粒子群算法

粒子群算法
粒子群算法

粒子群算法

摘要:粒子群优化算法是由James Kennedy和 Russell Eberbart 设计的一种仿生优化计算方法。PSO算法的基本设计思想来源于两个方面分别是人工生命和进化计算,设计者通过研究动物群体以及人类行为模式的计算机模拟,然后不断的试错、修改而逐渐的到算法的原型。PSO算法的运行机理不是依靠个体的自然进化规律,而是对生物群体的社会行为进行模拟。它最早源于对鸟群觅食行为的研究。在生物群体中存在着个体与个体、个体与群体间的相互作用、相互影响的行为,这种相互作用和影响是通过信息共享机制体现的。PSO算法就是对这种社会行为的模拟即利用信息共享机制,使得个体间可以相互借鉴经验,从而促进整个群体朝着更好的方向发展。

关键词:粒子群优化算法;社会行为;鸟群觅食;信息共享

1 粒子群算法设计思想

粒子群算法的思想来源于对鸟捕食行为的模仿,虽让鸟群在捕食过程中会发生改变飞行方向、聚集等一系列不可预测的行为但整体还是呈现一种有序性,研究证明是因为鸟群中存在一种信息共享机制。可以设想一群鸟在随机搜索食物,刚开始每只鸟均不知道食物在哪里,所以均无特定的目标进行飞行,但是它们知道哪只鸟距离食物最近,还有自己曾经离食物最近的位置,每只鸟开始通过试图通过这两个位置来确定自己往哪个方向飞行。因此可以将鸟群觅食行为看做一个特定问题寻找解的过程。

如果我们把一个优化问题看做是空中觅食的鸟群,那么粒子群中每个优化问题的可行解就是搜索空间中的一只鸟,称为“粒子”,“食物”就是优化问题的最优解。个体找到食物就相当于优化问题找到最优解。当然这里的鸟群(粒子)是经过人工处理的,它们均有记忆功能,没有质量和体积,不占空间,每个粒子均有速度和位置两个属性,同时每个粒子都有一个由优化问题决定的适应度来评价粒子的“好坏”程度,显然,每个粒子的行为就是总追随者当前的最优粒子在解空间中搜索。

2 粒子群优化算法

2.1 标准粒子群优化算法

首先提出两个概念,(1)探索:是值粒子在一定程度上离开原先的搜索轨迹,向新的方向进行搜索,体现了向未知区域开拓的能力,可以理解为全局搜索。

(2)开发:值粒子沿着原来的搜索轨迹进行更细的搜索,可以理解为局部搜索,种群在探索和开发的过程中向最优解靠近,因而如何控制这两种搜索过程将对PSO 算法的效率产生较大影响。

假设问题的空间是N 维,群体中有m 个粒子,每个粒子表示一个可行解),...,,(321in i i i x x x x X i =,将它带入目标函数得到适应度值,用这个值来评价每个粒子的优劣。记粒子所经历过的最好位置为

),...,,(321in i i i p p p p P i =,整个群体的最优位置为),...,,(321gn g g g p p p p P g =。

粒子的位置和速度的更新公式为: ij V k+1=w ij V k +11r c (ij Pbest k -ij x k )+22r c (ij gbest k -ij x k )

ij x k+1=ij V k+1

+ij x k

分析上式:惯性权重w 描述了粒子的惯性对速度的影响,w 值会影响到PSO 算法的全局和局部搜索能力,w 越大则全局搜索能力越强。1C 、2C 为常数,称为学习因子,1r ,2r 是0到1之间的随机数。对速度的更新由三部分构成: 第一部分是粒子的当前速度,表明了粒子的当前状态。

第二部是是认知部分,表明粒子自身的能力,让粒子拥有足够强的全局搜索能力,避免局部最小。

第三部分为社会部分,表示粒子间的合作。

这三个部分共同决定了粒子的空间搜索能力,三部分共同作用才能让粒子有效地达到最好的位置。粒子新的速度由当前速度,当前位置与自己经历过的最优位置,当前位置与种群经历过的最优位置的距离共同计算得出,然后根据位置更新公式得到下一代粒子的位置。迭代的结束条件时达到最大迭代次数或者得到指定的适应度值,不过通常取前者,因为指定的适应度值不好设定。 另外,粒子在不断根据速度来调增位置时,还要受到最大速度max V 的限制,当速度超过max V 时将被限定为max V 。

标准粒子群优化算法的流程图如下图所示:

图1 标准粒子群算法流程图

步骤如下:

(1)初始化种群,包括种群规模,每个粒子的位置和速度。

(2)计算每个粒子的适应度值。

(3)对每个粒子,用它的适应度和个体极值pbest相比较,如果较好,则更新pbest。

(4)对每个粒子,用它的适应度和全局极值gbest相比较,如果较好,则更新gbest。

(5)根据速度和位置的更新公式对粒子的位置和速度进行更新,以产生新一代的个体。

(6)若达到结束条件(满足迭代次数或误差足够好)则退出,否则转(2)。

2.2 离散粒子群算法

根据粒子子啊一种状态到另一种状态的变化概率定义了粒子的位置和速度。因此粒子在状态空间上的每一维的移动都被严格控制为0或1,所以首先要把粒子的速度映射到区间[0,1],用速度与概率进行映射的方法采用的函数是sigmoid 函数。

))(()(id v S rand if < then 1=id x ;else 0=id x

其中函数)ex p (11)(id id v v S -+=,rand()在区间[0,1]的一个随机数,用

)(id v S 来表示id x 取1的概率。因为)(id

v S 的值与id V 的值相关,所以应该把id V 限制在一个范围这样才能取得比较好的效果,设速度最大值为max V ,则][m a x m a x ,V V v -∈。

以max V =4为例,)(id v S 的关系图为:

图2 速度与是S (v )在]4,4[-∈v 时的函数

离散粒子群算法的流程图如下图所示:

图三离散粒子群算法的流程图

离散粒子群优化算法的步骤和标准粒子群优化算法大致相同,可以参考上面的步骤。

3 粒子群优化算法的优缺点分析

3.1粒子群算法的优点

(1)PSO算法没有交叉和变异运算,依靠粒子速度完成搜索,并且在迭代进化中只有最优的粒子把信息传递给其它粒子,搜索速度快;

(2)PSO算法具有记忆性,粒子群体的历史最好位置可以记忆并传递给其它粒子;

(3)需调整的参数较少,结构简单,易于工程实现;

(4)采用实数编码,直接由问题的解决定,问题解的变量数直接作为粒子的维数。

3.2粒子群算法的缺点

(1)缺乏速度的动态调节,容易陷入局部最优,导致收敛精度低和不易收敛;

(2)不能有效解决离散及组合优化问题;

(3)不能有效求解一些非直角坐标系描述问题,如有关能量场或场内粒子运动规律的求解问题(这些求解空间的边界大部分是基于极坐标、球坐标或柱坐标的)(4)参数控制,对于不同的问题,如何选择合适的参数来达到最优效果。

4 粒子群算法的应用范围

粒子群优化算法已提出就受到了广泛的关注,各种粒子群算法应用研究的成果不断涌现,它的应用领域已从最初的函数优化和神经网络的训练扩展到更加开阔的领域,有力地促进了粒子群优化算法的研究。目前粒子群优化算法的主要应用在如下几个方面:

(1)函数优化

PSO算法最初被应用于函数优化,但后来的学者经过研究发现,粒子群算法在解决一些经典的函数优化问题,甚至一些非线性函数时也展示出了良好的性能。其后研究者开始尝试用PSO算法解决更为浮渣的越苏优化和多目标优化问题。

(2)神经网络训练

将PSO算法用于神经网络训练也取得了良好的效果,研究表明,PSO是一种很有潜力的神经网络训练算法,如用于市区环境状况的分析和预测等取得了较高的成功率。

(3)工程领域应用

很多工程中的实际问题,本质上都是优化问题,因此PSO算法自然就可以应用到实际的工程问题来,将PSO肃反和BP神经网络算法相结合训练神经网络已用于对电动汽车燃料电池组充电情况的模拟。粒子群优化算法和其它进化算法那一样,可以解决几乎所有的优化问题,或是可以转化为优化问题来求解。

(4)用于随机优化问题的求解:比如随机雪球车辆路径问题,随机规划问题等。(5)用于最优控制问题的求解,如求解城市环路交通协调控制系统。

5 粒子群算法发展趋势

粒子群算法今后研究的主要方向和热点可以总结为如下几个方面:

(1)算法基理的数学基础研究。PSO在实际应用中被证明是有效的,但目前还没有给出收敛性、收敛速度估计等方面的数学证明,已有的工作还远远不够;(2)将各种先进理论引入到PSO。各种先进理论的引入,首先可以研究性能良好的新型粒子群拓扑结构。不同的粒子群邻居拓扑结构是对不同类型社会的模拟,研究不同拓扑结构的适用范围,对算法推广和使用有重要意义;其次可以优化PSO的参数及其选择。参数的选择分别关系到粒子速度的3个部分:惯性部分、社会部分和自身部分在搜索中的作用。如何选择、优化和调整参数,使得算法既能避免早熟又能比较快速地收敛,对工程实践有着重要意义;

(3)与其它智能优化算法的融合。将P$O和其它优化算法进行融合,主要考虑如何将PSO的优点和其它智能优化算法的优点相结合,取长补短,构造出有特色、有实用价值的混合算法;

(4)PSO的扩展应用。目前P$O的多数研究是针对直角坐标系统描述的系统、离散系统和单一优化系统,而实际系统中,很多系统是非直角坐标系统描述的系统、离散系统、组合优化的系统,目前在这些系统中应用PSO算法可供参考的研究还较少,广泛地开拓P$O在这些领域的应用不仅具有实际意义,同时对深化研究PSO也非常有意义。

6 总结

粒子群优化算法是一类新兴的基于群智能的算法,同其它进化算法相比,主要特使是简洁,容易实现和更强的全局优化能力,没有很多参数需要调整,且不需要梯度信息,因此受人们广泛的关注,PSO算法是非线性连续优化问题、组合优化问题和混合整数非线性优化问题的有效优化工具,目前已经广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。但对该算法还有很多问题值得研究,是目前优化领域的研究热点。本文分析该算法的思想来源,两种重要的粒子群算法(标准和离散型)介绍、PSO算法的优缺点以及和一些实际的应用范围,展望了将算法未来的研究方向和发展趋势。

参考文献:

[1]王芳,粒子群算法的研究[D]

[2]刘衍民,粒子群算法的研究及应用[D]

[3]张永芳,粒子群算法的研究与应用[D]

[4]王岩,粒子群算法在求解组合优化问题中的应用研究[D]

[5]王文峰,离散粒子群算法的改进研究及其在优化问题中的应用[D]

[6]李兰,改进的离散粒子群算法求解0-1背包问题[D]

[7]陈曦,离散粒子群算法的改进及其应用研究

[8]李玉毛,粒子群算法的研究与改进[D]

[9]莫愿斌,刘贺同,陈德钊,粒子群优化算法的发展趋势[J],计算机与应用化学,2009年4月28日,第26卷,第4期

[10]王伯成,施锦丹,王凯,粒子群优化算法的研究现状与发展概述[J],Telecommunication Engineering,2008年5月第48卷第5期

[11]夏桂梅, 曾建潮,微粒群算法的研究现状及发展趋势[J],2005年3月第19卷第1期

[12]王瑾, 张求明, 黄波,粒子群优化算法的分析与研究[J],,计算机与现代化,2009年第7期

[13]王俊伟,粒子群优化算法的改进与应用[D]

[14]周东先,粒子群优化算法的研究及其应用[D]

[15]张利彪,基于粒子群优化算法的研究[D]

(完整word版)基本粒子群算法的原理和matlab程序

基本粒子群算法的原理和matlab程序 作者——niewei120(nuaa) 一、粒子群算法的基本原理 粒子群优化算法源自对鸟群捕食行为的研究,最初由Kennedy和Eberhart提出,是一种通用的启发式搜索技术。一群鸟在区域中随机搜索食物,所有鸟知道自己当前位置离食物多远,那么搜索的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。PSO 算法利用这种模型得到启示并应用于解决优化问题。PSO 算法中,每个优化问题的解都是粒子在搜索 空间中的位置,所有的粒子都有一个被优化的目标函数所决定的适应值,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。 PSO 算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。每个粒子有了初始位置与初始速度。然后通过迭代寻优。在每一次迭代中,每个粒子通过跟踪两个“极值”来更新自己在解空间中的空间位置与飞翔速度。第一个极值就是单个粒子本身在迭代过程中找到的最优解粒子,这个粒子叫做个体极值。另一个极值是种群所有粒子在迭代过程中所找到的最优解粒子,这个粒子是全局极值。上述的方法叫全局粒子群算法。如果不用种群所有粒子而只用其中一部分作为该粒子的邻居粒子,那么在所有邻居粒子中的极值就是局部极值,该方法称为局部PSO 算法。 速度、位置的更新方程表示为: 每个粒子自身搜索到的历史最优值p i ,p i=(p i1,p i2,....,p iQ),i=1,2,3,....,n。所有粒子搜索到的最优值p g,p g=(p g1,p g2,....,p gQ),注意这里的p g只有一个。 是保持原来速度的系数,所以叫做惯性权重。 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。 是[0,1]区间内均匀分布的随机数。 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设 置为1 。

基本粒子群算法的matlab源程序

主函数源程序(main.m) %------基本粒子群优化算法(Particle Swarm Optimization)-----------%------名称:基本粒子群优化算法(PSO) %------作用:求解优化问题 %------说明:全局性,并行性,高效的群体智能算法 %------初始格式化--------------------------------------------------clear all; clc; format long; %------给定初始化条件---------------------------------------------- c1=1.4962;%学习因子1 c2=1.4962;%学习因子2 w=0.7298;%惯性权重 MaxDT=1000;%最大迭代次数 D=10;%搜索空间维数(未知数个数) N=40;%初始化群体个体数目 eps=10^(-6);%设置精度(在已知最小值时候用) %------初始化种群的个体(可以在这里限定位置和速度的范围)------------for i=1:N for j=1:D x(i,j)=randn;%随机初始化位置 v(i,j)=randn;%随机初始化速度 end end %------先计算各个粒子的适应度,并初始化Pi和Pg----------------------for i=1:N p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end pg=x(1,:);%Pg为全局最优 for i=2:N if fitness(x(i,:),D) pg=x(i,:); end end %------进入主要循环,按照公式依次迭代,直到满足精度要求------------for t=1:MaxDT for i=1:N v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:)); x(i,:)=x(i,:)+v(i,:); if fitness(x(i,:),D) p(i)=fitness(x(i,:),D); y(i,:)=x(i,:);

粒子群优化算法介绍及matlab程序

粒子群优化算法(1)—粒子群优化算法简介 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物。 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化 第一次更新位置

第二次更新位置 第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

粒子群优化算法(2)—标准粒子群优化算法 在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。这个公式就是粒子群算法中的位置速度更新公式。下面就介绍这个公式是什么。在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。这个时候我们的每个粒子均为二维,记粒子P1=(x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。这里n 为粒子群群体的规模,也就是这个群中粒子的个数,每个粒子的维数为2。更一般的是粒子的维数为q ,这样在这个种群中有n 个粒子,每个粒子为q 维。 由n 个粒子组成的群体对Q 维(就是每个粒子的维数)空间进行搜索。每个粒子表示为:x i =(x i1,x i2,x i3,...,x iQ ),每个粒子对应的速度可以表示为v i =(v i1,v i2,v i3,....,v iQ ),每个粒子在搜索时要考虑两个因素: 1. 自己搜索到的历史最优值 p i ,p i =(p i1,p i2,....,p iQ ),i=1,2,3,....,n ; 2. 全部粒子搜索到的最优值p g ,p g =(p g1,p g2,....,p gQ ),注意这里的p g 只有一个。 下面给出粒子群算法的位置速度更新公式: 112()()()()k k k k i i i i v v c rand pbest x c rand gbest x ω+=+??-+??-, 11k k k i i i x x av ++=+. 这里有几个重要的参数需要大家记忆,因为在以后的讲解中将会经常用到,它们是: ω是保持原来速度的系数,所以叫做惯性权重。1c 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为2。2c 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。()rand 是[0,1]区间内均匀分布的随机数。a 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设置为1。这样一个标准的粒子群算法就介绍结束了。下图是对整个基本的粒子群的过程给一个简单的图形表示。 判断终止条件可是设置适应值到达一定的数值或者循环一定的次数。 注意:这里的粒子是同时跟踪自己的历史最优值与全局(群体)最优值来改变自己的位置预速度的,所以又叫做全局版本的标准粒子群优化算法。

(完整word版)基本粒子群算法的原理和matlab程序.doc

基本粒子群算法的原理和matlab 程序 作者—— niewei120 (nuaa) 一、粒子群算法的基本原理 粒子群优化算法源自对鸟群捕食行为的研究,最初由Kennedy 和 Eberhart 提出,是一种通 用的启发式搜索技术。一群鸟在区域中随机搜索食物,所有鸟知道自己当前位置离食物多远, 那么搜索的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。PSO 算法利用这种模型得到启示并应用于解决优化问题。PSO 算法中,每个优化问题的解都是粒子在搜索 空间中的位置,所有的粒子都有一个被优化的目标函数所决定的适应值,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。 PSO 算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。每个粒子有了初始位置与初始速度。然后通过迭代寻优。在每一次迭代中,每个粒子通过跟踪两个“极值”来更新自己在解空间中的空间位置与飞翔速度。第一个极值就是单个粒子本身在迭代过程中找到的最优解粒子,这个粒子叫做个体极值。另一个极值是种群所有粒子在迭代过程中所找到的最优解粒子,这个粒子是全局极值。上述的方法叫全局粒子群算法。如果不用种群所有粒子而只用其中一部分作为该粒子的邻居粒子,那么在所有邻居粒子中的极值就是局部极值,该方法称为局部PSO 算法。 速度、位置的更新方程表示为: 每个粒子自身搜索到的历史最优值p i,p i=(p i1 ,p i2 ,....,p iQ ), i=1,2,3,....,n 。所有粒子搜索到的最优值p g, p g=(p g1 ,p g2,....,p gQ ),注意这里的p g只有一个。 是保持原来速度的系数,所以叫做惯性权重。 是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。通常设置为 2 。 是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。通常设置为2。 是[0,1] 区间内均匀分布的随机数。 是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。通常设 置为 1 。

粒子群算法基本原理

4.1粒子群算法基本原理 粒子群优化算法[45]最原始的工作可以追溯到1987年Reynolds 对鸟群社会系统Boids (Reynolds 对其仿真鸟群系统的命名)的仿真研究 。通常,群体的行为可以由几条简单的规则进行建模,虽然每个个体具有简单的行为规则,但是却群体的行为却是非常的复杂,所以他们在鸟类仿真中,即Boids 系统中采取了下面的三条简单的规则: (1)飞离最近的个体(鸟),避免与其发生碰撞冲突; (2)尽量使自己与周围的鸟保持速度一致; (3)尽量试图向自己认为的群体中心靠近。 虽然只有三条规则,但Boids 系统已经表现出非常逼真的群体聚集行为。但Reynolds 仅仅实现了该仿真,并无实用价值。 1995年Kennedy [46-48]和Eberhart 在Reynolds 等人的研究基础上创造性地提出了粒子群优化算法,应用于连续空间的优化计算中 。Kennedy 和Eberhart 在boids 中加入了一个特定点,定义为食物,每只鸟根据周围鸟的觅食行为来搜寻食物。Kennedy 和Eberhart 的初衷是希望模拟研究鸟群觅食行为,但试验结果却显示这个仿真模型蕴含着很强的优化能力,尤其是在多维空间中的寻优。最初仿真的时候,每只鸟在计算机屏幕上显示为一个点,而“点”在数学领域具有多种意义,于是作者用“粒子(particle )”来称呼每个个体,这样就产生了基本的粒子群优化算法[49]。 假设在一个D 维搜索空间中,有m 个粒子组成一粒子群,其中第i 个粒子的空间位置为123(,,,...,)1,2,...,i i i i iD X x x x x i m ==,它是优化问题的一个潜在解,将它带入优化目标函数可以计算出其相应的适应值,根据适应值可衡量i x 的优劣;第i 个粒子所经历的最好位置称为其个体历史最好位置,记为123(,,,...,)1,2,...,i i i i i D P p p p p i m ==,相应的适应值为个体最好适应值 Fi ;同时,每个粒子还具有各自的飞行速度123(,,,...,)1,2,...,i i i i iD V v v v v i m ==。所有粒子经历过的位置中的最好位置称为全局历史最好位置,记为

粒子群算法简介和使用

粒子群算法 题目:求∑==10 12)(i i x x f 的最小值 1粒子群简介 粒子群优化算法PSO 也是起源对简单社会系统的模拟。最初设想是模拟鸟群觅食的过程。粒子群优化算法是由Kennedy 和Eberhart 通过对鸟群、鱼群和人类社会某些行为的观察研究,于1995年提出的一种新颖的进化算法。 PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”和“变异” 操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。 2算法的原理 PSO 从这种模型中得到启示并用于解决优化问题。PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 假设在一个D 维的目标搜索空间中,有N 个粒子组成一个群落,其中第i 个

粒子表示为一个D 维的向量 ),,,(21iD i i i x x x X =,N i ,,2,1 = 第i 个粒子的“飞行 ”速度也是一个D 维的向量,记为 ),,21i iD i i v v v V ,(= ,3,2,1 =i 第i 个粒子迄今为止搜索到的最优位置称为个体极值,记为 ),,,(21iD i i best p p p p =,N i ,,2,1 = 整个粒子群迄今为止搜索到的最优位置为全局极值,记为 ),,,(21gD g g best p p p g = 在找到这两个最优值时,粒子根据如下的公式(2.1)和( 2.2)来更新自己的速度和位置: ())(2211id gd id id id id x p r c x p r c v w v -+-+*= (2.1) id id id v x x += (2. 2) 其中:1c 和2c 为学习因子,也称加速常数,1r 和2r 为[0,1]范围内的均匀随机数。式(2.1)右边由三部分组成,第一部分为“惯性”或“动量”部分,反映了粒子的运动“习惯”,代表粒子有维持自己先前速度的趋势;第二部分为“认知”部分,反映了粒子对自身历史经验的记忆或回忆,代表粒子有向自身历史最佳位置逼近的趋势;第三部分为“社会”部分,反映了粒子间协同合作与知识共享的群体历史经验,代表粒子有向群体或邻域历史最佳位置逼近的趋势,根据经验,通常221==c c 。D i ,,2,1 =。id v 是粒子的速度,],[max max v v v id -∈,max v 是常数,由用户设定用来限制粒子的速度。1r 和2r 是介于[0,1]之间的随机数。 探索是偏离原来的寻优轨迹去寻找一个更好的解,探索能力是一个算法的全

粒子群算法(1)----粒子群算法简介

粒子群算法(1)----粒子群算法简介 二、粒子群算法的具体表述 上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。下面通俗的解释PSO算法。 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO.中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下: 当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下: 这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物 计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。 更新自己位置的一定公式就是粒子群算法中的位置速度更新公式。 下面演示一下这个算法运行一次的大概过程: 第一次初始化

第一次更新位置 第二次更新位置

第21次更新 最后的结果(30次迭代) 最后所有的点都集中在最大值的地方。

粒子群算法详解-附matlab代码说明

粒子群算法(1)----粒子群算法简介 一、粒子群算法的历史 粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。 所以CAS系统中的主体具有4个基本特点(这些特点是粒子群算法发展变化的依据): 首先,主体是主动的、活动的。 主体与环境及其他主体是相互影响、相互作用的,这种影响是系统发展变化的主要动力。 环境的影响是宏观的,主体之间的影响是微观的,宏观与微观要有机结合。 最后,整个系统可能还要受一些随机因素的影响。 粒子群算法就是对一个CAS系统---鸟群社会系统的研究得出的。 粒子群算法(Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。在PSO中,每个优化问题的潜在解都可以想象成d维搜索空间上的一个点,我们称之为“粒子”(Particle),所有的粒子都有一个被目标函数决定的适应值(Fitness Value ),每个粒子还有一个速度决定他们飞翔的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索。Reynolds对鸟群飞行的研究发现。鸟仅仅是追踪它有限数量的邻居但最终的整体结果是整个鸟群好像在一个中心的控制之下.即复杂的全局行为是由简单规则的相互作用引起的。 二、粒子群算法的具体表述 上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。下面通俗的解释PSO算法。 PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下:

c语言实现的粒子群算法代码及解释

//粒子群PSO算法 #include #include #include #include #define PI 3.141592653589 /* */ #define P_num 200 //粒子数目 #define dim 50 #define low -100 //搜索域范围 #define high 100 #define iter_num 1000 #define V_max 20 //速度范围 #define c1 2 #define c2 2 #define w 0.5 #define alp 1 double particle[P_num][dim]; //个体集合 double particle_loc_best[P_num][dim]; //每个个体局部最优向量 double particle_loc_fit[P_num]; //个体的局部最优适应度,有局部最优向量计算而来double particle_glo_best[dim]; //全局最优向量 double gfit; //全局最优适应度,有全局最优向量计算而来double particle_v[P_num][dim]; //记录每个个体的当前代速度向量 double particle_fit[P_num]; //记录每个粒子的当前代适应度 double Sphere(double a[]) { int i; double sum=0.0; for(i=0; i

粒子群算法源程序

二维粒子群matlab源程序 %function [pso F] = pso_2D() % FUNCTION PSO --------USE Particle Swarm Optimization Algorithm % global present; % close all; clc; clear all; pop_size = 10; % pop_size 种群大小 ///粒子数量 part_size = 2; % part_size 粒子大小 ///粒子的维数gbest = zeros(1,part_size+1); % gbest 当前搜索到的最小的值 max_gen = 200; % max_gen 最大迭代次数 %best=zeros(part_size,pop_size*part_size);%xuan region=zeros(part_size,2); % 设定搜索空间范围->解空间 region=10*[-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3]; % 每一维设定不同范围(称之为解空间,不是可行域空间) rand('state',sum(100*clock)); % 重置随机数发生器状态 %当前种群的信息矩阵,逐代进化的群体 % 当前位置,随机初始化 % 一个10*3的随机的矩阵(初始化所有粒子的所有维数的位置值),其中最后一列为 arr_present = ini_pos(pop_size,part_size); % 初始化当前速度 % 一个10*2的随机的矩阵(初始化所有粒子的所有维数的速度值) v=ini_v(pop_size,part_size); %不是当前种群,可看作是一个外部的记忆体,存储每个粒子历史最优值(2维数值):根据适应度更新!

6种粒子群算法程序

程序1 当22111==c c ,5.12212==c c ,2.1=w 。 a)%主函数源程序(main.m ) %------基本粒子群算法 (particle swarm optimization ) %------名称: 基本粒子群算法 %------初始格式化 clear all ; %清除所有变量 clc; %清屏 format long ; %将数据显示为长整形科学计数 %------给定初始条条件------------------ N=40; %3初始化群体个数 D=10; %初始化群体维数 T=100; %初始化群体最迭代次数 c11=2; %学习因子1 c21=2; %学习因子2 c12=1.5; c22=1.5; w=1.2; %惯性权重 eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------ x=zeros(N,D); v=zeros(N,D); for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置 v(i,j)=randn; %随机初始化速度 end end %------显示群位置---------------------- figure(1) for j=1:D if (rem(D,2)>0)

subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始位置') tInfo=strcat('第',char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维'); end title(tInfo) end %------显示种群速度 figure(2) for j=1:D if(rem(D,2)>0) subplot((D+1)/2,2,j) else subplot(D/2,2,j) end plot(x(:,j),'b*');grid on xlabel('粒子') ylabel('初始速度') tInfo=strcat('第,char(j+48),'维'); if(j>9) tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维); end title(tInfo) end figure(3) %第一个图 subplot(1,2,1)

粒子群优化算法及其应用研究【精品文档】(完整版)

摘要 在智能领域,大部分问题都可以归结为优化问题。常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。 本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。根据分析结果,研究了一种基于量子的粒子群优化算法。在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。最后,对本文进行了简单的总结和展望。 关键词:粒子群优化算法最小二乘支持向量机参数优化适应度

目录 摘要...................................................................... I 目录....................................................................... II 1.概述. (1) 1.1引言 (1) 1.2研究背景 (1) 1.2.1人工生命计算 (1) 1.2.2 群集智能理论 (2) 1.3算法比较 (2) 1.3.1粒子群算法与遗传算法(GA)比较 (2) 1.3.2粒子群算法与蚁群算法(ACO)比较 (3) 1.4粒子群优化算法的研究现状 (4) 1.4.1理论研究现状 (4) 1.4.2应用研究现状 (5) 1.5粒子群优化算法的应用 (5) 1.5.1神经网络训练 (6) 1.5.2函数优化 (6) 1.5.3其他应用 (6) 1.5.4粒子群优化算法的工程应用概述 (6) 2.粒子群优化算法 (8) 2.1基本粒子群优化算法 (8) 2.1.1基本理论 (8) 2.1.2算法流程 (9) 2.2标准粒子群优化算法 (10) 2.2.1惯性权重 (10) 2.2.2压缩因子 (11) 2.3算法分析 (12) 2.3.1参数分析 (12) 2.3.2粒子群优化算法的特点 (14) 3.粒子群优化算法的改进 (15) 3.1粒子群优化算法存在的问题 (15) 3.2粒子群优化算法的改进分析 (15) 3.3基于量子粒子群优化(QPSO)算法 (17) 3.3.1 QPSO算法的优点 (17) 3.3.2 基于MATLAB的仿真 (18) 3.4 PSO仿真 (19) 3.4.1 标准测试函数 (19) 3.4.2 试验参数设置 (20) 3.5试验结果与分析 (21) 4.粒子群优化算法在支持向量机的参数优化中的应用 (22) 4.1支持向量机 (22) 4.2最小二乘支持向量机原理 (22)

粒子群算法论文

粒子群算法论文 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

粒子群算法的寻优算法 摘要:粒子群算法是在仿真生物群体社会活动的基础上,通过模拟群体生物相互协同寻优能力,从而构造出一种新的智能优化算法。这篇文章简要回顾了粒子群算法的发展历史;引入了一个粒子群算法的实例,对其用MATLAB进行编程求解,得出结论。之后还对其中的惯性权重进行了延伸研究,对惯性权重的选择和变化的算法性能进行分析。 关键词:粒子群、寻优、MATLAB、惯性权重 目录:

1.粒子群算法的简介 粒子群算法(Particle Swarm Optimization)是一种新的智能优化算法。谈到它的发展历史,就不得不先介绍下传统的优化算法,正因为传统优化算法自身的一些不足,才有新智能优化算法的兴起,而粒子群算法(PSO)就是在这种情况下发展起来的。 粒子群算法的研究背景 最优化是人们在科学研究、工程技术和经济管理等领域中经常遇到的问题。优化问题研究的主要内容是在解决某个问题时,如何从众多的解决方案中选出最优方案。它可以定义为:在一定的约束条件下,求得一组参数值,使得系统的某项性能指标达到最优(最大或最小)。传统的优化方法是借助于优化问题的不同性质,通常将问题分为线性规划问题、非线性规划问题、整数规划问题和多目标规划问题等。相应的有一些成熟的常规算法,如应用于线性规划问题的单纯形法,应用于非线性规划的牛顿法、共扼梯度法,应用于整数规则的分枝界定法、动态规划等。列举的这些传统的优化算法能够解决现实生活和工程上的很多问题,但工业和科学领域大量实际问题的困难程度正在日益增长,它们大多是根本无法在可接受的时间内找到解的问题。这类优化问题的困难性不仅体现在具有极大的规模,更为重要的是,它们多数是非线性的、动态的、多峰的、具有欺骗性的或者不具有任何导数信息。因此,发展通用性更强、效率更高的优化算法总是需要的。 起源 在自然界中,鸟群运动的主体是离散的,其排列看起来是随机的,但在整体的运动中它们却保持着惊人的同步性,其整体运动形态非常流畅且极富美感。这些呈分布状态的群体所表现出的似乎是有意识的集中控制,一直是许多研究者感兴趣的问题。有研究者对鸟群的运动进行了计算机仿真,他们通过对个体设定简单的运动规则,来模拟鸟群整体的复杂行为。 1986 年 Craig ReynolS 提出了 Boid 模型,用以模拟鸟类聚集飞行的行为,通过对现实世界中这些群体运动的观察,在计算机中复制和重建这些运动轨迹,并对这些运动进行抽象建模,以发现新的运动模式。之后,生物学家Frank Heppner 在此基础上增加了栖息地对鸟吸引的仿真条件,提出了新的鸟群模型。这个新的鸟群模型的关键在于以个体之间的运算操作为基础,这个操作也就是群体行为的同步必须在于个体努力维持自身与邻居之间的距离为最优,为此每个个体必须知道自身位置和邻居的位置信息。这些都表明群体中个体之间信息的社会共享有助于群体的进化。

粒子群算法介绍

1.介绍: 粒子群算法(Particle Swarm Optimization, PSO)最早是由Eberhart 和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 经过实践证明:全局版本的粒子群算法收敛速度快,但是容易陷入局部最优。局部版本的粒子群算法收敛速度慢,但是很难陷入局部最优。现在的粒子群算法大都在收敛速度与摆脱局部最优这两个方面下功夫。其实这两个方面是矛盾的。看如何更好的折中了。 粒子群算法主要分为4个大的分支: (1)标准粒子群算法的变形 在这个分支中,主要是对标准粒子群算法的惯性因子、收敛因子(约束因子)、“认知”部分的c1,“社会”部分的c2进行变化与调节,希望获得好的效果。 惯性因子的原始版本是保持不变的,后来有人提出随着算法迭代的进行,惯性因子需要逐渐减小的思想。算法开始阶段,大的惯性因子可以是算法不容易陷入局部最优,到算法的后期,小的惯性因子可以使收敛速度加快,使收敛更加平稳,不至于出现振荡现象。经过本人测试,动态的减小惯性因子w,的确可以使算法更加稳定,效果比较好。但是递减惯性因子采用什么样的方法呢?人们首先想到的是线型递减,这种策略的确很好,但是是不是最优的呢?于是有人对递减的策略作了研究,研究结果指出:线型函数的递减优于凸函数的递减策略,但是凹函数的递减策略又优于线型的递减,经过本人测试,实验结果基本符合这个结论,但是效果不是很明显。 对于收敛因子,经过证明如果收敛因子取0.729,可以确保算法的收敛,但是不能保证算法收敛到全局最优,经过本人测试,取收敛因子为0.729效果较好。对于社会与认知的系数c2,c1也有人提出:c1先大后小,而c2先小后大的思想,因为在算法运行初期,每个鸟要有大的自己的认知部分而又比较小的社会部分,这个与我们自己一群人找东西的情形比较接近,因为在我们找东西的初期,我们基本依靠自己的知识取寻

粒子群算法原理及在函数优化中的应用(附程序)

粒子群算法原理及其在函数优化中的应用 1粒子群优化(PSO)算法基本原理 1.1标准粒子群算法 假设在一个D 维的目标搜索空间中,有 m 个代表问题潜在解的粒子组成一 个种群x [X i ,X 2,...,X m ],第i 个粒子的信息可用D 维向量表示为 X i [X ii , X i2,..., X iD ]T ,其速度为V i [V ii ,V i2,...,V iD ]T 。算法首先初始化m 个随机粒 子,然后通过迭代找到最优解。每一次迭代中,粒子通过跟踪2个极值进行信息 交流,一个是第i 个粒子本身找到的最优解,称之为个体极值,即 P i [P il , P i2,...,厢]丁 ;另一个是所有粒子目前找到的最优解,称之为群体极值, 即P g [P gi ,P g2,..., P gD 「。粒子在更新上述2个极值后,根据式(1)和式(2)更新自 己的速度和位置。 t 1 t t t t t\ V i WV i C 1「1(P i X i ) C 2「2(P g X i ) 式中,t 代表当前迭代次数,「1,「2是在[0,1]之间服从均匀分布的随机数,C 1,C 2 称为学习因子,分别调节粒子向个体极值和群体极值方向飞行的步长, w 为惯性 权重,一般在0.1~0.9之间取值。在标准的PSO 算法中,惯性权重w 被设为常数, 通常取w 0.5。在实际应用中,x 需保证在一定的范围内,即x 的每一维的变化 范围均为[X min ,X max ],这在函数优化问题中相当丁自变量的定义域 1.2算法实现步骤 步骤1:表示出PSO 算法中的适应度函数fitness(x);(编程时最好以函数的 形式保存,便丁多次调用。) 步骤2:初始化PSO 算法中各个参数(如粒子个数,惯性权重,学习因子, 最大迭代次数等),在自变量x 定义域内随机初始化x ,代入fitness(x)求得适应 度值,通过比较确定起始个体极值P i 和全局极值P g 。 步骤3:通过循环迭代更新x 、p i 和p g : ① 确定惯性权重w 的取值(当w 不是常数时)。 ② 根据式(1)更新粒子的速度V :1,若速度中的某一维超过了 V max ,则取为 V max - ③ 根据式(2)更新自变量x ,若x 的取值超过其定义域,则在其定义域内重新 初t 1 X i t t 1 X i V i

粒子群算法通用matlab程序

% 优化函数以m文件的形式放在fitness.m里面,对不同的优化函数只要修改fitness.m 就可 %------基本粒子群优化算法(Particle Swarm Optimization, PSO)----------- %------初始格式化-------------------------------------------------- clear all; clc; format long; %------给定初始化条件---------------------------------------------- c1=1.4962; %学习因子1 c2=1.4962; %学习因子2 w=0.7298; %惯性权重 MaxDT=1000; %最大迭代次数 D=4; %搜索空间维数(未知数个数) N=10; %初始化群体个体数目 eps=10^(-6); %设置精度(在已知最小值时候用) %------初始化种群的个体(可以在这里限定位置和速度的范围)------------ x=0:0.1:1,y=[-.447,1.978,3.11,5.25,5.02,4.66,4.01,4.58,3.45,5.35,9.22] %------先计算各个粒子的适应度,并初始化Pi和Pg---------------------- for i=1:N p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end pg=x(1,:); %Pg为全局最优 for i=2:N if fitness(x(i,:),D)

粒子群算法实例

粒子群算法解决函数优化问题 学院:信息科学与工程学院

目录 引言 (1) 一、问题描述 (2) 1.1 连续函数求最优值问题 (2) 1.2 粒子群算法 (2) 二、算法设计 (3) 2.1 流程框图 (3) 2.2 算法实现 (3) 2.3 参数选择 (4) 三、程序设计 (5) 3.1 编写程序 (5) 四、结果与分析 (6) 4.1 实验结果: (6) 4.2 分析: (7) 五、总结 (7)

引言 本文主要利用粒子群算法解决连续函数的最小值问题,粒子群优化是一种新兴的基于群体智能的启发式全局 搜索算法,粒子群优化算法通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。本文介绍了粒子群优化算法的基本原理,分析了其特点,并将其应用于函数优化问题求解。 求函数最优值问题,对此问题,传统的优化技术很容易陷入局部最优解,求得全局优化解的概率不高,可靠性低;为此,建立尽可能大概率的求解全局优化解算法是求解函数优化的一个重要问题。本文采用粒子群算法来解决这类问题。

一、问题描述 1.1 连续函数求最大值问题 本文主要选取一个三维函数,利用matlab 编写粒子群算法程序来求解它们 以验证遗传算法在解决函数优化问题中的有效性。本文选取的函数为:f=x(1).^2+x(2).^2+x(3).^2,求它的最小值。 1.2 粒子群算法 PSO 从这种模型中得到启示并用于解决优化问题。PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 假设在一个D 维的目标搜索空间中,有N 个粒子组成一个群落,其中第i 个粒子表示为一个D 维的向量 ) ,,,(21iD i i i x x x X =,N i ,,2,1 =。 第i 个粒子的“飞行 ”速度也是一个D 维的向量,记为 ) ,,21i iD i i v v v V ,(=,3 ,2,1 =i 。 第i 个粒子迄今为止搜索到的最优位置称为个体极值,记为 ) ,,,(21iD i i best p p p p =,N i ,,2,1 =。 整个粒子群迄今为止搜索到的最优位置为全局极值,记为 ) ,,,(21gD g g best p p p g = 在找到这两个最优值时,粒子根据如下的公式(1.1)和( 1.2)来更新自己的速度和位置: ()) (2211id gd id id id id x p r c x p r c v w v -+-+*= (1.1)

相关文档
最新文档