光纤水听器原理与应用综述(1)

光纤水听器原理与应用综述(1)
光纤水听器原理与应用综述(1)

光纤水听器原理与发展现状

袁虎邓华秋

(华南理工大学物理系广州510640)

摘要光纤水听器由于其特有的抗电磁干扰、体积小等特点,在军事、民用方面有着广泛应用。本文简介了光纤水听器的基本原理,并分别对强度调制型、干涉型和光栅型光纤水听器进行了简单的介绍。在现在的光纤水听器的应用中,点式的传感已不能满足现在的大规模集成化要求,因此分布式光纤水听器也是近期的研究热点。文中介绍了两种分布式光纤水听器的技术方案,分别是OTDR和FMCW技术。与此同时由于光纤激光器的发展,其良好的单色性和稳定性可以用于优良的光源,把它用到干涉型光纤水听器中可以极大程度的提高光纤水听器的性能。

关键词:光纤水听器;FMCW;光纤激光器

1.光纤水听器简介

声波作为一种机械波,可以在海水中进行远程能量传递,而其他类型的能量场在水中衰减很快,因此,声波是海洋深层信息收集、传递和处理的最重要形式[1]。水声传感器简称水听器,是在水中侦听声场信号的仪器。它作为反潜声纳的核心部件,在军事领域中有着重要的应用;在工业生产和民用领域,也有着广泛的用途,如用于海洋石油和天然气的勘探、地震预测、水声物理研究、海洋气候以及渔业等众多方面。

早期的水听器主要有压电陶瓷制成的压电水听器。但随着应用的深入,基于压电陶瓷传感元件的水听器出现了许多不足之处。如对电磁场的敏感性,电缆负载、连接电缆的共振效应,同时利用压电陶瓷进行点传感的技术难度和成本也十分困难。正是由于传统压电式水听器存在这些问题,随着光纤和激光技术的发展,人们研制出了一种基于光纤光电子技术的新型水听器-光纤水听器。它的研究始于冷战时期,由于反潜战的需要,美国海军开始了光纤水听器的研究。[2,3]1977年布卡诺等人发表首篇关于光纤技术的水声传感系统的论文[4]。

光纤水听器由于传感头部分不用使用电,而是通过光来传输信号,所以具有抗电磁干扰、电绝缘、动态范围宽、稳定可靠性高、灵敏度不受水流静压力和频率的影响、可以进行远距离测量、探头体积小、方便构成大规模阵列等众多优点。所以,光纤水听器的研究越来越受到各国的重视[4]。

2.光纤水听器原理

光纤水听器是复杂的光、机、电一体化传感器,现在已经开发出多种不同的光纤水听器,主要分为:强度调制型、干涉型和光栅型三种。下面分别介绍它们的简单原理。

2.1 强度调制型光纤水听器

强度调制型光纤水听器,就是指外界信号对光纤中传输的光进行强度调制,这样我们就可以通过监测光强的变化来解调出外界信号。基于这个原理,可以用不同的形式予以实现。主要包括三种:基于微弯损耗原理的光纤水听器,基于反射系数调制的光纤水听器,基于耦合效率调制的光纤水听器。

2.1.1 基于微弯损耗原理的光纤水听器

当光纤发生弯曲时,由于其全反射条件被破坏,纤芯中传播的某些模式的光进入包层,造成纤芯中的光能损耗。

图1 基于螺旋变形器的微弯型光纤水听器

图1是基于螺旋变形器的微弯型光纤水听器[6]。先用金属丝线以一定的螺距螺旋方式缠绕在光纤上,然后光纤再以螺旋方式缠绕在倒置的锥体外表面,并与相应锥形外套相配合。当水声压力作用在倒置的锥体和外套上时,中间的光纤产生弯曲损耗,实现水声检测[4,5]。

2.1.2 基于耦合效率调制的光纤水听器

这种水听器是将两根相互平行、同轴放置的光纤彼此相隔一段距离,其中一根光纤是固定的,另一根可以随外界声压引起的机械位移的作用而发生移动。使得两根光纤彼

此相错,而导致两根光纤之间耦合效率的变化[7],如图2。

输出光纤

图2 基于耦合效率调制的光纤水听器[7]

2.1.3 基于反射系数调制的光纤水听器

这种水听器是在声压的作用下,光纤端面处的光反射系数的改变而实现对水声信号的检测。图3中所给出的是Wurster等人研制的基于反射系数调制的光纤水听器实验系统[8]。声压的上升会使得端面周围的液体压缩,而石英玻璃的可压缩性很低,可以被忽

略,从而导致端面的折射率上升。由菲涅尔方程

可以得到端面折射系数的改变量为[8]

20,20,22)

()()]([)]([)(ωωωωρn n n n p n n p n n R c c c c +--+-=? (1) 其中,c n 为光纤纤芯的折射率,)(p n ω为在声压为p 下的液体折射率。0,ωn 为无声压作用下的液体折射率[8]。

相比于其他类型的光纤水听器,强度调制型光纤水听器的结构简单,系统中元件少,并且不需要对信号进行解调就可以直接得到有用的信息,信号处理十分简单。但同时正是由于强度调制型光纤水听器是基于强度的变化来进行传感,因此外界的干扰,如光源的波动等,很容易引起强度的干扰,从而造成该类光纤水听器抗干扰性差,精度也较低,并且也对这类传感器探头的加工与制作提出了更高的要求。

2.2 干涉型光纤水听器

干涉型光纤水听器顾名思义就是基于光纤干涉仪原理而制作而成的光纤水听器。光纤水听器所探测的信号为水下目标发出或反射的声波,而水下声场的变化引起水压的变化,光纤水听器通过感应水压的变化来拾取水声信号。水声压对水听器的调制主要表现在两方面,一个是声波压力引起光纤轴向长度的变化导致的光相位变化;另一方面是光纤纤芯受声波压力作用时,由光弹效应产生应力双折射引起受力部分的折射率变化,同时纤芯受力时直径发生变化导致波导归一化频率发生变化,这两个因素都会引起光纤传播常数变化,最终导致光相位发生变化。常见的干涉型光纤水听器可以分为:Michelson 光纤干涉仪、Mach-Zahnder 光纤干涉仪型、Fabry-Perot 光纤干涉仪型和Sagnac 光纤干涉仪型[9]。

电声换能器

反射镜

(1) Michelson

(2) Mach-Zehnder (4) Fabry-Perot 传感器高反射率反射镜

图4 干涉型光纤水听器[9]

图4(1)为Michelson 型光纤干涉仪。由激光器发出的激光经3dB 光纤耦合器分为两路,一路构成光纤干涉仪的传感臂,接受声波的调制,另一路则构成参考臂,提供参考相位,两束波经两臂末端的反射膜反射后返回光纤耦合器,发生干涉,干涉的光信号经光电探测器转换为电信号,经过信号处理就可以拾取声波的信息。这种结构的优点是参考臂和传感臂处于同一环境中,因此受到的环境干扰较小,同时属于单端操作,但必须保证进入两臂的光强相等。

图4(2)是基于Mach-Zehender 型光纤干涉仪。激光经3dB 光纤耦合器分为两路,分别经过传感臂与参考臂,由另一个耦合器合束发生干涉,经光电探测器转换后拾取声信号。这种结构的特点是灵敏度较高,并且激光光源和光探测器不在同一侧,避免了返回光对光源的影响。它的缺点是结构相对复杂,安装复杂 。并且需要一参考臂,而一般情况下它不和测量光纤安装在同一位置[10],这就使得输入输出臂不对称,从而导致测量的不稳定。

图4(3)是基于Sagnac 干涉仪的光纤水听器。激光器发出的光经耦合器分为两束,当光纤环中的信号臂受外界场的扰动时对称性被破坏,两束光在耦合器重新合路时发生干涉,解调该信号即可恢复出声信号。两束光在光电转换器处的干涉信号为[11]

]))(sin cos(1[0ψω++Φ+=t S t I I m m (2)

其中,t m m ωsin Φ是PZT 相位调制器产生的高频相位载波信号;m Φ是高频载波引起的相位振幅;m ω是载波的角频率;ψ为干涉信号初始相位;S(t)为由于管道中流体泄漏导致干涉仪中的两束光相位被调制而产生的相位差,是时变信号[11]。

图4(4)是基于法布里-珀罗干涉原理的光纤水听器[12]。它的传感部分是由一块固定的高反镜和一块可移动的高反镜组成,两者相互平行,且这两块高返镜的反射系数一般都大于90%[13]。这种光纤水听器的原理是激光器输出的大部分光将朝着激光器反射回来,余下的光透过高反镜进入干涉仪的谐振腔内。当这部分透射光到达右面的高反镜时,它

的大部分光又将朝着左面的平面镜反射回来,而再次余下的光将透过右面的高反镜入射到光探测器。这部分光将与在两面高反镜之间接连多次往返反射的光合并。所以入射到光探测器中的光是各种光干涉的结果,当可移动的高反镜受到声场作用后,谐振腔腔长就会发生变化,从而引起反射光之间的相位差变化,通过解调该信号就可以恢复出声信号。这种光纤水听器结构的特点是采用单根光纤利用多束光干涉来检测由声压引起的应变。它避免了前两种传感器需两根光纤配对的问题,并且可以把体积做得较小,容易实现阵列拖拽,而且比Michelson 干涉型光纤水听器更适合于低频水声信号测量。它的缺点是制作工艺难度较大,尤其是光纤端面反射镜的加工。

2.3 光栅型光纤水听器

在新型光纤水听器中,以光纤FBG 或光纤光栅激光器作为传感元件水听器的研制也已开始。大量研究工作表明,采用FBG 研制的水听器相对于干涉型水听器,具有如下优点: FBG 水听器是波长检测型器件,波长在传输过程中是基本不变的,水听器的可靠性和稳定性更容易得到保证; FBG 本身或光纤光栅激光器本身尺寸小,很容易做成点式水听器来使用;基于波分复用技术(WDM)更容

易组成水听器阵列;通过FBG 水听器探头结构增敏,并配以高分辨率波长检测技术,特别是采用光纤光栅激光器这种信噪比极高的波长选择性器件可以达到极高的灵敏度。所以,FBG 水听器或光纤光栅激光器有比干涉型水听器更为优越的性能,是光纤水听器的一个重要发展方向[14-21]。

FBG 水听器或光纤光栅激光水听器的研究主要集中在:探头技术、关键光纤器件制作技术以及高分辨率FBG 波长检测技术。其中由于外界声场导致的光栅中心波长漂移量很小,因此如何提高光纤光栅型光纤水听器的灵敏度是近几年的研究热点。

2.3.1 光栅型光纤水听器调制原理

光纤光栅的布拉格中心波长是由纤芯折射率和栅格周期所决定的。其反射中心波长可由下式确定[4]:

Λ=eff B n 2λ (3) 当光栅周围的温度或应力发生变化时,将导致光栅距周期及纤芯折射率的变化,从而使光纤布拉格光栅中心波长发生移动,如下式所示[4]:

?Λ+Λ?=?eff eff B n n 22λ (4)

当外界声压作用于光纤光栅时,会使光纤光栅发生微小的形变。这种形变,会引起光纤光栅的栅格周期或折射率分布发生变化,从而使其反射谱或透射谱的中心波长发生移动。因而经过光纤光栅透射或反射的光就携带了外界压力的变化信息,也就是被外界压力所调制。

图5 光纤光栅水听器原理[18]

当光纤光栅用作水听器传感时,设光纤光栅的反射函数为)(λR ,则光通过光纤光栅反射后的光强为)(λR P P in r =。如果声压作用在光纤光栅上,光纤会因为本身的弹性而产生物理性的伸长或压缩,从而反射率也由于光纤弹光效应而产生变化。这两个物理效应使得光纤光栅反射布拉格波长移动。由于声压作用造成的布拉格反射波长移动通常很小,因此可认为其与施加的声压成比例。设声压的表达式为:

t p p A A ωsin = (5)

式中A p 和A ω分别是声压的幅度和角频率。此声压作用于光纤光栅上,将影响光纤光栅的反射光中心波长产生相应的变化,如下式:

t p P

R R R A A p ωλλsin )()(0??+== (6) 对于波长解调系统来说,其输出光强应当是光纤光栅中心波长的函数。即当光纤光栅反射中心波长发生移动时,其输出光强也应发生相应的变化。由于水听器传感光纤光栅反射中心波长的移动很小,因此,我们认为波长解调系统的输出光强的变化与光纤光栅反射中心波长的移动是呈线性关系的。则有:

)(λR P P in r = (7)

式中in P 是入射进传感光纤光栅的光强值,因此最后可以得到:

t p P

R P R P P A A in p in r ωλsin )(0??+== (8) 从上式我们可以看到波长解调系统的输出光强的交流部分和作用在传感光纤光栅上的声压成比例[18]。

2.3.2 FBG 光栅型光纤水听器信号解调方案

裸光纤光栅对压力的灵敏程度很低,在70MPa 的高压下,裸光纤光栅的压力灵敏度系数仅为0.007nm/MPa ,因此很难直接通过观察FBG 波长变化来检测微弱的水下信号,必须采用灵敏度很高的解调方法。可以通过不同方法提取出变化微弱的光信号,从而实现对水下FBG 所处的微弱声场的检测。这些解调方法包括:光强调制法、FBG 增敏法、

光纤光栅对匹配法和光纤光栅激光器法(DFB 或DBR 型光纤激光器)[18,19]。

2.3.2.1. 光强调制法

图6 激光光强调制法FBG 水听器系统结构

激光光强调制法的系统结构如上图所示。将FBG 悬于蒸馏水中,水池四壁采用消声材料,最大限度吸收多余声波,减少反射声场对FBG 的影响。水池底部放置水声换能器,将音频信号放大输出。由于声波是纵波,这样放置可以进一步减小水池四壁反射的影响。LD 激光光源将入射光注入到FBG 内,透射光谱经光电二极管转换并放大后,由频谱分析仪进行分析获得声压信号[19]。

光纤Bragg 光栅的带宽通常比较窄。在其带宽范围内,将入射激光波长调到FBG 中心波长两侧光谱斜率较大处,则光谱的微小漂移就可以引起投射光强较大的变化。由于在附近光谱随波长的变化近似为线性,相应的也与FBG 所受声压成正比。通过检测FBG 的透射光谱,就可以实现对水下声压的监控[19]。

2.3.2.2 FBG 增敏法

对FBG 进行声增敏聚合物的封装,将弹性聚合物材料与FBG 紧密结合,可以增大FBG 的灵敏度,使波长漂移更加明显。在厚壁刚性金属外套圆筒内壁将声敏感聚合物固化,将光纤光栅置于圆筒轴线上,并固定于声敏感聚合物中。这样只有开口方向的声波压力才能对声敏聚合物弹性体产生轴向应力,其他方向的压力都会被金属套筒屏蔽掉。文献表明,这种增敏方法可以使FBG 探头的压力灵敏度比裸光纤时增大2471倍。在静态压力P 的作用下,封装于声增敏聚合物中的FBG 的波长变化可表示为[22]

?

?????++-=?])[(21212112z r e B z B B P P P n εελελλ (9)

式中r z εε、分别为光栅的轴向和径向应变。

除了聚合物金属圆筒封装法,还可以采用膜片法对FBG 增敏。将FBG 固定于金属或聚合物弹性膜片上。当水声换能器发出声信号时,声信号在水中传播到膜片使膜片发生较明显的形变,膜片的形变产生应力使FBG 发生纵向形变后,导致FBG 的反射波长

发生较明显的改变。通过检测光栅反射波长的变化,同样可以方便的获得相应的水声信号。

2.3.2.3 光纤光栅对匹配法

图7 光纤光栅对匹配法水听器系统结构

在光纤光栅对匹配法水听器系统中,FBG1和FBG2为匹配光纤光栅对。所谓匹配光纤光栅对,就是指这两个光纤光栅的性能参数都接近。宽带光源发出的光经FBG1投射后,被置于水中的FBG2反射,然后耦合并经光电转换输出到频谱分析仪。这里光电接收管所接受的光功率实际上是FBG2的反射谱和FBG1的透射谱在频域上的卷积[23,24],可以表示为:

???????????+?+-??+??-?=])(2ln 4exp[12ln 2222121222112210B B B B B B B B B B D R R I P λλλλλλλλπ

α (10) 式中,1B R 、2B R 分别为FBG1和FBG2的峰值反射率,1B λ、2B λ分别为FBG1和FBG2的中心波长,1B λ?、2B λ?分别为FBG1和FBG2的3dB 带宽。α为经过耦合器的光能利用率。由文献[24]的分析可知,系统的波长检测分辨率主要取决于输出光功率谱曲线的波长测量灵敏度λ

d dP D 和测量系统的最小可探测功率D P δ,用公式可以表示为 λδδλd dP P D D

/= (11)

式中最小可探测功率D P δ的定义为信噪比为1时,系统可接收的功率,主要由光电探测器的响应度、暗电流及接收电路的特性决定。

当FBG2在水中受到声压作用反射谱发生漂移时,透过FBG1的光功率就会发生较为明显的变化,进而在频谱分析仪上反应出来。这种方法采用宽带光源,对FBG 光谱形状的要求比激光光强调制法更低一些,更便于实现。

2.3.2.4 光栅光纤激光器法

光纤光栅激光器法是指采用FBG构成DBR( distributed Bragg reflector)或DFB(distributed feedback)两种光纤光栅激光器,通过检测在声压作用下,光纤光栅激光器输出的正交模式构成的拍频以及边带的幅度和频率,同样可以构成反映水下声场的分布。资料表明,由光纤光栅激光器制作的水听器在1kHz时灵敏度可达到-69dB/Pa。与前而二种方法相比,光栅光纤激光器法的原理和结构更复杂.解调难度也大一些[24]。

3 分布传感式光纤水听器

目前大多数光纤传感都是“点式传感”,测量范围均局限在一些离散的区域,一般都要增加很多传感单元来扩展它的测量范围。成本、复杂性及其脆弱性均限制了这种传感技术的广泛应用,而能够覆盖整个光纤长度的可连续传感的“分布式传感技术”自然受到了更大的重视和青睐。

绝大多数分布式传感器都是基于光时域反射(OTDR),系统的基本原理就是探测、分析反射回来的短脉冲光,但通常都无法解决动态距离和空间精度之间的矛盾。削短耦合进光纤中的光脉冲以及加宽测量带宽都能够提高空间精度,但也会同时增加信号噪声和降低测量的距离[25]。

实际应用证明,一种最可行代替OTDR的分布式传感技术就是雷达应用中的相干调频连续被技术(Frequency Modulated Continuous Wave, FMCW)。它的基本原理是激光器围绕激光的中心频率不断调制,通过耦合一部分光进入一个参考臂起到本机振荡器的作用,另一根长距离的光纤起着传感单元的作用。从传感部位反射回来的光信号与来自本机振荡器上的光一起干涉产生一个拍频,来自远处的传感信息就可以在光谱分析仪上测量光电流的拍频可以解读,这种相干探测能够容易地区的-100dB的灵敏度。同时,光电流的拍频信号与返回来的激光功率和本级振动光束的平方根成正比,本机振动光还有利于放大探测信号。总的来说FMCW技术可以总结为2个部分: 1.载波信号的产生; 2. 信号的解调。

与OTDR技术比较,FMCW的主要优势在于其卓越的稳定性,它能够在几公里的测量距离上达到毫米量级的空间精度,然而该技术是建立在激光具有很长的相干距离以及它的频率能够成线性连续调制。这种分布式传感系统能够在广阔的被测区域内实现极高的测量精度,而这是一般光纤传感技术所无法达到的要求。该系统中最关键的设备是激光器。光纤激光器具有线宽窄、相干距离长、稳定性高、输出功率大以及可调谐范围光等特点,因此它不仅自身可以作为传感器,而且也可以作为优质的传感器光源。目前主要有DBR和DFB光纤激光器。对于传统的DBR激光器通过放大后可以实现较大的输出功率,但是作为提高功率代价的是它的线宽达到了200~500kHz;相反的,传统的DFB 可以实现较窄的线宽,但输出功率却只能达到几毫瓦。因此研制同时兼有窄线宽和高输

出功率的光纤激光器成为解决这个矛盾的最佳方法,而现有技术条件下的光纤激光器正好可以解决这个问题。目前研制出来的具有较好性能的光纤激光器,是采用高浓度的铒/镱共掺光纤作为增益介质,线宽可窄至几kHz,频率稳定性达到MHz级,热调谐范围可达GHz,连续线性PZT调制范围可达100MHz,直接输出功率也可实现几百mW。这种激光器由于线宽窄,传感的长度也可实现几十公里,大大增加了传感距离[25]。

4 光纤水听器研究进展[26-42]

4.1国内研究进展

我国的光纤水听器研究已取得较大的进展,在若干技术指标上已达到目前国际水平,但是主要处于理论和实验室的层次,实用化、工程化的水听器还未见报道。代表性的工作有:浙江大学1997年申请了国家自然科学基金研制了马赫-泽德干涉仪型的PGC单元光纤水声传感器,在国家一级测量站取得了较好的测试结果,其灵敏度在630Hz时达到了-134dB。1998年上海交通大学研制的干涉型单元水听器,其水声灵敏度为-160dB,加速度灵敏度为-40dB。还有中国船舶总公司进行的单位光纤水听器的“八五”国防预研项目研究,中科院及信息产业部的一些研究所和哈尔滨工程大学、国防科技大学等单位也都正在开展相关研究工作。

在传感理论研究方面,以一些大学和中科院等研究单位等为代表,在光纤的光敏性、成栅机理、光波传输规律等方面进行了深入研究,在光纤光栅传感的关键技术方面侧重于光纤光栅的温度、应变、扭矩等参量的区分测量研究,另外一些大学侧重于传感器的封装和埋覆研究;重庆大学侧重于光纤光栅(主要是长周期光纤光栅)传感的应用研究;清华大学、北京品傲公司在光纤光栅解调方面取得了显著的成绩。在实际工程应用方面,哈尔滨工业大学、香港理工大学、上海紫栅公司已完成将光纤光栅传感系统用于呼兰河、卢浦等桥梁的结构检测;清华大学、武汉理工大学、西安石油大学、中山大学等开展了将光纤光栅用于压力、温度、液体、电流等参量的测量工作。

4.2国外研究进展

正是由于光纤水听器在军事领域的广泛领域美国海军1986~1990年财政年度用于反潜战光纤技术的预算达8000万美元,其中大部分用在光纤水听器的研究开发上。二十世纪80年代末到90年代初,美国国防部把光纤海底监视系统作为22项关键技术之一。1988年6月,美国海军研究实验室制定了潜艇用“光纤水听器系统标准”。1990年6月美国海军研制了两个基于心轴型的迈克尔逊干涉仪结构的水听器,一个光纤船体穿透器和光电子子系统,装在668级攻击潜艇上,水听器的工作带宽在64Hz~50kHz范围内。

由于光纤水听器几何形状的适应性,所以不仅可制成很长的线性传感器,而且还可制

成均匀紧贴舰体的共形传感器。近年来,美国海军研究实验室把主攻方向集中在三个方面:(1)中频工作的声透明薄形大面积水听器和高频、小面积平面水听器;(2)用于海底水声监测的宽带(1~50kHz),高灵敏度,且能工作在浅海和深海的光纤水听器;(3)用于声纳浮标标阵列的廉价光纤水听器。与此同时,北大西洋公约组织下属的欧洲计划小组最近批准一项生产研究计划,要求英、法、荷所属重点水域使用光纤水听器,加拿大国防部已将光纤水听器用于北极监视和海下监视系统的建议列入预先研究计划[26-42]。

5 结论

光纤水听器由于其特有的抗电磁干扰、体积小等特点,在军事、民用方面有着广泛应用。本文简介了光纤水听器的基本原理,并分别对强度调制型、干涉型和光栅型光纤水听器进行了简单的介绍。强度型光纤水听器的结构和原理相对简单,但是强度调制型光纤水听器容易受到外界的干扰,特别是光源波动的干扰。干涉型光纤水听器是基于光纤干涉仪原理的一种水听器,拥有较高的测量精度。干涉型光纤水听器主要有四种结构:M-Z型、Michelson型、F-P型和Sagnac型。其中Michelson和M-Z型光纤水听器的使用较为广泛。光栅型光纤水听器是一种近年来的研究热点,由于其具有稳定性高、复用性高等特点而受到广泛的关注,它是利用光栅对外界干扰所导致的反射中心波长的移动来进行传感。但是光栅型光纤水听器由于其灵敏度低,因此提高探测灵敏度成为了一项关键的技术,同时也需要采用更为优化的信号处理和解调方法来提出去微弱信号。文中简介了四种解调方案:光强调制法、FBG增敏法、光纤光栅对匹配法和光纤激光器法。

在现在的光纤水听器的应用中,点式的传感已不能满足现在的大规模集成化要求,因此分布式光纤水听器也是近期的研究热点。文中介绍了对比介绍了两种分布式光纤水听器的技术方案,分别是OTDR和FMCW技术。其中FMCW由于其较高的稳定性和精度而受到关注。与此同时由于光纤激光器的发展,其良好的单色性和稳定性可以用于优良的光源,把它用到干涉型光纤水听器中可以极大程度的提高光纤水听器的性能。

参考文献

[1] 沈洪,罗辉.光纤水听器传感技术及应用[J],传感世界, 2007, 4

[2] M.L.Henning and https://www.360docs.net/doc/8317777895.html,mb ,At-Sea Deployment of a Multiplexed Fiber Optic Hydrophone Array, Proc.1998.OFS’88∶84

[3] 张仁和,倪明. 光纤水听器的原理与应用[J],物理,2004.v33(7):503-507

[4] 倪行洁,赵勇,杨剑,梁辉. 光纤水声传感技术[J], 测量设备, 2006(12)

[5] 王金玉,张玲,隋青美,常军. 光纤水听器浅析[J], 自动测量与控制, 2007,26(1)

[6] Zhou S,Sheng L,Huang S, et al. Fiber Optic Acoustic Sensor[J]. Acta of Acustics,1995,(20):469-472.

[7] 荣民,王兰勋,薛林,廖延彪.基于光强度调制技术的光纤水听器[J],半导体光电(Semiconductor Optoelectronics)Vol.24 No.3,June2003:174-178

[8]Wurster,C.,J.Staudenraus,et.al.(1994).Fiber.optic.probe.hy-drophone,Cannes,Fr,IEEE,Piscataway,NJ,US

A

[9] 王巍鑫,干涉型光纤水听器时分复用系统数字化方案的研究与设计[D], 哈尔滨工程大学硕士论文

[10] Donal Flavin A.et al.,Interferometric fiber-optic sensing based on the modulation of group delay and first order dispersion:application to strain-temperatrue measurand ,Journal of Lightwave Technology,1995,13(7):1314-1323

[11] 吴斌,蔡栋生,何存富,杭利军. 用于Sagnac干涉仪的PGC解调电路研制, 北京工业大学学报,2008,10(34)

[12] 单宁,史仪凯,赵江海,姚钦,袁小庆. 光纤Fabry-Perot超声传感系统设计与应用[J],光电子激光, 2008,7(19)

[13] 郭振华. F-P多光束干涉仪的发明者———法布里和珀罗,物理,33卷(2004年)4期:293-29

[14] Takahashi N, Yoshimura K, Takahashi S,et al. Characteristics of fiber Bragg grating hydrophone.IEICE Trans, Electron, 2000,E83-C(3): 275

[15] 郑黎,洪新华,何俊华,等.采用密集波分复用技术的光纤水听器阵列研究[J].光子学报, 2003,32(2): 137~139 Zheng L,HongX H, He JH,et al.Acta Photonica Sinica, 2003,32(2): 137~139

[16] 郑承栋,郑黎,何俊华,陈良益.光纤Bragg光栅水听器特性及实验研究[J], 光子学报, 2006,12(35)

[17] 宁靖,王文争,刘世海,冯跃军.光纤布拉格光栅传感器在石油勘探领域应用展望[J],物探装备,2004,12(14)

[18] 刘波,曹晔,罗建花,牛文成,开桂云,张伟刚,董孝义.光纤光栅水听器技术实验研究[J], 光子学报, 2005,5(34)

[19] 王燕花,任文华,刘艳,谭中伟,简水生. 基于光纤Bragg光栅的光纤水听器[J], 光器件, 2007(2)

[20] 杨剑,赵勇,倪行洁. 新型光纤光栅水声传感器的研究[J], 光学学报, 2007,9(27)

[21] 王俊杰,姜德生,谢官模,梁宇飞,黄俊斌. 一种平面型光纤光栅水听器探头技术的研究[J], 声学学报, 2007,7(32)

[23] Hill D J, Cranch G A. Gain in hydrostatic pressure sensitivity of coated fiber Bragg grating.Electron Lett, 1999,35(15):1268~1269

[24] 刘云启,刘志国,郭转运,等.光纤光栅传感器的调谐滤波检测技术[J].光学学报, 2001,21(1): 88~92. Liu Y Q, Liu Z G, Guo Z Y,et al.Acta Optica Sinica,2001,21(1): 88~92

[23] 詹亚歌,陆青,向世清,等.优化光纤光栅传感器匹配光栅解调方法的研究[J].光子学报, 2004,33(6): 711~715. ZhanY G,Lu Q,Xiang S Q,et al.Acta Photonica Sinica2003,33(6): 711~715

[24] 赵中,罗裴,梁磊,等.光纤Bragg光栅水听器的实验研究[J].传感器技术,2004,23(6):12-13.

[25] 葛强, 光纤激光器加速光纤传感应用, 激光技术与应用

[26] 高学民.光纤水听器及阵列的发展概况[J],光纤与光缆及其应用技术.1996,13(1):48-53

[27] 张仁和,倪明.光纤水听器的原理与应用[J],前沿进展, 2004,33(7):503-507or use as broadband ultrasound reference receiver-comparison with PVDF membrane hydrophones[J],IEEE Ultrasonics symposium,2002, 23(2):773-776

[28] 刘鹰,李玉深,徐大伟等.迈克尔逊干涉型光纤水听器研究与实践[J],传感器技术,2005,24(11):30-32

[29 ]荣民,王兰勋,薛林等.基于光强度调制技术的光纤水听器[J],半导体光电,2003,24(3):174-177

[30] 时德钢,刘晔,邹建龙等.光纤传感技术的军事应用[J],计算机测量与控制,2002,10(9):561-564

[31] 秦大甲.光纤技术及其军事应用[J],光纤与电缆及其应用技术,1999.24(5):7-15

[32] O.Farsund,et al.Design and field test of a 32-element fiber optic hydrophone system[J],IEEE Journal of lightwaves technology,2002,19(1):329-332

[33] Hiroshi,et al.Development of fiber-optical microsensors for geophysical use[J].IEEE Ultrasonics symposium,2003,26(1):315-319.

[34] BucaroJA,DARDY H D,CAROME E F. Fiber optic hydrophone[J]. Journal ofAcoustic Society,1977,62:1302~1304.

[35] Nash P. Review of interferometric optical fiber hydrophone technology[J]. IEE Proc Radar SonarNavigation,1996,143(3): 204~209.

[36] DandridgeA. The development of fiber optic sensor systems[J]. Proceedings ofSPIE,1994,2360:154~161·

[37] 杨家德.纤维光学技术在军事中的应用[M].北京:科学技术文献出版社,1998. 109~115·

[38] Cole JH,Johnson R L,Bhuta P G. Fiber optic detection of sound[J]. JAcoustSoc America,1977,62(5):1136~11138.

[39] Zalesak J,RogersPH. Low-frequency radiation characteristics of free-flooded ring transducerswith application to a low-frequency directional hydrophone[J]. JAcoustSoc America,1974,56(4):1052~1057.

[40] KerseyA D,MarroneM J,DavisM A. Polarization-insensitive fiber opticMichelson interferometer[J].Electron Letter,1991,27(6):518~519.

[41] Dandridge A,Tveten A B,Kersey A D.Multiplexing of interferometric sensors using phase

carrier techniques[J]. Lightwave Technology,1987,5(7):947~952.

[42] 张向东.光纤光栅传感技术及在油气井中的应用研究[D].中国科学院研究生院博士论文,2004

Theories and Development of Fiber Hydrophone

Hu Yuan, Huaqiu Deng

Physics Department, South China University of Technology, Guangzhou, 510640

Abstract:Fiber-optic hydrophone, because of its unique characterizations, such as anti-electromagnetic interference and small size, has wide applications in civilian and military.This paper outlines the basic principles of fiber-optic hydrophone, and introduces the intensity modulation, interference and grating fiber-optic hydrophone separately. In the present of the fiber-optic hydrophone applications, point-sensing can no longer meet the present requirements of large-scale integrated, so distributed fiber-optic hydrophone is a hot topic in the near future. In this paper, the contrast of two distributed fiber-optic hydrophone technology is introduced, which are OTDR are FMCW technology. At the same time, due to the development of fiber lasers, because of its good monochrome and stability, it can be used as the light source. It can greatly increase the

degree of interferential fiber-optic hydrophone performance.

Key words:Fiber hydrophone, FMCW, fiber laser

光纤通信原理及应用

光纤通信原理及应用 摘要:光纤通信技术是利用半导体激光器等光电转换器将电信号转换成光信号,并使其在光纤中快速、安全地传输的一门新兴技术。光纤是一种理想的传输媒体,它具有传输时延低、高通信质量、高带宽、抗干扰能力强等特点。光纤在高速以太网中有着广泛的应用。论文主要分析了光电信号的转换、光纤通信的基本原理并介绍了光纤在通信领域中的一些应用。 关键词:光纤通信;光电转换;全反射 1. 引言 光纤是用光透射率高的电介质构成的光通路,它是一种介质圆柱光波导,它是用非常透明的石英玻璃拉成细丝,主要由纤芯和包层构成双层通信圆柱体。光纤通信就是在发送端利用半导体激光转换器将电信号转换成光信号并利用光导纤维传递光脉冲来进行通信,光波通过纤芯以全反射的方式进行传导,有光脉冲相当于1,没有光脉冲相当于0。同时,接收端利用光电二极管或半导体激光器做成光检测器,检测到光脉冲时将光信号还原成电信号。在由于可见光的频率非 常高,约为8 10MHz的量级,因此一能做到使用一根光个光纤通信系统的传输带宽远远大于其它的传输媒体的带宽。同时利用光的频分复用技术,就纤来同时传输多个频率很接近的光载波信号,使得光纤的传输能力成倍地提高。 2.理论模型 在光纤通信系统的发送端使用光电信号检测电路将电信号转换成光信号,并使得光信号以大于某一角度入射到光通道,此时光信号在光纤以全反射的方式不断向前传输,并在接收端再将光信号转换成电信号进行进一步的处理。 2.1 光电信号检测电路的基本原理 光电检测电路主要由光电器件、输入电路和前置放大器组成。其中,光电检测器件是实现光电转换的核心器件,它把被测光信号转换成相应的电信号;输入电路为光电器件正常的工作条件,进行电参量的变换并完成前置放大器的电路匹配;前置放大器能够放大光电器件输出的微弱电信号,并匹配后置处理电路与检测器件之间的阻抗。 2.1.1 光电信号输入电路的静态计算 图解计算法是利用包含非线性元件的串联电路的图解法对恒流源器件的输入电路进行计算。反射偏置电压作用下的光电二极管的基本输入电路如下:

移动通信原理与系统-教学大纲

《移动通信》课程教学大纲 一、课程名称:(移动通信原理与系统) ( 32学时) 二、先修课程:通信原理、通信网基础 三、适用专业:通信工程专业 四、课程教学目的 本课程是通信工程本科专业课。移动通信是当今通信领域发展最快、应用最广和最前沿的通信技术。移动通信的最终目标是实现任何人可以在任何地点、任何时间与其他任何人进行任何方式的通信。移动通信技术包括了组网技术、多址技术、语音编码技术、抗干扰抗衰落技术、调制解调技术、交换技术以及各种接口协议和网管等等多方面的技术。因此从某种意义上可以说,移动通信系统汇集了当今通信领域内各种先进的技术。通过本课程的学习使学生了解和掌握移动通信的基本理论,了解和掌握移动通信的发展、蜂窝移动通信系统的基本概念、移动通信的信道、移动通信系统的调制和抗干扰技术、语音编码技术、移动通信中的多址接入、移动通信网以及GSM系统、CDMA系统和3G技术以及未来无线通信的发展等。 五、课程教学基本要求 1.理解和掌握无线信道和传播、传播损耗模型; 2.掌握移动通信中的信源编码的基本概念和调制解调技术; 3.理解和掌握移动通信中的各种抗衰落抗干扰技术; 4.掌握移动通信系统的组网技术; 5.掌握GSM移动通信系统、理解GPRS系统的基本原理以及EDGE的基本原理; 6.掌握基于CDMA20001X系统、WCDMA系统和TD-SCDMA系统的基本原理和应用; 7.了解未来移动通信的发展。 六、教学内容及学时分配(不含实验) 第一章概述 1学时 第二章移动通信电波传播环境与传播预测模型 4学时内容: ●无线传播的特点以及对无线通信的影响; ●无线信道的特性,研究方法 ●无线信道的分析基础(分布,特性参数等) ●简单介绍建模技术和仿真技术基础 ●介绍常见的几种传播预测模型 ●说明应用范围和应用方法

光纤水听器综述

光纤水听器及阵列综述 马宏兰周美丽 (天津师范大学电子与通信工程学院) 摘要:为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基 础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。全光光纤水听器系统的湿端采用全光实现,信号传感与传输皆基于光纤技术。具有抗电磁干扰、重量轻和造价低等优点。文章简述了光纤水听器的发展历史、现状 ,论述了光纤水听器阵列的原理及其应用前景。 关键词:光纤水听器多路复用技术阵列 0引言:在光纤水听器的实际应用中,由于水下声场的复杂性,单元水听器很难获得目标的详细信息,因而需要将数百乃至上千个探测基元组成大的阵列,以获得更多水声场信息,通过水听器阵列完成声场信号的波束形成,实现对水下目标的定位与指向。在2003年8月下水的美国最新型攻击核潜艇上,装备的舷侧阵就由2 700个光纤水听器基元组成【1】。对于大规模的光纤水听器阵列,多达数十上百基元的光纤水听器光信号都是由同一根光纤传输的,在实际系统中,这种性能就是由光纤水听器的多路复用技术实现的。可见多路复用是光纤水听器的核心技术。 1 光纤水听器的开发 自1976年美国Bucar等人发表第一篇有关光纤水听器的论文【2】以来, 各工业发达国家的海军研究部门以及有关的研究和工业部门都在积极从事光纤水听器的研究和开发,尤其以美国最为突出。美国海军研究实验室、美国海军研究生院和Litton制导和控制公司等先后研究开发了Maeh一Zehnder、Michelson 干涉仪的光纤水听器, 主要结构有心轴型、互补型(推挽式) 、平面型和椭球弯 张式等光纤水听器。这些结构水听器达到的归一化灵敏度(△。/ 。△P)为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。各国对光纤水听器的研究投入了大量人力和物力,技术也日益娴熟。 2、多路复用的阵列体系结构 阵列体系分为以下六大部分,其中时分/ 波分混合复用技术是其关键有效手段。 1 ) 频分复用(FDM) 【3】相位产生载波(PGC)问询的体系结构—美国海军研究实验室已用此方案对总数48 个单元水听器成网组成的阵列成功地进行了海上试验, 证实了这种体系结构的低阐值检测能力和低的串扰。 2) 时分复用(TDM) 相位产生载波问询的体系结构—美国海军研究实验室已作了10 单元的光纤水听器阵列演示, 证实了其低的光背景噪声和低的串扰。

光纤通信原理与技术课程教学大纲

《光纤通信原理与技术》课程教学大纲 英文名称:Fiber Communication Principle and its Application 学时:51 学分:3 开课学期:第7学期 一、课程性质与任务 通过讲授光纤通信技术的基础知识,使学生了解掌握光纤通信的基本特点,学习光纤通信系统的三个重要组成部分:光源(光发射机)、光纤(光缆)和光检测器(光接收机)。通过本课程的学习,学生将掌握光纤通信的基本原理、光纤通信系统的组成和系统设计的基本方法,了解光纤通信的未来与发展,为今后的工程应用和研究生阶段的学习打下基础。 二、课程教学的基本要求 要求通过课堂认真听讲和实验课,以及课下自学,基本掌握光纤通信的基础理论知识和应用概况,熟悉光纤通信在电信、通信中的应用,为今后的工作打下坚实的理论基础。 三、课程内容 第一章光通信发展史及其优点(1学时) 第二章光纤的传输特性(2学时) 第三章影响光纤传输特性的一些物理因素(5学时) 第四章光纤通信系统和网络中的光无源器件(9学时) 第五章光纤通信技术中的光有源器件(3学时) 第六章光纤通信技术中使用的光放大器(4学时) 第七章光纤传输系统(4学时) 第八章光纤网络介绍(6学时) 第九章光纤通信原理与技术实验(17课时) 四、教学重点、难点 本课程的教学重点是光电信息技术物理基础、电光信息转换、光电信息转换,光电信息技术应用,光电新产品开发举例。本课程的教学难点是光电信息技术物理基础。

五、教学时数分配 教学时数51学时,其中理论讲授34学时,实践教学17学时。(教学时数具体见附表1和实践教学具体安排见附表2) 六、教学方式 理论授课以多媒体和模型教学为主,必要时开展演示性实验。 七、本课程与其它课程的关系 1.本课程必要的先修课程 《光学》、《电动力学》、《量子力学》等课程 2.本课程的后续课程 《激光技术》和《光纤通信原理实验》以及就业实习。 八、考核方式 考核方式:考查 具体有三种。根据大多数学生学习情况和学生兴趣而定其中一种。第一种是采用期末考试与平时成绩相结合的方式进行综合评定。对于理论和常识部分采用闭卷考试,期末考试成绩占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%;第二种是采用课程设计(含市场调查报告)和平时成绩相结合的方式,课程设计占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%。第三种是采用课程论文(含市场调查报告)和平时成绩相结合的方式,课程论文占总成绩的55%,实验成绩占总成绩的30%,作业成绩及平时考勤占总成绩的15%。 九、教材及教学参考书 1.主教材 《光纤通信原理与技术》,吴德明编著,科学出版社,第二版,2010年9月 2.参考书 (1)《光纤通信原理与仿真》,郭建强、高晓蓉、王泽勇编著,西南交通大学出版社,第一版,2013年5月 (2)《光通信原理与技术》,朱勇、王江平、卢麟,科学出版社,第二版,2011年8月

吉大19春学期《移动通信原理与应用》在线作业一

(单选题)1: W-CDMA系统采用的多址方式为()。 A: FDMA B: CDMA C: TDMA D: FDMA/ CDMA 正确答案: (单选题)2: GSM1800收发频率间隔为()。 A: 95MHz B: 45MHz C: 35MHz D: 25MHz 正确答案: (单选题)3: 跳频能有效地改善以下()现象。 A: 远近效应 B: 阴影效应 C: 多经效应 D: 码间干扰 正确答案: (单选题)4: 在移动通信系统中,中国的移动国家代码为( )。A: 86 B: 086 C: 460 D: 0086 正确答案: (单选题)5: GPRS系统可以提供高达()的理论数据传输速率。A: 14.4Kb/s B: 115.2Kb/s C: 171.2Kb/s D: 384Kb/s 正确答案: (单选题)6: N-CDMA系统采用的多址方式为( )。 A: FDMA B: CDMA C: TDMA D: FDMA/CDMA 正确答案: (单选题)7: 数字移动通信网的优点是()。 A: 频率利用率低

B: 不能与ISDN兼容 C: 抗干扰能力强 D: 话音质量差 正确答案: (单选题)8: GSM900收发频率间隔为()。 A: 25MHz B: 35MHz C: 45MHz D: 75MHz 正确答案: (单选题)9: 下面说法正确的是()。 A: GSM手机比CDMA手机最低发射功率小 B: 光纤通信使用的光波工作波段是毫米波 C: WCDMA是在GSM网络基础上发展演进的 D: 在通信系统中,电缆比光缆的传输质量好 正确答案: (单选题)10: 开环功率控制的精度()闭环功率控制的精度。 A: 大于 B: 小于 C: 接近 D: 不好说 正确答案: (多选题)11: 相比目前的定向天线而言,智能天线具有以下()优点。A: 降低用户间干扰 B: 增强覆盖 C: 实现结构简单 D: 提高系统容量 正确答案: (多选题)12: GSM支持的基本业务又分为()。 A: 补充业务 B: 电信业务 C: 承载业务 D: 附属业务 正确答案: (多选题)13: 常用的多址技术包括()。 A: 频分多址(FDMA) B: 时分多址(TDMA) C: 码分多址(CDMA)

光纤激光水听器的基本原理,国内外光纤激光水听器的研究进展以及发展趋势

光纤激光水听器的基本原理,国内外光纤激光水听器的研究进展以及发展趋 势 一、引言 声波是人类已知的唯一能在海水中远距离传输的能量形式。水听器(Hydrophone)是利用在海洋中传播的声波作为信息载体对水下目标进行探测以及实现水下导航、测量和通信的一类传感器。由于水下军事防务上的要求和人类开发利用海洋资源的迫切需要,水听器技术得到空前的发展。传统的水听器包括电动式、电容式、压电式、驻极体式,等等。 20世纪70年代以来,伴随着光导纤维及光纤通信技术的发展,光纤水听器逐渐成为新一代的水声探测传感器。与传统水听器相比,其最大优点是对电磁干扰的天然免疫能力。此外,光纤水听器还具有噪声水平低、动态范围大、水下无电、稳定性和可靠性高、易于组成大规模阵列等优点。现有的光纤水听器包括光强度型、干涉型、偏振型、光栅型等。其中,光纤激光水听器(FLH)就是一种光栅型水听器,但由于它的传感元件光纤激光器(又称有源光纤光栅)相比于无源光纤光栅具有高功率和极窄线宽的特点,配合上基于光纤干涉技术的解调方法,它的微弱信号探测能力相比于普通的无源光纤光栅水听器可以提高几个数量级。 压电式水听器和干涉式光纤水听器是目前应用最广泛的水声探测器件。与干涉式光纤水听器相比,压电式水听器技术更加成熟,结构和制作工艺更简单,大规模生产时一致性可以得到相对较好的控制。但是,防漏电、耐高温、长距离传输、动态范围大则是光纤水听器最大的优势。尤其在一些特殊领域(例如高温高压的深井油气勘探领域)有着比压电水听器更为广阔的应用前景。与干涉式光纤水听器相比,光纤激光水听器的最大优势在于易复用,即“串联即成阵”。同时,受弯曲半径影响,干涉式光纤水听器的体积较大,水听器直径通常大于1cm。而由于光纤激光型水听器结构简单,传感单元仅为一根光纤的尺寸,光纤激光水听器外径可细至4~6mm。当然,受光纤激光器本身弦振动及系统1/f噪声影响,加速度响应较大、低频段噪声相对较高是目前光纤激光型水听器存在的主要问题之一,有

操作系统原理及应用试题附答案

操作系统原理及应用试题附答案 第一部分选择题一、单项选择题(本大题共4小题,每小题2分,共8分) 1、从静态角度来看,进程由__________、数据集合、进程控制块及相关表格三部分组成。()A、JCB B、PCB C、程序段 D、I/O缓冲区 2、请求页式管理方式中,首先淘汰在内存中驻留时间最长的帧,这种替换策略是_____.()A、先进先出法(FIFO) B、最近最少使用法(LRU) C、优先级调度 D、轮转法 3、文件安全管理中,___________安全管理规定用户对目录或文件的访问权限。()A、系统级 B、用户级 C、目录级 D、文件级 4、排队等待时间最长的作业被优先调度,这种算法是___________。A、优先级调度 B、响应比高优先 C、短作业优先D、先来先服务第二部分非选择题 二、填空题(本大题共16小题,每小题1分,共16分) 5、常规操作系统的主要功能有:_处理机管理_、存贮管理、设备管理、文件管理以及用户界面管理。 6、操作系统把硬件全部隐藏起来,提供友好的、易于操作的用户界面,好象是一个扩展了的机器,即一台操作系统虚拟机。 7、进程管理的功能之一是对系统中多个进程的状态转换进行控制。 8、逻辑_文件是一种呈现在用户面前的文件结构。 9、操作系统中实现进程互斥和同步的机制称为同步机构_。 10、内存中用于存放用户的程序和数据的部分称为用户区(域)。 11、存贮器段页式管理中,地址结构由段号、段内页号和页内相对地址三部分组成。 12、在操作系统中,通常用户不使用设备的物理名称(或物理地址),而代之以另外一种名称来操作,这就是逻辑设备名。 13、在操作系统中,时钟常有两种用途:报告日历和时间,对资源使用记时。 14、库文件允许用户对其进行读取、执行,但不允许修改.

《移动通信原理与系统》考点

移动通信原理与系统 第1章概论 1.(了解)4G网络应该是一个无缝连接的网络,也就是说各种无线和有线网络都能以IP协议为基础连接到IP核心网。当然为了与传统的网络互连则需要用网关建立网络的互联,所以将来的4G网络将是一个复杂的多协议的网络。 2.所谓移动通信,是指通信双方或至少有一方处于运动中进行信息交换的通信方式。 移动通信系统包括无绳电话、无线寻呼、陆地蜂窝移动通信、卫星移动通信等。无线通信是移动通信的基础。 3.移动通信主要的干扰有:互调干扰、邻道干扰、同频干扰。(以下为了解) 1)互调干扰。指两个或多个信号作用在通信设备的非线性器件上,产生与有用信号频率相近的组合频率,从而对通信系统构成干扰。 2)邻道干扰。指相邻或邻近的信道(或频道)之间的干扰,是由于一个强信号串扰弱信号而造成的干扰。 3)同频干扰。指相同载频电台之间的干扰。 4.按照通话的状态和频率的使用方法,可以将移动通信的工作方式分成:单工通信、双工通信、半双工通信。 第2章移动通信电波传播与传播预测模型 1.移动通信的信道是基站天线、移动用户天线和两副天线之间的传播路径。 对移动无线电波传播特性的研究就是对移动信道特性的研究。 移动信道的基本特性是衰落特性。 2.阴影衰落:由于传播环境中的地形起伏、建筑物及其他障碍物对电磁波的遮蔽所引起的衰落。 多径衰落:无线电波呢在传播路径上受到周围环境中地形地物的作用而产生的反射、绕射和散射,使其到达接收机时是从多条路径传来的多个信号的叠加,这种多径传播多引起的信号在接收端幅度、相位和到达时间的随机变化将导致严重的衰落。 无线信道分为大尺度传播模型和小尺度传播模型。大尺度模型主要是用于描述发射机与接收机之间的长距离(几百或几千米)上信号强度的变化。小尺度衰落模型用于描述短距离(几个波长)或短时间(秒级)内信号强度的快速变化。 3.在自由空间中,设发射点处地发射功率为P t,以球面波辐射;设接收的功率为P r,则 P r=(A r/4πd2)P t G t 式中,A r=λ2G r/4π,λ为工作波长,G t、G r分别表示发射天线和接收天线增益,d为发射天线和接收天线间的距离。 4.极化是指电磁波在传播的过程中,其电场矢量的方向和幅度随时间变化的状态。 电磁波的极化可分为线极化、圆极化和椭圆极化。 线极化存在两种特殊的情况:电场方向平行于地面的水平极化和垂直于地面的垂直极化。在移动通信中常用垂直极化天线。 5.极化失配:接收天线的极化方式只有同被接收的电磁波的极化形式一致时,才能有效地接收到信号,否则将使接收信号质量变坏,甚至完全收不到信号。 6.阴影衰落又称慢衰落,其特点是衰落与无线电传播地形和地理的分布、高度有关。 7.多径衰落属于小尺度衰落,其基本特性表现在信号的幅度衰落和时延扩展。 8.多普勒频移:f d=(v/λ)cosα,式中v为移动速度;λ为波长;α为入射波与移动台方向之间的夹角;v/λ=f m为最大多普勒频移。

操作系统原理与应用第2章文件管理

第2章文件管理习题解答 1.什么是文件和文件系统?文件系统有哪些功能? 【解答】文件是具有符号名而且在逻辑上具有完整意义的信息项的有序序列。 文件系统是指操作系统系统中实现对文件的组织、管理和存取的一组系统程序,它实现对文件的共享和保护,方便用户“按名存取”。 文件系统的功能“ (1)文件及目录的管理。如打开、关闭、读、写等。 (2)提供有关文件自身的服务。如文件共享机制、文件的安全性等。 (3)文件存储空间的管理。如分配和释放。主要针对可改写的外存如磁盘。(4)提供用户接口。为方便用户使用文件系统所提供的服务,称为接口。文件系统通常向用户提供两种类型的接口:命令接口和程序接口。不同的操作系统提供不同类型的接口,不同的应用程序往往使用不同的接口。 2.Linux文件可以根据什么分类?可以分为哪几类?各有什么特点? 【解答】在Linux操作系统中,文件可以根据内部结构和处理方式进行分类。 在Linux操作系统中,可以将文件分为普通文件、目录文件、特别文件三类。 各类文件的特点是: 普通文件:由表示程序、数据或正文的字符串构成的文件,内部没有固定的结构。这种文件既可以是系统文件,也可以是库文件或用户文件。 目录文件:由文件目录构成的一类文件。对它的处理(读、写、执行)在形式上与普通文件相同。 特别文件:特指各种外部设备,为了便于管理,把所有的输入/输出设备都按文件格式供用户使用。这类文件对于查找目录、存取权限验证等的处理与普通文件相似,而其他部分的处理要针对设备特性要求做相应的特殊处理。 应该指出,按不同的分类方式就有不同的文件系统。 3.什么是文件的逻辑结构?什么是文件的物理结构?Linux文件系统分别采用什么样的结构?有什么优点和缺点? 【解答】文件的逻辑结构:用户对文件的观察的使用是从自身处理文件中数据时采用的组织方式来看待文件组织形式。这种从用户观点出发所见到的文件组织方式称为文件的逻辑组织。 文件的物理结构:从系统的角度考察文件在实际存储设备上的存放形式,又称为文件的存储结构。 在Linux系统中,所有文件的逻辑结构都被看作是流式文件,系统不对文件进行格式处理。 在Linux系统中,文件的物理结构采用的是混合多重索引结构,即将文件所占用盘块的盘块号,直接或间接地存放在该文件索引结点的地址项中。 在Linux系统中,采用混合索引结构的优点是,对于小文件,访问速度快;对于大中

英国PA医用光纤水听器FOH

光纤水听器是一种建立在光纤、光电子技术基础上的水下声信号传感器。它通过高灵敏度的光学相干检测,将水声振动转换成光信号,通过光纤传至信号处理系统提取声信号信息。光纤水听器具有灵敏度高,频响特性好等特点。由于采用光纤作信息载体,适宜远距离大范围监测。 深圳市一测医疗测试技术有限公司是一家专注于医疗器械测试 产品和技术的研发、销售与服务为一体的“国家高新技术企业”,我们拥有自主研发的国家发明专利技术并且代理了众多国外先进专业 测试产品,如膜式水听器、光纤水听器、水听器校准、吸声材料、声场测试水处理系统等。

光纤水听器FOH:灵敏度高,抗电磁干扰,价格便宜,可测量同一个点的温度和压力,并描绘出压力和温度变化曲线。光纤水听器非常适合高强度声输出的测量。 技术参数: 构成:10um 的材料附着在玻璃上,构成光纤,直径为 10um; 校准:250kHz to 50MHz 可校准; 灵敏度:平行传感器: 150mV/MPa at 3MHz;锥形传感器: 100mV/MPa at 3MHz; 灵敏度变化范围:+/-3dB; 能量承受范围:10kPa to 15MPa。

以上就是深圳一测医疗给大家介绍英国PA光纤水听器FOH相关信息,如果您还想了解更多的相关事项可以拨打我们的热线电话,可以点击我们的官网在线实时咨询我们,或者关注我们的官方微信公众号,我们会有专业的工作人员为您解答。 我们通过与国际优秀的医疗器械测试仪器制造商和专业实验室的广泛深入合作以及国内行业专家的紧密交流与协作,并严格按照ISO9001:2015质量管理体系要求为医疗器械产业在研发、生产,监督、检验,在用售后、培训,教学与研究等各领域客户提供完善的医疗器械测试整体解决方案和专业的技术服务。 公司秉承“热情、专注、高效、负责”的经营理念,以“专业专注,精益求精”为服务宗旨,力求解决医疗器械测试过程中的各种繁杂问题,而不仅仅是一次测试,从而保障患者得到安全有效的诊断和治疗。

光纤通信原理试题__参考答案

光纤通信原理试题_1 参考答案 一、单项选择题(本大题共10小题,每小题1分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1. 光纤通信指的是( B ) A 以电波作载波、以光纤为传输媒介的通信方式; B 以光波作载波、以光纤为传输媒介的通信方式; C 以光波作载波、以电缆为传输媒介的通信方式; D 以激光作载波、以导线为传输媒介的通信方式。 2.已知某Si-PIN 光电二极管的响应度R 0=0.5 A/W ,一个光子的能量为2.24×10-19 J ,电子电荷量为1.6×10 -19 C ,则该光电二极管的量子效率为( ) A.40% B.50% C.60% D.70% R 0=e 错误!未找到引用源。 /hf 3.STM-4一帧中总的列数为( ) A.261 B.270 C.261×4 D.270×4 4.在薄膜波导中,要形成导波就要求平面波的入射角θ1满足( ) A.θc13<θ1<θc12 B.θ1=0° C.θ1<θc13<θc12 D.θc12<θ1<90° 5.光纤色散系数的单位为( ) A.ps/km B.ps/nm C.ps/nm.km ? D.nm/ps?km 6.目前掺铒光纤放大器的小信号增益最高可达( ) A.20 dB B.30 dB C.40 dB D.60 dB 7.随着激光器使用时间的增长,其阈值电流会( ) A.逐渐减少 B.保持不变 C.逐渐增大 D.先逐渐增大后逐渐减少 8.在阶跃型(弱导波)光纤中,导波的基模为( ) A.LP00 值为0 B.LP01 C.LP11为第一高次模 D.LP12 9.在薄膜波导中,导波的截止条件为( ) A.λ0≥λC B.λ0<λC C.λ0≥0 D.λ0≤1.55μm 10.EDFA 在作光中继器使用时,其主要作用是( ) A.使光信号放大并再生 ? B.使光信号再生 C.使光信号放大 D.使光信号的噪声降低 二、填空题(本大题共20小题,每小题1分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.根据传输方向上有无电场分量或磁场分量,可将光(电磁波)的传播形式分为三类:一为_TEM_波;二为TE 波;三为TM 波。 2.对称薄膜波导是指敷层和衬底的_折射率相同_的薄膜波导。 3.光学谐振腔的谐振条件的表示式为__错误!未找到引用源。______。q L c n 2= λ 4.渐变型光纤中,不同的射线具有相同轴向速度的这种现象称为_自聚焦_现象。 5.利用_光_并在光纤中传输的通信方式称为光纤通信。 6.在PIN 光电二极管中,P 型材料和N 型材料之间加一层轻掺杂的N 型材料,称为本征层(I )层。 7. 光源的作用是将 电信号电流变换为光信号功率 ;光检测器的作用是将 光信号功

光纤照明的原理与应用

光纤照明的原理与应用 摘要:在照明技术中,光纤照明是一枝独秀的照明新技术。本文详细地阐述了光纤照明的原理和特点。并着重介绍了光纤照明的产品及应用。 关键词:光导纤维光纤照明灯具产品与应用 一、概述 在照明技术中,光纤照明是一枝独秀的照明新技术。由于它具有光的柔性传输,安全可靠。所以广泛地应用于工业、科研、医学及景观设计中,并在国内外市场中已形成各类产品。本文仅以个人学习和实践中的有限知识重点介绍景观设计中的光纤照明技术及产品和应用以求教同行专家。 二、光纤照明的原理 光纤照明系统是由光源、反光镜、滤色片及光纤组成,如图一所示。

当光源通过反光镜后,形成一束近似平行光。由于滤色片的作用,又将该光束变成彩色光。当光束进入光纤后,彩色光就随着光纤的路径送到预定的地方。 由于光在途中的损耗,所以光源一般都很强。常用光源为150~250W 左右。而且为了获得近似平行光束,发光点应尽量小,近似于点光源。 反光镜是能否获得近似平行光束的重要因素。所以一般采用非球面反光镜。 滤色片是改变光束颜色的零件。根据需要,用调换不同颜色的滤光片就获得了相应的彩色光源。 光纤是光纤照明系统中的主体,光纤的作用是将光传送或发射到预定地方。光纤分为端发光和体发光两种。前者就是光束传到端点后,通过尾灯进行照明,而后者本身就是发光体,形成一根柔性光柱。 对光纤材料而论,必须是在可见光范围内,对光能量应损耗最小,以确保照明质量。但实际上不可能没有损耗,所以光纤传送距离约30m 左右为最佳。

光纤有单股、多股和网状三种。对单股光纤来说,它的直径为Ф6~Ф20mm.同时又可分为体发光和端发光两种.而对多股光纤来说,均为端发光.多股光纤的直径一般为Ф0.5~Ф3mm,而股数常见为几根至上百根. 网状光纤均为细直径的体发光光纤组成.可以组成柔性光带. 从理论上讲,光线是直线传播的.但在实际应用中,人们都希望改变光线的传播方向.经过科学家数百年不懈的努力,利用透镜和反光镜等光学元件来无限次的改变传播方向.而光纤照明的出现,正是建立在有限次的改变光线传播方向,实现了光的柔性传播.正如圆弧经无数次的分割后成直线一样,光纤照明正是以无限次反射后,光线就随光纤的路径传送,实现了柔性传播.但是光纤照明的柔性传播,并没有改变光线直线传播的经典理论. 三、光纤照明的特点 1、光线柔性传播 从理论上讲,光线是直线传播的。然而因实际应用的多元性,总希望能方便地改变光的传播方向。光纤照明正是满足了这一要求。这是光纤照明的特点之一。

移动通信原理与系统(北京邮电出版社)课后习题答案

第一章概述 1.1简述移动通信的特点: 答:①移动通信利用无线电波进行信息传输;②移动通信在强干扰环境下工作;③通信容量有限;④通信系统复杂;⑤对移动台的要求高。 1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的? 答:①互调干扰;②邻道干扰;③同频干扰(蜂窝系统所特有的);④多址干扰。 1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。 答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的TACS(Total Access Communication System)两大系统,另外还有北欧的NMT 及日本的HCMTS系统等。 从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。主要是措施是采用频分多址FDMA 方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩大覆盖服务范围和满足用户数量增长的需求。在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。 第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的IS-95 两大系统,另外还有日本的PDC 系统等。 从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。主要的实现措施有:采用TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。在对信道动态特性的匹配上采取了下面一系列措施: (1)采用抗干扰性能优良的数字式调制:GMSK(GSM)、QPSK(IS-95),性能优良的抗干扰纠错编码:卷积码(GSM、IS-95)、级联码(GSM); (2)采用功率控制技术抵抗慢衰落和远近效应,这对于CDMA方式的IS-95尤为重要; (3)采用自适应均衡(GSM)和Rake 接收(IS-95)抗频率选择性衰落与多径干扰; (4)采用信道交织编码,如采用帧间交织方式(GSM)和块交织方式(IS-95)抗时间选择性衰落。 第三代(3G)以多媒体业务为主要特征,它于本世纪初刚刚投入商业化运营。其中最具有代表性的有北美的CDMA2000、欧洲和日本的WCDMA及我国提出的TD-SCDMA三大系统,另外还有欧洲的DECT及北美的UMC-136。 从技术上看,3G 是在2G 系统适配信道与用户二重动态特性的基础上又引入了业务的动态性,即在3G 系统中,用户业务既可以是单一的语音、数据、图像,也可以是多媒体业务,且用户选择业务是随机的,这个是第三重动态性的引入使系统大大复杂化。所以第三代是在第二代数字化基础上的、以业务多媒体化为主要目标,全面考虑并完善对信道、用户二重动态特性匹配特性,并适当考虑到业务的动态性能,尽力采用相应措施予以实现的技术。其主要实现措施有: (1)继续采用第二代(2G)中所采用的所有行之有效的措施; (2)对CDMA 扩频方式应一分为二,一方面扩频提高了抗干扰性,提高了通信容量;另一方面由于扩频码互相关性能的不理想,使多址干扰、远近效应影响增大,并且对功率控制提出了更高要求等; (3)为了克服CDMA 中的多址干扰,在3G 系统中,上行链路建议采用多用户检测与智能天线技术;下行链路采用发端分集、空时编码技术; (4)为了实现与业务动态特性的匹配,3G 中采用了可实现对不同速率业务(不同扩频比)间仍具有正交性能的OVSF(可变扩频比正交码)多址码; (5)针对数据业务要求误码率低且实施性要求不高的特点,3G 中对数据业务采用了Turbo 码。

专科《操作系统原理及应用》

[试题分类]:专科《操作系统原理及应用》_08004260 [题型]:单选 [分数]:2 1.批处理最主要的一个缺点是()。 A.用户无法与程序交互 B.没有实现并发处理 C.CPU的利用率较低 D.一次只能执行一个程序 答案:A 2.磁盘空闲块常用的组织形式有三种,其中一种为()。 A.空闲块连续 B.空闲块索引 C.空闲块压缩 D.空闲块链 答案:D 3.常用的文件物理结构有三种,其中的一种形式是()。 A.记录文件 B.压缩文件 C.索引文件 D.流式文件 答案:C 4.批处理系统中,作业的状态可分为多种,其中一种为()。 A.提交 B.就绪 C.创建 D.等待 答案:A 5.并发执行的一个特点是()。 A.计算结果会出错 B.不会顺序执行 C.程序与计算不再一一对应 D.结果可再现

6.下列选项()不是操作系统关心的。 A.管理计算机资源 B.提供用户操作的界面 C.高级程序设计语言的编译 D.管理计算机硬件 答案:C 7.当CPU执行用户程序的代码时,处理器处于()。 A.核心态 B.就绪态 C.自由态 D.用户态 答案:D 8.根据对设备占用方式的不同,设备分配技术中的一种是()。 A.动态分配 B.永久分配 C.静态分配 D.虚拟分配 答案:D 9.评价作业调度的性能时,衡量用户满意度的准确指标应该是()。 A.周转时间 B.平均周转时间 C.带权周转时间 D.平均带权周转时间 答案:C 10.在手工操作阶段,存在的一个严重的问题是()。 A.外部设备太少 B.用户使用不方便 C.计算机的速度不快 D.计算机的内存容量不大 答案:B 11.作业的处理一般分为多个作业步,连接成功后,下一步的工作是()。

光导纤维的原理及应用

光导纤维的原理及应用 廖浚竹 物理学2015级 摘要:介绍了阶跃型和梯度型光导纤维内光线传输原理,光导纤维的优良特性和在各个领域的广泛应用。 关键词:光导纤维、全反射、自聚焦、光纤应用 引言: 光导纤维的研制成功使人类的通迅技术得到了前所未有的发展,自从1977年美国加利福尼亚洲通用电话公司安装第一套光纤通讯系统以后,发展十分迅猛,至今已普遍使用。于当今信息爆炸的世界,人们对提高无线电波传递信息容量给予了极大的关注,光纤通信就是这一征程上的重大里程碑。 近年来,随着现代科学技术的迅猛发展,光导纤维不仅在通信、电子和电力等领域的应用日益扩展,而且在医学检测、太阳光照明、制作传感器等方面也有了重要突破,成为大有前途的新型基础材料。 1、阶跃型(全反射型)光导纤维光线传输原理 1.1全反射 光由光密介质进入光疏介质时,即n2>n1时,折射光线将远离法线。随着入射角θ1的增大,折射角θ2增加很快,当入射角θ1增加到θc时,折射线延表面进行,即折射角为90°,该入射角θc称为临界角。若入射角大于临界角,则只有反射没有折射,此现象称为全反射(图1)。当光线由光疏媒介射到光密媒介时,折射光线将靠近法线而折射,故这时不会发生全反射。 临界角:θc=arc(n1/n2) 图1 1.2光导纤维 ⑴基本结构 光纤的内层是纯玻璃光芯,外包折射率低于玻璃折射率的掺杂物(包层)。内芯是光传播的部分,包层与纤芯折射率的差别就是为了使光发生全内反射。大部分的光纤在包层外还有一层涂覆层,它一般是一层或几层聚合物,防止纤芯和包层受到震荡而影响光学或物理性质。涂覆层对在光纤里传播的光没有影响,它只是作为一个减震器。 ⑵基本原理

《移动通信原理与应用》实验报告

重庆交通大学信息科学与工程学院综合性设计性实验报告 专业:通信工程专业12级 学号:631206040218 姓名:柴闯闯 实验所属课程:移动通信原理与应用 实验室(中心):信息技术软件实验室 指导教师:谭晋 2014年11月

一、题目 扩频通信系统仿真实验 二、仿真要求 ①传输的数据随机产生,要求采用频带传输(DPSK调制); ②扩频码要求采用周期为63(或127)的m序列; ③仿真从基站发送数据到三个不同的用户,各不同用户分别进行数据接收; ④设计三种不同的功率延迟分布,从基站到达三个不同的用户分别经过多径衰落(路径数分别为2,3,4); ⑤三个用户接收端分别解出各自的数据并与发送前的数据进行差错比较。 三、仿真方案详细设计 (1)通信系统的总体框图如下: 由上图可以看出,整个设计由发送端、信道和接收机三个部分组成。 ①发射机原理

发送端首先产生三组用户数据和三组不同的m序列,并用三组m序列分别对用户信息进行扩频。再将扩频信号与载波进行DPSK调制,得到高频的已调调信号并将其送入无线的多径信道。 ②无线信道 信道模拟成无线的多径多用户信道,在这个信道中有三个用户进行数据传输,每个用户的数据分别通过三径传输到达接收端。三径会有不同的延时,衰减。最终,还要将三径用户数据增加高斯白噪声。 ③接收机原理 接收端会接收到有燥的三径信息的叠加。首先,要对接收到的三径信息进行解扩,分离出三组用户信息;其次,在将解扩后的信息进行带通滤波去除带外噪声;最后,分别对三组用户信息进行解调得到原始数据,在对接收到的数据进行误码率统计,得出系统的性能指标。 (2)功能模块的详细设计 ①扩频码(m序列)的产生 扩频码为伪随机码,可以m序列、Golden序列。本设计采用自相关特性好,互相关特性较差的m序列,为了节省运算量,我选取了周期为63扩频序列,经过计算易知要产生周期为63的m序列需要长度为6的反馈系数,经过查找资料得出三组反馈系数(八进制)45、67、75,其对应的二进制为1000011、1100111、1101101。并将二进制与移位寄存器级数对应,以1000011为例,设初始化各寄存器单元内容为1,其具体的寄存器结构图如下所示:

光纤通信原理光纤传输原理图

光纤通信原理光纤传输原理图 光纤通信原理 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维 中的全反射原理而达成的光传导工具。掺铒光纤是在石英光纤中掺入了少量的稀土元素铒(Er)离子的光纤,它是掺铒光纤放大器的核心。从20世纪80年代后期开始,掺铒光纤放大器的研究工作不断取得重大的突破。WDM技术、极大地增加了光纤通信的容量。成为当前光纤通信中应用最广的光放大器件。 光纤放大器是光纤通信系统对光信号直接进行放大的光放大器件。在使用光纤的通信系统中,不需将光信号转换为电信号,直接对光信号进行放大的一种技术。掺铒光纤放大器(EDFA即在信号通过的纤芯中掺入了铒离子Er3 + 的光信号放大器)是1985年英国南安普顿大 学首先研制成功的光放大器,它是光纤通信中最伟大的发明之一。掺铒光纤放大器的工作原理: 铒光纤放大器主要是由一段掺铒光纤(长约10-30m)和泵浦光源组成。其工作原理是:掺铒光纤在泵浦光源(波长980nm或1480nm)的作用下产生受激辐射,而且所辐射的光随着输入光信号的变化而变化,这就相当于对输入光信号进行了放大。研究表明,掺铒光纤放大器通常可得到15-40db的增益,中继距离可以在原来的基础上提高

100km以上。那么,人们不禁要问:科学家们为什么会想到在光纤放大器中利用掺杂铒元素来提高光波的强度呢?我们知道,铒是稀土元素的一种,而稀土元素又有其特殊的结构特点。长期以来,人们就一直利用在我学器件中掺杂稀土元素的方法,来改善光学器件的性能,所以这并不是一个偶然的因素。另外,为什么泵浦光源的波长选在980nm或1480nm呢?其实,泵浦光源的波长可以是520nm、650nm、980nm、和1480nm,但证明波长980nm的泵浦光源激光效率最高,次之是波长1480nm的泵浦光源。 掺铒光纤放大器的基本结构: EDFA的基本结构,它主要由有源媒质(几十米左右长的掺饵石英光纤,芯径3-5微米,掺杂浓度(25-1000)x10-6)、泵浦光源(990或1480nm LD)、光耦合器及光隔离器等组成。信号光与泵浦光在铒光纤内可以在同一方向(同向泵浦)、相反方向(反向泵浦)或两个方向(双向泵浦)传播。当信号光与泵光同时注入到铒光纤中时,铒离子在泵光作用下激发到高能级上,三能级系统),并很快衰变到亚稳态能级上,在入射信号光作用下回到基态时发射对应于信号光的光子,使信号得到放大。其放大的自发发射(ASE)谱,带宽很大(达20-40nm),且有两个峰值分别对应于1530nm和1550nm。 掺铒光纤放大器的优点:

光纤传输原理

光纤,不仅可用来传输模拟信号和数字信号,而且

: 综合布线系统中使用的光纤为玻璃多模850nm波长的 其纤芯和包层由两种光学性能不同的介质构成。内部的介质对光的折射率比环绕它的介质的折射率高。由物理学可知,在两种介质的界面上,当光从折射率高的一侧射入折射率高的一侧时,只要入射角度大于一个临界值,就会发生反射现象,能量将不受损失。这时包在外围的覆盖层就象不透明的物质一样,防止了光线在穿插过程中从表面逸出。只有那些初始入射角偏小的光线才有折射发生,并且在很短距离内就被外层物质吸收干净。

4、光纤传输的特点优势及传输原理 光缆传输的实现与发展形成了它的几个优点。相对于铜线每秒1.54MHZ的速率 光纤网络的运行速率达到了每秒2.5GB。从带宽看,很大的优势是:光纤具有较大的信息容量,这意味着能够使用尺寸很小的电缆,将来就不用更新或增强传输光缆中信号。光纤电缆对诸如无线电、电机或其他相邻电缆的电磁噪声具有较大的阻抗,使其免于受电噪声的干扰。从长远维护角度来看,光缆最终的维护成本会非常低。光纤使用光脉冲沿光线路传输信息,以替代使用电脉冲沿电缆传输信息。在系统的一端是发射机,是信息到光纤线路的起始点。发射机接收到的已编码电子脉冲信息来自于铜线电缆,然后将信息处理并转换成等效的编码光脉冲。使用发光二极管或注入式激光器产生光脉冲,同时采用透镜,将光脉冲集中到光纤介质,使光脉冲沿线路在光纤介质中传输。由内部全反射原理可知,光脉冲很容易眼光纤线路运动,光纤内部全反射原理说明了当入射角超过临界值时,光就不能从玻璃中溢出;相反,光纤会反射回玻璃内。应用这一原理制作光纤的多芯电缆,使得与光脉冲形式沿光线路传输信息成为可能。光纤传输具有衰减小、频带宽、抗干扰性强、安全性能高、体积小、重量轻等优点,所以在长距离传输和特殊环境等方面具有无法比拟的优势。传输介质是决定传输损耗的重要因素,决定了传输信号所需中继的距离,光纤作为光信号的传输介质具有低损耗的特点,光纤的频带可达到1.0GHz以上,一般图像的带宽只有8MHz,一个通道的图象用一芯光纤传输绰绰有余,在传输语音、控制信号或接点信号方面更为优势t光纤传输中的载波是光波,光波是频率极高的电磁波,远远比电波通讯中所使用的频率高,所以不受干扰。且光纤采用的玻璃材质,不导电,不会因断路、雷击等原因产生火花,因此安全性强,在易燃,易爆等场合特别适用。

相关文档
最新文档