牺牲阳极保护法

牺牲阳极保护法
牺牲阳极保护法

牺牲阳极技术在钢制煤气管道工程中的应用

摘要:介绍了电化学腐蚀及牺牲阳极的原理。牺牲阳极保护技术的使用情况,牺牲阳权保护的设计、计算、施工及投资测算与经济分析。

1 电化学腐蚀及牺牲阳极的原理

地下燃气管道在使用过程中,存在不同性质的腐蚀。其中电化学腐蚀对于埋地煤气钢管威胁最大。因为电化学腐蚀集中一点,而且速度较快,腐蚀一旦发生、其速度不会减慢也会不停止、往往造成局部穿孔。产生电化学腐蚀原因如下:由十土壤各处物理化学性质个问,管道本身各部分的金相组织结构个同,如品格的缺陷及含有杂质、金属受冷热加工而变形产生内部应力、特别是钢管表面粗糙度不同等原因,使一部分金属容易电离,带正电的金属离子离开金属、而转移到土壤里,在这部分管段上电子越来越过剩,电位越来越负;而另一部分金属不容易电离,相对来说电位较正。因此电子沿管道由容易电离的部分向不容易电离的部分流动、在这两部分金属之间的电子有得有失,发生氧化一还原反应。失去电子的金属管段成为阳极区,得到电子的金属管段成为阴极区。腐蚀电流从阴极流向阳极、然后从阳极流离管段,经土壤又回到阴极,形成回路。在作为电解质溶液的土壤中发生了离子迁移、带正电的阳离子(如H )趋向阴极、带负电的阴离子(如OH-)趋向阳极。在阳极区带正电的金属离子与带负电的阴离子发生电化学作用、使阳极区的金属离子不断电离而受到腐蚀,使钢管表面出现凹穴,以致穿孔;而阴极则保持完好、如图1所示。

基于以上原理,采用牺牲阳极保护技术可保护埋地钠管不受电化学腐蚀。具体原则如图2所示。采用比钢管电位较负的金属材料和钢管相连,电极电位较负的金属与电极电位较正的。

图2 牺牲阳极保护技术原理图

被保护钢管在土壤中形成原电池、作为保护电源,电位较负的金属成为阳极、输出电流过程中遭受破坏,故达到保护钢管的效果。

2牺牲阳极保护技术的使用情况

以前常州市城市煤气中压管网主要使用铸铁管,连接方式是柔性机械接口,使用钢管的工程不多。但随着燃气用户的发展、管网压力的提高,考虑到今后天然气的引入及过渡、钢管越来越广泛的被应用。与铸铁管相比,钢管具有耐压强度高;对预先加工成较长的管段,减少现场施工的困难;焊接接U的抗震、抗压性能高的优点,我们在常锡路、城中北路等新敷设的小压管网使用了埋地钢管。但在我市怀德桥改建工程中,有部分敷设以有十年以上的过街钢管被挖掘出来,虽然钢管表面仍有残留的防腐绝缘层。但由于没有实行牺牲阳极保护技术,钢管表面留有凹坑。根据这些情况表明、埋地钢管外壁防腐绝缘层的损坏是造成管道遭受土壤腐蚀的主要原因。而绝缘层的损坏在施工、维修过程中往往是不可避免的,一旦出现绝缘层的损坏,腐蚀就在被损坏的部位剧烈地进行。为了延长使用寿命、

取得良好的经济效益,我们决定对中压管网采用牺牲阳极保护和环氧煤沥青防腐绝缘层保护相结合的方法来达到防腐的目的。

3牺牲阳极保护的设计

以城中北路中压煤气钢管工程为例。经测试该管线地段属中等强度腐蚀性土壤,土壤电阻率取450·m,我们选用了11kg级MUG—3型镁合金牺牲阳极、阳极尺寸为700 x(70 110)* 90mm。

(1)保护对象和范围:a.外环路口至北环路中压煤气埋地钢管:管Φ426。长度为750m。总表面积为1003m2。b.外环路干管:管Φ426、长度为115m、总表而积为154m2。

(2)保护期限为25年。

(3)在有效保护期内、被保护地下钢管的保护电位控制在<—0.85V(相对铜/饱和硫酸铜参比电极)。

(4)计算

①保护电流的计算

被保护管道所需的保护电流可用下式计算:

I=i * s (1)

式中 I——被保护管道所需的保护电流,A

i——被保护管道的总表面积,m2

s——管道所需最小保护电流密度、mA/m2

根据经验数据,我们选取最小保护电流密度为i=o.5mA/m2,则埋地管线保护电流:

a.城中北路路段:

I1=i×s1=0.5×1003=501(mA)

b.外环路路段:

I2=ixs2=0.5x154=77(mA)

2镁阳极发生电流的计算

每只镁合金牺牲阳极发生电流按下式计算

If=(Ep一Ea)/R (2)

式中 If——每支阳极发生电流,mA

Ea———阳极工作电位,V 本方案取—1。50V

Ep——阴极最小保护电位,V本方案取-0。85V

R——每支牺牲阳极的接地电阻,Ω

牺牲阳极的接地电阻R可按下式计算 (3)

根据阳极实际发电量计算阳极用量. Ra=ρln(L/r)/2πL. Ra=阳极接地电阻(ohms)

式中 p——土壤接地电阻率,Ω.m本方案取45

D——阳极填料包直径、m 本方案取0.3

1——阳极填料包长度。m 本方案取1

t——阳极,f1心至地面距离。m本方案取1 得 R=14.8o

将R值代入(2)式得 If=44mA。

③阳极用员计算

阳极用员可按卜式计算:N=I/If

式中 N——所需阳极支数、支

I——所需保护电流,mA

If——每支阳极发生电流、mA/支

a.城中北路路段

N1=Il/If=501/44=11(支)

b.外环路路段 N2=I2/If=77/44=2(支)

共计使用N=N1十N2=11十2=13(支)。

考虑到和钢管焊缝位置及相连铸铁管要吸收部分保护电流、所以我们进行设计时、镁阳极实际取18支。

④阳极使用寿命核算

阳极有效使用寿命按下式计算:

式中 Y——阳极有效使用寿命、年

g——每支阳极重量,kg/支本方案取11

If——每支阳极实际发生电流量,mA

Q——镁阳极实际电容量,A·h/kg:本方案取1100

1/K——镁阳极有效利用系数,本方案取o.75

其中 If=0.9×If=0.9x 44mA

则 Y=26年。

4牺牲阳极保护技术的施工

4.1阳极与电缆电性连接情况检测

阳极到货后,必须用万用表逐支检测阳极与电极之间的电性连接情况,如果发现电性连接不好或断线的阳极,则不能在施工中使用

,此外,在施工过程中严禁用力提拉电缆线,防止电缆接头折断。

4。2阳极表面处理

为加速阳极表面活化,应在组装阳极之前,将阳“.极表面的油污、氧化物除净。其方法采用砂纸或手动砂轮将阳极打磨一遍,然后用丙酮或无水乙醇擦拭干净。

4.3阳极填料包组装

阳极填料包填料有膨润土、硫酸钙、硫酸镁按照50%、25%、25%比例充填,每条特制的白布袋填充料50kg,装一支经表面处理过的11kg级镁合金牺牲阳极、阳极放在填料包的正中央、阳极必须被填充料紧密包敷、严禁明显偏心,见图3。

4.5阳极床浇水

阳极填料包放入阳极坑后,必须对坑内浇水、坑内水位必须完全浸没阳极填料包,且坑内常积水时间必须超过十小时、以便彻底浸没填料包。

4.6阳极性能测试

(1)阳极填料包装被水浸透后,必须待检测人员对阳极开路电位进行测试后,方可与管道连接。

(2)阳极与管道连接后,必须待检测人员进行阳极工作电位测试后,方可在焊缝处进行防腐。

4.7阳极与管道连接形式

阳极与被保护的管线之间均采用电焊连接、即将阳极导电缆—端有铜鼻广的方钢片直接焊在被保护的钢管上,焊缝小两条、总长度大丁60mm、焊点处及时补涂与管道相同的防腐涂料、防腐等级与管道防腐等级相同,并按相同的规范要求进行防腐涂层质量验收、参阅图示4.

4.8阳极床回填

阳极床回填时严禁向阳极坑内回填砂石、水泥块、塑料等杂物。应回填电阻率低的细土,并应防止后阳续施工中碰断电缆。

5牺牲阳极保护的验收

阳极填料边被水浸透后、必须对阳极件能进行测试,测试内容及指标如下:

(1)阳极开路电位:镁合金牺牲阳极开路电位必须负于—1.5V。该数据足衡量阳极质量好坏的重要标准。

(2)阳极与管道连接后、测量阳极工作电位、该数据是评定牺牲阳极保护项目的实施质量的标准。

(3)管道自然电位:属管道的自然属性、当管道受到腐后、电位会趋正。

6投资测算与经济分忻

6.1投资测算

城中北路工程共埋设Dn400螺旋焊缝中压钢管865mm我们共设置了18支型号为MUG一3的镁合金阳极。

注:0十376、0十612、0十706.4三个桩基号中。由于焊接点的方钢片被污垢附着,使得自然电位偏负。

阳极材料费用:0.25万元/支x18=4.5万元

阳极安装费用:0.036万元/支x18=0.648万元

小计 : 5.148万元

管道总投资费用:166万元/公里x 0.865=143.59万元

阳极保护费用占总投资比例: 3.58%.

6.2经济分析

假设城中北路中压钢管上没有设置阳极保护,其使用年限为15年、若不计残值、每年折旧费用约为10万元。

若使用了阳极保护,其使用年限可达25年,若不计残值、每年折旧费用约为6万元。两者相LL,每年可节约折旧费4万元、经济效益是极为显著的。

职称论文发表,关键词:接地装置阴极保护防腐原

电池腐蚀2

如何发表论文?如何做到论文发表既能正常引用又不抄袭呢?如何选择论文发表网代发论文?

摘要:接地装置的腐蚀是普遍存在的现象,若无完善的防腐蚀措施,将会导致接地性能的下降,造成电气灾害事故。本文剖析了接地装置的腐蚀机理,指出接地装置的腐蚀的主要为电化学腐蚀,介绍了牺牲阳极的阴极保护法及其设计。

关键词:接地装置阴极保护防腐原电池腐蚀

1、接地装置腐蚀后的危害

在我国现阶段,接地的材料主要为碳钢。接地装置埋设在地下,发生腐蚀后,接地体截面减小,碳钢材料变脆、起层、松散甚至断裂,造成接地性能不良,接地电阻明显增大,对电力设施、电子电气设备的正常运行、人生安全将产生巨大的潜在威胁。一般地区的接地装置使用寿命在30年左右,而在福建某变电站发现其接地装置只运行了8 年,就已经严重地腐蚀掉,探其原因是福建地区沿海,土壤显强酸性,腐蚀更为严重[8]。由于接地装置埋设在地下,对其翻修改造是相当费劲和困难的,其费用也是巨大的,因此延长接地装置使用寿命,有着巨大的意义。

2、接地装置的腐蚀机理

接地装置的腐蚀机理主要有两类:化学腐蚀和电化学腐蚀。化学腐蚀是指接地装置金属表面与非电解质直接发生纯化学作用而引起的腐蚀,腐蚀时没有电流产生。

电化学腐蚀是指接地装置金属表面与电解质发生电化学反应而引起的腐蚀,腐蚀时有电流产生。它的原理是由于形成了原电池。所谓原电池就是将两种不同的金属插入任何电解质溶液中而构成的装置。例如将锌板和铜板放入强酸溶液中,由于锌的电极电位(-0.763V)比铜的电极电位(+0.337V)低,用导线将它们连接起来后,在电位差的作用下,锌不断地把电子经连接导线传导给铜,并将自己的正离子Zn2+投入电解质溶液,锌即溶解,遭受腐蚀。通常规定电位较低的电极为阳极,电位较高的电极为阴极。

3、阴极保护法的防腐原理

以上面锌与铜的原电池实验可知,较活泼的金属锌,其电极电位较低为阳极,较不活泼的金属铜为阴极。在原电池反应中,锌不断地把电子经连接导线传导给铜,并将自己的正离子投入电解质溶液,锌即溶解,遭受腐蚀;与此同时,铜仅起到传递电子的作用,使其周围的氢离子还原为氢气,从铜的表面逸出,而铜本身没有变化。这就是阴极保护法。

阴极保护就是在金属表面通以足够大的阴极电流,使金属表面阴极极化,从而防止表面发生电化学腐蚀。它具有保护效果好、保护周期长、施工方便等突出优点。阴极保护可以通过牺牲阳极法和外加电流法两种方式实现。牺牲阳极法就是通过在要保护的接地网上连接性质活泼、更容易腐蚀的金属或合金(如镁合金、锌合金等) 作为阳极,依靠阳极的腐蚀溶解达到保护阴极(接地网)的目的。外加电流法则是利用外加直流电源,将被保护的金属与电源负极连接,使之变成阴极而达到防止金属腐蚀的目的。两种保护方式各有千秋,具体的选择应根据保护电流、土壤电阻率及现场的其他情况决定[8]。

4.牺牲阳极的阴极保护法设计

4.1、用四极法测定不同时间、不同气候条件下及不同深度的土壤电阻率ρ。

4.2、根据所测土壤电阻率ρ,决定选用牺牲阳极的类型。ρ<20Ω?m 时,选用锌阳极;20Ω?m≤ρ≤100Ω?m 时,选用镁阳极;ρ>100Ω?m 时,除特殊情况采用带状镁阳极外,一般不采用牺牲阳极保护,而采用外加电流保护。

4.3、确定接地网最小保护电流密度δ。接地网最小保护电流密度由土壤腐蚀性(土壤电阻率、氧化还原电位)确定,一般在5~50 mA/ m2。

4.4、根据接地网所用碳钢的外形尺寸、总长计算受保护的总面积,按选定的保护电流密度计算所需的阴极保护总电流。

阴极保护总电流的计算,I=S?δ

式中 S——接地网的防蚀表面积,m2

4.5、按公式计算阳极接地电阻与输出电流,按阴极保护设计年限计算所需的阳极质量,再根据单个阳极质量计算出需布置的阳极个数。

(1)单只阳极接地电阻计算【7】: R=(ρ/2πL) ×{ln(2L/D)+ ln(L/2t)+(ρa/ρ)×(lnD/d)}

式中ρ——土壤电阻率,Ω?m

ρa——填料包电阻率,Ω?m ,

L ——阳极长度,m

D ——填料包直径,m

T ——阳极中心至地面距离,m

(2)单只阳极输出电流计算(忽略回路电阻、阴极过渡电阻):Ia=(Ep一Ea)/R 式中 Ea ——阳极工作电位,V

Ep ——阴极保护电位,V

R ——每支牺牲阳极的接地电阻,Ω

(3)保护所需的阳极数量计算:N=f×I / Ia

式中 f——备用系数,取2-3倍

(4)阳极工作寿命计算:T=0.85M/(w?I)= 0.85Nm/(w?I)

式中 M——阳极总质量,kg

m——单个阳极重量,kg

w——土壤中消耗率,kg/A?a

4.6、确定牺牲阳极的埋设方式及埋设深度,选择填包料,并确定填料的电阻率。

4.7、实地检测保护电位,检查保护效果。

除按以上计算公式分析外,设计牺牲阳极法阴极保护时,应考虑以下几点:

(a)牺牲阳极应设在土壤潮湿,地势低洼,且透气性差的地区,土壤电阻率以50~60Ω?m 为宜,不超过80Ω?m.

(b)为了减少屏蔽作用,阳极间距离以3m为宜,阳极与被保护地网的间距也以3m为宜.阳极组适于小集中、大分散布置.每组根数以6根为宜,可水平或垂直敷设.阳极组的间距一般为1~2m.

5、接地网外加电流式阴极保护设计

外加电流法或称有源法。外加电流法除按接地网保护总电流选择恒电位仪、辅助阳极外,其余基本与牺牲阳极的阴极保护法的设计同。

6.结论

接地装置腐蚀的主要是电化学腐蚀,采用保护层、加入缓蚀剂都不能做到长期保护,采用铜合金又因资源缺乏成本过高难以推广。利用镁合金采取牺牲阳极的阴极保护法不仅适合新建接地装置的防护,而且还用来对一些接地装置进行改造,技术经济性好,可望实现接地装置长治久安的目标。

参考文献

1 陈先禄,接地,重庆:重庆大学出版社,2001(08)

2 陈匡民,过程装备腐蚀与防护,北京,化学工业出版社,2001(05)

3 实用接地技术专辑(《电世界》增刊),上海潘登

4 胡学文,许崇武,接地网腐蚀与防护的研究[J],湖北电力,2002.26(03)

5 任承飚,冯斌,周卫华,何铁祥,接地网的腐蚀与牺牲阳极保护法[J],湖南电力,2003(05) 6刘连睿,变电站接地装置防腐措施研究[J],华北电力技术,2000(07)

7卢刚,耿风慧,丁锐等,变电站接地网的“阴极保护”防腐技术[J],供用电,2001(10) 8万欣,李景禄,接地装置的腐蚀及防腐蚀措施的研究[J],电瓷避雷器,2006(04)

长输管道牺牲阳极法阴极保护施工方案

司 材 长输管道牺牲阳极 阴 极 保 护 施 工 方 案 河南汇龙合金材料有限公司 项目部

目录 一、概述- ----------------------------------------------------------- 2 (一)原理----------------------------------------------------- 2 (二)牺牲阳极法阴极保护的优点--------------------------------- 2 (三)牺牲阳极材料--------------------------------------------- 2 (四)阳极安装方式--------------------------------------------- 6 (五)测试系统------------------------------------------------- 7 (六)应用标准和规范------------------------------------------- 7 (七)主要测试设备和工具--------------------------------------- 8 二、该项目管道牺牲阳极保护法的设计- --------------------------------- 8 三、施工方法- ------------------------------------------------------- 8 1、牺牲阳极法阴极保护施工安装程序简述如下: -------------------- 9 2、牺牲阳极法的施工: ------------------------------------------ 9

牺牲阳极式阴极保护施工工艺

牺牲阳极式阴极保护施工工艺 1、牺牲阳极式阴极保护主要施工工序流程 施工准备→依据设计图纸部署开挖阳极坑→将阳极装入填料包、填充化学填料→在阳极坑里安装阳极组、浇水→埋置测试桩及测量组元→阳极、电缆连接并做好密封→阴极保护数据测试→回填土、压实→质量验收并填写单位单项工程验收记录。 施工流程图: 2、施工准备 2.1 施工作业依据(技术资料准备): 工程施工前,项目经理部人员至少要熟练掌握以下施工技术资料: 《埋地预应力钢筒混凝土管道的阴极保护》GB/T 28725-2012 《预应力钢筒混凝土管的阴极保护》 NACE RP 0100-2000 《埋地钢质管道阴极保护技术规范》GB/T 21448-2008

《锌-铝-镉系合金牺牲阳极》GB/T 4950-2002 《镁合金牺牲阳极》GB/T 17731-2009 《***工程阴极保护工程招标文件》 《***工程阴极保护工程招标文件》 设计方案及图纸 2.2 阴极保护材料的准备及验收 2.2.1 材料准备 牺牲阳极组(包括锌、镁合金牺牲阳极)、电缆、测试桩、防腐涂料。 2.2.2 材料验收 材料使用前,会同业主、监理、质检人员对材料进行核对验收,合格签字后,方可使用。验收规范如下: a. 材料出厂合格证,或产品检验报告的各项指标,符合设计要求。特别是阳极化学分析报告和阳极电化学性能检测报告必须符合设计要求的相关指标,并且该报告是由国家认可的、具有材料试验检验资格的第三方验证试验机构出具。 b. 根据订货合同核对材料品种、型号、规格、颜色、数量、有效期等。 c. 外观检查。阳极的表面质量应达到下列规定。 ●缩孔的深度不得超过阳极厚度的10%。 ●冷隔深度不得超过10mm,总长度不得超过150mm。 ●非金属夹渣不得超过阳极表面的1%。 ●阳极表面不得存在以下类型的裂纹:宽度大于3mm的裂纹;纵向长度大 于阳极长度的50%的裂纹;不得存在扩展到铁芯或贯穿整个阳极的裂纹。 ●阳极表面没有毛刺、飞边等对人员安全有危害的突出物。 ●阳极工作表面应保持干净,不得沾有油漆和油污。 d. 抽检阳极纯度、化学成分情况。参照下列标准的有关条款执行: 铝纯度不低于GB/T1196-2002中A199.70A的规定。 锌纯度不低于GB/T470-1997中Zn99.99的规定。 镉纯度不低于YS/T72-1994中Cd99.99的规定。 2.3 设备准备 施工车辆、搅拌机械、浇水设备(容器及水管等)、挖掘机或人力挖掘工具、铝

牺牲阳极阴极保护接地电阻改善方案

牺牲阳极法阴极保护的设计计算 实施阴极保护的金属集购物上的点位和电流分布函数是复杂的,它不仅与被保护金属结构物材料、牺牲阳极材料、环境介质条件直接相关,而且还与结构物的几何构型密切有关。从原理上考虑,牺牲样激发和外加电流阴极保护的点位、电流分布的计算式基本相同的,它们都是保护电流在复杂电阻体系上产生的电压降结果。绵延分布的管线是几何构型最简单的一种结构物,它是一维延伸的,在数学上容易处理。许多复杂几何构型物往往可以看作为若干一维节段的组合和叠加。所以,阴极保护的设计计算常以埋地管线作为计算对象。 牺牲阳极法阴极保护的设计计算一般包括以下几个步骤。 ⑴确定最小保护电流密度i 对被保护结构物的最小保护电流密度确定,首选亏电实验值。可在现场安装一临时店员和接地极进行馈电试验,再根据达到保护电位时所对应的极化电流强度,推算出最小保护电流密度的取值范围。若无馈电实验值,一般可根据文献资料和经验选取。也可采用下式进行理论计算: I=△EO/RU 式中i—保护电流密度,mA/m2 △E—最小保护电位对结构物自腐蚀电位的负偏移值(极化电位,mV),△EO通常取300mV,它是最小保护电位-850mV (SCE)与钢铁在普通土壤中自腐蚀电位【一般为-550 mV(SCE)】的差值; R—结构物表面防腐层的楼电阻率,Ω?m2。 保护电流密度是阴极保护实践和设计十分重要的参数。但它受到被保护结构物/环境介质体系许多因素的影响,如结构物材料种类,防腐层质量,介质的性质、组成、分布和变化,甚至温度、气候或微生物存在与活动等。它的数值往往变化很大,即使在阴极保护运行过程中也是变化的。因此,要求准确的计算几乎是不可能的,但它仍是一个重要的参数值。对此,馈电试验或经验选取则是很有效的。 ⑵计算所需总保护电流强度I 根据被保护结构物的几何尺寸计算出需被被保护的总面积S(m),就可由保护电流密度i按下式计算所需总保护电流强度It(A): It=S?i 对于埋地管道则为: It=πDL?i 式中D—被保护管道外径,m; L—管道长度,m。 ⑶计算牺牲阳极接界电阻Ra 牺牲阳极的接界电阻是决定牺牲阳极输出电流的关键影响因素之一。它可通过实验测量或计算获得。经过一系列推导可获得接界电阻的计算公式,文献资料报道的阳极接界电阻的计算公式很多,现推荐以下一些计算公式: ①在土壤环境中的牺牲阳极接界电阻,即接地电阻的计算公式 a. 单支立式圆柱形牺牲阳极无填料(即填包料,下同)时,阳极接地电阻的计算公式为: RV1=p/2πL(In2L/d+1/2ln〔4t+L〕/〔4t-L〕) b. 单支立式圆柱形牺牲阳极有填料时,阳极接地电阻的计算公式为: RV2= p/2πLa(In2La/D+1/2ln〔4t+L〕/〔4t-L〕+pa/p×In×D/d) c. 但是水平式圆柱形牺牲阳极有填料时,阳极接地电阻的计算公式为: Rh= p/2πLa(In2La/D+In×La/2t+pa/p×In×D/d) 以上三式中,La>>d,t>>La/4。

牺牲阳极法阴极保护方案

牺牲阳极法阴极保护方案 一、将被保护的金属结构连接一种比其电位更负的金属或合金,该金属或合金为阳极,依靠它的优先溶解所释放出的电流使金属结构阴极极化到所需的电位而实现保护,这种方法称为牺牲阳极法阴极保护。 二、牺牲阳极法阴极保护的优点: (1)不需要外部电源; (2)对邻近金属构筑物无干扰或很小; (3)电流输出虽不能控制,但有自动调节倾向,且覆盖层不易损坏。(4)调试后,可不需日常管理; (5)保护电流分布均匀,利用率高; 三、牺牲阳极材料 1 作为牺牲阳极材料,必须满足以下条件: 1.1有足够负且稳定的电位,不仅要有足够负的开路电位,而且要有足够的闭路电位(或称工作电位,即在电解质介质中与金属结构连接时牺牲阳极的电位)。 1.2腐蚀率小,且腐蚀均匀,要具有高而稳定的电流效率。牺牲阳极的电流效率是指实际电容量与理论电容量的百分比,以%表示。1.3电化学当量高,即单位重量产生的电流量大。 1.4工作中阳极的极化率要小,溶解均匀,产物易脱落。 1.5腐蚀产物不污染环境、无公害。 1.6材料来源广泛,加工容易并价格低廉。

2、镁 2.1镁阳极的特点是比重小、电位很负、对铁的驱动加压很大,且单位发生的电量大。 2.2镁作为牺牲阳极,有较快的溶解速度,镁在电解质中溶液中的腐蚀行为是由本身很负的电位和表面上保护膜的性质所决定。 2.3镁的标准电极电位为-2.37V(SHE);非平衡电极电位则随腐蚀性介质的性质而变,例如:镁在海水中的电位为-1.5V(SCE),镁在土壤之中的电位为 1.5V至-1.6(SCE),镁在碱溶液中的电位约为-0.84V(SCE)。镁的电极电位与介质的PH值有密切关系,PH值在酸性范围内,电位较负,因为生成的腐蚀产物氢氧化镁在碱性介质中是难溶的。 正因为镁在酸性及中性介质中的电位较负和保护膜的不稳定性,所以镁在酸性和中性介质中的腐蚀速度较大。而在碱性介质中,镁的表面保护膜稳定,电位较正,腐蚀速度则因此而降低。 镁作为牺牲阳极使用时,与电位较正的金属相接触,这时,镁产生阳极化,会引起负的差异效应,即在阳极极化的影响下,金属的自溶大为增强。与其他牺牲阳极相比,镁的自溶倾向最大,这是镁阳极的电流效北较低的原因之一。 杂质及合金元素对镁的腐蚀速度有很大的影响,镁合金通常比镁的腐蚀速度大。镁阳极中的杂质主要成分是铁、镍、铜、钴,其中特别是铁的含量,由于这些金属有较正的电位,引起额外的腐蚀(寄生腐蚀)而使镁的阳极效率降低。添加锰可以抑制铁的影响,因为锰可

牺牲阳极阴极保护施工方案

珠海粤裕丰钢厂干散货码头钢桩牺牲阳极阴极保护工程 施工组织设计方案 濮阳市豫安防腐有限公司吉林分公司 2011年10月

目录 第一章工程概况 (2) 第二章施工方案 (3) 第三章施工组织机构和人员配置 (10) 第四章主要施工设备、检测仪器表 (16) 第五章质量保证措施和施工安全措施 (18)

第一章工程概况 1.工程概述 珠海粤裕丰钢厂干散货码头为防止钢管桩的腐蚀设计采用环氧粉末全涂加牺牲阳极阴极保护的方法。材质为Q345、尺寸为Φ****×*****的钢管桩共计408根,每根钢管桩上布置1支高效铝阳极,共计安装铝合金牺牲阳极408支;安装阴极保护电位测试系统6套。 2.施工计划周期 开工日期:2011年9月10日 竣工日期:2011年11月30日 3.施工作业总体安排 牺牲阳极水下安装施工,采用两个作业班;阴保电位测试系统的安装选用一个作业班进行施工安装。三个作业班可根据工程进度安排采取同时作业或交叉作业的方式,最大程度的提高工效保证本工程按时竣工。 4.阴极保护施工及验收规范 4.1 JTS 153-3-2007 《海港工程钢结构防腐蚀技术规范》 4.2 GJB156A-2008 《港工设施牺牲阳极保护设计和安装》 4.3 GB/T 4948-2002 《铝-锌-铟系合金牺牲阳极》 4.4 GB/T 4949-2007 《铝-锌-铟系合金牺牲阳极化学分析方法》 4.5 GB/T 17848-1999《牺牲阳极电化学性能试验方法》

第二章、施工方案 1.牺牲阳极水下焊接 1.1牺牲阳极水下焊接方式的比较 1.1.1 根据钢管桩码头建造特点,打桩前,钢管桩表面不能焊接较大构件,以免影响打桩施工。牺牲阳极只能在钢管桩完成打桩工程后进行水下安装。 1.1.2牺牲阳极的水下安装方法主要有以下几种:螺栓固定法、捆扎法和水下焊接法。 1.1.3螺栓固定法是将牺牲阳极通过固定在焊在钢管桩上的钢制固定架上,达到阳极安装固定的目的。螺栓固定法的缺点是工艺复杂、安装困难,尤其是牺牲阳极在长期使用中受海水冲击、海流推动,螺帽容易产生松动,造成牺牲阳极与钢管桩之间接触电阻增大,降低阳极发生电流量和工作性能,影响钢管桩的保护效果。 1.1.4捆扎法是采用钢制卡环或钢带将牺牲阳极捆扎在钢管桩上,达到牺牲阳极安装固定的目的。捆扎法的缺点是由于海浪冲击,海流扭动,牺牲阳极的不断溶解,造成牺牲阳极与捆扎带之间产生松动,使阳极与钢管桩之间接触电阻增大,影响牺牲阳极发生电流和使用效果,严重者阳极脱落,造成保护工程失败。 通过以上比较,螺栓法固定法和捆扎法一般不宜采用。 1.1.5水下焊接安装法是采用水下焊接设备和水下焊条通过电焊方法把牺牲阳极安装固定在钢管桩上。水下电焊方法具有技术成熟、牢固可靠,牺牲阳极与钢管桩接触电阻小、导电性能好、使用寿命长等特点。水下焊接法又分自动CO2气体局部排水干法焊和普通湿法焊两种。半自动CO2气体局部排水干法焊技术难度大、造价高,主要用于水下高强钢结构材料的焊接。本工程钢管状材质为Q345钢,采用水下SRE TS 208湿法焊条焊接工艺完全满足工程技术要求。 1.2牺牲阳极水下焊接设备 1.2.1 牺牲阳极水下焊接安装设备采用ZX-500直流弧焊机,ZX-500焊机的特点是电压调节范围大,工作电流稳定,起弧电压稳定,水下操作不易断弧,连续性强,焊缝质量好。 1.2.2空压机 施工用空压机型号为V-0.67/14-1型。该机排气量0.67/min,工作压力1.4MPa,

船舶防蚀锌块计算

恒瑞7货船 牺牲阳极数量的计算 一、保护面积计算: 1、外板浸水区 S l=[(4d+B)×L/2]/(1.625-C b)=2292.2m2 式中:L=Lpp=99.8m,B=14.00m,d=6.25m,Cb=0.776 2、螺旋桨 S2=0.5nπ×d12×(A e/A0)+ nπ×d2L=6.8m2 式中:n=l,π=3.14,d1=2.64m,A e/A0 =0.55,d2=0.44m,L=0.54m 3、舵 S3=10× 2 × 1.2=24m2 二、保护电流密度的选定: 1、外板浸水区 I l=0mA/m2 2、螺旋桨(铜质) I2=350mA/m2 3、舵 I3=110mA/m2 三、牺牲阳极的选定: 选用锌合金平板状阳极ZAC-C5 四、牺牲阳极发生电流的计算: 发生电流量If=(△E/R)×1000=400mA 式中:牺牲阳极的驱动电位△E=0.20V, 牺牲阳极的接水电阻R=ρ/2S=0.5Ω 海水电阻率ρ=25Ωcm, 牺牲阳极的当量长度S=0.5(L+B)=25cm 牺牲阳极的长度L=40cm

牺牲阳极的宽度B=10cm 五、牺牲阳极的寿命计算: T=(mQ×1000)/( I m×8760×K) =2.62年 式中:每块牺牲阳极的质量m=9kg, 牺牲阳极的实际电容量Q=780Ah/kg 牺牲阳极平均发生电流量Im=0.651f=260mA 牺牲阳极的利用系数(K)-1=0.85 六、牺牲阳极的用量计算: Ni=(I i×S)/I f 式中:牺牲阳极的实际电容量Q=780Ah/kg 牺牲阳极平均发生电流量I m=0.65I f =312mA 牺牲阳极的利用系数(K)-1=0.85 1、外板浸水区 N l= (I l×S1)/ I f=57.3块,实取58块。 式中:I l=10mA/m2,S1=2144.7m2,I f =400mA 2、螺旋桨 N2=( I2×S2)/ I f =5.95块,实取6块。 式中:I2 =350mA/m2,S2=6.8m2,I f=400mA 3、舵 N3= (I3×S3) / I f =6.6块,实取7块。 式中:I3=110mA/m2,S3=24m2,I f=400mA 另通海阀上设2块,每块牺牲阳极的质量m=5.5kg。 七、牺牲阳极的布置: 详见《牺牲阳极布置图》。

储罐内壁牺牲阳极阴极保护方法

储罐内壁牺牲阳极阴极保护方法 由于原油储罐、污水罐罐底内壁的腐蚀主要是缘于原油沉积污水引起的电化学腐蚀、细菌腐蚀,且罐底的原油沉积污水有着较高的含盐量(主要是S-2、Cl-、HCO-3、Na+、Ca+2等)和较高的温度,因此其腐蚀性较强。目前普遍采用牺牲阳极法对储罐底板内壁进行阴极保护,这种方法对储罐安全可靠,无需专人管理,且保护效果好。通常用作牺牲阳极的材料有镁和镁合金、锌合金、铝合金等。阳极块在储罐内壁上均匀布置,钢板与阳极块直接焊接连接。 牺牲阳极保护法特点: ①施工快速、简便,不会产生腐蚀干扰。 ②投入成本较低,经济性强。 ③安全可靠,无需专人管理。 ④保护效果显著。 根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。内壁采用牺牲阳极保护时,要注意温度的影响。对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。 根据保护面积、保护年限、介质电阻率计算所需的阳极数量,选择阳极规格形状。阳极在罐底板上呈环状均匀分布,阳极支架与底板焊接。牺牲阳极易于安装,而且当阳极消耗为初始重量的85%时,可以利用清罐机会进行更换。

针对储罐内壁牺牲阳极的设计步骤: ①计算阴极保护面积(罐内浸水面积) 罐底内壁保护面积计算:S=πr2 S-保护面积r-储罐半径 ②选定保护电流密度,计算保护电流 保护电流计算:I=SIa S-保护面积Ia-保护电流密度 ③确定保护年限,计算所需阳极总量 阳极使用寿命:T=0.85W/ωI T-阳极工作寿命a W-阳极净质量,kgω-阳极消耗率kg/(A.a) ④根据阳极单支数量,计算阳极支数 阳极数量:N=f.IA/Ia N-阳极数量IA-所需保护电流A Ia-单支阳极输出电流A F-备用系数,取2-3倍 牺牲阳极法是储罐内常用的阴极保护方法,它可以任意布置不必担心电源连接,它的电位有限,没有必要担心过保护为先,牺牲阳极可以做成任意形状。 根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。内壁采用牺牲阳极保护时,要注意温度的影响。对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。

(完整版)牺牲阳极法阴极保护方案

长输管道牺牲阳极法 阴极保护方案 项目名称: 建设单位: 施工单位: 编制日期:2010年10月4日

目录 一、概述------------------------------------------------------------ 2 (一)原理 ----------------------------------------------------- 2(二)牺牲阳极法阴极保护的优点 --------------------------------- 2(三)牺牲阳极材料 --------------------------------------------- 2(四)阳极安装方式 --------------------------------------------- 6(五)测试系统 ------------------------------------------------- 7(六)应用标准和规范 ------------------------------------------- 7(七)主要测试设备和工具 --------------------------------------- 7 二、该项目管道牺牲阳极保护法的设计---------------------------------- 8 三、施工方法-------------------------------------------------------- 8 1、牺牲阳极法阴极保护施工安装程序简述如下: -------------------- 8 2、牺牲阳极法的施工: ------------------------------------------ 9

牺牲阳极接地电阻以及发电量计算

牺牲阳极接地电阻以及发电量计算 一、阳极接地电阻 Ra=ρln(L/r)/2πL Ra=阳极接地电阻(ohms) ρ=土壤电阻率(ohm-m) L=阳极长度(m) r=阳极半径(m) 需要指出的是,由于填料电阻率很低,阳极的长度和半径是根据填料袋尺寸来确定。 二、阳极驱动电位 假设被保护结构的极化电位为-1.0V,则驱动电压ΔV=V+1.0。 V=阳极电位:高电位镁阳极-1.75V,低电位镁阳极-1.55V,锌阳极电位-1.10V。 三、阳极发电量计算 阳极实际发电量I=ΔV/Ra 四、应用举例: 某埋地管道,长度为13公里,直径159毫米,环氧粉末防腐层,处于土壤电阻率30欧姆.米环境中,牺牲阳极设计寿命15年。计算阳极的用量。 由于土壤电阻率较高,设计采用高电位镁阳极阴极保护系统。 1、被保护面积:A=π×D×L D=管道直径,159mm

L=管道长度,13x103m A=3.14×0.159×13000=6490m2 2、所需阴极保护电流:I=A×Cd×(1-E) I=阴极保护电流 Cd=保护电流密度,取10mA/m2 E=涂层效率,98% I=6490×10×2%=1298mA 3、根据设计寿命以及阳极电容量计算阳极用量W=8760It/ZUQ I=阳极电流输出(Amps) t=设计寿命(years) U=电流效率(0.5) Z=理论电容量(2200Ah/kg) Q=阳极使用率(85%) W=阳极重量(Kg) W=8760×1.298×15/(2200×0.5×0.85)=183Kg 选用7.7公斤镁阳极,需要24支。 4、根据阳极实际发电量计算阳极用量 Ra=ρln(L/r)/2πL Ra=阳极接地电阻(ohms) ρ=土壤电阻率(ohm-m) L=阳极长度(m)

埋地钢质管道牺牲阳极阴极保护方案

埋地钢质管道牺牲阳极法阴极保护技术 技术支持单位:甘肃拓维地理信息工程有限公司 示范案例:银川某燃气公司埋地钢质管道牺牲阳极阴极保护系统安装 时间:2016年6月18日 (一)原理: 埋地钢质管道牺牲阳极法阴极保护技术是将被保护的金属结构连接一种比其电位更负的金属或合金,该金属或合金为阳极,依靠它的优先溶解所释放出的电流使金属结构阴极极化到所需的电位而实现保护,这种方法称为牺牲阳极法阴极保护。 (二)牺牲阳极法阴极保护的优点 1、不需要外部电源; 2、对邻近金属构筑物无干扰或很小; 3、电流输出虽不能控制,但有自动调节倾向,且覆盖层不易损坏。 4、调试后,可不需日常管理; 5、保护电流分布均匀,利用率高。 (三)阳极包的选材 牺牲阳极选择镁阳极包的特点是比重小、电位很负、对铁的驱动加压很大,且单位发生的电量大。镁的标准电极电位为(SHE);非平衡电极电位则随腐蚀性介质的性质而变,例如:镁在海水中的电位为(SCE),镁在土壤之中的电位为至(SCE),镁在碱溶液中的电位约为(SCE)。镁的电极电位与介质的PH值有密切关系,PH值在酸性范围内,电位较负,因为生成的腐蚀产物氢氧化镁在碱性介质中是难溶的。 (四)主要应用的规范

1、《埋地钢质管道阴极保护电参数测试方法》SY/T0023-97 2、《埋地钢质管道牺牲阳极阴极保护设计规范》SY/T0019-97 3、《钢质管道及储罐防腐工程设计规范》SY0007-99 4、《阴极保护管道的电绝缘标准》SY/T0086-95 5、《埋地钢质管道直流排流保护技术标准》SY/T0017-96。 (五)施工方法 1、牺牲阳极法阴极保护施工安装程序简述如下: 袋装阳极制作→阳极床定位→阳极床开挖→阳极埋设→阳极浇水浸透饱和及各参数测试→阳极通电点处理及焊接→通电点导通测试→通电点补口防腐(补口处防腐材料与管体防腐材料是匹配的)→阳极回填→标记记录。 图1 阳极床定位

BV和DNV船舶牺牲阳极常见问题

阳极保护:阳极金属在一定介质条件下,会产生表层保护膜,有活化态变成钝化态。 使金属产生阳极钝化的方法:偶接保护器法、外加电源阳极保护法(通过直流电源,使阳极达到致钝电流,获得阳极保护的方法)、合金化法、介质添加重金属离子沉积层法。 阴极保护:是对被保护的金属表面施加一定的直流电流,使其产生阴极极化,当金属的电位负于某一电位值时,腐蚀的阳极溶解过程就会得到有效抑制。 根据提供阴极电流的方式不同,阴极保护又分为牺牲阳极法和外加电流法两种,前者是将一种电位更负的金属(如镁、铝、锌等)与被保护的金属结构物电性连接,通过电负性金属或合金的不断溶解消耗,向被保护物提供保护电流,使金属结构物获得保护。后者是将外部交流电转变成低压直流电,通过辅助阳极将保护电流传递给被保护的金属结构物,从而使腐蚀得到抑制。 问:关于牺牲阳极的阴极保护法,本来是原电池,为什么叫阴阳极? 这个问题本来很简单,只是在它的名称上有时给人疑惑。这是一个原电池,是在“牺牲负极,保护正极”。之所以称为“牺牲阳极的阴极保护法”是根据电解液中的反应,一般我们把电解液中发生氧化反应的极板称为“阳极”,发生还原反应的称为“阴极”,这个名称来源于“电解电镀”,在外电源的作用下,与外电源正极相连的极板处发生的是氧化反应,对应极板称为“阳极板”,与外电源负极相连的极板处发生的是还原反应,对应极板称为“阴极板”。 所以,在这个牺牲负极保护正极的“原电池”中,如果从“电解液中化学反应”的角度看极板,阴极恰是原电池电源正极,阳极恰是原电池负极。从因果关系来看,原电池由化学能转化为电能,电解电镀是由电能转化为化学能。从电流方向来看,可以统一为“溶液中阴离子流向阳极板,在极板处发生氧化反应;溶液中阳离子流向阴极板,在极板处发生还原反应”。电解电镀中与电源正极连接的是阳极板,而原电池中电源的正极称为“阴极板”,反之亦然。 电化学腐蚀:电化学腐蚀是金属表面与离子导电性介质发生电化学作用引起的,在作用过程中有阳极区和阴极区。其特点是金属与介质中有电流流动。是船舶腐蚀中最常见的一种腐蚀。 化学腐蚀:化学腐蚀是由于金属表面与介质直接发生化学作用引起的,其特点是在作用进行过程中没有电流产生。 微生物腐蚀:某些微生物的生命活动,能够促进阳极区和阴极区的电化学反应,或能削弱金属表面膜的耐腐蚀作用,或能产生腐蚀性物质,从而加快电化学腐蚀,如硫酸盐还原菌和铁细菌对金属的腐蚀。 电化学腐蚀:①氧的浓差电池作用:近水面氧比较多,得到电子成为阴极,水中金属失去电子,成为阳极,构成原电池。腐蚀发生后,缝隙/缺口处氧比较多,底部比较少,底部继续腐蚀,形成锈坑。 ②两种不同金属:电偶腐蚀,电势低的成为阳极。 ③氧化皮引起的腐蚀:氧化皮电极电位比钢铁高0.26V。 ④涂膜下腐蚀:涂膜有微孔存在,海水进入,发生电化学腐蚀。 ⑤杂散电流引起的腐蚀:供电/电焊,漏电,船体大阳极。 机械腐蚀:(冲击腐蚀和空泡腐蚀) 空泡腐蚀:高速流动的液体,因不规则流动,产生空泡,形成水锤作用,破坏金属表面的保护膜,加速腐蚀,如螺旋桨,泵轴。。。 生物腐蚀:海洋生物在船底附着,破坏漆膜,造成钢板局部电化学腐蚀 微生物新陈代谢,分泌出具有侵蚀物的产物。 腐蚀电池: 1原电池:把两种不同金属放在电解质溶液内,已导线连接,可以发现导线上有电流通过,这种装置称为

牺牲阳极阴极保护施工方案

珠海粤裕丰钢厂干散货码头钢桩牺牲 阳极阴极保护工程 施工组织设计方案 濮阳市豫安防腐有限公司吉林分公司 2011年10月

目录 第一章工程概况 (2) 第二章施工方案 (3) 第三章施工组织机构和人员配置 (10) 第四章主要施工设备、检测仪器表 (16) 第五章质量保证措施和施工安全措施 (18)

第一章工程概况 1.工程概述 珠海粤裕丰钢厂干散货码头为防止钢管桩的腐蚀设计采用环氧粉末全涂加牺牲阳极阴极保护的方法。材质为Q345、尺寸为Φ****×*****的钢管桩共计408根,每根钢管桩上布置1支高效铝阳极,共计安装铝合金牺牲阳极408支;安装阴极保护电位测试系统6套。 2.施工计划周期 开工日期:2011年9月10日 竣工日期:2011年11月30日 3.施工作业总体安排 牺牲阳极水下安装施工,采用两个作业班;阴保电位测试系统的安装选用一个作业班进行施工安装。三个作业班可根据工程进度安排采取同时作业或交叉作业的方式,最大程度的提高工效保证本工程按时竣工。 4.阴极保护施工及验收规范 4.1 JTS 153-3-2007 《海港工程钢结构防腐蚀技术规范》 4.2 GJB156A-2008 《港工设施牺牲阳极保护设计和安装》 4.3 GB/T 4948-2002 《铝-锌-铟系合金牺牲阳极》 4.4 GB/T 4949-2007 《铝-锌-铟系合金牺牲阳极化学分析方法》 4.5 GB/T 17848-1999《牺牲阳极电化学性能试验方法》

第二章、施工方案 1.牺牲阳极水下焊接 1.1牺牲阳极水下焊接方式的比较 1.1.1 根据钢管桩码头建造特点,打桩前,钢管桩表面不能焊接较大构件,以免影响打桩施工。牺牲阳极只能在钢管桩完成打桩工程后进行水下安装。 1.1.2牺牲阳极的水下安装方法主要有以下几种:螺栓固定法、捆扎法和水下焊接法。 1.1.3螺栓固定法是将牺牲阳极通过固定在焊在钢管桩上的钢制固定架上,达到阳极安装固定的目的。螺栓固定法的缺点是工艺复杂、安装困难,尤其是牺牲阳极在长期使用中受海水冲击、海流推动,螺帽容易产生松动,造成牺牲阳极与钢管桩之间接触电阻增大,降低阳极发生电流量和工作性能,影响钢管桩的保护效果。 1.1.4捆扎法是采用钢制卡环或钢带将牺牲阳极捆扎在钢管桩上,达到牺牲阳极安装固定的目的。捆扎法的缺点是由于海浪冲击,海流扭动,牺牲阳极的不断溶解,造成牺牲阳极与捆扎带之间产生松动,使阳极与钢管桩之间接触电阻增大,影响牺牲阳极发生电流和使用效果,严重者阳极脱落,造成保护工程失败。 通过以上比较,螺栓法固定法和捆扎法一般不宜采用。 1.1.5水下焊接安装法是采用水下焊接设备和水下焊条通过电焊方法把牺牲阳极安装固定在钢管桩上。水下电焊方法具有技术成熟、牢固可靠,牺牲阳极与钢 气管桩接触电阻小、导电性能好、使用寿命长等特点。水下焊接法又分自动CO 2 气体局部排水干法焊技术难度体局部排水干法焊和普通湿法焊两种。半自动CO 2 大、造价高,主要用于水下高强钢结构材料的焊接。本工程钢管状材质为Q345钢,采用水下SRE TS 208湿法焊条焊接工艺完全满足工程技术要求。 1.2牺牲阳极水下焊接设备 1.2.1 牺牲阳极水下焊接安装设备采用ZX-500直流弧焊机,ZX-500焊机的特点是电压调节范围大,工作电流稳定,起弧电压稳定,水下操作不易断弧,连续性强,焊缝质量好。 1.2.2空压机 施工用空压机型号为V-0.67/14-1型。该机排气量0.67/min,工作压力1.4MPa,

牺牲阳极法阴极保护方案

目录 一、概述 (1) (一)工程概况 (1) (二)保护原理 (1) (三)牺牲阳极法阴极保护的优点 (1) (四)应用标准和规范 (1) 二、本工程管道牺牲阳极保护法的设计 (1) 三、施工方法 (2) 1、牺牲阳极法阴极保护施工安装程序简述: (2) 2、牺牲阳极法的施工: (2)

一、概述 (一)工程概况 本保护管段范围为北河路(天华路至体育场段)工业水管线。管径为DN500,管道敷设在北河路南侧,单管保护长度为约2.6km。本工程采用牺牲阳极法。 (二)保护原理 将被保护的金属结构连接一种比其电位更负的金属或合金,该金属或合金为阳极,依靠它的优先溶解所释放出的电流使金属结构阴极极化到所需的电位而实现保护,这种方法称为牺牲阳极法阴极保护。(三)牺牲阳极法阴极保护的优点 1、不需要外部电源; 2、对邻近金属构筑物无干扰或很小; 3、电流输出虽不能控制,但有自动调节倾向,且覆盖层不易损坏。 4、调试后,可不需日常管理; 5、保护电流分布均匀,利用率高。 (四)应用标准和规范 1、《埋地钢质管道阴极保护电参数测试方法》SY/T0023-97 2、《埋地钢质管道牺牲阳极阴极保护设计规范》SY/T0019-97 3、《钢质管道及储罐防腐工程设计规范》SY0007-99 4、《阴极保护管道的电绝缘标准》SY/T0086-95 5、《埋地钢质管道直流排流保护技术标准》SY/T0017-96 二、本工程管道牺牲阳极保护法的设计 该管道为工业水管道,管径500㎜,设计采用如下牺牲阳极保护法。

牺牲阳极选用镁阳极,每240米设1组,每组由3支22kg的镁阳极组成。 共埋设镁阳极48支,距管道垂直距离>1.5m,阳极周边用填料包围以减少接地电阻及促进腐蚀产物的溶解。汇流点及中间点设测试桩3支,测试桩按照1支/km的原则埋设。 三、施工方法 1、牺牲阳极法阴极保护施工安装程序简述: 袋装阳极制作→阳极床定位→阳极床开挖→阳极埋设→阳极浇水浸透饱和及各参数测试→阳极通电点处理及焊接→通电点导通测试→通电点补口防腐(补口处防腐材料与管体防腐材料是匹配的) →阳极回填→标记记录。 2、牺牲阳极法的施工: 2.1镁阳极安装 2.1.1牺牲阳极的施工:牺牲阳极土壤中的施工,包括埋设前的组装、阳极的填充和埋高。 2.1.2镁阳极与阳极电缆的组装 阳极与电缆之间的联接采用锡焊。在焊接点上涂覆环氧涂料,加缠电工胶布和绝缘胶带,再包覆热收缩套,并再缠胶带保护。必须保证焊接牢固并且绝缘性能良好。 2.1.3阳极安装前准备 在组装牺牲阳极之前,应检验阳极表面是否有油污和氧化物。牺牲阳极表面的油污和氧化物能降低阳极的活性,影响阳极电流的发生,所以阳极表面如存在油污和氧化物,应采用砂纸将阳极表面打磨干净。 填料包的组装可在室内或现场进行,应保证阳极四周的填料厚度一致、密实,各边厚度不小于50mm。填料应调拌均匀,不得混入石块、泥土、杂草等。每支阳极需用填料约50Kg。

电化学腐蚀及牺牲阳极的原理

电化学腐蚀及牺牲阳极的原理 地下燃气管道在使用过程中,存在不同性质的腐蚀。其中电化学腐蚀对于埋地煤气钢管威胁最大。因为电化学腐蚀集中一点,而且速度较快,腐蚀一旦发生、其速度不会减慢也会不停止、往往造成局部穿孔。产生电化学腐蚀原因如下:由十土壤各处物理化学性质个问,管道本身各部分的金相组织结构个同,如品格的缺陷及含有杂质、金属受冷热加工而变形产生内部应力、非凡是钢管表面粗糙度不同等原因,使一部分金属轻易电离,带正电的金属离子离开金属、而转移到土壤里,在这部分管段上电子越来越过剩,电位越来越负;而另一部分金属不轻易电离,相对来说电位较正。因此电子沿管道由轻易电离的部分向不轻易电离的部分流动、在这两部分金属之间的电子有得有失,发生氧化一还原反应。失去电子的金属管段成为阳极区,得到电子的金属管段成为阴极区。腐蚀电流从阴极流向阳极、然后从阳极流离管段,经土壤又回到阴极,形成回路。在作为电解质溶液的土壤中发生了离子迁移、带正电的阳离子趋向阴极、带负电的阴离子趋向阳极。在阳极区带正电的金属离子与带负电的阴离子发生电化学作用、使阳极区的金属离子不断电离而受到腐蚀,使钢管表面出现凹穴,以致穿孔;而阴极则保持完好、如图1所示。 基于以上原理,采用牺牲阳极保护技术可保护埋地钠管不受电化学腐蚀。具体原则如图2所示。采用比钢管电位较负的金属材料和钢管相连,电极电位较负的金属与电极电位较正的。 图2 牺牲阳极保护技术原理图 被保护钢管在土壤中形成原电池、作为保护电源,电位较负的金属成为阳极、输出电流过程中遭受破坏,故达到保护钢管的效果。 2牺牲阳极保护技术的使用情况 以前常州市城市煤气中压管网主要使用铸铁管,连接方式是柔性机械接口,使用钢管的工程不多。但随着燃气用户的发展、管网压力的提高,考虑到今后天然气的引入及过渡、钢管越来越广泛的被应用。与铸铁管相比,钢管具有耐压强度高;对预先加工成较长的管段,减少现场施工的困难;焊接接U的抗震、抗压性能高的优点,我们在常锡路、城中北路等新敷设的小压管网使用了埋地钢管。但在我市怀德桥改建工程中,有部分敷设以有十年以上的过街钢管被挖掘出来,虽然钢管表面仍有残留的防腐绝缘层。但由于没有实行牺牲阳极保护技术,钢管表面留有凹坑。根据这些情况表明、埋地钢管外壁防腐绝缘层的损坏是造成管道

钢结构防腐工程阴极保护牺牲阳极

钢结构防腐工程阴极保护牺牲阳极阴极保护材料、牺牲阳极保护、外加电流保护、阴保辅助材料、管道材料 河南汇龙合金材料有限公司 技术部:刘珍 编制:2018年8月 内部资料请勿外传

随着城镇燃气地下管网的迅速发展,地下燃气管网错综复杂,且与消防管道、供水管道、供热管道、供电线路等地下金属构筑物纵横交错,甚至还有可能发生电连接,位于城市道路地下的燃气管网还要受到车辆行驶时造成的盈利冲击腐蚀,钢质管道的腐蚀与防护问题也日益突出。为了延长埋地钢质管道的使用寿命,确保城镇燃气供应安全、可靠,通常采用阴极保护方法保护埋地钢质管道。 1 阴极保护设计 1.1阴极保护类型的确定 阴极保护属于电化学保护,是利用外部电流使金属腐蚀电位发生改变以降低其腐蚀速率的防腐蚀技术。埋地钢质管道阴极保护分为强制电流阴极保护和牺牲阳极阴极保护两种。

强制电流阴极保护主要适用于郊区等地下管网单一地区的燃气主管道或城镇燃气环网。其优点是输出电流大而且可调,不受土壤电阻率限制,保护半径较大;系统运行寿命长,保护效果好;保护系统输出电流的变化可反映出管道涂层的性能改变。其缺点是需设专人维护管理,要求有外部电源长期供电,易产生屏蔽和干扰,特别是地下金属构筑物较复杂的地方。 牺牲阳极阴极保护主要适用于人口稠密地区和城镇内各种压力级制燃气管道。其优点是不需外加电源,施工方便,不需进行经常性专门管理,不会生屏蔽,对其他构筑物也不会产生干扰,保护电流分布均匀、利用率高。其缺点是输出电流小,保护范围有限;需定期更换,不能实时监测输出电流分的变化,也不能反映管道涂层的状况。根据以往的经验和我们的实践得知,城镇燃埋地钢质管道宜采用牺牲阳极阴极保护来减缓土壤对管道的电化学腐蚀。 1.2阴极保护电流的确定 要使埋设的燃气管道得到充分的保护,就要证有足够的电流使管道不受到腐蚀。钢质管道廖的小保护电流是阴极保护设计重要的参数之一,其计算公式如下: I=AIP(1) 式中I——管道所需小保护电流,mA A——管道总表面积,m2 IP——小保护电流密度,mA/m2

管道牺牲阳极法阴极保护专用方案

管道牺牲阳极法阴极保护专用方案

长输管道牺牲阳极法 阴极保护方案 项目名称: 建设单位: 施工单位: 编制日期:2010年10月4日

目录 一、概述---------------------------------------------------------- 2 (一)原理---------------------------------------------------- 2 (二)牺牲阳极法阴极保护的优点-------------------------------- 2 (三)牺牲阳极材料-------------------------------------------- 2 (四)阳极安装方式-------------------------------------------- 6 (五)测试系统------------------------------------------------ 7 (六)应用标准和规范------------------------------------------ 7 (七)主要测试设备和工具-------------------------------------- 8 二、该项目管道牺牲阳极保护法的设计 -------------------------------- 8 三、施工方法------------------------------------------------------ 8 1、牺牲阳极法阴极保护施工安装程序简述如下: ------------------- 9 2、牺牲阳极法的施工:----------------------------------------- 9

压力钢管牺牲阳极法阴极保护装置施工方案.

XX输水工程埋地输水钢质管道阴极保护 设计施工方案 一、工程概况 该输水管道工程,管的Φ600mm,管的长513.1m。施工设计思路,通过计算、设计,在整个埋地输水钢质管道进行牺牲阳极法的阴极保护。 二、此工程埋地输水管道保护范围,阳极数量和设计技术参数指标。 2-1镁合金阳极21支,每支单个阳极重量22kg,分7组埋设,每组3支, 2-2镁阳极规格型号700×(150+130)×125 2-3设阳极用量,镁阳极21支 2-4布置电位测试桩3支 2-5饱和硫酸铜参比电极3支 2-6有效保护年限30年 2-7保护电流密度10mA/m2 2-8保护电位-0.85-1.5V 三、采用技术标准 ·GB/T21448-2008《埋地钢质管道阴极保护技术规范》

·GB/T21246-2007《埋地钢质管道阴极保护参数测量方法》 GB/T17731-2004《镁合金阳极》 ·RP0169-2002NAC《埋地或水下金属管线系统的外部腐蚀控制》 四、输水管道阴极保护施工方案 输水钢质管道在我国主要采用普通钢材焊接而成,管道长期埋在地下,由于土壤的各种介质和电化学腐蚀,运行汇流中而造成杂散电流的腐蚀,所以阴极保护是对被保护的管道金属以及阴极电流,使金属表面阴极极化,电位负移到表面阳极的平衡电位,消除电化学不均匀性所引起腐蚀电池,从而保护金属免受介质腐蚀技术。保护电流来源不同,阴极保护分为牺牲阳极保护和外加电流保护,这次输水管道采用牺牲阳极保护法。是采用一种被保护的电位更负,即化学性质更为活泼的金属或合金与被保护金属(管道)相连,依靠该金属合金不断的腐蚀牺牲掉所产生的电流,使被保护金属获得阴极的极化而受到保护、技术已相当成熟。 4-1镁合金阳极的施工安装 牺牲阳极的设置本着保护电位分布均匀,尽量减少阳极间互相屏蔽和管道前后壁自身屏蔽影响,利于管道阴极保护

宁波牺牲阳极(更改版)

宁波埋地管道 阴极保护牺牲阳极安装 设计方案 (最新) 2015年1月16日

目录 1工程概况 (1) 2土壤电阻率范围 (1) 3设计原则及遵循的标准规范 (1) 4设计基本参数 (1) 5牺牲阳极安装要求计算 (2) 6主要材料技术规格要求 (3) 7施工技术要求 (8) 8阴极保护效果检测 (9) 9材料安装清单 (9) 10整体安装平面简图 (10) 11现场施工安装注意事项 (11)

一、工程概况 埋地管道,DN100及DN219管道2根,材质:碳钢管线长度: 150m. 防腐层:环氧煤沥青+玻璃丝布(二布二油)。 二、土壤电阻率范围 全线管道土壤电阻率适用范围在:20-50Ω.m 三、设计原则及遵循的标准规范 3.1 严格遵守埋地钢质管道阴极保护有关的设计规范、技术标准和技术规定; 3.2 采用成熟技术、材料,做到安全可靠、经济合理; 3.3 《埋地钢质管道阴极保护技术规范》(GB/T 21448-2008) 3.4《埋地钢质管道牺牲阳极阴极保护设计规范》SY/T 0019-97)。 3.5 《长输管道阴极保护施工及验收规范》(SY/J4006-90) 3.6 《埋地钢质管道阴极保护参数测量方法》(GB/T 21246-2007) 3.7 《钢质管道外腐蚀控制规范》(GB/T 21447-2008) 3.8 《防腐蚀工程经济计算方法标准》(SY/T 0042—2002) 3.9 业主方提供的其他资料、图纸。 四、设计基本参数 4.1管道基本参数;直径0.219m 及0.100m, 长度150m 防腐层为:二布二油4.2管道保护电位要求: -0.85V/-1.25V; 4.3管道最小保护电流密度取: 3mA/m2 4.4管道阴极保护设计年限为:≧30年。 4.5管道保护被保护总面积计算: 管道面积:0.219×3.14×150=103.1m2 0.1146×3.14×150=53.9m2 管道总面积:103.1+53.9=157m2 被保护总面积:管道总面积+10%设计余量=157+15.7=172.7≈173m2

相关文档
最新文档