FANUC AI电源模块通_断控制故障维修8例

FANUC AI电源模块通_断控制故障维修8例
FANUC AI电源模块通_断控制故障维修8例

FANUC AI电源模块通/断控制故障维修8例

FANUC AI电源模块通/断控制故障维修8例

例13.浪涌吸收器不良引起的故障维修

故障现象:某配套FANUC 0MC的立式加工中心,在外部突然断电后再开机时,出现系统电源无法正常接通的故障。

分析及处理过程:经检查,该机床的系统采用了输入单元集成式FANUC AI 电源单元(A16B-1211-0100),其外形以及与外部的连接如图4-4所示。

AI电源单元是FANUC公司生产的输入单元与电源集成一体的电源控制单元,它既具有普通FANUC系统电源单元(如:FANUC电源单元A、电源单元B、B2)的功能,又具有前述的FANUC输入单元的系统电源通/断控制功能。这种模块体积小,使用方便,可靠性好,因此在数控机床上使用较多。

FANUC AI电源单元的输入/输出连接如下:

CPl:AC200V(220V/230V/240V)电源输入;

CP2:与系统电源ON/OFF同步的AC200V(220V/230V/240V)电源输出:CP3:电源单元的控制信号输入,包括:系统电源ON/OFF开关触点输入(ON 、OFF、COM);外部报警信号触点输入(AL、OFF);电源单元报警输出(FA、FB);

CPl2:向主板提供的+5V、+15V、-15V、+24V、+24VE电源输出;

CPl5:向CRT提供的+24V电源输出。

模块正面有PIL(绿)与ALM(红)两只指示灯,指示灯状态的含义如下:

PIL(绿):电源指示灯。当外部AC电源加入,且内部输入单元的DC24V辅助控制电源电压正常时,指示灯亮。

ALM(红):报警指示灯。灯亮时表明电源单元内部存在故障或外部报警信号(AL、OFF)触点闭合。

FANUC AI电源单元的系统、伺服电源接通/断开控制部分的原理如图4-5、图4-6所示。

图4-5 AI电源模块主回路原理图

由图4-5可见,外部电源经输入端子CPl的R、S端加入,经熔断器P11、F12(7.5A),浪涌电压吸收器VSll、继电器触点RY3、RY4,控制AC200V。这一AC200V电压,经CP2上的200R、200S端输出到模块外部,使外部获得与电源单元同步接通/断开的200V控制电压。在通常情况下,CP2上的AC200V 输出电压用来接通伺服驱动的主接触器MCC,从而实现伺服驱动器和系统的同步通/断控制。

在电源单元内部,200V(200R、200S)控制电压又经电源滤波器NFl、二极管整流桥DSl、滤波电容C12、C13产生开关电源的直流母线电压(V+/V-)。

输入单元内部的DC24V辅助控制电压、开关主电源的DCl5V控制电压,由单独的集成开关电源控制模块M11进行控制。M11的开关信号经变压器T1输出,通过D1整流、C2滤波以及ZDl、Q1组成稳压环节,在A24上获得DC24V 的输入单元辅助控制电压。当DC24V电源正常后,发光二极管PIL正常发光。同时,24V辅助控制电压又经过熔断器P1(0.3A)、浪涌电压吸收器VSl以及ZD2、Q3、C4组成的稳压、滤波环节产生用于开关主电源的DCl5V

控制电压A15。

图4-6为AI内部输入单元的电源通、断控制回路,它由中间继电器

RYl~RY5、RYl2等组成。其原理与FANUC 6/11所使用的FANUC输入单元相类似,线路中考虑了MDI/CRT单元上的系统电源ON/OFF控制、外部报警(E.ALM信号)、内部电源模块的报警等多种条件,为用户使用提供了便利。

由图4-6可见,AI内部输入单元的电源通、断控制过程如下:

1)通过系统MDI/CRT单元上的系统ON按钮使RY2~RY4得电;

2)RY3、RY4的常开触点闭合,AC200V电源(200R、200S)接通,开关电源主回路开始工作,产生系统所需要的DC5V、DC24V、DC±15V等电源电压;

3)通过CP2上的200R、200S输出,可以同时接通外部的主接触器MCC,接通伺服驱动电源。

图4-6 AI内部电源通/断控制回路

输入单元的电源接通条件如下:

1)MDI/CRT单元上的电源切断OFF按钮触点闭合;

2)外部报警触点断开、系统内部开关主电源DC5V、DC24V、DC±15V 无故障。

注:在外部报警触点闭合或内部开关主电源故障时,通过电源单元内部的电压监控电路,将使继电器RYl2接通,并通过晶闸管CRl接通报警继电器RYl,断开系统电源。

在本例中,经检查发生故障时,图4-5中的熔断器F11、F12已熔断。再进一步测量发现,熔断器F11、F12间发生短路,原因是浪涌电压吸收器VSll短路。由于当时无备件,为了保证机床的正常生产,维修时暂时取下了浪涌电压吸收器VSll,并更换F11、F12后,机床故障排除。

例14.主接触器短路引起的故障维修

故障现象:某配套FANUC 0MC的数控铣床,在加工过程中突然断电,再开机时,系统电源无法正常接通。

分析及处理过程:经检查,图4-5中的熔断器F11、F12已熔断:通过测量,R、S间无短路,证明浪涌电压吸收器VSll以及辅助电源控制模块M11无故障。但200R、200S间存在短路现象,表明故障是由于NFl、DSl或外部200R、200S 间的短路引起的。

为了判别短路部位是在电源单元内部或外部,当时拔下了插头CP2,断开了200R、200S与外部的连接。通过检查发现短路消失,确认AC200V短路是由于外部200R、200S短路引起的。进一步检查200R、200S上的各元器件,最终找到故障原因是由伺服主接触器发生短路引起的,更换接触器及F11、F12后,故障排除,机床恢复正常。

例15.整流桥不良引起的故障维修

故障现象:某配套FANUC 0M的数控铣床,在加工过程中,车间突然断电,恢复供电后开机,系统电源无法正常接通。

分析及处理过程:分析过程同前例,经检查,图4-5中的熔断器F11、F12已熔断;通过测量,R、S间无短路,证明浪涌电压吸收器VSll以及辅助电源控制模块M11无故障。

拔下了电源模块的插头CP2测量,在本例中短路现象未消失,则确认

AC200V短路原因在电源单元内部。

进一步检查发现,二极管整流桥DSll短路,由于当时无FANUC备件DSll,为了保证机床的正常生产,维修时直接利用了同规格的二极管整流桥进行取代,经过重新安装,并更换F11、F12后,机床故障排除。

例16. 控制模块M11不良引起的故障维修

故障现象:某配套FANUC 0MC的数控铣床,在加工过程中突然断电,重新开机,系统电源无法正常接通。

分析及处理过程:分析过程同前,经检查,图4-5中的熔断器F11、F12已熔断;换上熔断器F11、F12,再次测量电源进线R、S,发现线路中存在短路;但浪涌电压吸收器VSll正常。

测量开关电源次级回路无故障,显然,短路原因在内部输入单元的集成开关电源控制模块M11上。直接更换FANUC备件后,机床故障排除。

例17.外部报警引起的故障维修

故障现象:某配套FANUC 0T的数控车床,正常关机后,开机出现系统电源无法起动的故障。

分析及处理过程:经检查,该机床电源单元的发光二极管PIL与ALM灯同时亮。由原理图4-6可知,PIL指示灯亮,证明内部输入单元的辅助DC24V正常,引起故障的原因是来自系统内部的+24V/±15V/+5V电源模块报警或外部报警信号E.ALM接通,使继电器RYl吸合,引起RY2~4的互锁而无法吸合。

进一步检查发现,故障原因来自外部报警信号E.ALM接通。根据机床电气原理图,逐一检查外部报警信号E.ALM的接通条件,最终确认故障是由于液压电动机过载引起的,排除液压电动机故障后,机床恢复正常。

例18.熔断器不良引起的故障维修

故障现象:某配套FANUC 0T的数控车床(二手设备),初次开机时,系统电源无法正常接通。

分析及处理过程:经检查,该机床电源单元的发光二极管PIL不亮,电源单元的熔断器F1已熔断。

由于机床为二手设备,故又对照原理图4-5,逐一测量电源模块内部线路与各相关元器件C2、D1、Q1等,在确认无误后,通电测量输入单元的辅助控制电源A24端子上的DC24V正常,F1的输出端与A0间无短路,初步判定电源单元无故障。

更换FANUC备件F1后,故障排除,电源正常接通。

例19.ON/OFF信号不良引起的故障维修

故障现象:某配套FANUC 0T的数控车床(二手设备),初次开机时,系统电源无法正常接通。

分析及处理过程:经检查发现输入单元的发光二极管PIL灯亮,表明电源模块输入正常。但按下系统电源起动按钮,伺服主回路接触器未能够正常接通。

对照原理图4-6,测量发现图中MDI/CRT单元CP3上的COM-OFF间开路,根据机床的实际连接,逐一检查线路,最终找出原因是电源切断OFF按钮触点断开。进一步检查发现系统的OFF按钮连接脱落,重新接线后,机床恢复正常。

例20.外部互锁引起的故障维修

故障现象:某配套FANUC 0T-Mate-E的数控车床,开机时,系统电源无法正常接通。

分析及处理过程:经检查发现输入单元的发光二极管PIL灯亮,但按下系统电源起动按钮,伺服主回路未接通。测量发现图中MDUCRT单元上的电源切断OFF与COM间断开,但操作面板上的CNC OFF按钮动作正常。

由于维修现场无机床电气原理图,只能根据实际机床接线检查。检查发现,该机床电源单元的COM(CP3-3)与OFF(CP3-2)间通过了辅助线路进行连接,COM与EOF间串联了面板上的CNC OFF按钮常闭触点、电柜门开关触点、主轴传动系统防护门开关等多个接通条件。

逐一检查以上条件,在确认全部条件都满足,COM与EOF间触点闭合后,重新起动,机床恢复正常。

维修体会与维修要点:

1)FANUC电源单元AI由于体积小、可靠性高,在0系列系统中使用较广。在该单元的电源不能接通的故障维修中,通过测绘内部输入单元的电气原理图,再对照原理图进行维修是最有效、最可靠的方法。

2)由于电源单元AI体积小、控制电压种类较多,在进行测量维修处理,特别是更换元器件时,必须十分谨慎,以防止损坏其他控制元器件。

3)除以上实例中的常见故障现象外,电源单元AI可能发生的故障还有以下几种可能的原因与现象:

①F11、F12熔断,其原因有:

a)系统开关电源主回路的开关管D14、D15损坏:

b)系统开关电源主回路的开关管续流二极管D33、D34损坏;

c)整流回路的滤波电容器C12、C13损坏;

d)电源模块内部直流主回路的短路;

e)辅助控制电源一次侧短路,等等。

②F1熔断的其他原因:

a)系统输入单元辅助电源回路的稳压、滤波器件Q3、ZD2、C4损坏;

b)浪涌电压吸收器VSl损坏;

c)控制信号ON/OFF、外部报警信号、AC电源等接线的错误;

d)电源模块内部15V电源短路;

e)电源模块内部15V电源滤波电容C4损坏,等等。

电源模块设计分析

电源模块设计分析 电源模块是可以直接贴装在印刷电路板上的电源供应器(参看图1),其特点是可为专用集成电路(ASIC)、数字信号处理器(DSP)、微处理器、存储器、现场可编程门阵列(FP GA) 及其他数字或模拟负载提供供电。一般来说,这类模块称为负载点(POL) 电源供应系统或使用点电源供应系统(PUPS)。由于模块式结构的优点甚多,因此高性能电信、网络联系及数据通信等系统都广泛采用各种模块。虽然采用模块有很多优点,但工程师设计电源模块以至大部分板上直流/直流转换器时,往往忽略可靠性及测量方面的问题。本文将深入探讨这些问题,并分别提出相关的解决方案。 图1,电源供应器 采用电源模块的优点 目前不同的供应商在市场上推出多种不同的电源模块,而不同产品的输入电压、输出功率、功能及拓扑结构等都各不相同。采用电源模块可以节省开发时间,使产品可以更快推出市场,因此电源模块比集成式的解决方案优胜。电源模块还有以下多个优点: ● 每一模块可以分别加以严格测试,以确保其高度可靠,其中包括通电测试,以便剔除不合规格的产品。相较之下,集成式的解决方案便较难测试,因为整个供电系统与电路上的其他功能系统紧密联系一起。 ● 不同的供应商可以按照现有的技术标准设计同一大小的模块,为设计电源供应器的工程师提供多种不同的选择。 ● 每一模块的设计及测试都按照标准性能的规定进行,有助减少采用新技术所承受的风险。 ● 若采用集成式的解决方案,一旦电源供应系统出现问题,便需要将整块主机板更换;若采用模块式的设计,只要将问题模块更换便可,这样有助节省成本及开发时间。

容易被忽略的电源模块设计问题 虽然采用模块式的设计有以上的多个优点,但模块式设计以至板上直流/直流转换器设计也有本身的问题,很多人对这些问题认识不足,或不给予足够的重视。以下是其中的部分问题: ● 输出噪音的测量; ● 磁力系统的设计; ● 同步降压转换器的击穿现象; ● 印刷电路板的可靠性。 这些问题会将在下文中一一加以讨论,同时还会介绍多种可解决这些问题的简单技术。 输出噪音的测量技术 所有采用开关模式的电源供应器都会输出噪音。开关频率越高,便越需要采用正确的测量技术,以确保所量度的数据准确可靠。量度输出噪音及其他重要数据时,可以采用图2 所示的Tektronix 探针探头(一般称为冷喷嘴探头),以确保测量数字准确可靠,而且符合预测。这种测量技术也确保接地环路可减至最小。 图2,测量输出噪音数字 进行测量时我们也要将测量仪表可能会出现传播延迟这个因素计算在内。大部分电流探头的传播延迟都大于电压探头。因此必须同时显示电压及电流波形的测量便无法确保测量数字的准确度,除非利用人手将不同的延迟加以均衡。 电流探头也会将电感输入电路之内。典型的电流探头会输入600nH 的电感。对于高频的电路设计来说,由于电路可承受的电感不能超过1mH,因此,经由探头输入的电感会影响di/dt 电流测量的准确性,甚至令测量数字出现很大的误差。若电感器已饱和,则可采用

48V50A开关电源整流模块主电路设计

48V/50A开关电源整流模块主电路设计 高频开关电源系统具有体积小,重量轻,高效节能,输出纹波小,输出杂音电压小和动态响应性能好等很多优点,现已开始逐步地取代整流式电源而成为现代通讯设备的新型基础电源系统。随着电子技术,电力电子技术,自动控制技术和计算机控制技术的发展,高频开关电源系统的性能也越来越好。通信用开关电源系统作为开关式稳压电源的一种形式,它的设计内容和设计方法都具有自己的特殊性。 要设计一套通信用开关电源系统,首先要明白对它的全面要求,然后再设计系统的各个部分。高频开关电源主回路和控制回路所用的电路形式,元器件,控制方式都发展很快。它们的设计具有特殊的内容和方法。 1设计要求和具体电路设计 通信基础开关电源系统的关键部分是开关电源整流模块。整流模块的规格很多,结合在工 作中遇到的实际情况,提出该模块设计的硬指标如下: 1) 电网允许的电压波动范围 单相交流输入,有效值波动范围:220 V±20%,即176~264 V;频率:45~65 Hz。 2) 直流输出电压,电流 输出电压:标称-48V,调节范围:浮充,43~56?5V;均充,45~58V。 输出电流:额定值:50A。 3) 保护和告警性能 ①当输入电压低到170 VAC或高到270 VAC,或散热器温度高到75 ℃时,自动关机。 ②当模块直流输出电压高到60 V,或输出电流高到58~60 A时,自动关机。 ③当输出电流高到53~55 A时,自动限流,负载继续加大时,调低输出电压。

4) 效率和功率因数 模块的效率不低于88%,功率因数不低于0.99。 5) 其他指标 模块的其他性能指标都要满足“YD/T731”和“入网检验实施细则”等行业标准。 由于模块的输出功率不大,可采用如下的基本方案来设计主电路: 1) 单相交流输入,采用高频有源功率因数校正技术,以提高功率因数; 2) 采用双正激变换电路拓扑形式,工作可靠性高; 3) 主开关管采用 V MOSFET,逆变开关频率取为50 kHz; 4) 采用复合隔离的逆变压器,一只变压器双端工作; 5) 采用倍流整流电路,便于绕制变压器。 依照上述方案,即可设计出主电路的基本形式如图1。 图1 48V/50A整流模块DC/DC主电路基本形式 以下即可按照模块设计的要求来确定主电路中各元器件的基本参数。 1) 输出整流管的选择 输出整流二极管的工作波形如图2所示。

关于博世轨压模式分析

深圳市三羚智能电子有限公司 经典案例 第1页共 5页 关于博世轨压模式分析 1 文章简介: 作者 单位 排版 佚名 来源于网络 深圳三羚 2 前言: 博世轨压错误的常见几种模式,公司逐一收集如下,希望对大家有所帮助… 3 正文: 序号 轨压模式故障 诊断原理 失效处理 可能原因 1 轨压模式0故障 轨压偏差大于正 200bar 1. 减扭矩; 2. 限轨压; 3. 限转速; 1. 低压油路供油不足; 2. 高压泵到共轨管之间高压侧泄露; 3. 低压此轮泵供油不足; 4. 喷油器常开; 2 轨压模式1故障 轨压偏差大于正 1. 减扭矩; 1. 低压油路供油不足;

深圳市三羚智能电子有限公司 经典案例 第2页共 5页 200bar 同时燃油计量阀开度达到最位置 2. 限轨压; 3. 限转速; 2. 高压泵到共轨管之间高压侧泄露; 3. 低压此轮泵供油不足; 4. 喷油器常开; 轨压模式2故障 轨压偏差大于负 200bar 同时燃油计量阀调整供油 1. 减扭矩; 2. 限轨压; 3. 限转速; 1. 低压油路供油量过大; 2. 燃油计量阀卡滞—常开; 3. 燃油计量阀驱动电流故障; 4 轨压模式3故障 实际轨压小于 160bar 或者200bar 1. 减扭矩; 2. 限轨压; 3. 限转速; 1. 低压油路供油不足; 2. 此轮泵供油不足; 3. 高压泵到共轨管之间高压侧泄露严重; 4. 喷油器卡滞—常开; 5 轨压模式4故障 实际轨压持续超 过1500bar 或者1600bar 时间过长 1. 发动机停机; 2. 减扭矩; 1. 燃油计量阀卡滞—常开; 2. 共轨管泄压阀卡滞—常闭; 3. 计量阀控制电流错误;

电源电路设计模块图

电源电路单元 前面介绍了电路图中的元器件的作用和符号。一张电路图通常有几十乃至几百个元器件,它们的连线纵横交叉,形式变化多端,初学者往往不知道该从什么地方开始,怎样才能读懂它。其实电子电路本身有很强的规律性,不管多复杂的电路,经过分析可以发现,它是由少数几个单元电路组成的。好象孩子们玩的积木,虽然只有十来种或二三十种块块,可是在孩子们手中却可以搭成几十乃至几百种平面图形或立体模型。同样道理,再复杂的电路,经过分析就可发现,它也是由少数几个单元电路组成的。因此初学者只要先熟悉常用的基本单元电路,再学会分析和分解电路的本领,看懂一般的电路图应该是不难的。 按单元电路的功能可以把它们分成若干类,每一类又有好多种,全部单元电路大概总有几百种。下面我们选最常用的基本单元电路来介绍。让我们从电源电路开始。 一、电源电路的功能和组成 每个电子设备都有一个供给能量的电源电路。电源电路有整流电源、逆变电源和变频器三种。常见的家用电器中多数要用到直流电源。直流电源的最简单的供电方法是用电池。但电池有成本高、体积大、需要不时更换(蓄电池则要经常充电)的缺点,因此最经济可靠而又方便的是使用整流电源。 电子电路中的电源一般是低压直流电,所以要想从 220 伏市电变换成直流电,应该先把220 伏交流变成低压交流电,再用整流电路变成脉动的直流电,最后用滤波电路滤除脉动直流电中的交流成分后才能得到直流电。有的电子设备对电源的质量要求很高,所以有时还需要再增加一个稳压电路。因此整流电源的组成一般有四大部分,见图 1 。其中变压电路其实就是一个铁芯变压器,需要介绍的只是后面三种单元电路。 二、整流电路 整流电路是利用半导体二极管的单向导电性能把交流电变成单向脉动直流电的电路。 ( 1 )半波整流 半波整流电路只需一个二极管,见图 2 ( a )。在交流电正半周时 VD 导通,负半周时 VD 截止,负载 R 上得到的是脉动的直流电

5V电源电路设计(包括电路各模块的详解)

5v电源电路的设计 本设计是要设计一个+5V直流电源供电,这里没有直接的+5V电压,而直流电源的输入电压为220V的电网电压,在正常情况下,这一电网电压是远远的高于本设计所需的电压值,因而需要先使用变压器,将220V的电网电压降低后,再进行下一阶段的处理[4]。 变压器是这一电源电路起始部分,将220V的电网电压转变为本设计所需的较低的电压,就可以进行下一阶段的整流部分。一般规定v1为变压器的高压侧,v2为变压器的低压侧,v1侧的线圈要比v2侧的线圈要多,这样就可以将220V 的电网电压降低,如图1所示: 图1变压器 单相桥式整流电路,就是将交流电网电压转换为所需电压,整流电路由四只整流二极管组成。下面简单介绍一下单相桥式整流电路的工作原理,为简便起见,这里所选的二极管都是理想的二极管,二极管正向导通时电阻为零,反向导通时电阻无穷大。在v2的正半周,电流从变压器副边线圈的上端流出,经过二极管D1,再由二极管D4流回变压器,所以D1、D4正向导通,D2、D3反向截止,产生一个极性为上正下负的输出电压。在v2的负半周,其极性正好相反,电流从变压器副边线圈的下端流出,经过二极管D2,再由二极管D3流回变压器,所以D1、D4反向截止,D2、D3正向导通。桥式整流电路利用了二极管的单向导电性,利用四个二极管,是它们交替导通,从而负载上始终可以得到一个单方向的脉动电压[6]。单相桥式整流电路如图2所示:

图2单相桥式整流电路 本设计的滤波电路采用的是电解电容和二极管并联方式滤波,简单的讲就是电容两端电压升高时,电容充电,电压降低时,电容放电,让电压降低时的坡度变得平缓,从而起到滤波的作用。这里选用电解电容是因为电解电容单位体积的电容量非常大,能比其它种类的电容大几十到数百倍,并且其额定的容量可以做到非常大,价格比其它种类相比具有相当大的优势,因为其组成材料都是普通的工业材料,比如铝等等。电解电容并联二极管,有效防止了电压反相。滤波电路如图3所示: 图3滤波电路 三端稳压器MC78M05CT将输出电压稳定在+5V上,三端稳压器如图4所示:

电源模块EMC设计

电源模块EMC设计 想必大家对电源模块一点都不陌生,而EMC性能作为电源模块的重要指标,在选型时,你知道如何深入的了解各类电源模块的EMC性能吗?在应用时,又该怎样提升模块的EMC 防护能力?本文将为您解答。 众所周知,EMC是指电磁兼容测试,指设备所产生的电磁能量既不对其它设备产生干扰,也不受其他设备的电磁能量干扰的能力。隔离电源模块的EMC测试包含EMI(电磁干扰)测试和EMS(电磁抗扰度)测试两项,那么如何保证电源模块的EMC性能呢?本文将为大家揭晓。 1、EMC简介 EMI电磁干扰指被测设备对周围设备产生干扰的能力,主要包括传导骚扰CE、辐射骚扰RE。电源模块的EMS电磁抗扰度指由于在正常运行时,设备或系统能承受相应标准规定范围内的电磁能量干扰,根据国标根据国标GB/T 16821-2007 《通信用电源设备通用试验方法》中规定电源模块测试主要包括群脉冲抗扰度(EFT)、浪涌抗扰度(SURGE)、静电放电抗扰、辐射抗扰度等项目。 EMC的产生必须具备的三要素,干扰源、传输介质以及敏感设备,如下图1所示。三者缺一个都构不成EMC问题,那么电源模块的设计中仅需针对其中一个方面进行整改即可实现EMC防护,例如从干扰源进行根除、改善传输介质避免干扰传递或将敏感设备远离干扰源等方法。 图1 EMC三要素 2、EMC干扰防护第一式——电路设计 高功率密度、高转换效率的电源模块一般都是开关电源,在开关管开通、关断时,电压和电流都会被斩波,造成较大瞬态变化(di/dt、dv/dt),所以电源模块不论其使用什么样的拓扑结构,只要是开关电源,其都会产生一定程度的EMC干扰如图2所示。

电源模块设计分析

电源模块设计分析 Khanna 作者: Ramesh 美国国家半导体首席应用技术工程师 图1:电源供应 电源模块是可以直接贴装在印刷电路板上的电源供应器 (参看图1),其特点是可为特殊应用集成电路(ASIC)、数字信号处理器 (DSP)、微处理器、存储器、现场可编程门阵列 (FPGA) 及其他数字或模拟负载提供供电。一般来说,这类模块称为负载点电源供应系统 (POL) 或使用点电源供应系统 (PUPS)。由于模块式结构的优点甚多,因此高性能电信、网络联系及数据通信等系统都广泛采用各种模块。虽然采用模块有很多优点,但工程师设计电源模块以至大部分板上直流/直流转换器时,往往忽略可靠性及测量方面的问题。下文将会审视这些问题,并分别提出相关的解决方案。 采用电源模块的优点 目前不同的供应商在市场上推出多种不同的电源模块,而不同产品的输入电压、输出功率、功能及拓扑结构等都各不相同。采用电源模块可以节省开发时间,使产品可以更快推出市场,因此电源模块比集成式的解决方案优胜。电源模块还有以下多个优点:

? 每一模块可以分别加以严格测试,以确保其高度可靠,其中包括通电测试,以便剔除不合规格的产品。相较之下,集成式的解决方案便较难测试,因为整个供电系统与电路上的其他功能系统紧密联系一起。 ? 不同的供应商可以按照现有的技术标准设计同一大小的模块,为设计电源供应器的工程师提供多种不同的选择。 ? 每一模块的设计及测试都按照标准性能的规定进行,有助减少采用新技术所承受的风险 ? 若采用集成式的解决方案,一旦电源供应系统出现问题,便需要将整块主机板更换;若采用模块式的设计,只要将问题模块更换便可,这样有助节省成本及开发时间 经常被忽略的电源模块设计问题 虽然采用模块式的设计有以上的多个优点,但模块式设计以至板上直流/直流转换器设计也有本身的问题,很多人对这些问题认识不足,或不给予足够的重视。以下是其中的部分问题: ? 输出噪音的测量 ? 磁力系统的设计 ? 同步降压转换器的击穿现象 ? 印刷电路板的可靠性 这些问题会在下文一一加以讨论,下文还会介绍多种可解决这些问题的简单技术。 输出噪音的测量技术 所有采用开关模式的电源供应器都会输出噪音。开关频率越高,便越需要采用正确的测量技术,以确保所量度的数据准确可靠。量度输出噪音及其他重要数据时,可以采用图 2 所示的 Tektronix 探针探头 (一般称为冷喷嘴探头),以确保测量数字准确可靠,而且符合预测。这种测量技术也确保接地环路可减至最小。

电源模块设计(DOC)

第十章直流稳压电源(6学时) 主要内容: 10.1 小功率整流滤波电路 10.2 串联反馈式稳压电路 基本要求: 10.1 掌握单相桥式整流电容滤波电路的工作原理及各项指标的计算 10.2 了解带放大器的串联反馈式稳压电路的稳压原理及输出电压的计算,三端 集成稳压电源的使用方法及应用 教学要点: 重点介绍单相桥式整流电容滤波电路的工作原理及各项指标的计算,介绍串联反馈式稳压电路及三端集成稳压电路的稳压原理 讲义摘要: 10.1 单相整流电路 一、引言 整流电路是将工频交流电转为具有直流电成分的脉动直流电。 滤波电路是将脉动直流中的交流成分滤除,减少交流成分,增加直流成分。 稳压电路对整流后的直流电压采用负反馈技术进一步稳定直流电压。 直流电源的方框图如图10.1.1所示。 如图10.1.1 二、单相桥式整流电路 1.工作原理 单相桥式整流电路是最基本的将交流转换为直流的电路,其电路如图10.1.2所示。 图10.1.2单相桥式整流电路 (a)整流电路 (b)波形图

在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.1.2(a)的电路图可知: 当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.1.2(b)。 2.参数计算 根据图10.1.2(b )可知,输出电压是单相脉动电压。通常用它的平均值与直流电压等效。 输出平均电压为 流过负载的脉动电压中包含有直流分量和交流分量,可将脉动电压做傅里叶分析。此时谐波分量中的二次谐波幅度最大,最低次谐波的幅值与平均值的比值称为脉动系数S 。 3.单相桥式整流电路的负载特性曲线 单相桥式整流电路的负载特性曲线是指输出电压与负载电流之间的关系曲线 该曲线如图10.1.3所示。曲线的斜率代表了整流电路的内阻。 图10.1.3 负载特性曲线 三、单相半波整流电路 流过负载的平均电流为 L 2 L 2L 9.0π22R V R V I = =流过二极管的平均电流为 2 Rm ax 2V V =二极管所承受的最大反向电压 2 2π02L O 9.0π2 2d sin 2π1V V t t V V V ==?==ωωL 2L 2L D 45.0π22R V R V I I = ==) 4cos π154 2cos π34π2(22O +--=t t V v ωω67 .03 2π22π32422===V V S )(O O I f V =

电源模块设计的解决方案

关于电源模块设计的解决方案 电源设计中即使是普通的直流到直流开关转换器的设计都会出现一系列问题,尤其在高功率电源设计中更是如此。除功能性考虑以外,工程师必须保证设计的鲁棒性,以符合成本目标要求以及热性能和空间限制,当然同时还要保证设计的进度。另外,出于产品规范和系统性能的考虑,电源产生的电磁干扰(EMI)必须足够低。不过,电源的电磁干扰水平却是设计中最难精确预计的项目。有些人甚至认为这简直是不可能的,设计人员能做的最多就是在设计中进行充分考虑,尤其在布局时。 尽管本文所讨论的原理适用于广泛的电源设计,但我们在此只关注直流到直流的转换器,因为它的应用相当广泛,几乎每一位硬件工程师都会接触到与它相关的工作,说不定什么时候就必须设计一个电源转换器。本文中我们将考虑与低电磁干扰设计相关的两种常见的折中方案;热性能、电磁干扰以及与PCB布局和电磁干扰相关的方案尺寸等。文中我们将使用一个简单的降压转换器做例子,如图1所示。 图1.普通的降压转换器 在频域内测量辐射和传导电磁干扰,这就是对已知波形做傅里叶级数展开,本文中我们着重考虑辐射电磁干扰性能。在同步降压转换器中,引起电磁干扰的主要开关波形是由Q1和Q2产生的,也就是每个场效应管在其各自导通周期内从漏极到源极的电流di/dt。图2所示的电流波形(Q和Q2on)不是很规则的梯形,但是我们的操作自由度也就更大,因为导体电流的过渡相对较慢,所以可以应用Henry Ott经典著作《电子系统中的噪声降低技术》中的公式1。我们发现,对于一个类似的波形,其上升和下降时间会直接影响谐波振幅或傅里叶系数(In)。

图2.Q1和Q2的波形 In=2IdSin(nπd)/nπd ×Sin(nπtr/T)/nπtr/T (1) 其中,n是谐波级次,T是周期,I是波形的峰值电流强度,d是占空比,而tr是tr 或tf的最小值。 在实际应用中,极有可能会同时遇到奇次和偶次谐波发射。如果只产生奇次谐波,那么波形的占空比必须精确为50%。而实际情况中极少有这样的占空比精度。 谐波系列的电磁干扰幅度受Q1和Q2的通断影响。在测量漏源电压VDS的上升时间tr 和下降时间tf,或流经Q1和Q2的电流上升率di/dt 时,可以很明显看到这一点。这也表示,我们可以很简单地通过减缓Q1或Q2的通断速度来降低电磁干扰水平。事实正是如此,延长开关时间的确对频率高于 f=1/πtr的谐波有很大影响。不过,此时必须在增加散热和降低损耗间进行折中。尽管如此,对这些参数加以控制仍是一个好方法,它有助于在电磁干扰和热性能间取得平衡。具体可以通过增加一个小阻值电阻(通常小于5Ω)实现,该电阻与Q1和Q2的栅极串联即可控制tr和tf,你也可以给栅极电阻串联一个“关断二极管”来独立控制过渡时间tr或tf(见图3)。这其实是一个迭代过程,甚至连经验最丰富的电源设计人员都使用这种方法。我们的最终目标是通过放慢晶体管的通断速度,使电磁干扰降低至可接受的水平,同时保证其温度足够低以确保稳定性。

系统芯片电源管理模块的设计

系统芯片电源管理模块的设计 发表时间:2019-11-26T14:54:15.313Z 来源:《中国西部科技》2019年第22期作者:林杰 [导读] 超深亚微米系统芯片具有规模大,复杂度高,系统时钟频率快的特点。传统的由外部电源直接给芯片供电的方式,由于稳定性等问题往往不能保证芯片正常工作,一些系统设计者采取的电源管理设计方法是采用外加电压转换电路芯片,以及低电压检测电路芯片。基于FC接口实现电源管理模块通信,实现较多数据文件的传输。采用应用系统集成于SOC技术,尽可能减少系统体积重量,提高系统的性能、可靠性,并能降低系统的制造成本。 林杰 中芯国际集成电路制造(天津)有限公司 摘要:超深亚微米系统芯片具有规模大,复杂度高,系统时钟频率快的特点。传统的由外部电源直接给芯片供电的方式,由于稳定性等问题往往不能保证芯片正常工作,一些系统设计者采取的电源管理设计方法是采用外加电压转换电路芯片,以及低电压检测电路芯片。基于FC接口实现电源管理模块通信,实现较多数据文件的传输。采用应用系统集成于SOC技术,尽可能减少系统体积重量,提高系统的性能、可靠性,并能降低系统的制造成本。 关键词:智能手机;电源模块;设计 随着人类社会向智能化的方向发展,嵌入式的应用也逐渐迎来了新的发展前景。各种各样的电子娱乐设备不断进入人们的生活中,其中以便携式设备的使用最为广泛,如手机,笔记本电脑,数码相机等。而嵌入式便携设备大多都有功耗约束,降低功耗,延长待机时间是其追求的目标。目前很多智能手机在密集使用下只能维持半天,多数摄像机和数码相机在一次充电后都只有一个小时左右的累积工作时间。这些便携设备的待机时间相对较短,不能很好的满足用户的使用需求。 一、智能电源管理模块的系统结构 智能电源管理模块是以片上系统SOC为控制中心,实现对数据的采集。模块由电压电流调理电路、开关阵列电路、AD 选通转换电路、控制器、存储器、FC 接口等构成,主要负责电源模块的检测和控制。当上电BIT 测试正确,则电源管理模块以一组固定的动作序列去控制开关阵列PSA 向外供电;若流经PSA 电流超出范围Is≥IsMAX,控制PSA 并对其进行状态转换;在应急供电下,停止对通用模块供电,只对关键模块供电;电源管理模块通过FC 接口与系统管理者进行传输开关动作状态、报警信息、数据各支路电流,记录电源自测试BIT 结果、故障信息。 二、电源管理模块电路设计 1、复位电路。复位类型包括上电复位、手动复位、调试口复位、软件复位和看门狗复位。上电或手动复位有效时产生200ms 的低电平复位信号,提供给SOC芯片作为系统复位触发源之一。调试口复位由外部调试工具产生,用于复位ARM922T 处理器的调试接口。软件复位指系统根据软件运行要求生成的复位触发源。而当系统在规定时间内,没有得到响应时产生看门狗复位。当SOC芯片接收到上述复位类型中任意一种触发复位机制,由SOC芯片输出系统复位信号对电源管理模块进行复位。 2、时钟电路。电源管理模块中需要使用时钟的电路有:SOC芯片、FC 接口。其中,SOC芯片选择53.125MHz 运行时钟,内部进行4倍频提供ARM922T 处理器使用。FC 接口收、发数据时钟频率为106.25MHz。 3、存储器电路。电源管理模块中的存储器是SDRAM 存储器。该存储器工作电压为3.3V,封装为54 引脚的TSOP,容量为32M*16。在设计时使用2 片K4S511632E 实现32 位操作。SOC芯片内置SDRAM 存储器控制器,提供SDRAM 的时序控制逻辑,并且提供SDRAM 访问时钟,时钟频率为56.125MHz,同存储器时钟的时钟频率和相位在EDA 设计时保持一致。 4、逻辑控制电路。它是电源管理模块的控制部分,由重写电路、状态控制电路、模拟控制电路、低电压逻辑电路、重启控制电路五部分组成。重启控制电路接收电源启动信号和由低电压逻辑控制电路产生的低电压重启信号,产生控制信号给重写电路。由重写电路完成系统启动时各个状态控制位的初值设定。如果是电源启动,重写完成后,重写电路接收到系统的电源启动完成信号,产生电源启动释放信号给电源启动电路,释放掉电源启动信号。低电压逻辑控制电路接收低电压事件信号,并根据MCU提供的状态控制信号,决定系统是进行低电压重启,还是进行低电压中断。状态控制电路产生控制信号给模拟控制电路和电压转换电路,进行状态控制。模拟控制电路接收控制信号,进行逻辑转换,产生电源管理模块中的模拟部分的使能信号。 5、电压转换电路。它是在逻辑控制电路的控制下,动态地对外部电源电压进行转换,提供稳定的电压给驱动电路。它主要有三个为泵电路提供输入的振荡器,三个泵电路和三个反馈控制电路,分别负责产生驱动电路。电压转换电路是一个负反馈系统。振荡器根据外部电压信号和由电源管理模块产生的参考电压产生方波,提供给泵电路。此处的振荡器为压控振荡器,不同的电压产生不同的频率的方波,低压高频。泵电路从振荡器接受方波,输出比较稳定的电压。要获得稳定的Vnominal,就要求振荡器电路与泵电路相互补充,以至最终输出稳定的电压。三个反馈控制电路,分别对三个驱动电路的输出电压进行监测,并将控制信号输送给振荡器,调整振荡器的工作状态,进而达到调整电压的目的。这部分电路和低电压检测电路一样,通过电阻对电压参考电路的输出的电压Vref 进行分压来设定各个控制参考电压值。此处,电压转换电路还包括辅助的控制模块,如电压参考电路的选择模块,为此,也要相应的增加一个电压参考电路。因为在MCU 的某些低功耗工作模式下,需要的电压会比正常工作的电压小,这样可以通过电压参考电路的选择模块选择一个比较小的参考电压,进而减小功耗。电压转换电路设计图如图所示。 6、模拟量输入电路。系统的模拟量信号是由多路模拟开关进行选通。多路开关是采用2 片16通道模拟开关和1 片8 通道模拟开关,通过4 位通道地址选取相应通道,其中最高位为片选位。因此,最多可选通38 路模拟信号,满足本模块所需的24 路模拟量信号的要求。模拟开关用于选通被测试信号,包括4 路电压检测信号、16 路电流模拟量信号和4 路应急模拟量信号,通过对GPIO0-5 配置进行通道选择。A/D 转换器件控制端直接与EBI 接口连接,CS 信号接EBI_CS2,读写信号则与EBI 读写信号相连。A/D 转换的操作为中断方式或查询方式,转换结束标志EOC 信号作为外部中断连接到SOC芯片,当转换结束后产生中断,由SOC芯片读取转换结果并作出相应处理。EOC 信号在设计时也连接到SOC芯片的GPIO 端,可作为输入信号,当转换开始后查询该信号状态判断是否转换结束。 7、离散量输出电路。离散量输出主要用于控制开关阵列的工作状态,当状态一旦置出,在没有检测到错误或是在没有接受到系统管理者更新指令时,该状态是不能变更的。在设计时,利用EBI 数据作为开关阵列的控制信号。首先,对EBI数据通过锁存器进行锁存,然后

技术精华:电源模块的PCB设计

技术精华:电源模块的P C B设计为什么要学习电源电路的设计? 电源电路是一个电子产品的重要组成部分,电源电路设计的好坏,直接牵连产品性能的好坏。 电源电路的分类我们电子产品的电源电路主要有线性电源和高频开关电源。从理论上讲,线性电源是用户需要多少电流,输入端就要提供多少电流;开关电源是用户需要多少功率,输入端就提供多少功率。 线性电源电路原理图举例线性电源功率器件工作在线性状态,如我们常用的稳压芯片LM7805、LM317、SPX1117等。下图1是L M7805稳压电源电路原理图。 图1.线性电源原理图

从图上可知,线性电源有整流、滤波、稳压、储能等功能元件组成,同时,一般用的线性电源为串联稳压电源,输出电流等于输入电流,I1=I2+I3,I3是参考端,电流很小,因此I1≈I3。我们为什么要讲电流,是因为PCB设计时,每条线的宽度不是随便设的,是要根据原理图里元件节点间的电流大小来确定的(请查《PCB设计铜铂厚度、线宽和电流关系表》)。电流大小、电流流向要搞清楚,做板才恰到好处。线性电源P C B图PCB设计时,元件的布局要紧凑,要让所有的连线尽可能短,要按原理图元件功能关系去布局元件与走线。本电源图里就是先整流、再滤波、滤波后才是稳压、稳压后才是储能电容、流经电容后才给后面的电路用电。 图2是上面原理图的PCB图,两个图相似。左图和右图就是走线有点不一样,左图的电源经整流后直接就到了稳压芯片的输入脚了,然后才是稳压电容,这里电容所起的滤波效果就差了很多,输出也有问题。右图就是比较好的图了。我们不仅要考虑正电源的流向问题,还必须考虑地回流问题,一般来说,正电源线和地回流线要尽可能同进同出,彼此离近点。 图2.线性电源P C B图设计线性电源PCB时还应注意,线性电源的功率稳压芯片的散热问题,热量是怎么来的,若稳压芯片前端电压是10V,输出端是5V,输出电流为500mA,那在稳压芯片上就有5V的电压降,产生的热量就为2.5W;如果输入端电压是15V,电压降就是10V,产生的热量就为5W,因此,我们布板是要根据散热功率来留出足够的散热空间或合理的散热片。线性电源一般用在压差比较小,电流比较小的场合,否则,请改用开关电源电路。 高频开关电源电路原理图举例

电源模块PCB设计

电源模块PCB设计 电源电路是一个电子产品的重要组成部分,电源电路设计的好坏,直接牵连产品性能的好坏。我们电子产品的电源电路主要有线性电源和高频开关电源。从理论上讲,线性电源是用户需要多少电流,输入端就要提供多少电流;开关电源是用户需要多少功率,输入端就提供多少功率。线性电源 线性电源功率器件工作在线性状态,如我们常用的稳压芯片LM7805、LM317、SPX1117等。下图一是LM7805稳压电源电路原理图。 图一线性电源原理图 从图上可知,线性电源有整流、滤波、稳压、储能等功能元件组成,同时,一般用的线性电源为串联稳压电源,输出电流等于输入电流,I1=I2+I3,I3是参考端,电流很小,因此I1≈I3。我们为什么要讲电流,是因为PCB设计时,

每条线的宽度不是随便设的,是要根据原理图里元件节点间的电流大小来确定的(请查《PCB设计铜铂厚度、线宽和电流关系表》)。电流大小、电流流向要搞清楚,做板才恰到好处。 PCB设计时,元件的布局要紧凑,要让所有的连线尽可能短,要按原理图元件功能关系去布局元件与走线。本电源图里就是先整流、再滤波、滤波后才是稳压、稳压后才是储能电容、流经电容后才给后面的电路用电。图二是上面原理图的PCB图,两个图相似。左图和右图就是走线有点不一样,左图的电源经整流后直接就到了稳压芯片的输入脚了,然后才是稳压电容,这里电容所起的滤波效果就差了很多,输出也有问题。右图就是比较好的图了。我们不仅要考虑正电源的流向问题,还必须考虑地回流问题,一般来说,正电源线和地回流线要尽可能同进同出,彼此离近点。 图二线性电源PCB图

设计线性电源PCB时还应注意,线性电源的功率稳压芯片的散热问题,热量是怎么来的,若稳压芯片前端电压是10V,输出端是5V,输出电流为500mA,那在稳压芯片上就有5V 的电压降,产生的热量就为2.5W;如果输入端电压是15V,电压降就是10V,产生的热量就为5W,因此,我们布板 是要根据散热功率来留出足够的散热空间或合理的散热片。线性电源一般用在压差比较小,电流比较小的场合,否则,请改用开关电源电路。 高频开关电源 开关电源就是用通过电路控制开关管进行高速的导通与截止,产生PWM波形,经过电感和续流二极管,利用电磁 电转换的方式调压。开关电源功率大、效率高、发热小, 我们一般用的电路有:LM2575、MC34063、SP6659等。开关电源理论上是电路两端功率相等,电压成反比,电流 成反比。

一次电源输入EMI电路设计模块精讲

输入EMI滤波器电路设计规范 2000年12月22日发布 2000年12月 22日实施

深圳市华为电气技术有限公司

前言 本规范于2000年12月22日首次发布。本规范起草单位:一次电源研究部本规范执笔人:方旺林 本规范主要起草人: 本规范标准化审查人: 本规范批准人: 本规范修改记录:

更改信息登记表

目录 摘要 (5) 缩写词/关键词/解释 (5) 1.来源 (5) 2.适用范围 (5) 3.规范满足的技术指标(特征指标) (5) 4.详细电路图 (5) 5.工作原理简介 (6) 6.设计、调试要点 (7) 7.局部PCB版图(可选项) (11) 8.元器件明细表(详见附录) (11) 9.附录 (12) 附录1.元器件明细表 (12) 附录2.应用反例(可选项) (14)

摘要:本规范介绍了一种单相输入EMI电源滤波器电路,该电路一般作为中小功率电源的输入部分电路,以满足电源的EMC要求。 关键词:EMI, 插入损耗 缩略词解释 EMC:Electromagnetic Compatibility,电磁兼容性 EMI: Electromagnetic Interference,电磁干扰 1.来源 本规范中的电路来源于HD4850-2模块H2415M1单板,已经在HD4850-2模块中得到的批量使用验证。 2.适用范围 该单元电路参数只要做适当调试、更改,便可用于绝大部分中小功率电源。 3.规范满足的技术指标(特征指标) 本单元电路在HD4850-2电源中得到验证。该电源的规格为: 输入:AC 120V~290V 输出:48V/50A 输出功率:2900W 实际的测试结果表明,传导干扰通过EN55022 CLASS B标准,并有2-3dB的余量,辐射干扰通过EN55022 CLASS B标准,有2-3dB的余量。 4. 详细电路图 图1 单元电路原理图 5. 工作原理简介

电源模块EMC的设计

电源模块EMC的设计 众所周知,EMC是指电磁兼容测试,指设备所产生的电磁能量既不对其它设备产生干扰,也不受其他设备的电磁能量干扰的能力。隔离电源模块的EMC 测试包含EMI(电磁干扰)测试和EMS(电磁抗扰度)测试两项,那么如何保证电源模块的EMC性能呢?这里将为大家揭晓。 1、EMC简介 EMI电磁干扰指被测设备对周围设备产生干扰的能力,主要包括传导骚扰CE、 辐射骚扰RE。 EMC的产生必须具备的三要素,干扰源、传输介质以及敏感设备,如下图1所示。三者缺一个都构不成EMC问题,那么电源模块的设计中仅需针对其中一个方面进行整改即可实现EMC防护,例如从干扰源进行根除、改善传输介质避免干扰传递或将敏感设备远离干扰源等方法。 图1 EMC三要素 2、EMC干扰防护第一式——电路设计 高功率密度、高转换效率的电源模块一般都是开关电源,在开关管开通、关断时,电压和电流都会被斩波,造成较大瞬态变化(di/dt、dv/dt),所以电源模块不论其使用什么样的拓扑结构,只要是开关电源,其都会产生一定程度的EMC干扰如图2所示。 图2 开关电源常见拓扑与斩波

电源模块的EMC性能可通过优化自身拓扑结构和规范PCB设计进行提升。 例如: 电路设计中,以先保护后滤波为原则,保护器件应放置在离产品的静电导入口最近的地方; 拓扑设计中,选择连续导通模式(CCM)的拓扑,例如Boost、全桥、推挽等拓扑; 在电路防护方面,开关管建议加RC吸收电路和RCD吸收电路,且靠近开关管放置,从而降低尖峰电压,在EMC传输路径上使用π型滤波和全波整流电路等滤波电路,具体可参考图3; PCB设计中,尽可能地大面积铺地,并且尽量减小对地平面的分割,减小回路面积,从而降低干扰。避免出现大面积孤立铜区,大面积孤立铜区会因电磁等原因影响模块的可靠性;减少布线的长度,从而减小动态节点处电感,避免产生较强的电磁场。 图3 电源模块EMC优化拓扑 3、EMC干扰防护第二式——器件选择 电源模块的元器件选择会直接的影响模块的整体性能,接下来将为大家从电源芯片、高频变压器、场效应管以及共模电感等方面介绍,具体如下所示。 高频变压器:应保证直流损耗低、交流损耗低,漏感小并从而使开关电源工作时,在漏极产生的尖峰尽可能的小; 场效应管:关注其导通电阻和低栅极电荷两项参数,这两项即影响模块的EMC 性能也影响整体的效率,所以要做好两者的平衡; 共模电感:与其他无源器件相同,关注其电参数,例如额定电压、额定电流、电感量以及漏感等参数 滤波电容:应用于输入端进行滤波;应用于输出端吸收开关频率及高次谐波电流分量,需求趋势是小型大容量化、高频低阻抗化以及高耐压;

相关文档
最新文档