拉普拉斯(Laplace)方程

拉普拉斯(Laplace)方程
拉普拉斯(Laplace)方程

拉普拉斯方程数值解

二维有限差分析是求解两个变量的拉普拉斯方程的一种近似方法,这种方法的要点如下: 在平面场中,将平面划分成若干正方形格子,每个格子的边长都等于h ,图13-10表示其中的一部分,设0点的电位为V 0,0点周围方格顶点的电位分别为V 1、V 2、V 3和V 4。现在来推导一个用V 1、V 2、V 3和V 4表示V 0的公式: 图13-10 已知平面场的电位满足两个变量的拉普拉斯方程: 0222 2=??+??y V x V 其中 h x V x V x V x x V c a ??- ??≈??? ??????= ??0 22 但是 h V V x V h V V x V c a 30 01 ,-≈??-≈ ?? 所以 2 30013 0010 2 2h V V V V h h V V h V V x V +--≈-- -≈?? 同理 2 4 0020 2 2h V V V V y V +--≈ ?? 将上面两个方程相加一起得: 042 43212222=-+++≈??+??h V V V V V y V x V 由上面方程推出:)(4 1 43210V V V V V +++≈ (13.47) 该式说明0点的电位近似等于相互垂直的方向上和0点等距离的四个点上的电位平均值,距离h 愈小则结果愈精确,方程(13.47)是用近似法求解两个变量拉普拉斯方程的依据。 然而,V 0和V 1、V 2、V 3、V 4都是未知值,这种情况下需要按照方程(13.47)写出每一点的电位方程,然后求这些方程的联立解。 求解时较简便的方法是选代法,这种方法可求出平面场中各点电位的近似值。 图13-11表示一个截面为正方形的导体槽,槽的顶面与侧面相互绝缘,顶面的电位为

伯努利方程的讨论

对伯努利方程的一些讨论 〔摘要〕伯努利方程是能量方程,推导过程有多种途径,本文从动力学角度根据功能原理推导伯努利方程,只研究理想流体在作定常流动时伯努利方程的推导过程,并讨论在不同条件下方程中各项的物理意义,然后讨论了伯努利方程中“动压强”的意义以及“动压强”和“静压强”的关系。最后列举了伯努利方程在生产生活中的应用. 〔关键词〕动力学;功能原理;伯努利方程,动压强 一、引言 流体力学是探索自然规律的基本学科,是研究流体在运动中其流动参量之间的相互关系,以及引起运动的原因和流体对周围物体的影响.而伯努利方程是研究流体最基本最常用的基本规律之一,为灵活掌握并更好的运用,需了解它的推导过程及相关项的物理意义. 二、伯努利方程的历史由来 1726年,伯努利通过无数次实验,发现了“边界层表面效应”:流体速度加快时,物体与流体接触的界面上的压力会减小,反之压力会增加。为纪念这位科学家的贡献,这一发现被称为“伯努利效应”。伯努利效应适用于包括气体在内的一切流体,是流体作稳定流动时的基本现象之一,反映出流体的压强与流速的关系,流速与压强的关系:流体的流速越大,压强越小;流体的流速越小,压强越大。

丹尼尔·伯努利(Daniel Bernoulli,1700-1782)1700年1月29日生于尼德兰的格罗宁根,由于受到家庭的影响,从小对自然科学的各个领域有着极大兴趣。1716~1717年在巴塞尔大学学医;1718~1719年在海德堡大学学习哲学;1719~1720年又在斯特拉斯堡大学学习伦理学,此后专攻数学;1721年他获得了医学大学学位;1725~1732年丹尼尔·伯努利在圣彼得堡科学院工作,并担任数学教师;1733~1750年他担任了巴塞尔大学的解剖学、植物学教授;1750年丹尼尔又任物理学教授和哲学教授,同年被选为英国皇家学会会员;1782年3月17日逝世于巴塞尔,终年82岁。丹尼尔是伯努利家庭中成就最大的科学家。他在数学和物理学等多方面都做出了卓越的贡献,仅在1725年到1749年间就曾10次获得法国科学院年度资助,还被聘为圣彼得堡科学院的名誉院士。在数学方面,丹尼尔的研究涉及代数、概率论、微积分、级数理论、微分方程等多学科的内容,取得了重大成就。在物理学方面,丹尼尔所取得的成功是惊人的。其中对流体力学和气体动力学的研究尤为突出。1738年出版的《流体力学》一书是他的代表著作。书中根据能量守恒定律解决了流体的流动理论,提出了著名的伯努利定理,这是流体力学的重要基本定理之一。丹尼尔在气体动力学方面的贡献,主要是用气体分子运动论解释了气体对容器壁的压力的由来。他认为,由于大量气体分子的高速规则运动造成了对器壁的压力,压缩气体产生较大的作用力是由于气体分子数增多,并且相互碰撞更加频繁所致。丹尼尔将级数理论运用于有关力学方面的研究之中,这对于力学发展具有重要的意义。

拉普拉斯方程

拉普拉斯方程 一、概念:一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为:,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。 二、在数理方程中 拉普拉斯方程为:,其中?2为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ: 其中?2称为拉普拉斯算子。 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x,y,z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。

三、方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 四、二维方程 两个自变量的拉普拉斯方程具有以下形式: Δu =δ2u/δu2+δ2u/δy2=0 解析函数的实部和虚部均满足拉普拉斯方程

流体力学【关于伯努利方程的应用】

工程流体力学 综合报告 学院:机械工程学院专业:机械工程 班级: 学号: 学生姓名: 任课老师: 提交日期:2017年12月27 日

关于伯努利方程的应用 摘要 “伯努利原理“是著名的瑞士科学家丹尼尔·伯努利在1726年提出的。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。即:动能+重力势能+压力势能=常数。其最为著名的推论为:等高流动时,流速大,压力就小。伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。 关键词:伯努利方程公式及原理应用流体力学 1 伯努利方程 伯努利原理往往被表述为p+1/2ρv2+ρgh=C,这个式子被称为伯努利方程。式中p为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。它也可以被表述为p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2。 需要注意的是,由于伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体 1.1 流线上的伯努利方程 流线上的伯努利方程:

适于理想流体(不存在摩擦阻力)。式中各项分别表示单位流体的动能、位能、静压能之差。如果流动速度为0,则由伯努利方程可得平衡流体的流体静力学基本公式(C g p z =+ρ )。 1.2 总流的伯努利方程 总流是无数元流的总和,将元流伯努利方程沿总流过流断面积分,即可推导出总流的伯努利方程,也即总流能量方程。 动能修正系数α为实际动能与按平均速度计算的动能的比值,α值反映了断面速度分布的不均匀程度。由于气体的动力黏度值较小,过流断面速度梯度小,实际的气流运动的速度分布比较均匀,接近于断面平均流速。所以,气体运动中的动能修正系数常常取1.0。管中水流多数也属于这种情况,此时总流与流线上的伯努利方程形式上无区别。 g V g p z g V g p z 222222221111αραρ++=++g V g p z g V g p z C g v g p z 222222221112++=++=++ρρρ

拉普拉斯方程

拉普拉斯方程 拉普拉斯方程又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。 拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。 通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:▽p=γ(1/R1+1/R2)式中γ是液体表面张力。该公式成为拉普拉斯方程。 在数理方程中

拉普拉斯方程拉普拉斯方程为:Δ u=d^2u/dx^2+d^2u/dy^2=0,其中Δ为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ:其中Δ称为拉普拉斯算子. 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x, y, z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是 Laplace operator或简称作Laplacian。 狄利克雷问题 拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。

正方形环域Laplace方程的简明数值解法

收稿日期:2005212210 基金项目:辽宁省教育厅科研基金资助项目(05L415)? 作者简介:刘大卫(1964-),男,贵州贵阳人,贵州工业大学副教授? 第24卷 第2期 2006年4月 沈阳师范大学学报(自然科学版) Journal of S henyang Norm al U niversity (N atural Science ) V ol 124,N o.2Apr.2006 文章编号:1673-5862(2006)02-0166-04 正方形环域Laplace 方程的简明数值解法 刘大卫1,高 明2,3 (1.贵州工业大学基础部,贵州贵阳 550003; 2.沈阳师范大学物理科学与技术学院,辽宁沈阳 110034; 3.沈阳师范大学实验中心,辽宁沈阳 110034) 摘 要:通过正方形环域的Laplace 方程的数值求解过程,详细介绍了使用MA TLAB 求解微 分方程的方法?用MA TLAB 的M 文件,生成正方形环域,用函数numgrid 作网格划分,用函数delsq 建立五点差分格式建立并求解拉普拉斯方程第一边值问题?关 键 词:Laplace 方程;差分法;MA TLAB 中图分类号:O 175 文献标识码:A 0 引 言 Laplace 方程是解决电磁场问题中最常见的方程,在一些具有较复杂边界形状的区域中求出方程的 解析解是非常困难的[122]?因此寻求一种有效的、简明的数值解法对于解决实际问题中复杂边界区域中 的电磁场分布问题具有非常重要的实际价值?通过一个特殊的方形区域的电场分布问题介绍一种应用MA TLAB 数值求解Laplace 方程的方法? 考虑图1所示正方形环域,设区域内满足Laplace 方程Δu =0,内边界处电势u =100,外边界处电势u =0,求区域内的电势分布,易见,这是一个Laplace 方程的第一边值问题? 现用差分法求解这个问题,首先把研究区域划分为图2所示的网格,在这个划分中,除去边界点,区域被分为240个网格节点 ? 图1  正方形环域 图2 网格的划分 差分法求解的基本思想是,在网格节点上用差商代替微商,结合边界条件,把定解问题转化为以未知函数u (x ,y )在节点上的数值为未知量的线性方程组: Ax =b 其中,x 为解向量,代表函数u (x ,y )在节点上的数值?A 为系数矩阵,与网格节点的划分和编号方式有关,通常是一个大型的稀疏矩阵?b 为常数向量,由边界条件确定?对上述问题,A 为240×240阶稀疏矩阵,b 为240×1阶稀疏常数向量?下面用MA TLAB 提供的网格划分函数numgrid 和差分格式建立函数delsq 来构造系数矩阵A ?

拉普拉斯方程

拉普拉斯方程应该和泊松方程是同胞兄弟了,都是扩散方程,用来描述散度场的。只不过拉普拉斯方程是无源场,泊松方程是有源场。预备内容:梯度、旋度、散度和拉普拉斯算子在曲线坐标下的表达式: 如果在某个曲线坐标系内位移微元(其中是坐标),那么便有: 梯度:散度:旋度:拉普拉斯算符: 对于直角坐标系、球坐标系和柱坐标系来说,的值为: 于是,我们便可以轻松地默写球坐标下拉普拉斯算符的表达式\^o^/ 下面进入正题 1.直角坐标系 当出现金属平板之类的边界条件时,使用直角坐标系较为方便。 在直角坐标系下,拉普拉斯方程的表达式为: i)二维问题 假设沿z轴平移V保持不变,于是方程便简化为二维形式: 我们假设V可以写成两个函数相乘的形式: (乍看之下这不是一个很合理的假设。但是我们很快可以看到为什么可以这样做)

代入原方程并在两边除以V: 因为两部分之和为0,因此我们可以假设一个是正数另一部分是负数:(这里以含x的部分为正含y的部分为负为例) 很显然,这两个方程的解就是: 注记:这里决定哪一部分是正数哪一部分是负数要由边界条件来确定。比如说,沿x方向到达无限远时电势为零,x就应该含有指数衰减项,因此令含x的部分为正数。 于是,方程的一个解是 对所有可能的k求和,可以得到通解: 常数A,B,C,D的值需要由边界条件来确定。通常情况下,通过边界条件可以把k化成含有正整数的式子。将求和号改成对n求和,可以看到,第二个括号里的项便是傅里叶级数。狄利克雷定理保证了这个级数可以拟合任何边界条件。傅里叶系数可以由积分来确定。 ii)三维问题 三维问题的处理方法与二维的情形类似。 同样,假设是这种形式: 同样,代入方程并在两边同除以V:

泊松方程和拉普拉斯方程

拉普拉斯方程和泊松方程 摘要:拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象的性质。 关键词:分离变量电磁场拉普拉斯 简史 1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量m k除以它们到任意观察点P的距离r k,并且把这些商加在一起,其总和 即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程: ,叫做势方程,后来通称拉普拉斯方程。1813年,S.D.泊松撰文指出,如 果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。 静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-V高斯定理微分式,即可导出静电场的泊松方程: 式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。在各分区的公共界面上,V满足边值关系,

, 式中i ,j 指分界面两边的不同分区,σ 为界面上的自由电荷密度,n 表示边界面上的内法 线方向。 边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物 理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄 利克雷边界条件;给定边界面上各点的自由电荷 ,叫做诺埃曼边界条件。 静电场的唯一性定理: 设区域V 内给定自由电荷分布)(x ,在V 内电势满足泊松方程 或拉普拉斯方程,在V 的边界S 上给定电势 ,或V 边界上给定电势的法线方向偏导数 ,则V 内场(静电场)唯一确定。 除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。 各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任 何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。 静磁场的泊松方程和拉普拉斯方程 在SI 制中,静磁场满足的方程为 ,式中j 为传导电流密度。第一式表明静磁 场可引入磁矢势r)描述: 。 在各向同性、线性、均匀的磁媒质中,传导电流密度j 0的区域里,磁矢势满足的方程 为 。 选用库仑规范,,则得磁矢势A 满足泊松方程 ,式中纯数μr 为媒质的相对磁导率, 真空磁导率μo =1.257×10-6亨/米。在传导电流密度j=0的区域里,上 式简化为拉普拉斯方程 。

伯努利原理讲解

伯努利原理讲解 对我们搞流体机械的很重要,此文好懂又有趣!
光德流控
伯努利(Daniel Bernouli,1700~1782) 伯努利,瑞士物理学家、数学家、医学家。 他是伯努利这个数学家族(4 代 10 人)中最杰出的代表, 16 岁时就在巴塞尔大学攻读哲学与逻辑,后获得哲学硕士学位, 17~20 岁又学习医学,于 1721 年获医学硕士学位,成为外科名 医并担任过解剖学教授。但在父兄熏陶下最后仍转到数理科学。
1 / 17

伯努利成功的领域很广,除流体动力学这一主要领域外,还 有天文测量、引力、行星的不规则轨道、磁学、海洋、潮汐等。
实例篇——伯努利原理 丹尼尔·伯努利在 1726 年首先提出:“在水流或气流里, 如 果 速 度 小 ,压 强 就 大 ;如 果 速 度 大 ,压 强 就 小 ” 。我 们 称 之 为 “伯努利原理”。 我们拿着两张纸,往两张纸中间吹气,会发现纸不但不会向 外飘去,反而会被一种力挤压在了一起。因为两张纸中间的空气 被我们吹得流动的速度快,压力就小,而两张纸外面的空气没有 流动,压力就大,所以外面力量大的空气就把两张纸“压”在了 一起。 这就是“伯努利原理”原理的简单示范。
1 列车(地铁)站台的安全线 在列车(地铁)站台上都划有黄色安全线。
2 / 17

这是因为列车高速驶来时,靠近列车车厢的空气被带动而快 速运动起来,压强就减小,站台上的旅客若离列车过近,旅客身 体前后会出现明显的压强差,身体后面较大的压力将把旅客推向 列车而受到伤害。
所以,在火车(或者是大货车、大巴士)飞速而来时,你绝 对不可以站在离路轨(道路)很近的地方,因为疾驶而过的火车 (汽车)对站在它旁边的人有一股很大的吸引力。
有人测定过,在火车以每小时 50 公里的速度前进时,竟有 8 公斤左右的力从身后把人推向火车。
看懂“伯努利”原理后,等地铁再也不敢跨过那条黄线了吧 (分享给身边的人哦~~)
2 船吸现象
3 / 17

拉普拉斯方程

拉普拉斯方程,也称为谐波方程和势方程,是一种偏微分方程,最早由法国数学家拉普拉斯提出。 拉普拉斯方程是液体表面曲率和液体表面压力之间关系的公式。 曲面称为曲面。通常,使用两个相应的曲率半径来描述表面,即在表面上的某个点处绘制垂直于该表面的直线,然后通过该线制作一个平面。平面和表面的截面是曲线,并且在该点与曲线相切的圆的半径称为曲线的曲率半径R1。第二剖面线及其曲率半径R2可以通过使第二平面垂直于第一平面并与表面相交来获得。液面的弯曲可以用R1和R2表示。如果液体表面弯曲,则液体P1内部的压力将与液体外部的压力P2不同,并且液体表面的两侧之间将存在压力差△P = P1-P2,这称为附加压力。压力。其值与液体表面的曲率有关,可以表示为:其中γ是液体的表面张力系数,称为拉普拉斯方程。 在数学公式中 拉普拉斯方程是:其中∥是拉普拉斯算子,而这里的拉普拉斯方程是二阶偏微分方程。在三维情况下,拉普拉斯方程可按以下形式描述。可以将问题简化为求解对于实变量X,y和Z可二阶微分的实函数φ ?2称为拉普拉斯算子。 拉普拉斯方程的解称为谐波函数。 如果在等号右边是给定的函数f(x,y,z),即: 然后将该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆偏微分方程。偏微分算子(可以在任何维空间中定义)称为拉

普拉斯算子。 方程解 它称为谐波函数,可以在建立方程的区域进行分析。如果任何两个函数满足拉普拉斯方程(或任何线性微分方程),则这两个函数的总和(或它们的任何线性组合)也满足上述方程。这种非常有用的特性称为叠加原理。根据这一原理,可以将已知的复杂问题的简单特殊解组合起来,以构建具有更广泛适用性的一般解。

关于伯努利方程的教学设计物理教案

一、教学目标 1、知道什么是理想流体,知道什么是流体的定常流动。 2、知道伯努利方程,知道它是怎样推导出来的,会用它解释一些现象。 3、通过在流体力学中应用功和能的关系推导伯努利方程,培养学生使用能量守恒思想的意识和思路。 4、通过对实例的定性分析,培养学生对实际问题的建立模型和分析推力能力,学以致用。并在使用中体会物理规律在实际生活中的意义。 二、教学建议 1、教材分析:本节内容从建立流体的理想模型——理想流体开始,简单介绍了流体的特点及流体的定常流动方式。重点依据功能关系推导了理想流体作定常流动时,流体中压强和流速的规律——伯努利方程。并使用伯努利方程对大量生活实例进行了定性分析。 2、教法建议:本节主要是初步介绍了流体动力学的点滴知识,且作为选学内容,主要是开阔视野,培养知识、方法迁移能力,为学有余力的同学自我加深准备的。所以在教学中要以基本概念建立、基本思路迁移、基本分析方法使用为重点,不要在知识深度上过于下功夫。建议在学生有引导的自学的基础之上,讨论归纳,以便突出上述重点,遗留问题,供有兴趣的学生进一步学习。 三、教学设计示例 教学重点:如何利用功能关系推导伯努利方程;如何利用该方程解释实际问题。 教学难点:如何利用功能关系推导伯努利方程;如何利用该方程解释实际问题。 示例: (一)课前预习提纲 1、流体主要有哪些特点?什么是理想流体? 2、什么是定常流动?什么是流线?如何用流线形象的表示流体的流动? 3、仔细阅读书p152伯努利方程的推导过程,并思考下列问题:(1)伯努利方程表述的是什么规律? (2)对于推导过程中所选取的研究对象,是谁对它作了功,为什么?研究对象的机械能如何变化了,为什么?能否口述之。(3)你认为推导过程中最重要的是什么?难点是什么? 4、自己做书p151的小实验,认真阅读书p154的应用举例,归纳思路,并试做书p155的练习七。 (二)课上 带领学生通过讨论预习提纲建立概念、思路,解决疑难。要让学生充分发言。 预习题简答:(仅供参考) 1、答:实际流体具有可压缩性和粘滞性。但因一般液体的可压缩量很小,可以不予考虑;而气体的压缩性虽然较强,但若流动的气体中各处的密度不随时间发生明显的变化时,也可以不考虑其压缩性。另外,在某些问题中,若流体的流动形式主要的,而粘滞性是次要的,则可认为该流体没有粘滞性。不可压缩的、没有粘滞性的流体就是理想流体。理想流体实际上是一个理想的物理模型。 2、答:流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动方式称为定常流动,也可称为稳定流动。这也是一种理想化的流动方式。 在定常流动的流体中,假象沿着各液体质点的运动轨迹画出许多曲线,这些线就叫做流线。流线在某一点的切线方向表示该点的流速方向,流线的疏密表示流速的大小,即流线越密,表示流速越大。 3、答:(1)伯努利方程表述的是理想流体作定常流动时,流体中压强和流速的规律。 其规律为:常量。

拉普拉斯方程

拉普拉斯方程 拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。 [1] 拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。 中文名 拉普拉斯方程 外文名 Laplace's equation 别称 调和方程、位势方程 提出者 拉普拉斯 关键词 微分方程、拉普拉斯定理 涉及领域 电磁学、天体物理学、力学、数学 目录 .1基本概述 .?在数理方程中 .?方程的解 .2二维方程 .3人物介绍

基本概述 一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为: ,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。 在数理方程中 拉普拉斯方程为: ,其中?2为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ : 其中?2称为拉普拉斯算子。 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x,y,z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子 (可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。 方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 [2] 二维方程

泊松方程和拉普拉斯方程

拉普拉斯方程和泊松方程 摘要:拉普拉斯方程,又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象的性质。 关键词:分离变量 电磁场 拉普拉斯 简史 1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量m k 除以它们到任意观察点P 的距离r k ,并且把这些商加在一起,其总和 m k r k n k=1 = V x ,y ,z 即P 点的势函数,势函数对空间坐标的偏导数正比于在 P 点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程: ?2V ?x +?2V ?y +?2V ?z =0,叫做势方程,后来通称拉普拉斯方程。1813年,S.D.泊松撰文指出, 如果观察点P 在充满引力物质的区域内部,则拉普拉斯方程应修改为?2V ?x 2 + ?2V ?y 2 + ?2V ?z 2 =?4πρ, 叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V 在电学理论中的应用,并指出导体表面为等热面。 静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-?V 高斯定理微分式??E =ρ/εr ε0,即可导出静电场的泊松方程:?2V ?x 2+?2V ?y 2+?2V ?z 2=?2V =?ρ/εr ε0 式中ρ为自由电荷密度,纯数 εr 为各分区媒质的相对介电常数,真空介电常数εo =8.854×10-12 法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程?2V =0 。 在各分区的公共界面上,V 满足边值关系V i =V j , ε0εri ?V ?n i ?ε0εrj ?V ?n j =??,

4. 偏微分方程的数值解法

§4 偏微分方程的数值解法 一、 差分法 差分法是常用的一种数值解法.它是在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值. 1. 网格与差商 在平面 (x ,y )上的一以S 为边界的有界区域D 上考虑定解问题.为了用差分法求解,分别作平行于x 轴和y 轴的直线族. ?? ?====jh y y ih x x i i (i ,j =0,±1,±2,…,±n ) 作成一个正方形网格,这里h 为事先指定的正数,称为步 长;网格的交点称为节点,简记为(i ,j ).取一些与边界S 接近的网格节点,用它们连成折线S h ,S h 所围成的区域记作D h .称D h 内的节点为内节点,位于S h 上的节点称为边界节点(图14.7).下面都在网格D h + S h 上考虑问题:寻求各个节点上解的近似值.在边界节点上取与它最接近的边界点上的边值作为解的近似值,而在内节点上,用以下的差商代替偏导数: ()()[]()()[]()()()[]()()()[]()()()[]y x u h y x u y h x u h y x u h y x u h y x u y x u h y x u h y u y h x u y x u y h x u h x u y x u h y x u h y u y x u y h x u h x u ,),(,,1 ,,2,1 ,,2,1 ,,1 ,,1 222 22222++-+-+≈???-+-+≈ ??-+-+≈ ??-+≈??-+≈?? 注意, 1? 式中的差商()()[]y x u y h x u h ,,1 -+称为向后差商,而()()[]y h x u y x u h ,,1--称为向 前差商,()()[]y h x u y h x u h ,,21 --+称为中心差商.也可用向前差商或中心差商代替一阶偏导数. 2? x 轴与y 轴也可分别采用不同的步长h ,l ,即用直线族 ?? ?====jh y y ih x x j i (i,j =0, ±1, ±2 , ) 作一个矩形网格. 2. 椭圆型方程的差分方法 [五点格式] 考虑拉普拉斯方程的第一边值问题 图14.7

拉普拉斯方程

拉普拉斯方程(Laplace's equation)又称调和方程、位势方程,是一种偏微分方程,因由法国数学家拉普拉斯首先提出而得名。 拉普拉斯方程表示液面曲率与液体表面压强之间的关系的公式。 基本概述 一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为: ,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。 在数理方程中 拉普拉斯方程为:,其中?2为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普

拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ : 其中?2称为拉普拉斯算子。 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x,y,z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。 方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 二维方程 两个自变量的拉普拉斯方程具有以下形式: 解析函数的实部和虚部均满足拉普拉斯方程。 人物介绍

泊松方程拉普拉方程

泊松方程和拉普拉斯方程 势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。 简史 1777年,拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点 的质量m k除以它们到任意观察点P的距离r k,并且把这些商加在一起,其总和 即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所 受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程: ,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文 指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为 ,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势 函数 V在电学理论中的应用,并指出导体表面为等热面。 静电场的泊松方程和拉普拉斯方程 若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程: , 式中ρ为自由电荷密度,纯数εr为各分区媒质的相对介电常数,真空介电常数εo=8.854 ×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程。在各分区的公共界面上,V满足边值关系,

, 式中i,j指分界面两边的不同分区,σ为界面上的自由电荷密度,n表示边界面上的内法线方向。 边界条件和解的唯一性 为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄 利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。 边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。 除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。 静磁场的泊松方程和拉普拉斯方程 在SI制中,静磁场满足的方程为 式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:。 在各向同性、线性、均匀的磁媒质中,传导电流密度j 0的区域里,磁矢势满足的方程为 选用库仑规范,墷?r)=0,则得磁矢势r)满足泊松方程, 式中纯数μr 为媒质的相对磁导率,真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程?2Α=0。

伯努利方程实验

伯努利方程实验 一、目的和要求 1、 熟悉流体流动中各种能量和压头的概念及其相互转换关系,在此基础上,掌握柏努利方程; 2、 观察流速变化的规律; 3、观察各项压头变化的规律。 二、实验原理 1、流体在流动中具有三种机械能:位能、动能、静压能。当管路条件如管道位置高低、管径大小等发生变化时,这三种机械能就会相应改变以及相互转换。 2、如图所示,不可压缩流体在导管中做稳态流动,由界面1-1’流入,经粗细不同或位置高低不同的管道,由截面2-2’流出:以单位质量流体为基准,机械能衡算式为: 式中:u l 、u 2一分别为液体管道上游的某截面和下游某截面处的流速,m /s ; P 1、P 2一分别为流体在管道上游截面和下游截面处的压强,Pa ; z l 、z 2一分别为流体在管道上游截面和下游截面中心至基准水平的垂直距离,m; ρ一流体密度,Kg /m 3; g 一重力加速度,m /s 2; ∑h f 一流体两截面之间消耗的能量,J /Kg 。 3、∑h f 是流体在流动过程中损失的机械能,对于实际流体,由于存在内摩擦,流体在流动中总有一部分机械能随摩擦和碰撞转化为热能损耗(不能恢复),因此各截面上的机械能总和不相等,两者之差就是流体在这两截面之间流动时损失的机械能。 4、对于理想流体(实际上并不存在真正的理想流体,而是一种假设,对解决工程实际问题有重要意义),不存在因摩擦而产生的机械能损失,因此在管内稳定流动时,若无外加能量,得伯努利方程: 22112212 22u p u p z g z g ρρ ++=++式② 表示1kg 理想流体在各截面上所具有的总机械能相等,但各截面上每一种形式的机械能并不一定相等,各种形式的机械能可以相互转换。式①时伯努利方程的引伸,习惯上也称为伯努利方程(工程伯努利方程)。 5、流体静止,此时得到静力学方程式: 1 2 1221 () p p z g z g P P gh ρρ ρ + =+ =+或式③ 所以流体静止状态仅为流动状态一种特殊形式。 6、将式①中每项除以g ,可得以单位重量流体为基准的机械能守恒方程: 其中各项单位为m ( ),即以上几种机械能均可用测压管中的液柱高度来表示,分别称 22 112212 22f u p u p z g z g h ρρ ++=+++∑式① 22112212 22f u p u p z z H g g g g ρρ++=+++式④ 2 N m m m kg s =

chenpc_文件下载_数理方法_实验四、拉普拉斯方程与泊松方程的求解

实验四 拉普拉斯方程与泊松方程的求解 一、拉普拉斯方程的求解 例题:求解定界问题: ()()()()()00,030,0,,sin 3,00,,sin cos xx yy u u x a y b y u y u a y b x x u x u x b a a πμππμ??+=≤≤≤≤????==? ?????????==? ? ?????? 任意选取定界问题中参数的值,例如取1,1,1a b μ===。用偏微分方程工具箱来求解的步骤如下。 1、画求解区域 在指令窗口中,输入pdetool ,打开偏微分方程工具箱的界面, 图1 微分方程工具箱的界面 选择菜单Options/Axes Limits ,打开对话框如图2所示。 图2 设置坐标变化范围的对话框

在X-axis range 和Y-axis range 栏中都输入[-0.1 1.1],单击按钮Apply 确认,再关闭对话框。 单击左上角画矩形框按钮,在pdetool 的窗口中画一个矩形,然后,在刚画出的灰色矩形区域内部双击鼠标左键,出现如图3所示的对话框,设置左边界(Left )参数为0,下边界(Bottom )参数为0,宽度(Width )参数为1,高度(Hight )参数为1,点击OK 按钮,画出一个边长为1的正方形区域01,01x y ≤≤≤≤,这个正方形被自动命名为R1,并显示在区域上方的公告栏(Set Formula )中。 图3 确定正方形区域的边界位置和名称的对话框 2、设定方程类型 单击按钮,打开如图4所示的对话框。 图4 设置方程类型的对话框 在方程类型中选择椭圆型,这时方程的形式为 ()c u au f -???+= 取1,0,0c a f ===,设置好参数后,单击OK 即可。 3、设定边界条件 单击按钮,进入边界模式。这时区域由灰色变成白色,而边界变成红色。选择菜单Boundary/Show Edge Labels ,给四条边界标上序号1,2,3,4。根据题意,双击边界1,打

伯努利方程实验

实验一 伯努利方程实验 一、实验目的 观察流体在管道中流动时能量的相互转化现象,加深对柏努利方程的理解。 原理 二、实验原理 流体在流动时,具有3种机械能:位能、静压能和动能,这3种机械能是可以相互转化的。在没有摩擦损失的自流管路中,任意两截面处的机械能总和是相等的。在有摩擦损失的自流管路中,任意两截面处的总机械能之差为摩擦损失。 2.对理想流体,在系统中任一截面处,尽管三种机械能彼此不一定相等,但这三种机械能的总和是不变的。对于实际流体,由于在内摩擦,流体在流动过程中总有一部分机械能随摩擦转化为热能而损耗了,故对于实际流体,任意两截面上的机械能的总和并不相等,两者的差值即为能量损失。 3流体流经管路某截面处的各种机械能大小均可以用测压管中的一 段液柱高度来表示,在流体力学中,用以表示各种机械能大小的流体柱高度称之为“压头’。分别称为位压头、动压头、静压头、损失压头。 机械能可用测压管中液柱的高度来表示。当测压管口平行于流动方向时,液柱的高度表示静压能;当测压管口正对流体流动方向时,液柱的高度表示动能与静压能之和,两者之差就是动能。 实验中通过测定流体在不同管径、不同位置测压管中液面高度,反映出摩擦损失的存在及动能、静压能之间的相互转化。 (4)流体的机械能衡算,以单位质量(1kg )流体为衡算基准,当流体在两截面之间稳定流动且无外功加入时,伯努利方程的表达形式为 式中 z —— 位压头(m 流体柱); —— 静压头(m 流体柱); —— 动压头(m 流体柱)。 三、实验设备及流程 1. 实验装置流程 C g v g p z =++22 ρg P ρ22v

拉普拉斯方程

拉普拉斯方程 求助编辑百科名片 拉普拉斯方程 拉普拉斯方程(Laplace'sequation),又名调和方程、位势方程,是一种偏微分方程。因为由法国数学家拉普拉斯首先提出而得名。求解拉普拉斯方程是电磁学、天文学和流体力学等领域经常遇到的一类重要的数学问题,因为这种方程以势函数的形式描写了电场、引力场和流场等物理对象(一般统称为“保守场”或“有势场”)的性质。 目录 拉普拉斯方程(Laplace equation) 在数理方程中 狄利克雷问题 诺伊曼边界条件 拉普拉斯方程的解 二维拉普拉斯方程 解析函数 三维情况下 二维拉普拉斯方程 解析函数 在流场中的应用 在电磁学中的应用 三维拉普拉斯方程 基本解 格林函数 在流场中的应用 拉普拉斯人物介绍 展开 拉普拉斯方程(Laplace equation) 在数理方程中 狄利克雷问题 诺伊曼边界条件 拉普拉斯方程的解 二维拉普拉斯方程 解析函数 三维情况下 二维拉普拉斯方程 解析函数 在流场中的应用 在电磁学中的应用 三维拉普拉斯方程 基本解 格林函数 在流场中的应用

拉普拉斯人物介绍 展开 编辑本段拉普拉斯方程(Laplace equation) 拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差△P= P1- P2,其数值与液面曲率大小有关,可表示为:▽p=γ(1/R1+1/R2)式中γ是液体表面张力。该公式成为拉普拉斯方程。 在数理方程中 拉普拉斯方程为:Δu=d^2u/dx^2+d^2u/dy^2=0,其中Δ 为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ : 其中Δ称为拉普拉斯算子. 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x, y, z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。 狄利克雷问题 拉普拉斯方程的狄利克雷问题可归结为求解在区域D内定义的函数φ,使得在D的边界上等于某给定的函数。为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。 诺伊曼边界条件 拉普拉斯方程的诺伊曼边界条件不直接给出区域D边界处的温度函数φ本身,而是φ沿D的边界法向的导数。从物理的角度看,这种边界条件给出的是矢量场的势分布在区域边界处的已知效果(对热传导问题而言,这种效果便是边界热流密度)。 拉普拉斯方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 编辑本段二维拉普拉斯方程 两个自变量的拉普拉斯方程具有以下形式: 函数h (x,y) 为二元函数,h(x,y) 对x的二阶偏导数+ h(x,y)对y的二阶偏导数= 0 解析函数 解析函数的实部和虚部均满足拉普拉斯方程。换言之,若z= x+ iy,并且 那么f(z)是解析函数的充要条件是它满足下列柯西-黎曼方程:f(z)= u(x,y) + iv(x ,y) u 对x的偏导数= v 对y 的偏导数,u 对y 的偏导数= - (v 对x 的偏导数)上述方程继续求导就得到 所以u满足拉普拉斯方程。类似的计算可推得v同样满足拉普拉斯方程。

相关文档
最新文档