天基雷达高速微弱目标的积累检测

天基雷达高速微弱目标的积累检测
天基雷达高速微弱目标的积累检测

运动目标检测光流法详解

摘要 运动目标检测方法是研究如何完成对视频图像序列中感兴趣的运动目标区域的“准确定位”问题。光流场指图像灰度模式的表面运动,它可以反映视频相邻帧之间的运动信息,因而可以用于运动目标的检测。MATLAB这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以利用MATLAB 软件来用光流法对运动目标的检测中具有很大的优势。本设计主要可以借助matlab软件编写程序,运用Horn-Schunck算法对图像前后两帧进行处理,画出图像的光流场。而图像的光流场每个像素都有一个运动矢量,因此可以反映相邻帧之间的运动,分析图像的光流场就可以得出图像中的运动目标的运动情况。 关键字:光流法;Horn-Schunck算法;matlab

目录 1光流法的设计目的 (1) 2光流法的原理 (1) 2.1光流法的介绍 (1) 2.1.1光流与光流场的概念 (1) 2.1光流法检测运动目标的原理 (2) 2.1.1光流场计算的基本原理 (2) 2.2.2基于梯度的光流场算法 (2) 2.2.3Horn-Schunck算法 (3) 2.2.4光流法检测运动目标物体的基本原理概述 (5) 3光流法的程序具体实现 (6) 3.1源代码 (6) 3.1.1求解光流场函数 (6) 3.1.2求导函数 (9) 3.1.3高斯滤波函数 (9) 3.1.4平滑性约束条件函数 (10) 3.1.5画图函数 (10) 4仿真图及分析 (12) 结论 (13) 参考文献 (14)

1 光流法的设计目的 数字图像处理,就是用数字计算机及其他有关数字技术,对图像进行处理,以达到预期的目的。随着计算机的发展,图像处理技术在许多领域得到了广泛应用,数字图像处理已成为电子信息、通信、计算机、自动化、信号处理等专业的重要课程。 数字图像处理课程设计是在学习完数字图像处理的相关理论后,进行的综合性训练课程,其目的是:使学生进一步巩固数字图像处理的基本概念、理论、分析方法和实现方法;增强学生应用Matlab编写数字图像处理的应用程序及分析、解决实际问题的能力;尝试所学的内容解决实际工程问题,培养学生的工程实践能力。 运动目标检测是数字图像处理技术的一个主要部分,近些年来,随着多媒体技术的迅猛发展和计算机性能的不断提高,动态图像处理技术日益受到人们的青睞,并且取得了丰硕的成果,广泛应用于交通管理、军事目标跟踪、生物医学等领域。 因此,基于光流法,实现运动目标的检测是本文的研究对象。结合图书馆书籍、网上资料以及现有期刊杂志,初步建立起运动目标检测的整体思路和方法。 2 光流法的原理 2.1 光流法的介绍 2.1.1 光流与光流场的概念 光流是指空间运动物体在观测成像面上的像素运动的瞬时速度,它利用图像序列像素强度数据的时域变化和相关性来确定各自像素位置的“运动”,即反映图像灰度在时间上的变化与景物中物体结构及其运动的关系。将二维图像平面特定坐标点上的灰度瞬时变化率定义为光流矢量。视觉心理学认为人与被观察物体

雷达运动目标检测大作业

非均匀空时自适应处理 摘要 本文首先依次介绍了在非均匀环境下的STAP处理法,包括降维、降秩以及LSMI方法,接着重点分析了直接数据域(DDD)方法的原理及实现过程,最后针对直接数据域方法进行了仿真实验。 引言 机载雷达对运动目标检测时, 面临的主要问题是如何抑制强大的地面杂波和各种类型的干扰,空时自适应处理(STAP)是解决该问题的关键技术。STAP 技术通过对杂波或干扰训练样本分布特性的实时学习来来形成空域—时域二维自适应权值,实现对机载雷达杂波和干扰的有效抑制。 STAP技术在形成自适应权值时,需要计算杂波协方差矩阵R。实际系统的协方差矩阵是估计得到的,即先在待检测距离单元的临近单元测得K个二维数 据矢量样本V i(i=1,2…K),再计算R的估计值?=Σ i=1K V i V i H∕K,然后可得自 适应权值W=μR^-1S,其中μ为常数,S为空时导向矢量。临近训练样本的选择必须满足独立同分布(IID)条件。同时,为了使由杂波协方差矩阵估计引起的性能损失控制在3dB内,要求均匀训练样本数K至少要2倍于其系统自由度(DOF)。如果所选样本非均匀,则形成的权值无法有效对消待检测单元中所含有的杂波和干扰,从而大大降低对运动目标的检测性能。 在实际应用中, 机载雷达面临的杂波环境往往是非均匀的, 这对经典的S T A P 技术带来了极大的挑战。针对这一难题, 许多新的适用于非均匀杂波环境的S T A P 方法不断被提出。 1、解决非均匀样本的方法 1.1、降维方法 降维方法的最初目的是为了减少空时自适应处理时所需的巨大运算量, 但后来发现该类方法同时大大减少了对均匀训练样本数的需求, 对非均匀情况下杂波抑制起到了积极的作用。降维方法将每次自适应处理所需要抑制的杂波范围限制在某一个较小杂波子空间内, 根据RMB准则和Brennan定理, 自适应处理时所需要的均匀训练样本数由2 倍于整体系统自由度减至降维后2 倍于子空间系统自由度。降维程度越高, 对均匀训练样本的需求就越少。降维方法属固定结构方法, 无法充分利用杂波的统计特性。当辅助波束与杂波谱匹配很好时, 处理性能往往很好。反之, 则性能下降。 1.2、降秩方法 与固定结构降维方法相反, 降秩方法充分利用回波中杂波的分布特性, 每次处理选取完备杂波空间来形成自适应权值对消杂波分量, 可看作依赖回波数据的自适应降维方法。该类方法在形成权值过程中利用的信息中不含噪声分量, 所以避免了小样本情况下噪声发散带来的性能下降问题, 故减少了对均匀训练样本数的需求。同样, 该类方法在满足信杂噪比损失不超过 3 d B 条件时所需的训练样本数约为 2 倍的杂波子空间的维数。从处理器结构上来看, 降秩方法可

CVPR2016目标检测之识别效率篇:YOLO, G

CVPR2016目标检测之识别效率篇:YOLO, G 1.YOLO: You Only Look Once:Unified, Real-Time Object Detection YOLO是一个可以一次性预测多个Box位置和类别的卷积神经网络,能够实现端到端的目标检测和识别,其最大的优势就是速度快。事实上,目标检测的本质就是回归,因此一个实现回归功能的CNN并不需要复杂的设计过程。YOLO没 有选择滑窗或提取proposal的方式训练网络,而是直接选用整图训练模型。这样做的好处在于可以更好的区分目标和背景区域,相比之下,采用proposal训练方式的Fast-R-CNN 常常把背景区域误检为特定目标。当然,YOLO在提升检测速度的同时牺牲了一些精度。下图所示是YOLO检测系统流程:1.将图像Resize到448*448;2.运行CNN;3.非极大抑制优化检测结果。有兴趣的童鞋可以按照 https://www.360docs.net/doc/8e15266074.html,/darknet/install/的说明安装测试一下YOLO的scoring流程,非常容易上手。接下来将重点介绍YOLO的原理。 1.1 一体化检测方案 YOLO的设计理念遵循端到端训练和实时检测。YOLO将输入图像划分为S*S个网络,如果一个物体的中心落在某网格

(cell)内,则相应网格负责检测该物体。在训练和测试时,每个网络预测B个bounding boxes,每个bounding box对应5个预测参数,即bounding box的中心点坐标(x,y),宽高(w,h),和置信度评分。这里的置信度评分 (Pr(Object)*IOU(pred|truth))综合反映基于当前模型bounding box内存在目标的可能性Pr(Object)和bounding box预测目标位置的准确性IOU(pred|truth)。如果bouding box内不存在物体,则Pr(Object)=0。如果存在物体,则根据预测的bounding box和真实的bounding box计算IOU,同时会预测存在物体的情况下该物体属于某一类的后验概 率Pr(Class_i|Object)。假定一共有C类物体,那么每一个网格只预测一次C类物体的条件类概率Pr(Class_i|Object), i=1,2,...,C;每一个网格预测B个bounding box的位置。即这B个bounding box共享一套条件类概率Pr(Class_i|Object), i=1,2,...,C。基于计算得到的Pr(Class_i|Object),在测试时可以计算某个bounding box类相关置信度: Pr(Class_i|Object)*Pr(Object)*IOU(pred|truth)=Pr(Class_i)* IOU(pred|truth)。如果将输入图像划分为7*7网格(S=7),每个网格预测2个bounding box (B=2),有20类待检测的目标(C=20),则相当于最终预测一个长度为 S*S*(B*5+C)=7*7*30的向量,从而完成检测+识别任务,整个流程可以通过下图理解。

雷达微弱目标检测的有效方法[1]

49642009,30(21)计算机工程与设计Computer Engineering and Design 0引言 复杂背景下低信噪比运动目标的检测和跟踪是雷达信号处理系统的关键技术之一。在微弱运动目标检测和跟踪的应用中,雷达接收的远距离目标回波强度非常弱,信噪比很低,目标易被噪声淹没,单个脉冲回波的信噪比甚至是负的,若仅对单帧图像处理,不能可靠地检测目标。在预警雷达应用中,由于运动目标距离雷达较远,又处在强杂波环境中,对微弱运动目标的检测与跟踪是雷达信号处理的一个重要课题。早期算法主要有Kalman滤波等方法,主要采用检测后跟踪(detect before track,DBT)方法,这类方法在信噪比较高时可以取得很好的效果,否则不能检测出目标。要想对微弱目标进行有效的检测及跟踪,除了抑制杂波和降低系统噪声等方法外,一种有效的方法是检测前跟踪(track before detect,TBD)方法,即对单次观测信号先不进行判断,而是结合雷达图像特点,对目标进行多次观测,计算出目标在各帧图像之间的移动规律,预测目标在下一帧图像的可能位置,同时在帧与帧之间将多次扫描得到的数据沿着预测轨迹进行几乎没有信息损失的相关处理,从而改善目标的信噪比,提高检测性能,在得到检测结果的同时获得目标航迹。 目前,用于微弱目标检测的TBD方法主要有极大似然法、粒子滤波法、动态规划(dynamic programming,DP)法、Hough变换法,等[1-2]。其中,Hough变换法对检测沿径向做匀速直线运动的目标具有较好的检测性能,目标在直线轨迹上的能量集中在Hough变换后的单点上,目标轨迹的能量远大于其它点的能量,但计算量和存储量都较大[3],难以实现。动态规划算法对目标信噪比要求较低,可以探测各种运动形式的目标[4-5]。 动态规划算法是美国Y.Barniv于1985年提出的,利用动态规划的分段优化思想,将目标轨迹搜索问题分解为分级优化的问题[6]。将其应用到雷达微弱目标检测中,可将雷达回波信号在多普勒频率和距离二维方向的幅度排列成图像,在多帧相继的图像序列中,运动目标轨迹可看作是一条连续变化的曲线,利用动态规划算法,检测是否存在着这样一条曲线,从而判断目标是否存在。 基于动态规划的检测前跟踪的关键在于沿目标运动航迹积累能量[7-8],可以看出,搜索目标航迹的计算量非常大,在实际应用中存在不足。在预警雷达中,来袭目标比远离雷达的目标更具有威胁性,更需早期发现和预防,所以单独针对来袭目标进行探测,可以大大减少动态规划法搜索的运算量,提高预警雷达的探测能力。本文针对动态规划算法计算量大的缺 收稿日期:2009-02-26;修订日期:2009-06-10。

基于深度学习的目标检测技术

基于深度学习的目标检测技术 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN 在过去的几年中,典型的PASCAL VOC数据集上测量的对象检测性能已经趋于平稳。最好的执行方法是复杂的集成系统,通常结合多个低级别的图像特征与高层次的背景。在本文中,我们提出了一个简单的和可扩展的检测算法,提高了平均准确率(MAP)超过30%,相对于先前的最佳结果VOC 2012实现53.3%的平均准确率。我们的方法结合了两个关键的见解:(1)可以将高容量卷积神经网络(CNNs)应用到自下而上的区域建议中,以便定位和分割对象;(2)当标记的训练数据很少时,监督辅助任务的预训练,然后进行特定领域的微调,可以显著提升性能。由于我们将区域建议与CNNs结合起来,我们称我们的方法为RNCN:具有卷积神经网络特征的区域。我们还将R-CNN与OverFeat进行比较,最近提出的滑动窗口检测器基于类似的卷积神经网络架构。我们发现R-CNN在200级ILSVRC2013检测数据集上大大优于OverFeat。 object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。 object detection技术的演进: RCNN->SppNET->Fast-RCNN->Faster-RCNN 从图像识别的任务说起 这里有一个图像任务: 既要把图中的物体识别出来,又要用方框框出它的位置。

雷达的目标识别技术

雷达的目标识别技术 摘要: 对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。 一.引言 随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。 1.一维距离成象技术 一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。信号带宽与时间分辨率成反比。例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。其基本原理如图1所示。 2.极化成象技术 电磁波是由电场和磁场组成的。若电场方向是固定的,例如为水

平方向或垂直方向,则叫做线性极化电磁波。线性极化电磁波的反射与目标的形状密切相关。当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。通过计算目标散射矩阵便可以识别目标的形状。该方法对复杂形状的目标识别很困难。 3.目标振动声音频谱识别技术 根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。通过解调反射电磁波的频率调制,复现目标振动频谱。根据目标振动频谱进行目标识别。 传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。点状目标的回波宽度等于入射波宽度。一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。通过目标回波宽度的变化可估计目标的大小。目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。 这类波型图叫作波色图。根据波色图内子峰的形状,可获得一些目标信息。熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。

动态视频目标检测和跟踪技术(入门)

动态视频目标检测和跟踪技术 传统电视监控技术只能达到“千里眼”的作用,把远程的目标图像(原始数据)传送到监控中心,由监控人员根据目视到的视频图像对现场情况做出判断。智能化视频监控的目的是将视频原始数据转化为足够量的可供监控人员决策的“有用信息”,让监控人员及时全面地了解所发生的事件:“什么地方”,“什么时间”,“什么人”,“在做什么”。将“原始数据”转化为“有用信息”的技术中,目标检测与跟踪技术的目的是要解决“什么地方”和“什么时间”的问题。目标识别主要解决“什么人”或“什么东西”的问题。行为模式分析主要解决“在做什么”的问题。动态视频目标检测技术是智能化视频分析的基础。 本文将目前几种常用的动态视频目标检测方法简介如下: 背景减除背景减除(Background Subtraction)方法是目前运动检测中最常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动目标的一种技术。它一般能够提供相对来说比较全面的运动目标的特征数据,但对于动态场景的变化,如光线照射情况和外来无关事件的干扰等也特别敏感。实际上,背景的建模是背景减除方法的技术关键。最简单的背景模型是时间平均图像,即利用同一场景在一个时段的平均图像作为该场景的背景模型。由于该模型是固定的,一旦建立之后,对于该场景图像所发生的任何变化都比较敏感,比如阳光照射方向,影子,树叶随风摇动等。大部分的研究人员目前都致力于开发更加实用的背景模型,以期减少动态场景变化对于运动目标检测效果的影响。 时间差分时间差分(Temporal Difference 又称相邻帧差)方法充分利用了视频图像的特征,从连续得到的视频流中提取所需要的动态目标信息。在一般情况下采集的视频图像,若仔细对比相邻两帧,可以发现其中大部分的背景像素均保持不变。只有在有前景移动目标的部分相邻帧的像素差异比较大。时间差分方法就是利用相邻帧图像的相减来提取出前景移动目标的信息的。让我们来考虑安装固定摄像头所获取的视频。我们介绍利用连续的图像序列中两个或三个相邻帧之间的时间差分,并且用阈值来提取出视频图像中的运动目标的方法。我们采用三帧差分的方法,即当某一个像素在连续三帧视频图像上均有相

雷达目标检测性能分析

雷达目标检测实例 雷达对Swerling起伏目标检测性能分析 1.雷达截面积(RCS)的涵义 2.目标RCS起伏模型 3.雷达检测概率、虚警概率推导 4.仿真结果与分析

雷达通过发射和接收电磁波来探测目标。雷达发射的电磁波打在目标上,目标会将入射电磁波向不同方向散射。其中有一部分向雷达方向散射。雷达截面积就是衡量目标反射电磁波能力的参数。

雷达截面积(Radar Cross Section, RCS)定义:22o 2 4π 4π4π4π()4πo i i P P R m P P R σ=== 返回雷达接收机单位立体角内的回波功率 入射功率密度 在远场条件下,目标处每单位入射功率密度在雷达接收机处每单位立体角内产生的反射功率乘以4π。 R 表示目标与雷达之间的距离,P o 、P i 分别为目标反射回 的总功率和雷达发射总功率

?目标RCS和目标的几何横截面是两个不同的概念?复杂目标在不同照射方向上的RCS不同 ?动目标同一方向不同时刻的RCS不同 飞机舰船 目标RCS是起伏变化的,目标RCS大小直接影响着雷达检测性能。为此,需用统计方法来描述目标RCS。基于此,分析雷达目标检测性能。

Swerling 模型是最常用的目标RCS 模型,它包括Swerling 0、I 、II 、III 、IV 五种模型。其中,Swerling 0型目标的RCS 是一个常数,金属圆球就是这类目标。Swerling Ⅰ/Ⅱ型: 1 ()exp()p σ σσσ =- 指数分布 Swerling Ⅰ:目标RCS 在一次天线波束扫描期间是完 全相关的,但本次和下一次扫描不相关(慢起伏),典型目标如前向观察的小型喷气飞机。 Swerling Ⅱ:目标RCS 在任意一次扫描中脉冲间不相关(快起伏),典型目标如大型民用客机。

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

(完整版)小目标微弱信号检测电路设计

小目标微弱信号检测电路设计 在靶场测试领域,天幕靶是一种常用的光电触发设备。既可以用作区截装置测量弹丸的飞行速度,也可采用多幕交汇技术测量弹丸的着靶坐标,还可以作为其他设备的测试触发装置。但现有天幕靶灵敏度低、视场小、抗干扰能力差。本文设计了一种小目标微弱信号检测电路,通过光电二极管进行光电信号转换,并且设计了信号放大电路与滤波处理, 有效地滤除了干扰信号, 提高了天幕靶抗干扰能力。 硬件设计 整体流程图如下图所示,光电探测器将接收到的光信号转换为电信号,并通过前置放大电路与主放大电路进行信号放大,电压比较器可以将电信号转换成脉冲,经过滤波电路将干扰信号去除后送入单片机的中断控制口,单片机产生中断,处理中断程序,然后会有脉冲输出,脉冲经过信号输出电路进行整形,由于输出信号需要进行长距离的传输,因此需要驱动电路将信号驱动。图1为整体设计硬件原理图。

图1 整体设计硬件原理图 光电转换电路 利用可见光探测器单元硅PIN光电二极管作为光电转换期间来完成光信号到电信号的转换。这种器件体积小而且响应速度快,被广泛的应用于光电检测。光电二极管是半导体产品,当它受到光照时会产生电流或电压。它们没有内置增益,但与其他类型的光子探测器相比却有着更大的动态范围。本电路设计采用20只光电二极管连接起来形成阵列。图2为其中的两路设计,其余各路连接方法相同。其中LM7812为电源稳压芯片,保证输出稳定的电压,R1、R2为采样电阻,电容C5与C6主要用于交流耦合。

图2 光电转换电路 前置放大电路 光电前置放大电路如图3所示, 电路在光电转换电路和放大器的输出之间加一个由R3和C7组成的RC滤波电路, 这样就限制了放大器输出信号的带宽, 滤掉了经过放大的噪声和放大器本身的噪声。电容C8 用来补偿RC滤波环节引起的相角滞后,电容C9用来补偿放大电路输入端的复合电容引起的相角滞后, 控制噪声增益的峰值。

目标检测、跟踪与识别技术与现代战争

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。

PSInSAR(永久散射体合成孔径雷达干涉测量)处理流程

SARScape中PS InSAR处理转载自 https://https://www.360docs.net/doc/8e15266074.html,/summer_dew/article/details/79309255 https://https://www.360docs.net/doc/8e15266074.html,/summer_dew/article/details/79199121 https://https://www.360docs.net/doc/8e15266074.html,/summer_dew/article/details/79200830 https://https://www.360docs.net/doc/8e15266074.html,/summer_dew/article/details/79203512 https://https://www.360docs.net/doc/8e15266074.html,/summer_dew/article/details/79207672 https://https://www.360docs.net/doc/8e15266074.html,/summer_dew/article/details/79306829

目录 0-Persistent Scatterers (1) 介绍 (1) PS模块介绍 (1) 1-Connection Graph (2) 工具详细参数 (2) 输出文件 (2) 目的 (2) 技术说明 (3) 帮助文档 (3) 2-Interferometric Process (4) 输入文件 (4) 输出文件 (4) 工具详细参数 (4) 目的 (5) 技术说明 (5) 3-Inversion:First Step (7) 输入文件 (7) 输出文件 (7) 工具详细参数 (7) 目的 (8) 技术说明 (8) 4-Inversion:Second Step (9) 输入文件 (9) 输出文件 (9) 工具详细参数 (9) 目的 (9) 技术说明 (9) 5-Geocoding (11) 输入文件 (11) 输出文件 (11) 工具详细参数 (12) 目的 (12) 技术说明 (13)

对空高速目标检测和跟踪方法解释

对空高速目标信号处理 对于常规慢速目标,在相参处理时间内该走动量通常不会超过一个距离单元。而对于高速目标,它可能跨越多个距离单元,而必须加以处理才能实现相参处理时间内多次回波的相参积累。尤其HSV载体运动速度很高且机动能力很强,雷达目标间的高速高机动特性更加明显,雷达目标回波会出现跨距离单元、跨多普勒单元问题,加剧了目标回波相参积累的难度。为了提高雷达的探测性能,需要补偿后才能达到好的积累增益。 雷达目标间的相对速度最高可达15马赫以上,加速度最高可达20g。以速度每秒5000米为例,如果雷达相参处理时间为50ms,其运动距离可达250米,对窄带雷达来讲需要考虑回波包络的补偿。此外,速度在相参时间里变化10m/s,对X波段雷达来说,多普勒扩展为667Hz,而多普勒分辨率为20Hz。所以为了获得高的处理增益,提高探测距离,回波多普勒扩散需要补偿。 (1)高重频信号处理 高脉冲重复频率的相参脉冲串信号的频谱如图3.5所示。除了载频上的中央谱线之外,在载频PRF的整数倍处还有其它一些谱线,谱线间隔为脉冲重复频率。发射频谱的包络取决于脉冲形状,例如,矩形脉冲时为sin/x x形。运动目标回波的频谱是发射频谱偏移后的复制品,也含有一些间隔为PRF的谱线。

f 0r f f +0r f f -02r f f -02r f f + 图3.8 PD 雷达发射信号的频谱 高占空比高重频的信号没有距离门的概念,可以只考虑多普勒扩展的影响。由于加速度的存在对回波信号补偿后其多普勒仍不为常数而是时变的,故需要进一步获取目标的精确运动参数。解线性调频法是一种简单而且易于实现的运动补偿法。 可用一个调频因子2 j ut e π-(λ/2a u =)与信号相乘,即 2 (,){()}j ut d D f u FFT r t e π-= (3.1) 当u =02/a λ (其中 0a 为目标的加速度真值)、式(3.1)出现峰值。因而速度、加速度的精确估计问题转化为寻找最优的u 即a 的问题。 利用解线性调频法精确估计速度、加速度,关键是对式(3.1)中的u 进行最优搜索,搜索步长的选取十分重要,如果步长选得过大,就不能满足估计精度要求;如果搜索步长选得过小,则运算量剧增,不利于算法的实时处理和工程实现。 由于u 需要遍历搜索,为减少运算量以及提高估计精度,可以采用“逐次逼近法”来估计目标的速度、加速度。对u 遍历搜索时,为满足精度要求搜索步长必须选得很小,我们要计算的FFT 次数太多,运算量相当的大,“逐次逼近法”在保证估计精度的前提下,有效的解

目标检测与跟踪

第九章图像目标探测与跟踪技术 主讲人:赵丹培 宇航学院图像处理中心 zhaodanpei@https://www.360docs.net/doc/8e15266074.html, 电话:82339972

目录 9.1 概论 9.2 目标检测与跟踪技术的发展现状9.3 目标检测与跟踪技术的典型应用9.4 图像的特征与描述 9.5 目标检测方法的基本概念与原理9.6 目标跟踪方法涉及的基本问题

9.1 概论 1、课程的学习目的 学习和掌握目标探测、跟踪与识别的基本概念和术语,了解一个完整信息处理系统的工作流程,了解目标探测、跟踪与识别在武器系统、航空航天、军事领域的典型应用。了解目标检测、跟踪与识别涉及的关键技术的发展现状,为今后从事相关的研究工作奠定基础。 2、主要参考书: 《目标探测与识别》,周立伟等编著,北京理工大学出版社; 《成像自动目标识别》,张天序著,湖北科学技术出版社; 《动态图像分析》,李智勇沈振康等著,国防工业出版社;

引言:学习目标检测与跟踪技术的意义 ?现代军事理论认为,掌握高科技将成为现代战争取胜的重要因素。以侦察监视技术、通信技术、成像跟踪技术、精确制导技术等为代表的军用高科技技术是夺取胜利的重要武器。 ?成像跟踪技术是为了在战争中更精确、及时地识别敌方目标,有效地跟踪目标,是高科技武器系统中的至关重要的核心技术。 ?例如:一个完整的军事战斗任务大致包括侦察、搜索、监视以及攻击目标和毁伤目标。那么快速的信息获取和处理能力就是战争胜利的关键,因此,目标的实时探测、跟踪与识别也成为必要的前提条件。

?随着现代高新技术的不断发展及其在军事应用领域中的日益推广,传统的作战形态正在发生着深刻的变化。 1973年的第四次中东战争,1982年的英阿马岛之战,1991年的海湾战争及1999年的科索沃战争,伊拉克战争等都说明了这一点。西方各军事强国都在积极探索对抗武器,特别是美国更是投入了巨大的物力、人力和财力积极研制弹道导弹防御系统。而图像检测、跟踪和识别算法作为现代战场信息环境作战成败的关键,具备抗遮挡、抗丢失和抗机动鲁棒性的智能跟踪器,将是现代战场作战必备品,具有广泛的应用前景。

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

目标检测、跟踪与识别技术与现代战争

《图像检测、跟踪与识别技术》论文 论文题目: 图像检测、跟踪与识别技术与现代战争 专业:探测制导与控制技术 学号:35152129 姓名:刘孝孝

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。 2.2 目标检测、跟踪与识别技术在精确制导上的应用 精确制导方式很多,包括主动式、半主动式和被动式寻的制导方式,通过设在精确制导武器

基于测速雷达的多目标检测算法

基于测速雷达的多目标检测算法 (合肥工业大学计算机与信息学院,安徽合肥20009) 摘要:近些年了来随着科技的进步、人们生活水平的提高,为满足生产和生活的需求各种交通工具应用而生。车型和车速的不断提高给道路交通管制带来了许多的不便和麻烦,因此基于交通测速雷达的多目标分辨领域的研究至关重要,能更好的对道路交通进行管理,在跟踪目标,对超速车辆的查找以及统计各类型车辆数量、缓解交通压力等方面有很大的用途。 本文在多普勒雷达的基础上研究发展而来的基于测速雷达的多目标分辨算法。首先介绍了雷达测速的研究背景及意义,多普勒雷达的测速原理,目前的发展状况以及传统雷达的不足之处。接着介绍了多目标分辨的理论依据,也就是本论文主要讲解的超速雷达的多目标分辨。 关键词:多普勒雷达、多目标分辨、频谱分析、幅度比较 一、研究背景 21世纪以来,人类生产力大解放。科技的蓬勃发展,工业革命的不断推进,无论是生产还是生活人类发生了翻天覆地的变化。其中最明显的便是交通运输工具的变化。随着道路基础设施建设水平的提高,人们生活质量的提高促使家庭小汽车的不断增加,同时为满足生产力发展的需求,各种交通工具应用而生。公路交通运输业是推动国民经济发展,促进经济社会繁荣的主动力。为实现对道路交通的有效管制以及行车速度测量及对超速车辆的实时监测控制对道路上的多目标进行分辨至关重要。 从雷达早期出现用于对空中金属物体的探测,到二战以来出现的雷达对空对地的火力控制等,雷达主要应用于军事领域。随着科技的进步,雷达技术的不断发展,雷达不再是一种单纯的军事雷达,其应用领域不断增加,功能不断增强出现了各种各样的雷达,比如气象雷达,道路交通测速雷达等。雷达测速是利用多普勒效应,通过多普勒频移计算目标的速度。雷达测速因其准确性高,速度快,稳定性好,探测距离远,可移动测速,能更好的抑制地无干扰等优点,得到广泛应用,但是由于雷达波束较宽,在多车并行行驶时,无法分辨出超速车辆,给监测控制带来了困难。国内现有超速测量抓拍系统在多车并行时,由于仅能检测出有车辆超速,无法分辨超速车辆,为避免误判只能放弃抓拍,无形中增加了交通事故隐患,严重影响了现代交通的严格法制化管理进程。因此多目标分辨雷达的研究和制造有着非常重要的作用。同时不仅可应用于超速雷达的探测,在对车型检测,缓解交通压力等方面都发挥很大的作用。 二、交通测速雷达发展状况 目前,美国联邦电讯委员会规定警用测速频道为Xband,Kband,Kaband三种,它们对应的微波频率分别为10.525GHZ,24.150GHZ,33.40-36.00GZH。Xband雷达形状为圆型,无法在车阵中锁定超速车辆只能在车阵中检测第一辆车的速度。K band测速雷达为手持式的雷达,国内警方绝大多数使用这种雷达。Ka band雷达与K band雷达相似,由于其微波频率更高,测速范围更加集中,所以不容易被干扰,目前国内基本局限于一般性测量且测量结果较粗糙,在先进技术方面还有很大差距,因此对多目标分辨的研究至关重要,对提高国内雷达水平,方便道路超速车辆管理有重要的作用。 三、多普勒雷达的作用原理 多普勒雷达,又名脉冲多普勒雷达,是一种利用多普勒效应来探测运动目标的位置和相对运动速度的雷达。1842年,奥地利物理学家J·C·多普勒发现,当波源和观测者有相对运动时,观测者接受到的波的频率和波源发来的频率不同,这种现象被称为多普勒效应。波是由频率和振幅所构成,而无线电波是随着物体而移动的,当无线电波在行进的过程中,碰到物体

雷达干涉测量(崔松整理)

雷达干涉测量(崔松整理) 第一章绪论 第二章雷达 SAR:使用短天线一段时间内不断收集回波信号,通过信号聚焦处理方法合成一较大的等效天线孔径的雷达。 1.1雷达及雷达遥感发展概况 ENVISAT 与ERS的SAR传感器相比,Envisat ASAR的优点主要表现在: 扫描合成孔径雷达(ScanSAR)可达到500km的幅照宽度;(ERS只有100km) 可获得垂直和水平极化信息; (如果发射的是水平极化方式的电磁波,与地物表面发生作用后会使电磁波极化方向产生不同程度的旋转,形成水平和垂直两个分量,用不同极化方式的天线接收,形成HH和HV两种极化方式的图像。若雷达发射的是垂直极化方式的电磁波,同理,会产生VV和VH两种极化方式的图像。) 交替极化模式可使目标同时以垂直极化与水平极化方式成像; 有不同的空间分辨率和数据率; 可提供7个条带,入射角在15°~45°的雷达数据。 RADARSAT 多极化、多入射角 ALOS ALOS采用了先进的陆地观测技术,能够获取全球高分辨率陆地观测数据。 该卫星载有三种传感器:全色立体测图传感器,新型可见光和近红外辐射计、相控阵型L波段合成孔径雷达(PALSAR)。PALSAR不受云层,天气和昼夜影响,可全天时全天候对地观测,该卫星具有多入射角,多极化,多工作模式及多种分辨率的特性,最高分辨率可达7m。(ERS、ENVISAT是多入射角吗?) TerraSAR-X TerraSAR-X TerraSAR-X 是固态有源相控阵的X 波段合成孔径雷达(SAR)卫星,具有多极化、多入射角的特性,具备4 种工作方式和4 种不同分辨率的成像模式。 高分辨率聚束式(High Resolution SpotLight(HS)) 聚束式(SpotLight Mode(SL)) 宽扫成像模式(ScanSAR Mode(SC)) 条带成像模式(Stripmap Mode(SM)) COSMO-SkyMed COSMO-SkyMed星座共包括4颗SAR卫星 工作在X波段,具有多极化、多入射角的特性,具备3种工作方式和5种分辨率的成像模式,作为全球第1个分辨率高达1 m的雷达成像卫星星座,COSMO-SkyMed系统将以全天候、全天时对地观测的能力、卫星星座特有的高重访周期和l m高分辨率成像1.2InSAR及发展概况 SAR的不足: SAR传感器获取的原始资料主要包含两种信息:一是地面目标区域的二维图像,二 是地面目标反射回来的相位 SAR成像没有利用回波相位信息。经过SAR成像处理后,对于地表三维目标,得到

相关文档
最新文档