高度非线性的屈曲失稳问题。 2.ABAQUS的线性屈曲分析 ABAQUS中提供两种分析方法来确定结构的临界荷载和结构发生屈曲响应的特征形状:线性屈曲分析(特征值屈曲分析)、非线性屈曲分析。 线性屈曲分析用于预测一个理想的弹性结构的理论屈曲强度。它是预期的线性屈曲荷载的上限,可以作为非线性屈曲分析的给定荷载,在渐进加载达到此荷载前,非线性求解必然发散;它还可以作为施加初始缺陷或扰动荷载的依据。所以预先进行特征值屈曲分析有助于非线性屈曲分析,进行特征值屈曲分析是必要的。 3.算例 3.1问题概述 图3-1 实例模型 如图所示两端开口的复合材料薄壁圆筒,底端固支,顶端作用有均匀分布的轴压边载。半径R=152mm,高度300mm,厚度t=0.804mm,对称铺层[±45,0]s,

abaqus压杆屈曲分析63758

压杆屈曲分析 1.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。 本文利用abaqus 对一定截面不同长细比下的H 型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。钢构件的截面尺寸如图1-1所示。 构件的材料特性: E =2.0×1011 N m 2? ,μ=0.3 , f y =3.45×108N m 2? 压杆截面尺寸(单位:m)

图1-1 2.长细比计算 通过计算截面几何特性,截面绕y轴的回转半径为i y=0.0384m ,长细比取值及杆件长度见表1: 表1 λ50 60 80 100 120 150 180 ι(m) 1.92 2.30 3.07 3.84 4.60 5.76 6.90 3.模型分析 ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。 4.建模计算过程

ABAQUS和WB非线性屈曲方法综述

Workbench (1)首先进行线性屈曲分析,得到屈曲的特征值和屈曲模态。实现方式如下: (2)添加Mechanical APDL模块 右键单击Analysis,输入模型缺陷文件:

/prep7 upgeom,0.1,1,1,file,rst cdwrite,db,file,cdb /solu UPGEOM, FACTOR, LSTEP, SBSTEP, Fname, Ext FACTOR: Multiplier for displacements being added to coordinates. The value 1.0 will add the full value of the displacements to the geometry of the finite element model. Defaults to 1.0. LSTEP: Load step number of data to be imported. Defaults to the last load step. SBSTEP: sub step number of data to be imported. Defaults to the last substep. Fname: File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name. The field must be input (no default). Ext:Filename extension (8 character maximum).The extension must be an RST extension. (3)添加Finite Element Modeler模块 (4)重新导入新的Static Structual模块以进行非线性屈曲分析,此时需重新建立模型的接触关系、边界条件、荷载。 本模块分析时需打开大变形(large deflection),

ABAQUS非线性屈曲分析步骤

ABAQUS6.7非线性屈曲分析步骤 riks法,或者general statics法(加阻尼),或者动力法 一共三种方法, 【问】在aba中能实现非线性屈曲分析吗?在step中选定line- perturbation下的各项,其Nlgeom都为Off,是不是意味着是进行不了啊? 【答】 line-perturbation应该是特征值屈曲分析,只能是线性的,要想进行非线性屈曲分析要引入初始缺陷 ABAQUS中非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已经初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 no.1:利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load),且需要在inp 文件中,作如下修改 *node file,global=yes *End Step 此修改目的在于:在下一步后屈曲分析所需要的初始缺陷的节点输出为.fil文件。no.2:其次,就是所谓的后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始确定,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段,除了采用位移控制以及弧长法设定外,需在所得到的inp文件中,嵌入no.1中的.fil节点数据。修改如下: *IMPERFECTION(缺陷), FILE=results_file(此文件名为.fil), STEP=step(特征

本人学习abaqus五年的经验总结,让你比做例子快十倍

第二章ABAQUS基本使用方法 [2] (pp15)快捷键: Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。 [3] (pp17)平面应力问题的截面属性类型是Solid (实心体)而不是Shell (壳)。 ABAQUS/CAE隹荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。 载荷类型Pressure的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4] (pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5] (pp23)Dismiss和Cancel按钮的作用都是关闭当前对话框,其区别在于: 前者出现在包含只读数据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel按钮可关闭对话框,而不保存所修改的内容。 ⑹(pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的实体”(instanee)是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上,相互作用(in teraction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。 [7] (pp26) ABAQUS/CAE中的部件有两种: 几何部件(n ative part)和网格部件(orpha n mesh part)。 创建几何部件有两种方法: (1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直接创建几何部件。

abaqus压杆屈曲分析

压杆屈曲非线性分析 专业:结构工程 姓名:刘耀荣 学号:13

压杆屈曲分析 1.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。 本文利用abaqus对一定截面不同长细比下的H型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。钢构件的截面尺寸如图1-1所示。 构件的材料特性: , , 压杆截面尺寸(单位:m)

图1-1 2.长细比计算 通过计算截面几何特性,截面绕y轴的回转半径为 ,长细比取值及杆件长度见表1: 表1 506080100120150180(m) 3.模型分析 ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。 4.建模计算过程 建模计算过程以长细比为50的构件为例,其余构件建模计算过程与之类似。 buckle分析 1 在buckle分析中创建part模块,创建的模型为三位可变形壳体单元,截面参数见图1-1,构件长度。如图4-1示

ANSYS与ABAQUS稳定性分析比较

ANSYS与ABAQUS稳定性分析比较(转载-来自结构工程师崔家春的个人空间)其实,这些东西很简单,大多数朋友应该都比较了解。但是作为整个稳定性分析的一部分,觉得还是整理一下吧,也算是对后来者又抛了一块砖。 算例描述: 为了能体现出一般性,我故意找了一个比较大的结构。这是一个单层网壳结构,最大尺寸在90m左右,杆件长度在1.13m-3.63m之间,截面形式为箱型截面;构件布置见下图。荷载任意挑选一个标准组合(具体是哪个不记得,只是验证软件单元特征,没有关系)。 在ANSYS软件中分别采用BEAM44、BEAM188和BEAM189进行计算。分析结果见下文。 ANSYS BEAM44分析结果 E1E2E3E4E5 N1 6.10 6.367.117.438.03 N2 6.08 6.347.087.407.99 N3 6.08 6.347.087.407.98 N4 6.08 6.347.087.397.98 备注:表格中N1、N2分别代表每根构件采用1、2个单元;E1、E2代表第1、2阶屈曲荷载因子; ANSYS BEAM188分析结果 E1E2E3E4E5 N1 6.817.098.158.619.35 N2 6.25 6.527.347.698.34 N3 6.15 6.427.197.538.14 N4 6.12 6.387.147.478.07 N5 6.10 6.367.127.448.04 N6 6.09 6.357.107.438.02 N7 6.09 6.357.107.428.01 N8 6.08 6.347.097.418.00 N9 6.08 6.347.097.417.99 N10 6.08 6.347.097.407.99 ANSYS BEAM189分析结果 E1E2E3E4E5 N1 6.10 6.367.127.448.05 N2 6.07 6.337.087.407.98 N3 6.07 6.337.087.397.98 N4 6.07 6.337.087.397.97

ABAQUS非线性屈曲分析步骤

ABAQUS 6.7非线性屈曲分析步骤 riks法,或者general statics法(加阻尼),或者动力法 一共三种方法, 【问】在aba中能实现非线性屈曲分析吗?在step中选定line- perturbation 下的各项,其Nlgeom都为Off,是不是意味着是进行不了啊? 【答】 line-perturbation应该是特征值屈曲分析,只能是线性的,要想进行非线性屈曲分析要引入初始缺陷 ABAQUS中非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已经初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 no.1:利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load),且需要在inp文件中,作如下修改 *node file,global=yes *End Step 此修改目的在于: 在下一步后屈曲分析所需要的初始缺陷的节点输出为.fil文件。 no.2:其次,就是所谓的后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始确定,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段,除了采用位移控制以

及弧长法设定外,需在所得到的inp文件中,嵌入no.1中的.fil节点数据。修改如下: *IMPERFECTION(缺陷), FILE=results_file(此文件名为.fil), STEP=step(特征值分析步名), 1(模态),2e-3(模态的比例因子,此值一般取杆件的1%,壳体厚度1%)此修改一般加在boundary之后step之前。 Re: 新手请教非线性屈曲中如何加初始扰动? 6.2.4 Unstable collapse and postbuckling analysis Rik法用于跳越失稳问题的研究,也可以用于分支屈曲的后屈曲研究。分支屈曲的后屈曲分析不能直接在分支屈曲后面研究,而是要给一个初始缺陷,使力学响应呈连续状态(非线性) 7.6.1 Introducing a geometric imperfection into a model 定义初始缺陷 Abaqus用三种手段定义初始缺陷,根据分支屈曲模型取一个线性组合,根据静力分析结果,直接指定。除非初始缺陷已经知道,一般采用第一种方法。 第一步,特征屈曲分析,Write the eigenmodes in the default global system to theresults file as nodal data (“Output to the data and results files,”Section 4.1.2).第二步,将这些特征屈曲模态添加到perfect几何体中,作为初始缺陷,where is the mode shape and is the associated scale factor. 一般来说系数w,在第一阶模态最大,而且w一般取结构几何参数的倍数,如壳的厚度的 0.1倍,等。 第三步,用rik法进行分析。

相关文档
最新文档