CMOS射频功率放大器高效率和高线性度研究进展

CMOS射频功率放大器高效率和高线性度研究进展
CMOS射频功率放大器高效率和高线性度研究进展

CMOS射频功率放大器高效率和高线性度研究进展

摘要: CMOS工艺价格低廉且兼容基带工艺,是单片集成电路的理想材料。根据现代无线通信系统所采用的调制方式对功率放大器的性能要求,重点介绍了功率放大器的效率和线性增强技术,比较了相应技术间的优点和缺点,最后阐述包络放大器的发展趋势及其在LTE(4G)的应用。

关键词:功率放大器;效率;线性度;LTE;CMOS;包络跟综

0 引言

目前,全球应用于智能手机等便携性移动设备的移动网络急速发展和扩张,且多功能智能手机应用愈加广泛,为满足用户实时通信的用户体验,应用于智能手机的通信系统应该能够更加有效地处理文字、声音和视频数据并实现全球漫游。为了提供高数据速率的大数据传输,现代通信系统(WCDMA/3G/4G/LTE)采用了更加复杂的高频谱效率的调制方式,如OFDM 或QPSK和QAM等相移键控和幅移键控相结合的调制方式。为满足不同用户的使用需求,智能手机一般都支持两种或者两种以上网络制式,而随着手机的工作制式不同,其有效的频率带宽不同,因此,作为通信模组之一的功率放大器(PA)应具备多频多模(Multi-band and Multi-mode)的能力。

作为3GPP(3rd Generation Partnership Project)的演进路线中的主流技术,LTE-Advanced将是2015年的主流通信方式。LTE的关键技术有多载波和多天线技术,其中多载波技术采用正交频分复用(OFDM)的调制方式,使各个子载波重叠排列,大大提高频谱效率的同时保持了载波之间的正交性,以避免载波之间的干扰。不过,LTE信号在给定的受限的带宽内,有着非常高的峰均比(PAPR),这使PA常工作在功率回退区,造成PA的实际效率低下的现象。另外,为了线性放大LTE这类非常包络信号(non-constant envelope signal),要求PA有着较高的线性度(Linearity),因此,应用于新一代通信系统的功率放大器,必须有着较高的功率效率和线性度,且有着较宽的工作带宽或者是满足多频多模的通信要求。

随着便携设备的功能模块越来越复杂,将各个模块单片集成起来,将大大缩短设备制造商的加工时间,因此,如何减小芯片的有效面积和用廉价的工艺在单一芯片上实现整个射频模组将是未来的研究主流。现代比较流行的集成电路工艺主要有六种:硅CMOS、BICMOS、Bipolar、GaAs、HBT和SiGe,但由于硅工艺是最为成熟的,也是成本最低、集成度高和应用最广泛的集成工艺,另外,大多数无线收发机的基带处理部分都使用硅工艺,因此,硅CMOS 工艺是单片实现各个模块集成的理想解决方案。不过CMOS工艺自身存在着物理缺陷,如低截止电压(breakdown voltage)、较差的电流能动能力、片上无源器件的Q值小、较大的寄生电容、地衬底电阻率较低、没有较为精确的RF模型和较差的线性度等,这些缺陷都大大限制了CMOS在RFIC领域的应用,而且通信系统对高效率、高线性度和可实现性有着很高的要求,所以目前PA制造商还是常使用价格比较昂贵的III-V类混合硅半导体工艺器件(Compound Semiconductor Device)[1-4],这些器件通过TWV(Through-Wafer-via)技术提供一个具有良好散热效率的理想环境,常用于Bluetooth、WLAN和GSM/GPRS等应用[5]。不过,CMOS工艺的物理缺陷可以通过一系列技术来缓解,在高供电电压的情况下,可以选择HV CMOS和BCD(Bipolar-CMOS-DMOS)工艺[6]。采用下行键合线(Down-bonding Wires)可以实现在给定的负载下得到较高的输出功率,这种方法的缺点是会减小电压摆幅,不过可以通过引入差分结构克服这个缺点。解决CMOS工艺低截止电压的一个很好的技术是引入共源共栅的Cascode 结构,不过这种结构会使等效的knee电压增加,所以也会在一定程度上减小电压摆幅。CMOS 的寄生电容和衬底较低的电阻率,使得在晶体管引脚间的信号存在着耦合,不过这种耦合影响也不全是消极的,通过利用在Cascode结构中的共栅(CG)晶体管的RF泄露信号(Leakage signals)提供一个负反馈,不仅可以增强线性度,而且可以减小栅极和漏极间的电压耦合,

这种方法最大的一个优点就是不需要额外的器件和芯片面积,而且容易实现。由于CMOS的跨导较低,其电流驱动能力较其他III-V类半导体低,需要通过级联结构来实现(Cascaded-stage)较大的功率增益,所以,多级级联(multistage cascade topology)是CMOS PA中最常见的一种电路拓扑。虽然采用Cascode结构和栅氧厚度较厚的晶体管可以减轻CMOS 的热载流体效应和低栅氧厚度的低击穿电压的问题,但这并不是最理想的办法。根据最新的研究报告,应用于3G/4G的手持设备的硅工艺PAs的性能已经可以和III-V类PAs相比拟[7],另外,类似于III-V类工艺的TWV技术,在SiGe BiCMOS工艺中, TSV(Through-Silicon-Via)技术同样可以为SiGe BiCMOS工艺提供一个理想的回流地环境和热释放条件,因此,采用TSV 技术的SiGe CMOS工艺将会是PA设计的一个首选方案[8]。

1 PA效率增强技术的关键研究进展

功率放大器是手持移动设备中耗能最大的模块之一,因此为了延长电池的使用寿命和迎合新一代通信(4G/LTE)的要求,高效率是PA设计的一个很重要而且颇有挑战性的指标。由于传统的PA供电电压是固定的,而且它的最优负载仅仅是当PA输出最大功率时的最优阻抗,对于LTE这种有着高PAPR的调制方式,PA常工作在功率回退区,因此PA的实际工作效率非常低。

提高这类PA效率的关键技术主要有两类:通过一定方法调制负载,使每个功率回退点都对应于一个最优阻抗[9]和通过输出的瞬时功率调制供电电压,从而减小功率回退时的静态功耗。第一种通过调制负载的方法常用于手机等移动设备,第二种方法常常直接通过利用调制信号的包络直接去调制PA的工作电压,从而减小功耗[10]。

通过直接调制PA的工作电压而达到增强PA效率的技术主要有PM(Polar Modulation)、EER(Envelope Elimination and Restoration)和ET(Envelope Tracking),。PM利用数字信号处理技术(DSP)来产生相位和幅度调制信号[11,12],不过这种方法受限于DC-DC转换器自身的效率、带宽和面积,并且DC-DC转换模块通常需要使用片外的电感和开关实现,这大大限制了PM在RFIC中的应用。EER和ET是目前PA效率增强的主流技术。EER通过包络检波器和限幅器将输入信号分解成幅度信号和相位信号,因此可以用非线性PA来放大相位信号,而PA的电压则由幅度信号调制,从而可以达到较大的效率,,但EER内部固有的非线性导致幅度调制路径和相位调制路径间存在延时[13,14]。

与EER不同的是,ET使用线性的PA,。因此,ET的最大的一个好处就是没有类似于EER 的这种延时失配现象[15],从而使ET技术可以在增强效率的基础上通过其他技术来取得线性度和效率之间的折中,并可以应用于宽带信号[16]。ET主要目标是为了当输入高PARP信号时,同时在最大输出功率和在功率回退区域获得最大工作效率,且满足高线性度的要求,如EVM和ACLR等。另外,ET技术的效率和线性度依赖于电源调制器(Supply Modulator),如果电源调制效率低下,则ET整体的效率就非常低,因此必须增强电源调制器的线性度,文献[17]通过双开关和前馈信号来增强电源调制器的效率。为了精确跟踪宽带信号并不产生明显失真,需要提高电源调制器的工作带宽[18]。

使用ET技术可以大幅度提高功率回退时的效率,,为了减小复杂性和提高跟踪精度,电源调制器可以通过开关实现在线性区使PA工作电压保持一个较小的恒定值,而在过渡区和压缩区则通过调制信号的包络来调制PA的工作电压,。采用这种方式的ET技术有一个缺点,那就是增益会有所降低,,但这种方式较固定电压的方式有着较低的ACLR和EVM,特别是在高输出功率的情况下,。

ET技术的一个优点是相位调制和幅度调制环路间没有延迟失配,故可以在效率、线性度和带宽间进行折中设计,这些技术都可以归纳为ET的优化技术,其中较为重要的是改善线性度,而包络整形(Envelope-shaping)是改善线性度的一个有效方法[1],其结果可以通过跟踪扫描的点来表示出来[19]。这种方法可以改善工作于ET方式下的PA性能,包括效率和线性度[20],通过结合其他电路拓扑结构,可以更进一步改善ET PA的效率。文献[21]通过采用伪差分的拓扑结构,结合SiGe BICMOS的TSV技术实现了一个高效率的ET-PA系统。

改善ET的效率的另一个有效的方法是像传统开关PA一样引入工作在饱和区的功率放大器(Saturated Power Amplifier),这样不仅可以提高ET PA的输出功率,还可以最大化效率。

为了同时改善PA的动态范围、线性度和效率,可以采用动态反馈控制(Dynamic feedback control)和共源共栅Cascode结构的电路拓扑[22],这种结构中的CG级采用了自偏置技术,从而改善了线性度和效率。不过这种结构也存在着自身的缺陷,因为CG级的晶体管的非线性会使整体的线性度下降,而且漏-栅间的击穿电压问题将是这种结构的一个瓶颈。这是因为工作于ET PA的CG级在ET PA工作于功率回退区时,由于电源调制器的作用,PA的工作电压会很小,而且Cascode结构的饱和电压相对较高(如knee电压),使晶体管工作在线性区,从而使ET PA在峰值功率和回退时的功率增益会有着很大的偏差,这就使PA的线性度和动态范围性能下降了[23]。这个问题存在的根本原因是因为CG级的偏置电压是固定的,因此,可以通过栅极自适应动态偏置技术和Cascode反馈偏置(Cascode Feedback Bias Technique)技术进行折中设计,反馈偏置技术利用在CMOS工艺下CG晶体管的泄露信号通过负反馈环路反馈到偏置电路,从而改善CMOS PA的线性度[24],采用共源共栅Cascode结构的另外一个需要仔细考虑的问题是关于CG级和CS级的尺寸比例,这在一定程度上会影响PA整体的效率[22]。对于ET技术在多频多模情况下的应用,简单而高效的方法是通过并联一个开关电容从而实现两个模式间的切换,文献[1]通过结合升压电源调制器(Boosted supply modulator)和开关电容实现了一个双模多频带的高效率ET功率放大器,使ET PA不仅可以工作在高功率模式,还可以工作于低功率模式。

由于多数移动设备可以在多个网络制式间相互切换,因此,对于工作于类似于GSM/EDGE 网络制式下的PA,可以采用其他技术来增强效率。如采用反相结构(outphasing architecture)的PA,这种结构最大的优点是可以使用非线性PA,且不需要额外的电源调制器就可以获得较大的效率并不会引起输出电压摆幅下降,最大的缺点就是输出端的求和电路不可避免会存在着功率损耗,因此求和的两条路径间的匹配会影响到整体电路的效率[25]。Doherty PA也是一种能够有效提高功率回退区效率的增强技术,最大的理论效率可以达到79%,并扩展大概6 dB的线性范围[26],不过,这种技术由于需要采用1/4波长传输线,不仅增加了损耗,还需要占据较大的芯片面积,从而大大限制了其在RFIC的应用。

高电压应用下的效率增强,可以采用传统的开关功率放大器,其中关键问题是片上电源的耦合和反弹[27],一个可行的解决方案是采用两个较宽的开关PA并联代替原来的开关PA,从而避免了开关PA的感性反馈,从而减小了电源耦合[6]。另外,通过采用压电器件(Piezoelectric Device),可以使PA输出几十瓦的功率并且有着很高的集成度,这种压电器件有着很好的噪声控制[28],又因压电反应可以等效为一个压电电容,因此并不会增加电路分析的复杂度。

2 高线性PA的关键技术研究进展

当PA工作于高效率区时,PA将会因本身的非线性而出现功率压缩,从而减小了PA的功率增益,而当PA工作于功率回退区时,PA的实际工作效率非常低,这将会消耗大部分电能,

因此,PA的线性化目的是改善PA的整体线性度,且使整体的效率比功率回退时的效率高。PA的线性体现为两个方面:AM-AM和AM-PM失真。而衡量PA的线性度和偏离程度的指标,应该根据系统的要求和调制方式来决定。PA常用的线性度指标有ACPR、EVM、1 dB压缩输出功率和三阶交调点,在工程上常用单音(single tone)和双音信号(two tone)对PA分别进行谐波和交调失真等非线性测量与分析。此时,ACPR代表频谱带外的失真,而EVM代表带内失真。由于双音信号会对相邻信道造成干扰,所以对于某一信道,都有一个频谱限制(spectral mask)。

改善PA的线性度的一个常用方法是通过反相的非线性补偿电路来抵消原来电路的非线性[29-31],这些电路通过补偿AM-AM或者是AM-PM失真来达到优化线性度的目的,然而,2-D 电路综合技术(2DCST),利用电流-电压转换器和可调的压控电容(Voltage Characteristic Capacitor)实现同时补偿AM-AM和AM-PM失真,且不需要反相电路[32]。虽然这些技术可以比较有效地改善PA的线性度,不过这些技术需要额外的控制单元,如电流-电压转换器等,从而限制了其在RFIC方面的广泛应用。

反馈是改善PA线性度的另外一种有效的方法,而且可以改善带宽,不过前提是牺牲了增益。前馈技术(Feed Forward)广泛应用于高稳定性要求的PA设计中,主要通过前馈错误环路获得原始信号的错误信号,然后将放大后的信号与错误信号相减,从而得到线性的信号,。如果其内部的两级PA是稳定的,则整体的PA就是非常稳定的,然而前馈技术的如下几个缺陷使其在RFIC中的应用极其有限:

(1)如果延时单元由无源器件组成,则会增大PA整体的损耗,如果由有源器件组成,则会因为无源器件的非线性造成失真;

(2)输出级的减法器间的损耗,大大降低了PA的整体效率;

(3)整PA线性度的改善决定于每个减法器的信号的增益和相位匹配。

采用Cartesian负反馈技术(Cartesian Feedback)[33]可以克服前馈技术的以上缺点,因为Cartesian Feedback 不需要使用减法器,,并且对环路间的失配不敏感,与Cartesian Feedback技术相似的还有极化环路反馈技术(Polar Loop Feedback)[34],这两种技术有着相反的特性,不过都对负载和PVT的变化不敏感,而较大的缺点就是环路的带宽受限,文献[33]通过牺牲较大的输出功率而实现带宽超过10 MHz的PA。与改善效率的方法一样,同样可以通过在Cascode结构中结合反馈和自适应偏置技术来改善线性度[35]。

将RF输出信号直接反馈到输入端,虽然可以获得较大的带宽,但在RF频率上容易造成PA不稳定,从而产生振荡,虽然文献[36]通过结合偏置技术改善了这种情况,但其所采用的方法仅仅适用于驱动级。为了克服直接负反馈在RF频率下不稳定的缺点,文献[37]通过直接检测输入和输出端的信号相位和幅度,采用双路闭环负反馈结构。这种方法又称功率反馈(Power Feedback),这种结构通过消除AM-AM失真的方法来实现输出较大的功率而没有群延时失真[38],不过这种方法得益于III-V类工艺的优点,因此并不适用于CMOS工艺,因为CMOS工艺本身的线性度较差,且其非线性的栅极电容会造成较大的AM-AM和AM-PM失真。

采用预失真技术(Pre-distortion)也是一种比较可行的线性PA结构,不过这种结构得益于预先可估计的失真模型,从而构建与之相反的模型电路来达到失真补偿的目的。如果PA 的非线性特性随工艺、温度和负载阻抗变化时,预失真技术并不是理想的解决方案,因为很难去同时构建一个全方面的失真模型。

3 总结

随着移动设备的功能越来越复杂,集成度越来越高,单片实现RF前端模组有着重要的研究意义,又因为RF的基带处理单元基本都使用硅工艺,与之兼容的硅CMOS工艺是很好的解

决方案。虽然CMOS工艺因为物理缺陷在性能上比不上III-V类工艺,但是随着研究的深入,通过结合其他优化技术,使用CMOS实现RF的一些重要模块已经成为可能。

随着新一代网络(4G/LTE)的应用和逐渐普及,移动通信的数据空前增长,移动设备对电池续航时间的要求也大大提升。LTE上行链路信号采用SC-FDMA调制方式,均峰比明显高于W-CDMA。PA作为移动终端中耗能最大的模块之一,LTE上行链路信号的功率电平大部分时间都保持在较低值,极少达到峰值功率,因此,PA大部分时间工作在功率回退区,从而消耗电池电能,进而影响设备的散热设计功耗(TDP)。

包络跟踪(ET)技术根据PA的输入信号的包络动态调整PA的工作电压,使PA在回退时也有着较高的效率,且ET内部有着固有的线性特性,使ET PA很容易在线性度、效率和带宽之间的进行折中设计,所以ET是应用于LTE环境的一个较好的解决方案。

非线性是PA处理类似于LTE这些高PAPR信号的另外一个问题,因为随着输入信号功率的加大,PA会因为内部的非线性而出现功率增益压缩,从而无法线性放大输入信号而出现失真,最终导致ACLR和EVM超标。PA的线性度的改善可以采用反馈和数字预失真的方法,不过采用预失真的方法需要提供一个比较完善的失真模型,而反馈则会使增益下降。随着DSP 技术的成熟,数字预失真技术也逐渐成为ET PA的主流线性优化技术。

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

射频功率放大器

实验四:射频功率放大器 【实验目的】 通过功率放大器实验,让学生了解功率放大器的基本结构,工作原理及其设计步骤,掌握功率放大器增益、输出功率、频率范围、线性度、效率和输入/输出端口驻波比等主要性能指标的测试方法,以此加深对以上各项性能指标的理解。 【实验环境】 1.实验分组:每组2~4人 2.实验设备:直流电源一台,频谱仪一台,矢量网络分析仪一台,功率计一只,10dB衰减器一个,万用表一只,功率放大器实验电路 板一套 【实验原理】 一、功率放大器简介 功率放大器总体可分成A、B、C、D、E、F六类。而这六个小类又可以归入不同的大类,这种大类的分类原则,大致有两种:一种是按照晶体管的导通情况分,另一种按晶体管的等效电路分。按照信号一周期内晶体管的导通情况,即按导通角大小,功率放大器可分A、B、C三类。在信号的一周期内管子均导通,导θ(在信号周期一周内,导通角度的一半定义为导通角θ),称为A 通角? =180 θ。导通时间小于一半周期的类。一周期内只有一半导通的成为B类,即? =90 θ。如果按照晶体管的等效电路分,则A、B、C属于一大称为C类,此时? <90 类,它们的特点是:输入均为正弦波,晶体管都等效为一个受控电流源。而D、E、F属于另一类功放,它们的导通角都近似等于? 90,均属于高功率的非线性放大器。 二、功率放大器的技术要求 功率放大器用于通信发射机的最前端,常与天线或双工器相接。它的技术要求为: 1. 效率越高越好 2. 线性度越高越好 3. 足够高的增益

4. 足够高的输出功率 5. 足够大的动态范围 6. 良好的匹配(与前接天线或开关器) 三、功率放大器的主要性能指标 1.工作频率 2.输出功率 3.效率 4.杂散输出与噪声 5.线性度 6.隔离度 四、功率放大器的设计步骤 1.依据应用要求(功率、频率、带宽、增益、功耗等),选择合适的晶体管 2.确定功率放大器的电路和类型 3.确定放大器的直流工作点和设计偏置电路 4.确定最大功率输出阻抗 5.将最大输出阻抗匹配到负载阻抗(输出匹配网络) 6.确定放大器输入阻抗 7.将放大器输入阻抗匹配到实际的源阻抗(输入匹配网络) 8.仿真功率放大器的性能和优化 9.电路制作与性能测试 10.性能测量与标定 五、本实验所用功率放大器的简要设计过程 1. PA 2. 晶体管的选择 本实验所选用的晶体管为安捷伦公司的ATF54143_PHEMT,这种晶体管适合用来设计功率放大器。单管在~处能达到的最大资用增益大于18dB,而1dB压缩点高于21dB。

功放的效率

按功放中功放管的导电方式不同,可以分为甲类功放(又称A 类)、乙类功放(又称B 类)、甲乙类功放(又称AB 类)。 甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。 乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。乙类放大器的优点是效率高,缺点是会产生交越失真。 甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。 甲类: 1、结构 三极管的静态功耗: CQ CEQ T I U P ?= 电源提供的平均功耗 CQ CC E I V P ?= 若CC CEQ V U 2 1= ,则CQ CC RL T I V P P ?= =2 1。 三极管和负载电阻RL 的静态功耗相等。 三极管的动态功耗 输出功率: 设输出电压的幅值为Uom om om om om o 2122I U I U P =?= + u V CC i

要想P O 大,就要使功率三角形的面积大,即必须使V om 和I om 都要大 最大输出功率:CQ CC om I V P ?=)2 1 (21 电源提供的功率 CQ CC Cm CQ CC C CC E I V t d t I I V t d i V P ?=+?= ?= ? ? ωωπ ωπ π π )sin (21)(2120 20 此电路的最高效率25.0≈= E om P P η 甲类功率放大器存在的缺点: 输出功率小; 静态功率大,效率低。 乙类 1、结构: 互补对称: 电路中采用两个晶体管:NPN 、PNP 各一支;两管特性一致。组成互补对称式射极输出器。 2、工作原理 静态时:ui = 0V → ic 1、ic 2均=0(乙类工作状态) → uo = 0V 动态时:ui >0V,T1导通,T2截止,所以iL = ic 1; Ui <0V,T1导通,T2截止,所以iL = ic 2。 所以,T 1、T 2两个管子交替工作,在负载上得到完整的正弦波。 - u CC i

高效音频功率放大器

高效音频功率放大器 一、设计任务与要求 1、设计任务 设计并制作一个高效率音频功率放大器及其参数的测量、显示装置。功率放大器的电源电压为+5V(电路其他部分的电源电压不限),负载为8Ω电阻。 2、设计要求 ⑴基本要求 ①功率放大器 a.3 dB通频带为300~3400Hz,输出正弦信号无明显失真。 b.最大不失真输出功率≥1W。 c.输入阻抗>10kΩ,电压放大倍数1~20连续可调。 d.低频噪声电压(20kHz以下)≤10mV,在电压放大倍数为10、输入端对地交流短路时测量。 e.在输出功率500mW时测量的功率放大器效率(输出功率/放大器总功耗)≥50%。 ②设计并制作一个放大倍数为1的信号变换电路,将功率放大器双端输出的信号转换为单端输出,经RC滤波供外接测试仪表用,如下图所示。图中,高效率功率放大器组成框图可参见本题第3项“说明”。 图1 系统组成框图 ③设计并制作一个测量放大器输出功率的装置,要求具有3位数字显示,精度优于5%。 ⑵发挥部分 ① 3dB通频带扩展至300Hz~20kHz。 ②输出功率保持为200mW,尽量提高放大器效率。 ③输出功率保持为200mW,尽量降低放大器电源电压。 ④增加输出短路保护功能。 ⑤其他。 1、说明 ⑴采用开关方式实现低频功率放大(即D类放大)是提高效率的主要途径之一,D类放大原理框图如下图所示。本设计中如果采用D类放大方式,不允许使用D类功率放大集成电路。

图2 D类放大原理框图 ⑵效率计算中的放大器总功耗是指功率放大器部分的总电流乘以供电电压(+5 v),不包括“基本要求”中第(2)、(3)项涉及的电路部分功耗。制作时要注意便于效率测试。 ⑶在整个测试过程中,要求输出波形无明显失真。 二、方案论证与比较 根据设计任务的要求,本系统的组成方框图如图1所示。下面对每个框电路的设计方案分别进行论证与比较。 1、高效率功率放大器 ⑴高效率功放类型的选择 方案一:采用A类、B类、AB类功率放大器。这三类功放的效率均达不到题目的要求。 方案二:采用D类功率放大器。D类功率放大器是用音频信号的幅度去线性调制高频脉冲的宽度,功率输出管工作在高频开关状态,通过LC低通滤波器后输出音频信号。由于输出管工作在开关状态,故具有极高的效率。理论上为100%,实际电路也可达到80%~95%,所以我们决定采用D类功率放大器。 ⑵高效D类功率放大器实现电路的选择本题目的核心就是功率放大器部分,采用何种电路形式以达到题目要求的性能指标,这是关键。 图3 脉宽调制器电路 ①脉宽调制器(PWM) 方案一:可选用专用的脉宽调制集成块,但通常有电源电压的限制,不利于本题发挥部分的实现。 方案二:采用图3所示方式来实现。三角波产生器及比较器分别采用通用集成电路,各部分的功能清晰,实现灵活,便于调试。若合理的选择器件参数,可使其能在较低的电压下工作,故选用此方案。 ②高速开关电路

射频功率放大器的发展现状

1.1 研究背景 随着人类社会进入信息化时代,无线通信技术有了飞速的发展,从手机,无线局域网,蓝牙等,到航空航天宇宙探测,已经深入到当今社会生活的各个方面,成为社 会生活和发展不可或缺的一部分。无线通信设备由最初体积庞大且功能单一的时代, 发展到如今的口袋尺寸,方寸之间集成了各类功能强大的电路。这些翻天覆地的变化,都离不开射频与微波技术的支持。而急速增长的应用需求又促使着射频微波领域不断 的研究,更新换代。快速的发展使得射频微波领域的研究进入了白热化阶段,而在几乎所有的射频与微波系统中,都离不开信号的放大,射频与微波功率放大器作为系统中功耗最大,产生非线性最强的模块,它的性能将直接影响系统性能的优劣,由于其在射频微波系统中的突出位置,功率放大器的研究也成为射频微波领域研究的一个十 分重要的方向[1]。 功率放大器作为射频微波系统中最重要的有源模块,其理论方面已经十分成熟。 A 类、 B 类、 C 类、 D 类、AB 类、E/I E 类、F/I F 类、Doherty等各类功率放大器也已经成功应用到各个领域。 1.2射频功率放大器的发展现状 射频功率放大器的核心器件为其功率元器件——晶体管,它是一种非线性三端口有源半导体器件,它的放大作用,并不是晶体管能凭空产生能量,使能量放大,而是 完全由集电极(BJT)或漏极(FET)电源的直流功率转换而来的。晶体管只是起到了一种控制作用,即用比较小的信号去控制直流电源产生随小信号变化的大信号,从而把电源的直流功率转换成为负载上的信号功率。功率放大器的理论知识发展已经十分完 善,其面临的更多是一些工程的问题。所以,射频功率放大器性能的提升主要来自于 晶体管性能的提升,即半导体技术的发展,和放大器本身电路形式的改进。根据晶体管所用的半导体材料的不同,可以大体将其分为三个不同的发展阶段。第一代半导体材料以硅(Si)和锗( Ge)等元素半导体为主。第二代半导体材料以砷化镓(GaAs)、磷化铟( InP)、锗硅(SiGe)等化合物半导体为代表,相比于第一代半导体材料,其禁带更宽、

高效率功率放大器的现状及发展趋势

高效率功率放大器的现状及发展趋势 学院:电子工程学院 专业:电磁场与微波技术 :王元佳 学号:201320000289 报告日期:2013.11.05

一、引言 现代通信系统中的射频系统要求功耗低、效率高以及体积小。近年来,无线通讯朝大容量、多电平、多载波、高峰均比和宽频带方向飞速发展,宽带数字传输技术(如OFDM、CDMA等)和高频谱效率的调制方式(如QPSK、QAM等)正获得越来越广泛的应用,从而对射频系统性能提出更为苛刻的要求。功率放大器作为射频系统的关键部件,其所消耗的功率在整个射频系统所占比例相当大。低效率的功率放大器严重影响系统的整体性能。所以,设计高效率射频功率放大器对于减少电源消耗,提高系统稳定性,节约系统成本都由十分重大的意义。 传统的功率放大器通过调整工作状态(即调整晶体管导通角)来提高效率,这就是A类、B类、AB类、C类功率放大器的演进过程。其中C类功率放大器的理论效率最高达到100%,但此时其输出功率却为零。其根本原因在于,上述功率放大器工作状态下电流、电压同时存在于晶体管中,要使晶体管的耗散功率为零,必然使输出功率也为零。通过不断减小导通角的方式已不能满足不断提高效率的要求。为进一步提高效率,晶体管工作在开关状态的功率放大器应运而生。 二、研究现状 2.1 高效率功率放大器 2.1.1 D类功率放大器 当前,国内外高效率射频功率放大器的研究都集中在开关模型功率放大器及高效率功率放大器结构上。开关模型功率放大器主要有D、E两类。其设计思想都是使晶体管上“电流、电压不同时出现”。D类功率放大器一般由两个晶体

管构成,两只晶体管轮流导通、截止,实现电流、电压的不同时出现条件。但其晶体管和寄生电容耗能都是单管放大电路的双倍。同时,在开关瞬间存在两晶体管同时导通或截止引起二次击穿造成晶体管损坏的危险。工作频率比较低时,晶体管开关延时可以忽略,晶体管近似理想开关,不会产生损耗;在高频下,晶体管开关延时不可忽略,会引入损耗,另外元器件本身也会有损耗。因此,D类功放适合于频率较低的应用,并不适用于射频领域,D类放大器现在主要应用于音频领域。如图所示为D类功率放大器的电路结构。 2.1.2 E类功率放大器 为了克服D类功放在不完全导通与不完全截止过程中引入的较大损耗,提出了E类功放的设计。与D类功放不同,E类功率放大器采用单只晶体管,可工作于较高的频段,漏极电流为直流和漏极分路电容的充电电流之和。E类放大器是一种开关式的高效率放大器,理想情况下,效率可达100%。在这种功率放大器中,足够强的驱动电压使得输出功率管在完全导通和完全截止之间瞬时切换,流过开关的电流与开关上电压波形没有重叠,因而开关不消耗功耗。E类功率放大器的主要设

宽带射频功率放大器设计

?阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。 1 同轴变换器模型 同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。这里用电长度是为了分析方便。当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。 1.1理想模型 理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图2所示。

其源阻抗Zg与ZL负载阻抗变换比为: 图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。 同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。 1.2通用模型 由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路如图3所示。 由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。 由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为: 其中:

为了提高效率高频功率放大器一般工作在C类工作状态

2007~2008学年高频期末考试(A 卷) 一、选择题(每题1分,共10分): 1. 为了提高效率,高频功率放大器一般工作在( C )工作状态。 (A) 甲类 (B)乙类 (C)丙类 (D)甲乙类 2. 在高频放大器中,多用调谐回路作为负载,其作用不包括 ( D )。 (A)选出有用频率 (B)滤除谐波成分 (C)阻抗匹配 (D)产生新的频率 成分 3. 利用高频功率放大器的基极调制特性完成功放和调幅,功率放大器工作 状态应选( A )。 (A)欠压 (B)临界 (C)过压 (D)超临界 4. 以下振荡器频率稳定度最高的是( C ) (A)互感反馈??? (B)克拉泼电路??? (C)西勒电路???(D)电容三端式振荡电路 5. 调谐放大回路的通频带与( A )有关。 (A) 回路谐振频率和品质因数 (B) 品质因数和频率稳定度 (C) 回路谐振频率和失谐量 (D) 失谐量和频率稳定度 6. 如下图所示的传输线变压器是一种( D ) (A) 2:1阻抗变换传输线变压器, (B) 1:2阻抗变换传输线变压器, (C) 1:4阻抗变换传输线变压器, (D) 4:1阻抗变换传输线变压器。 7. 相位鉴频器的输出电压值为比例鉴频器输出电压值的( B ) (A) 4倍, (B) 2倍, (C) 1/2, (D) 1/4。 8.调幅信号()()()V t t t u c c ωcos cos 1Ω+=,则上、下边频分量的功率占总功率的( D )

(A)1/2, (B)2/3, (C)1/6, (D)1/3。 9. 单频调制时,调相波的最大相偏Δφm 正比于 ( A ) (A) ? u Ω(t)?max , (B) u Ω(t), (C) Ω, (D) ? du Ω(t)/dt ?max 。 10. 石英晶体振荡器的主要优点是 ( C ) (A)容易起振 (B)振幅稳定 (C)频率稳定度高 (D)减小谐波分量 二、填空题(共20分): 1. 单调谐放大器经过级联后一般会使电压增益 变大 (1分)、通频带 变窄 (1分)、选择性 变好 (1分)。 2. 正弦波振器的振荡平衡条件是 A(ω0)F(ω0)=1(2 分)和 2A F n ??π+=(0,1,2,n =±±L )(2分)。 3. 振幅解调方法可分为包络检波 (1分)和 同步检波 (1分)两大类。 4. 已知调频信号()63 ()5cos 5102cos 210u t t t ππ??=?-??? (V),若调频灵敏度k f =104Hz/V ,则调制信号u ?(t)= 0.2sin(2??103t) (V) (2分),该调频波的最大频偏为?f m = 2?103 (Hz) (2分)。 5.减少高频功放晶体管Pc 的方法主要有:减少集电极电流的 流通角 (2分)和在集电极 电流流通时 集电极电压 (2分)最小; 6. 已调波信号336()(53cos 210sin 410)cos 410u t t t t πππ=+?-???伏,则该信号为 AM/调幅/幅度 (1分)调制波,其载波频率为 2?106Hz (1分),调制信号为 33(3cos 210sin 410)k t t ππ?-?(1分)。 三、综合题(共70分) 1. 变频器的非线性转移特性为 设cos cos ,Lm L cm c Q v V t V t V ωω=++并且Lm cm V V >>,试求: 1)当Q Lm V V =时,对于(c L ωω-)和(c L ωω-2)的变频跨导;10% 2)当0Q V =时,对于(c L ωω-)的变频跨导。5%

射频功率放大器的建模

射频功率放大器的建模 随着通信技术的发展,射频射频电路在通信系统中得到了广泛的应用。功率放大器的研究和设计一直是通信发展中的重要课题。近年来,基于模糊神经网络的射频器件和电路建模建模的研究取得了巨大的成果,对大规模集成电路和复杂电路的建模有着巨大的启发意义,成为当今研究的热点之一,本文将基于这个理论对射频放大器进行建模和研究。1 建模方法的介绍本文将采用模糊逻辑网络中的一阶Sugeno模型,为了实现Sugeno 模糊推理系统的学习过程,一般将其转化为一个自适应网络,即自适应模糊神经推理系统,。该自适应网络是一个多层前馈网络,它可以分为5层,其中的方形节点需要进行参数学习。下面分别介绍这五层。图1 自适应模糊神经推理系统结构第1层计算输入变量的匹配度,即模糊化过程。假设模糊集采用高斯函数,那么该层输出( Oi表示第j层的第i个输出)为:对y 的计算同理, ci, σ i 分别表示高斯函数的中心和宽度,是模糊规则前提条件中需要调节的参数。第2 层计算当前输入对各条规则的激励强度,采用对规则前件部分各模糊变量的隶属度作乘积运算,即:第3层对激励强度进行归一化:第4层计算每条规则的输出,一条规则的输出是给定输入对该条规则的激励强度与结论部分的乘积:第5层计算模糊系统的输出,总的输出是所有规则输出之和:由此可见这一模糊逻辑系统定义了从x、y 到z 之间的一个映射:通过对模糊规则中各参数的精心选择,可准确地刻画变量之间的关系。用模糊逻辑建模可以把整个建模过程分成两步: 初始模型的建立和模型的后续训练调整。初始模型的建立除了可根据该领域已有的一些经验、知识外,现在还可以根据一组训练样本数据,运用一定的算法确定输入变量与输出变量的模糊集个数与相应的隶属度函数的形状,及一组模糊规则。有了这样一个初始模型后,再用学习算法,如BP算法、DFP算法,来调整隶属度函数中的参数,逐步减小系统的模糊输出值跟实际输出值之间的误差,可取得较好的效果。 2 建模过程在下面的实例中应用ANFIS进行建模的步骤如下:( 1)在ADS中对设计好的功放电路进行仿真,这里分别对输入为单音信号、双音信号以及调制信号的功放电路进行仿真,最终目的是建立一个描述输入输出端口关系的行为模型,故选择输入和输出的电压数据用以训练之用。( 2)编写程序,预设ANFIS中的参数值,确定隶属度函数的类型、模糊规则的条数、迭代次数、模糊集的个数等,建立初始模型,并完成对训练数据的学习;( 3)利用检测样本数据检验所建立的模型; 采用最小二乘法和梯度下降法对模型的参数进行调整。( 4)观察检测结果,若检测误差满足精度要求,建模结束,若不满足,继续调整。本文采用一个三输入单输出的初始模型,输入变量选为Vin ( k ), Vin ( k- 1), Vout ( k- 1)三个输入变量,其中Vin ( k ) 为输入电压,变量Vin ( k - 1 ) 用Vin ( k- 1) = Vin ( k ) - Vin ( k - 1)的差分形式来替换。Vout ( k- 1)为考虑记忆效应而加入的项,即前一刻的输出量。输出变量为一单变量Vou t ( k )。这样可以将整个需建模的电路输入输出的动态关系用式( 7)予以表达:模型采用高斯隶属度函数,模糊规则条数为[ 2 12],共四条,采用平均分割法。 3 应用实例以下是一个基于SM IC 技术设计的射频功率放大器功率放大器,。它的设计指标如下:S11< - 15 dB, S21> 20 dB, P1 dB > 20 dBm,PAE 30% , Pgain > 20 dB。图2电路中选用SM IC 库中的NMOS管,其他元件参数如表1~ 3所示。表1 元件参数单位: pF表2 元件参数单位: nH表3 元件参数单位: kΩ电路工作在2. 45 GHz 下,输入功率为RF_input= - 20 dBm~ 10 dBm(间隔1 dBm)的信号,对电路进行HB仿真,并选取时域下两个周期的抽样输入输出电压抽样数据作为训练数据。检验数据的选取与上述类似,可以选择输入功率RF_input= - 19. 5 dBm~10. 5 dBm (间隔为1 dBm )内的一组或多组信号。建模结果,图3是输入功率为6. 5 dBm和- 6. 5 dBm 时,稳态输出电压的结果。图4是利用输入功率为7. 5 dBm 时模型得到的时域数据,选取一个周期的输出电压数据做FFT 变换,得到电压信号频谱,对基波及二到五次谐波电压分别计算功率谱,并与

射频功率放大器RFPA概述

基本概念 射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。 放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。 射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 分类 根据工作状态的不同,功率放大器分类如下: 传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成 放大器有不同类型,简化之,放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路。

5G时代的射频功率放大器研究报告

5G时代的射频功率放大器研究报告 5G 时代,射频功率放大器需求有望多点开花 投资建议 ?行业策略:射频功率放大器(PA)作为射频前端发射通路的主要器件,通常 用于实现发射通道的射频信号放大。5G 将带动智能移动终端、基站端及 IOT 设备射频PA 稳健增长,智能移动终端射频PA 市场规模将从2017 年的 50 亿美元增长到2023 年的70 亿美元,复合年增长率为7%,高端LTE 功率 放大器市场的增长,尤其是高频和超高频,将弥补2G/3G 市场的萎缩。 GaAs 器件是消费电子3G/4G 应用的主力军,5G 时代仍将延续,此外,物联 网将是其未来应用的蓝海。GaN 器件则以高性能特点目前广泛应用于基站、 雷达、电子战等军工领域,在5G 时代需求将迎来爆发式增长。5G 时代,射 频功率放大器需求有望多点开花,建议买入行业龙头。 推荐组合:我们认为,随着5G 进程的加快,5G 基站、智能移动终端及IOT 终端射频PA 将迎来发展良机,使用量大幅增加,看好细分行业龙头,推荐: CREE 、Skyworks、稳懋、三安光电、环旭电子,建议关注:海特高新 (海威华芯)、旋极信息(拟收购安谱隆)。 行业观点 ?5G 推动手机射频PA 量价齐升:4G 时代,智能手机一般采取1 发射2 接收 架构,预测5G 时代,智能手机将采用2 发射4 接收方案,未来有望演进为 8 接收方案。功率放大器(PA)是一部手机最关键的器件之一,它直接决定 了手机无线通信的距离、信号质量,甚至待机时间,是整个射频系统中除基 带外最重要的部分。手机里面PA 的数量随着2G、3G、4G、5G 逐渐增加。 以PA 模组为例,4G 多模多频手机所需的PA 芯片为5-7 颗,预测5G 手机内 的PA 芯片将达到16 颗之多,价值量超过7.5 美元。5G 智能终端射频前端 SIP 将是大势所趋,高通已发布5G 第二代射频前端模组,MEMS 预测,到 2023 年,用于蜂窝和连接的射频前端SiP 市场将分别占SiP 市场总量的82% 和18%。按蜂窝通信标准,支持5G(sub-6GHz 和毫米波)的前端模组将占 到2023 年RF SiP 市场总量的28%。高端智能手机将贡献射频前端模组SiP 组装市场的43%,其次是低端智能手机(35%)和奢华智能手机(13%)。 ?5G 基站,PA 数倍增长,GaN 大有可为:4G 基站采用4T4R 方案,按照三 个扇区,对应的射频PA 需求量为12 个,5G 基站,预计64T64R 将成为主流 方案,对应的PA 需求量高达192 个,PA 数量将大幅增长。目前基站用功率 放大器主要为LDMOS 技术,但是LDMOS 技术适用于低频段,在高频应用 领域存在局限性。我们研判5G 基站GaN 射频PA 将成为主流技术,逐渐侵 占LDMOS 的市场,GaAs 器件份额变化不大。GaN 能较好的适用于大规模 MIMO,预计2022 年,4G/ 5G 基础设施用RF 半导体的市场规模将达到16 亿美元,其中,MIMO PA 年复合增长率将达到135%,射频前端模块的年复 合增长率将达到119%。 ?5G 时代,窄带物联网设备射频前端迎来发展新机遇:在手机市场追求更快 更强的同时,有另外一个市场就是窄带物联网(Cat-M /NB-IoT),NB-IoT 虽 然有要求和LTE 相同的上行功率(power class3),但是信号的峰均比较低。另 外,NB-IoT 采用半双工方式工作,避免使用FDD 双工器,PA 后端的插入损 耗小。这些因素可以让NB-IoT 的PA 更加偏向于非线性的设计,同时采用更 小的Die 设计,从而达到节省成本和提高效率的目的。对于NB-IoT PA 来 讲,超宽带、低电压、极端温度和低成本是重点要考虑的方向。 风险提示 ?智能手机及基站射频PA 被国际巨头垄断,技术难度较大,国内进展缓慢, 合格率较低,成本居高不下,射频PA 需要持续性投入。

射频功率放大器实时检测的实现

射频功率放大器实时检测的实现 广播电视发射机是一个综合的电子系统,它不仅包括无线发射视音频通道,而且还包括通道的检测和自动控制电路,因此在设计时,它除了必须保证无线通道的技术指标处于正常范围外,还必须设计先进的取样检测和保护报警等电路,以确保发射机工作正常,从而实现发射机在线自动监测和控制。近年来,随着大功率全固态电视发射机多路功率合成技术的发展,越来越多的厂家采用模块化结构设计,因此单个功率放大器模块是整个发射机的基本测单元,本文就着重讨论单个模块的检测和控制电路,从而实现发射机在线状态自动监测。 一、工作原理 在功放模块中,主要检测和控制参数为电源电压,各放大管的工作电流,输出功率,反射功率,过温度和过激励保护等,图1为实现上述检测控制功能的方框图,它由取样放大电路,V/F变换,隔离电路,F/V变换,A/D转换,AT89C51,显示电路和输出保护电路等组成。 1、隔离电路 在功放模块中,由于大功率器件的应用,往往单个模块的输出功率都比较大,因而对小信号存在较大的高频干扰,如处理不好,就会影响后级模数转换电路工作,从而导致检测数据不准确,显示数据跳动的现象,甚至出现误动作。这里采用光电耦合器进行隔离,由于光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强、无触点且输入与输出在电气上完全隔离等特点,从而将模拟电路和数字电路完全隔离,保障系统在高电压、大功率辐射环境下安全可靠地工作。 2、LM331频率电压转换器

V/F变换和F/V变换采用集成块LM331,LM331是美国NS公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器用。LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。同时它动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01%,工作频率低到0.1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。 图2是由LM331组成的电压频率变换电路,LM331内部由输入比较器、定时比较器、R-S触发器、输出驱动、复零晶体管、能隙基准电路和电流开关等部分组成。输出驱动管采用集电极开路形式,因而可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,以适配TTL、DTL和CMOS等不同的逻辑电路。 当输入端Vi+输入一正电压时,输入比较器输出高电平,使R-S触发器置位,输出高电平,输出驱动管导通,输出端f0为逻辑低电平,同时电源Vcc也通过电阻R2对电容C2充电。当电容C2两端充电电压大于Vcc的2/3时,定时比较器输出一高电平,使R-S触发器复位,输出低电平,输出驱动管截止,输出端f0为逻辑高电平,同时,复零晶体管导通,电容C2通过复零晶体管迅速放电;电子开关使电容C3对电阻R3放电。当电容C3放电电压等于输入电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,如此反复循环,构成自激振荡。输出脉冲频率f0与输入电压Vi成正比,从而实现了电压-频率变换。其输入电压和输出频率的关系为:fo=(Vin×R4)/(2.09×R3×R2×C2) 由式知电阻R2、R3、R4、和C2直接影响转换结果f0,因此对元件的精度要有一定的要求,可根据转换精度适当选择。电阻R1和电容C1组成低通滤波器,可减少输入电压中的干扰脉冲,有利于提高转换精度。 同样,由LM331也可构成频率-电压转换电路。

CMOS射频功率放大器高效率和高线性度研究进展

CMOS射频功率放大器高效率和高线性度研究进展 摘要: CMOS工艺价格低廉且兼容基带工艺,是单片集成电路的理想材料。根据现代无线通信系统所采用的调制方式对功率放大器的性能要求,重点介绍了功率放大器的效率和线性增强技术,比较了相应技术间的优点和缺点,最后阐述包络放大器的发展趋势及其在LTE(4G)的应用。 关键词:功率放大器;效率;线性度;LTE;CMOS;包络跟综 0 引言 目前,全球应用于智能手机等便携性移动设备的移动网络急速发展和扩张,且多功能智能手机应用愈加广泛,为满足用户实时通信的用户体验,应用于智能手机的通信系统应该能够更加有效地处理文字、声音和视频数据并实现全球漫游。为了提供高数据速率的大数据传输,现代通信系统(WCDMA/3G/4G/LTE)采用了更加复杂的高频谱效率的调制方式,如OFDM 或QPSK和QAM等相移键控和幅移键控相结合的调制方式。为满足不同用户的使用需求,智能手机一般都支持两种或者两种以上网络制式,而随着手机的工作制式不同,其有效的频率带宽不同,因此,作为通信模组之一的功率放大器(PA)应具备多频多模(Multi-band and Multi-mode)的能力。 作为3GPP(3rd Generation Partnership Project)的演进路线中的主流技术,LTE-Advanced将是2015年的主流通信方式。LTE的关键技术有多载波和多天线技术,其中多载波技术采用正交频分复用(OFDM)的调制方式,使各个子载波重叠排列,大大提高频谱效率的同时保持了载波之间的正交性,以避免载波之间的干扰。不过,LTE信号在给定的受限的带宽内,有着非常高的峰均比(PAPR),这使PA常工作在功率回退区,造成PA的实际效率低下的现象。另外,为了线性放大LTE这类非常包络信号(non-constant envelope signal),要求PA有着较高的线性度(Linearity),因此,应用于新一代通信系统的功率放大器,必须有着较高的功率效率和线性度,且有着较宽的工作带宽或者是满足多频多模的通信要求。 随着便携设备的功能模块越来越复杂,将各个模块单片集成起来,将大大缩短设备制造商的加工时间,因此,如何减小芯片的有效面积和用廉价的工艺在单一芯片上实现整个射频模组将是未来的研究主流。现代比较流行的集成电路工艺主要有六种:硅CMOS、BICMOS、Bipolar、GaAs、HBT和SiGe,但由于硅工艺是最为成熟的,也是成本最低、集成度高和应用最广泛的集成工艺,另外,大多数无线收发机的基带处理部分都使用硅工艺,因此,硅CMOS 工艺是单片实现各个模块集成的理想解决方案。不过CMOS工艺自身存在着物理缺陷,如低截止电压(breakdown voltage)、较差的电流能动能力、片上无源器件的Q值小、较大的寄生电容、地衬底电阻率较低、没有较为精确的RF模型和较差的线性度等,这些缺陷都大大限制了CMOS在RFIC领域的应用,而且通信系统对高效率、高线性度和可实现性有着很高的要求,所以目前PA制造商还是常使用价格比较昂贵的III-V类混合硅半导体工艺器件(Compound Semiconductor Device)[1-4],这些器件通过TWV(Through-Wafer-via)技术提供一个具有良好散热效率的理想环境,常用于Bluetooth、WLAN和GSM/GPRS等应用[5]。不过,CMOS工艺的物理缺陷可以通过一系列技术来缓解,在高供电电压的情况下,可以选择HV CMOS和BCD(Bipolar-CMOS-DMOS)工艺[6]。采用下行键合线(Down-bonding Wires)可以实现在给定的负载下得到较高的输出功率,这种方法的缺点是会减小电压摆幅,不过可以通过引入差分结构克服这个缺点。解决CMOS工艺低截止电压的一个很好的技术是引入共源共栅的Cascode 结构,不过这种结构会使等效的knee电压增加,所以也会在一定程度上减小电压摆幅。CMOS 的寄生电容和衬底较低的电阻率,使得在晶体管引脚间的信号存在着耦合,不过这种耦合影响也不全是消极的,通过利用在Cascode结构中的共栅(CG)晶体管的RF泄露信号(Leakage signals)提供一个负反馈,不仅可以增强线性度,而且可以减小栅极和漏极间的电压耦合,

浅议射频功率放大器的研究

浅议射频功率放大器的研究 随着现代通信技术的发展,发送设备系统在现代通信系统中地位十分突出,同时对于发送设备系统中射频功率放大器是极为重要的部件,因此加强对射频功率放大器的研究对于提高其综合性能以及融合现代通信技术都十分重要。研究射频功率放大器就要从最基本的概念、类别划分以及主要技术指标开始。文章主要對射频功率放大器的基本概念、射频功率放大器的分类以及射频功率放大器的主要技术指标做了简单阐述,可以对研究射频功率放大器的单位及科研人员提供一些借鉴。 标签:射频放大器;基本概念;类别;技术指标 前言 在发送设备系统中射频功率放大器是极为重要的组成器件,其主要是针对输出功率、功耗、效率、激励电平、失真以及尺寸和重量等相关因素做出综合考虑的一种电子电路。输出功率以及效率是衡量射频功率放大器的主要指标,在此基础上对于输出的谐波分量要尽可能的小,进而避免产生对其他频道的干扰。此外射频功率放大器在发射系统的应用中,其输出功率范围一般较大,可以从mW 到kW之间。因此对射频功率放大器进行研究,并实现射频大功率输出,把握关键环节,实现高效的能量传输,对于发送系统意义十分重大。 1 射频功率放大器的分类 由于射频功率放大器频带相对于较窄工作频率较高,因此其负载回路一般均采用选频网络。对于射频功率放大器的分类可以按照电流导通角进行分类,当其放大器的电流导通角为360°时,将该种射频功率放大器成为甲类工作状态也可成为A类,该类放大器适合于将低功率小信号进行放大;当其放大器的电流导通角为180°时将该种射频功率放大器成为乙类工作状态也可成为B类,该类放大器适合于大功率工作状态;当其放大器的电流导通角小于180°时我们将该种射频功率放大器成为丙类工作状态也可成为C类,该类放大器与乙类相同,均适合于大功率工作状态,只不过丙类工作状态的效率和输出状态相对更大。因此大多数射频功率放大器都工作在丙类状态,但由于丙类工作状态的放大器有一明显的缺点就是能够使得电流波形过大失真,因此为了避免过度失真,一般采用调谐回路将负载谐振功率放大,这是因为调谐回路具备滤波功能,进而使得电流波形接近于正弦状态,进而最大程度减小失真。除此之外为了得到更大的功率放大以及效率,还有丁类工作状态放大器以及戊类工作状态放大器,按照英文也可成为D类和E类。 2 射频功率放大器的主要技术指标 2.1 输出功率

音频功率放大器的设计与实现

模拟电子电路实验课程设计 ——音频功率放大器的设计与实现 一、设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8 。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 二、设计要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; (5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 根据以上设计要求编写设计报告,写出设计的全过程,附上有关资料和图纸。设计报告格式请参见附录一。 三、实验原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于

对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1.前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要求是要有足够宽的频带,以保证音频信号进行不失真的放大。 常用的前置放大器按结构划分有五种类型: (1)单管前置放大器 (2)双管阻容耦合前置放大器

相关文档
最新文档