HPLC法监控邻三氟甲基苯甲醚生产中的重氮化反应

HPLC法监控邻三氟甲基苯甲醚生产中的重氮化反应
HPLC法监控邻三氟甲基苯甲醚生产中的重氮化反应

2-氨基-5-甲基苯甲酸的新合成方法 (2)

2-氨基-5-甲基苯甲酸的新合成方法摘要:以对甲基苯胺为原料,与水合氯醛、盐酸羟胺反应制得5-甲基靛红,然后在过氧化氢、氢氧化钠体系下室温反应,得2- 氨基-5-甲基苯甲酸,以对甲基苯胺总收率为43.4%,产品经 HNMR确证结构。 关键词:2-氨基-5-甲级苯甲酸;合成 2-氨基-5-甲基苯甲酸是一个重要的医药化工中间体,可用于合成各种叶酸类似物,它还是抗癌药物雷替曲塞的起始原料,以其为原料合成的其它抗肿瘤药物,例如CB3717、IC1198583、ZD9331等也在积极的研究开发中。文献报道2-氨基-5-甲基苯甲酸的合成方法均以间甲基苯甲酸为原料,先进行硝化制得2-硝基-5-甲基苯甲酸,再经还原得到产品。由于甲基为邻、对位定位基团,硝化反应得到的产物为2-硝基-5-甲基苯甲酸和4-硝基-3-甲基苯甲酸混合物,分离提纯困难,副产物在还原反应后也难以去除,因此很难得到纯度很高的产品,且收率也低。文献报道了2-硝基-5-甲基苯甲酸和4-硝基-3-甲基苯甲酸混合物得精制条件和结晶提纯方法、总收率仅为15%,且操作繁琐,难以实现工业化生产。本文参考文献的靛红和5-氯靛红的合成方法2-氨基-4-溴-5-氯苯甲酸的合成方法,设计了合成2-氨基-5-甲基苯甲酸的新方法。其合成路线如下:

以下是制备2-氨基-5-甲基苯甲酸的一些方法: 一、摘自“2-氨基-5-甲基苯甲酸合成工艺的改进”;郑保辉、方志杰、焦岩——南京理工大学化工学院 对甲苯胺与水合氯醛、盐酸羟胺反应制得异亚硝基乙酰对甲苯胺,于浓硫酸中脱水成环得到5-甲基靛红,然后在碱性条件下以双氧水为氧化介质合成2-氨基-5-甲基苯甲酸。 本文通过正交实验对2-氨基-5-甲基苯甲酸的合成工艺进行了优化,得到了制备异亚硝基乙酰对甲苯胺的较佳工艺条件:对甲苯胺4.28g盐酸羟胺8.90g水合氯醛0.06mol ,硫酸钠用量90g温度80摄氏度,反应时间1h,精制收率为86.3%;制备5-甲基靛红的较佳工艺条件:异亚硝基乙酰对甲苯胺5.00g浓硫酸24ml温度90 摄氏度,机械搅拌,收率为88.0%;5-甲基靛红在碱性条件下经双氧水氧化得2-氨基-5-甲基苯甲酸,收率为81.3%;3步反应总收率达61.7%。提高了各步产率,降低了成本,适合于工业化生产。 二、摘自:“2-氨基-5-甲基苯甲酸的新合成方法”;李家明、

重氮化反应的安全注意事项资料讲解

重氮化反应的安全注 意事项

重氮化反应的火灾危险性 重氮化反应所产生的重氮盐,在温度稍高或光的作用下,即易分解,有的甚至在室温时也能分解,每当温度升高10C,其分速度便加快2倍。在干燥状态下,有些重氮盐不稳定,活力大,受热或摩擦、撞击,能分解爆炸。含重氮盐的溶液若洒落在地上、蒸汽管道上,干燥后亦能燃烧或 重氮化反应所产生的重氮盐,在温度稍高或光的作用下,即易分解,有的甚至在室温时也能分解,每当温度升高10C,其分速度便加快2倍。在干燥状态下,有些重氮盐不稳定,活力大,受热或摩擦、撞击,能分解爆炸。 含重氮盐的溶液若洒落在地上、蒸汽管道上,干燥后亦能燃烧或爆炸。重氮化反应使用的亚硝酸钠是二级无机氧化剂,在175C时分解,能引起有机物燃烧或爆炸,亚硝酸钠还具有还原剂的性质,遇比他强的氧化剂能被戽化而导致燃烧或爆炸;在重氮化反应时,若温度过高,亚硝酸钠的投料过快和过量,会增加亚硝酸的浓度,加速物料的分解,产生大量的氧气体,亦有引起爆炸着火的危险。 第一,注意温度,最好实测用电子显示。在通盐水降温的情况下准备些冰,随时往釜里加。一般最好零度以下。 第二控制亚钠滴加速度,不要太快。一般控制到五十分左右。如果出现冒红烟现象,应停止滴加。可能温度高了或搅拌速度慢搅不开。 第三如果用的是硫酸,配酸水是要慢慢把酸加水里。以免放热过快喷出。 第四如果需要重氮盐时,一定注意保存,因为重氮盐不稳定。接触空气或高温易放热着火,

重氮化反应过程楼上的给了很好的建议,我这里提醒重氮化的后处理.因为1年的时间在我身边见到两次重氮化反应后处理发生了爆炸:一次是反应结束后浓缩,由于浓缩过干,反应罐盖都抛了好远,重伤一人;另外一次是重氮物烘料,本来是常温真空烘料的,由于半夜烘箱的蒸汽加热阀漏蒸汽,烘箱内温失控,发生大爆炸,整栋房子都塌了,幸运的是晚上车间没有人,要不后果不堪设想.我建议在小试工艺的时候就进行改进,能不浓缩的就不要浓缩,能不结晶出来的就不要结晶,在结晶抽滤的时候也见到爆炸发生过,最好用溶剂处理后直接往下一步反应.为了安全去杂到后面再想办法. 1、安全问题,亚硝酸钠是强致癌物质,在操作的时候一定要带好防护措施,再是得到的重氮盐尽量直接下步反应,拿出来也是很危险的事情。 2、反应过程问题,滴加亚硝酸溶液要慢,严格控制滴加温度在0度左右,如果直接进行下一步的卤代或者还原的话,建议每一次反应完以后都进行清洗,如果长期不清洗的话,重氮盐分解后的杂质积累到一定程度就会影响下一步的反应,甚至造成0收率!

年产3000吨对甲基苯甲酸项目立项申请报告

年产3000吨对甲基苯甲酸项目可行性研究报告 中咨国联出品

目录 第一章总论 (9) 1.1项目概要 (9) 1.1.1项目名称 (9) 1.1.2项目建设单位 (9) 1.1.3项目建设性质 (9) 1.1.4项目建设地点 (9) 1.1.5项目负责人 (9) 1.1.6项目投资规模 (10) 1.1.7项目建设规模 (10) 1.1.8项目资金来源 (12) 1.1.9项目建设期限 (12) 1.2项目建设单位介绍 (12) 1.3编制依据 (12) 1.4编制原则 (13) 1.5研究范围 (14) 1.6主要经济技术指标 (14) 1.7综合评价 (16) 第二章项目背景及必要性可行性分析 (18) 2.1项目提出背景 (18) 2.2本次建设项目发起缘由 (20) 2.3项目建设必要性分析 (20) 2.3.1促进我国年产3000吨对甲基苯甲酸产业快速发展的需要 (21) 2.3.2加快当地高新技术产业发展的重要举措 (21) 2.3.3满足我国的工业发展需求的需要 (22) 2.3.4符合现行产业政策及清洁生产要求 (22) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (22) 2.3.6增加就业带动相关产业链发展的需要 (23) 2.3.7促进项目建设地经济发展进程的的需要 (23) 2.4项目可行性分析 (24) 2.4.1政策可行性 (24) 2.4.2市场可行性 (24) 2.4.3技术可行性 (24) 2.4.4管理可行性 (25) 2.4.5财务可行性 (25) 2.5年产3000吨对甲基苯甲酸项目发展概况 (25) 2.5.1已进行的调查研究项目及其成果 (26) 2.5.2试验试制工作情况 (26) 2.5.3厂址初勘和初步测量工作情况 (26)

黄曲霉毒素及其分析方法

誅饲料与添加剂 1概述 黄曲霉素(AFT)为黄曲霉和寄生曲霉产毒菌株的代谢产物。此外,在热带地区,温特曲霉和软毛青霉也能产生少量的黄曲霉毒素。 1.1结构 AFT是二呋喃环和香豆素(氧杂萘邻酮)的衍生物,目前已明确分子结构的约有17种。饲料在自然条件下污染的AFT 主要有AFTB 1 、AFTB2、AFTG1、AFTG2,其中以AFTB1最多,AFTG1其次,AFTB2和AFTG2很少。 1.2理化性质 AFT溶于多种极性有机溶剂,如氯仿、甲醇、乙醇、丙酮、乙二甲基酰胺,难溶于水(在水中最大溶解度为10毫克/升),不溶于石油醚、乙醚和己烷,这是提取和溶解依据。 在365纳米波长的紫外灯下,B族黄曲霉毒素呈蓝色荧光,G族呈黄绿色荧光。 AFT对光、热、酸较稳定,但对强酸、强碱和氧化剂不稳定。AFT能耐高温,一般的蒸煮不易破坏,只有加热到280~300℃时才裂解,高压灭菌2小时,毒力降低25%~33%,4小时降低50%。对紫外光也相对稳定,但在强紫外光照射下可破坏。在酸性和中性介质中稳定,但pH值<3时分解。对碱不稳定,当pH值9~10时,其内酯环开裂生成几乎无毒的盐,荧光也随之消失,但此反应是可逆的,在酸性条件下又复原。 对氧化剂也不稳定,很多氧化剂如次氯酸钠、氯、过氧化氢、臭氧和高硼酸钠等均可使毒素破坏,荧光消失,且氧化剂浓度越高,分解越快。其中,5%次氯酸钠常作为实验室里AFT 的消除剂。 1.3毒性 AFT属剧毒物质,是目前发现最强的化学致癌物质,在世界卫生组织确定重点研究的毒物中被列为首位。不同黄曲霉毒素之间毒性差异很大,根据雏鸭的口服半数致死量可知,AFTB1的毒性最大,半数致死量为0.24~0.56毫克/千克;AFTG1次之,半数致死量为0.78~1.20毫克/千克;AFTB2的半 数致死量为1.68毫克/千克;AFTG 2 的半数致死量为3.45毫克/千克。 由于自然界黄曲霉产毒菌株产生的毒素以AFTB 1 的比例为高,加之其毒性和致癌性最大。因此在检验饲料中黄曲霉毒素 含量和对其进行卫生评价时,一般只以AFTB 1 作为分析指标。 几乎所有的动物对AFT都很敏感,但不同的品种、性别、营养状况对AFT的敏感性不同。一般地说幼年动物比成年动物敏感,雄性动物比雌性动物敏感。不同动物中,雏鸭、仔猪、火鸡为最敏感,绵羊对黄曲霉毒素有较高的耐受性。高蛋白饲料可降低动物对AFT的敏感性。 急性AFT中毒主要表现为出血、贫血、黄疸、血清谷丙转 氨酶(GPT)升高。剖解主要病理变化为广泛性出血、中毒性肝炎。组织学检查可见肝细胞变性坏死,部分肝小叶增生,胆小管增粗。 慢性AFT中毒主要表现为贫血、消瘦。剖解可见肝萎缩硬化和胸腹腔积液。组织学检查可见肝结缔组织增生,病程长的可见肝癌结节。 2一般分析方法 黄曲霉毒素的分析方法很多,有微柱法(与柱层析相似,常用作筛选),高效液相色谱法(HPLC),气相色谱法(GC)和薄层色谱法(TLC)。薄层色谱法分析黄曲霉毒素一般要经过毒素的提取和纯化,定量测定、理化鉴定。 2.1AFT的提取和纯化 黄曲霉毒素提取常用的有机溶剂有甲醇、氯仿、丙酮。根据样品的性质不同,通常在这几种有机溶剂中加入一定比例的水。如花生中黄曲霉毒素的分析方法是用甲醇-水(55∶45)提取的,而棉籽中黄曲霉毒素的分析方法是用丙酮-水(85∶15)提取的。 常用的提取方法是振荡提取法和匀浆提取法。提取液用萃取法纯化或在提取过程中用液固提取法纯化,纯化后的提取液浓缩至干,再用苯-乙腈(98∶2)溶解定容,供薄层色谱分析。 2.2定量分析 AFT分析常用的展开剂有,氯仿-丙酮(92∶8),苯-甲醛-乙酸(90∶5∶5),乙醚-甲醇-水(96∶3∶1)。将上述样液和标准液点于薄层板上,用适合的有机溶剂展开,然后于365纳米的紫外灯下观察。然后用下述方法定量,将提取液稀释,直至薄层板刚好能看到兰紫色荧光。通过荧光的黄曲霉毒素的最低量(一般情况下是0.0004微克)推知提取液中黄曲霉毒素的浓度,或将不同量标准黄曲霉毒素和提取液在同一薄层板上展开。再通过肉眼比较或薄层扫描仪扫描,求出待测样品的含量。 有时将点好样的薄层板先用无水乙醚预展,目的是消除一些杂质的干扰,预展后,黄曲霉毒素应在原点不动。 2.3理化鉴定 为了区别其可能产生荧光并与黄曲霉毒素Rf值相似的物质,必须对黄曲霉毒素进行鉴定。常用鉴定方法有以下2种。 光谱分析法。将薄层板上的荧光斑点(或带)剥离下来,用氯仿-甲醇洗脱,洗脱液蒸发至干,再用氯彷溶解,测定其紫外吸收光谱,并和标准液比较。 衍生物法。黄曲霉毒素能与三氟乙酸反应形成黄曲霉毒素的衍生物,通过标准黄曲霉毒素形成的衍生物与待测样品形成的衍生物的Rf值的比较,即可对待测样品进行鉴定。 黄曲霉毒素及其分析方法 宋彬彬(哈尔滨市饲料科学研究所150018) 輬輮訝 养殖技术顾问2011.7

监控量测检验批质量验收记录及检验规定和说明

监控量测检验批质量验收记录及检验规定和说明 编号: 单位工程名 称 分部工程 分项工程名 称 验收部位 施工总承包 单位项目经 理 专业 工长 专业承包单 位项目经 理 施工 班长 施工执行标准名称 及编号 施工质量验收规范的规定施工单位检查评定记录监理(建设)单位验收记 录 主控项目1 监控量测 和信息反 馈 设计要 求 2 量测元件 的性能 设计要 求

3 地面隆沉第6.6.7 条 4 地面建 (构)筑物 沉降、倾斜 设计及 规范要 求 一般项目1 量测元件 埋设和保 护 设计要 求 2 量测频率、 数据处理 设计要 求 施工单位检查评定结果: 质量检查员: 年月日

监理或建设单位验收结论: 监理工程师或建设单位项目专业技负责人: 年月日 检验规定和说明 适用范围:本表适用于暗挖车站施工监测质量的验收。 检验批的划分:每一监测断面为一检验批。 主控项目: 1.车站隧道施工必须按设计要求进行监控量测和信息反 馈。 检验数量:施工单位、监理单位全数检查。 检验方法:查阅设计文件和监控量测记录。 2.监控量测所采用的测试仪器、仪表和传感器应选用抗干 扰性强、适应现场长期观测的可靠产品,并必须符合设计要 求。 检验数量:施工单位、监理单位全数检查。 检验方法:检查产品出厂合格证、产品鉴定合格证和物

理技术性能检测报告。 3.施工过程引起的地面隆沉:隆起应不大于10mm,沉降应不大于30mm。 检验数量:施工单位、监理单位全数检查。 检验方法:检查施工过程监控量测记录。 4.施工引起的地面建(构)筑物的沉降和倾斜必须符合设计及规范要求。 检验数量:施工单位、监理单位全数检查。 检验方法:检查施工过程监控量测记录。 一般项目: 1.量测元件应按设计要求埋设和保护。 检查数量:施工单位全数检查,监理单位抽查10%。 检验方法:检查隐蔽工程验收记录。 2.监控量测频率应符合设计要求,并应用回归分析法进行数据处理。 检验数量:施工单位全数检查,监理单位抽查10%。 检验方法:检查监控量测记录。 监控量测项目和量测频率 类别量测项目 量测仪 器和工 具 测点 布置 量测频率

常见毒品的中毒机理、症状及救治

常见毒品的中毒机理、症状及救治 PS: 如果你参加医药卫生类各种考试,我们将为你免费提供备考方案咨询和资料服务,请添加微信号vom121 吗啡(Morphine)别名: “黄皮”、“黄砒”、“1号海洛因”等,东南亚的产品有“999”、“AAA”、“OK”等商标。一、中毒原因阿片在两千多年前就已经入药,有止痛、止咳、止泻、解痉、镇咳、麻醉等多种功效。易产生躯体和精神依赖。在以下情况时易中毒:1、超药效剂量使用或多次、重复、频繁应用本类药物;2、意外食入或故意大剂量服用本类药物;3、心、肺、肝、肾、肾上腺功能不全时应用;4、母亲中毒可使乳儿或胎儿中毒;5、小儿对吗啡特别敏感,老人代谢差,均易中毒;6、与酒精、吩噻嗪、肌松剂和中枢抑制剂如巴比妥类药对中枢及呼吸抑制有协同作用,合用可导致中毒。二、药理和毒理本品为阿片受体纯激动剂,口服易吸收,但首过效应显著,故口服效果差。常用皮下注射,30分钟后吸收60%,30%左右与血浆蛋白结合,游离型吗啡分布于全身组织,只有少数可通过血脑屏障,本品口服、肌注和静脉注射后, 分别于90、30和10分钟达作用高峰。主要在肝内经与葡萄糖醛酸结合,以及脱甲基生成N-去甲基吗啡和吗啡氧化而生成假吗啡。代谢物及原形(5%~10%)主要经肾排泄,少量经过乳汁和胆汁排泄,也能通过胎盘。一次用药后24小时绝大

部分排出体外。血浆半衰期2.5~3h。1.中枢神经系统:(1)镇痛和镇静:镇痛作用是自然存在的任何一种化合物无法比拟的。对各种疼痛均有效,其中对慢性疼痛优于急性锐痛。一次给药镇痛时间可达4~5小时,还有明显的镇静作用,能减轻疼痛所引起的焦虑、紧张、恐惧等情绪反应,同时产生欣快感。(2)抑制大脑呼吸中枢:降低呼吸中枢对CO2的敏感性,主要与激动μ2受体有关。使呼吸频率减少,潮气量降低,剂量越大,抑制用越强。是吗啡中毒致死的主要原因。(3)镇咳:抑制延髓咳嗽中枢。(4)催吐:兴奋催吐中枢,妇女尤其敏感。(5)缩瞳:兴奋中脑前核阿片受体,兴奋动眼神经核.2.心血管系统:引起组胺释放,使外周血管扩张。吗啡还作用于脑干孤束核.使外周交感神经张力降低,心率减慢,引起体位性低血压。使颅内压升高,CO2潴留,脑血管扩张。3.对胃肠道平滑肌、括约肌有兴奋作用,使它的张力提高,蠕动减弱,消化液分泌减少,括约肌痉挛, 甚至引起胆绞痛。4.提高膀胱括约肌张力,引起尿潴留。增加子宫张力,延长产程。大剂量能收缩支气管。5.产生依赖性和耐受性.三、诊断要点1.临床表现:(1)中毒症状的特点: 意识昏迷、针尖样瞳孔、呼吸深度抑制、紫绀及血压下降。脊髓反射增强,缺氧时瞳孔可显著扩大。(2)一般中毒症状:头晕、恶心、呕吐,兴奋或抑郁,口渴,呼吸有阿片味。肌张力先增强后驰缓,出汗,皮肤发痒,幻想,便秘,尿潴留,血糖升高及血压下降等。(3)严重中毒①在窒

利用大口径毛细管气相色谱法测定对甲基苯甲酸中的对苯二甲酸

2000年4月第37卷第2期 四川大学学报(自然科学版) Journal of Sichuan U niv ersity(Natur al Science Edition) A pr.2000 Vol.37N o.2 文章编号:0490-6756(2000)02-0285-03 利用大口径毛细管气相色谱法测定 对甲基苯甲酸中的对苯二甲酸 胡家元,张小念*,乔秀明,李贤均 (四川大学化学学院有机金属络合催化研究所,成都610064) 对甲基苯甲酸是重要的化工原料与药物合成的中间体.由过渡金属络合物催化剂催化氧化对二甲苯生产对甲基苯甲酸,产品质量在很大程度上决定于底物深度氧化产物对苯二甲酸的含量.为了优化氧化反应与精制反应条件,降低生产成本,提高产品质量,测定粗产品或精制产品中的微量对苯二甲酸很有必要.利用气相色谱法测定对甲基苯甲酸与对苯二甲酸等一元或二元芳香酸,通常是先将样品以适宜的衍生反应使其转变为易挥发的芳香酸酯,再进行气相色谱分离与测定[1].离子交换与反相离子对或反相离子抑制等高效液相色谱法是较为理想的分析方法[2].我们研究并建立了一种新的乙酯衍生化前处理气相色谱分析法,经衍生后的试液在0.53mm大口径SE-30毛细管柱上不经分流直接进样分析,方法简便、准确. 1实验部分 1.1仪器与分析条件 1890ò型气相色谱仪,FID检测器,3295色谱数据处理机(惠谱上海分析仪器有限公司); 15m@0.53mm(id)SE-30弹性石英毛细管柱(大连化学物理研究所高新技术研究室)不分流直接进样;柱温180e,进样器270e,FID250e;载气(N2)流速4mL/min,氢气(H2)流速35mL/min,空气流速400mL/min,尾吹气(N2)流速30mL/min. 1.2主要试剂 对甲基苯甲酸(美国SIGMA);对苯二甲酸(上海试剂一厂,含量大于99%);辛二酸(上海试剂一厂,分析纯);四甲基氢氧化铵(分析纯);碘乙烷(分析纯);二甲基甲酰胺(DM F,化学纯). 1.3实验方法 准确称取0.100g对甲基苯甲酸精制产品置于直径50m m的瓷蒸发皿中,以少量蒸馏水润湿后滴加0.1mol/L的四甲基氢氧化铵溶液至样品完全溶解,并调节试液pH值9~10.加入1. 00mL pH值9~10的辛二酸(每毫升含1.50mg辛二酸)内标溶液,置蒸发皿于沸水浴上蒸干,冷却后以少量DM F分次溶解剩余残渣,溶液合并于一干燥、洁净的具塞试管中,加入5倍于四甲基氢氧化铵摩尔数的碘乙烷,盖塞,试管于50e水浴中放置10min,取上层清液进样分析,分离结果如附图.用标准品对照定性,用内标校正曲线法定量. 收稿日期:1999-09-22 *化学学院98届分析专业毕业生

高效液相分析方法开发1

分析方法开发与验证在不同行业有不同的要求,医药化学行业对于质量的控制非常严格,高效液相分析是控制产品质量的重要手段,其开发与验证对其它行业有很好的借鉴意义。 一、分析方法开发 分析方法的开发主要包括色谱柱的选择、流动相的选择、检测波长的选择和梯度的优化几个方面。目前高效液相多做反相使用,所以本文主要以反相为例进行讲解。 1.色谱柱的选择 原料药生产对产品的纯度和杂质含量的要求非常苛刻,要求检测使用的色谱柱有较高的理论塔板数,能提供更好的分离度,从而对可能存在的杂质有更大的分离的可能性,所以5um 填料的色谱柱长要250mm,3.5um填料的柱长要150mm,基本上都是各个粒径柱长最长的。我比较喜欢近两年新出的亚二微米填料的色谱柱,50mm柱长就能提供很高的理论塔板数,而且柱长和粒径小了,流速增加很多,能节省很多的分析时间,极大的提高工作效率。一般选用直径为4.6mm 或3.0mm的柱子,太细了可能会增大柱外效应。填料的孔径对于小分子合成药物不需要考虑,普通的分析柱都在100A左右,能满足分析检测的需要。 对于API分析方法开发,一般要求必须做色谱柱的筛选实验,最少使用三种不同类型的色谱柱,每种类型三只,要来自于不同厂家。 三种类型包括: 1)普通的C18或相应的C8色谱柱,如Waters的Symmetry C18或C8,YMC的Pack Pro C18或C8,Agilent的RX C8等,其它公司如菲罗门和热电也有相应的色谱柱; 2)封端处理的或者极性嵌入型色谱柱,如Waters的Symmetry Shield RP18或RP8,XTerra RP18或RP8,YMC的ODS AQ,Agilent的Zorbax SB AQ等,其它公司如菲罗门和热电也有相应的色谱柱; 3)填料用其它官能团修饰过的色谱柱,如苯基柱等,很多公司都有。 一般不同类型的色谱柱在选择性上会有很大的差异,相同类型的色谱柱生产厂家不同在选择性上也会有差异,这个主要是填料的性质和生产工艺决定的,有时候用一只色谱柱分离不好,除了优化梯度和流动相外,换一个厂家的柱子也是一个很好的选择。相同品牌型号的色谱柱,C18和C8在选择性上没有差异,但是C18保留能力更强,相同的样品分离度更高,我们一般倾向于选择用C18。我们在筛选色谱柱时尽量选择行业内排名前几位的厂家,柱子品质好,开发分析方法时能省很多力气,做出来的分析方法也有保证。一个药从开发到上市可能会持续十几年甚至更长时间,厂家有实力,开发方法时选定的柱子在若干年以后需要时还会有的买,做分析时重复性也能保障。多用几只色谱柱做筛选和分析方法优化,能尽最大的可能提高分析方法的质量,保证检测结果的可信度。 我比较喜欢用的柱子有:Agilent的Zorbax Eclipse XDB-C18、Zorbax Eclipse Plus C18,Waters的Symmetry C18、XTerra RP18、XTerra MS C18等,YMC的柱子有时会是不错

红霉素-N-脱甲基酶(ERND)活性测定试剂盒说明书

货号:MS2703 规格:100管/48样红霉素-N-脱甲基酶(ERND)活性测定试剂盒说明书 微量法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 测定意义: 细胞色素P450酶是一组主要存在于肝脏的酶系,在外源物质代谢中,尤其是药物和毒物的代谢,具有重要作用。ERND在P450酶系中相当于CYP2B亚型,与药物代谢的去甲基化密切相关。CYP2B具有催化底物形成非活性易于排泄的代谢产物而具有解毒作用,也可使某些药物经CYP2B代谢活化。 测定原理: ERND催化红霉素释放甲醛,通过Nash比色测定甲醛含量,即可计算出ERND活性。 自备实验用品及仪器: 普通离心机,超速离心机、可调式移液枪、可见分光光度计/酶标仪、微量石英比色皿/96孔板、蒸馏水和冰。 试剂组成和配置: 试剂一:粉剂×1瓶,4℃保存。临用前加100mL蒸馏水溶解。 试剂二:液体×1瓶,4℃保存。 试剂三:粉剂×1管,4℃保存。临用前加1mL蒸馏水,充分溶解。 试剂四:粉剂×1瓶,4℃保存。临用前加0.5mL蒸馏水,充分溶解。 试剂五:粉剂×1瓶,4℃保存。临用前,加蒸馏水4.5mL充分溶解。 试剂六:液体×1瓶,4℃保存。 试剂七:液体×1瓶,4℃保存。 标准液:液体×1瓶,-20℃保存。临用前取1.5mL EP 管,加入10μl标准液,加990μl 蒸馏水,混匀即为0.05 mmol/L标准甲醛溶液,4℃保存。 粗酶液提取: 1、除去细胞核,线粒体等大分子物质:称约0.5g组织,加入1mL试剂一,冰上充分研磨,10 000g 4℃离心30min,取上清液,转入超速离心管中。 2、粗制微粒体:100 000g,4℃,离心60min,弃上清液。 3、除血红蛋白等杂质:向步骤2的沉淀中加1mL试剂一,盖紧后充分震荡溶解,100 000g离心30min,弃上清液。 4、最终微粒体:向步骤3的沉淀中加试剂二0.5mL,充分震荡溶解,即粗酶液,待测。该待测液需当天使用。 测定操作: 1. 分光光度计/酶标仪预热30 min,调节波长到412 nm,蒸馏水调零。 2. 试剂二置于37℃水浴中预热30 min。 3. 对照管:取0.5mL EP管,加入10μL粗酶液,170μL试剂二,10μL试剂三,10μL蒸馏水,混匀后置于37℃水浴保温30min;立即加入35μL试剂五,混匀后置于冰浴中5min;取出后加入35μL试剂六,混匀后室温静置5min;室温8000rpm离心5min;取新的EP管,加入 第1页,共2页

重氮化

重氮化反应 diazo-reaction 一级胺与亚硝酸在低温下作用生成重氮盐的反应。例如: 脂肪族、芳香族和杂环的一级胺都可进行重氮化反应。通常,重氮化试剂是由亚硝酸钠与盐酸作用临时产生的。除盐酸外,也可使用硫酸、过氯酸和氟硼酸等无机酸。脂肪族重氮盐很不稳定,能迅速自发分解;芳香族重氮盐较为稳定。芳香族重氮基可以被其他基团取代,生成多种类型的产物。所以芳香族重氮化反应在有机合成上很重要。 重氮化反应的机理是首先由一级胺与重氮化试剂结合,然后通过一系列质子转移,最后生成重氮盐。重氮化试剂的形式与所用的无机酸有关。当用较弱的酸时,亚硝酸在溶液中与三氧化二氮达成平衡,有效的重氮化试剂是三氧化二氮。当用较强的酸时,重氮化试剂是质子化的亚硝酸和亚硝酰正离子。因此重氮化反应中,控制适当的pH值是很重要的。芳香族一级胺碱性较弱,需要用较强的亚硝化试剂,所以通常在较强的酸性下进行反应。 概述 芳香族伯胺和亚硝酸作用生成重氮盐的反应标为重氮化,芳伯胺常称重氮组分,亚硝酸为重氮化剂,因为亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸使反应时生成的亚硝酸立即与芳伯胺反应,避免亚硝酸的分解,重氮化反应后生成重氮盐。 重氮化反应可用反应式表示为: Ar-NH2 + 2HX + NaNO2--—Ar-N2X + NaX + 2H20 重氮化反应进行时要考虑下列三个因素: 一、酸的用量 从反应式可知酸的理论用量为2mol,在反应中无机酸的作用是,首先使芳胺溶解,其次与亚硝酸销生成亚硝酸,最后生成重氮盐。重氮盐一般是容易分解的,只有在过量的酸液中才比较稳定,所以重氮化时实际上用酸量过量很多,常达3mol,反应完毕时介质应呈强酸性(pH值为3),对刚果红试纸呈蓝色.重氮过程中经常检查介质的pH值是十分必要的。 反应时若酸用量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮氨基化合物:Ar-N2Cl + ArNH2——Ar-N=N—NHAr + HCl 这是一种自我偶合反应,是不可逆的,一旦重氮氨基物生成,即使补加酸液也无法使重氮氨基物转变为重氮盐,因此使重氮盐的质量变坏,产率降低。在酸量不足的情况下,重氮盐容易分解,温度越高,分解越快。 二、亚硝酸的用量 重氮化反应进行时自始至终必须保持亚硝酸稍过量,否则也会引起自我偶合反应。重氮化反应速度是由加入亚硝酸钠溶液加速度来控制的,必须保持一定的加料速度,过慢则来不及作用的芳胺会和重氮盐作用生成自我偶合反应。亚硝酸钠溶液常配成30%的浓度使用.因为在这种浓度下即使在-15℃也不会结冰。 反应时检定亚硝酸过量的方法是用碘化钾淀粉试纸试验,一滴过量亚硝酸液的存在可使碘化钾淀粉试纸变蓝色。由于空气在酸性条件下也可位碘化钾淀粉试纸氧化变色,所以试验的时间以0.5-2s内显色为准。 亚硝酸过量对下一步偶合反应不利,所以过量的亚硝酸常加入尿素或氨基磺酸以消耗过量亚硝酸。 亚硝酸过量时,也可以加入少量原料芳伯胺,使和过量的亚础酸作用而除去。 三、反应温度 重氯化反应一般在0-5℃进行,这是因为大部分重氮盐在低温下较稳定,在较高温度下重

39种杀菌剂作用特点与防治对象归纳

39种杀菌剂作用特点与防治对象归纳 秋天来临,各地即将进入秋雨季节,作物更容易滋生病菌,而且,经常性下雨也加大了农药喷洒防治病菌的难度,种植户们得做好应对准备,现将市场上常见的杀菌剂特点及防治对象归纳在一起,供大家参阅,希望对您的种植有所帮助。 1、代森锰锌。抑制菌体内丙酮酸的氧化。主要防治蔬菜霜霉病、炭疽病、褐斑病等。 2、丙森锌。速效、残效期长、广谱的保护性杀菌剂。对蔬菜、烟草、啤酒花等作物的霜霉病以及番茄和马铃薯的早、晚疫病均有良好的保护作用,并且对白粉病、锈病和葡萄孢属病菌引起的病害也有一定的抑制作用。

3、多菌。干扰真菌的有丝分裂中纺锤体的形成,从而阻断细胞分裂。防治瓜类枯萎病、蔓枯病、炭疽病、白粉病、霜霉病,叶斑病等多种病。 4、百菌清。能与真菌细胞中的3-磷酸甘油醛脱氢酶中的半胱氨酸的蛋白质结合,破坏细胞的新陈代谢而丧失生命力。其主要作用是预防真菌侵染,没有内吸传导作用,但在植物表面有良好的粘着性,不易受雨水冲刷,有较长的药效期。主要防治水稻纹枯病、水稻稻瘟病,小麦叶斑病、小麦叶锈病,茶树炭疽病,花生锈病、花生叶斑病,叶菜类蔬菜霜霉病、叶菜类蔬菜白粉病,果菜类蔬菜多种病害,瓜类霜霉病、瓜类白粉病,豆类炭疽病、豆类锈病,梨树斑点落叶病,柑橘树疮痂病,苹果树多种病害,葡萄黑痘病、葡萄白粉病,橡胶树炭疽病。

5、稻瘟灵。内吸杀菌剂,对稻瘟病有特效。水稻植株吸收药剂后累积于叶组织,特别集中于穗轴与枝梗,从而抑制病菌侵入,阻碍病菌脂质代谢,抑制病菌生长,起到预防与治疗作用。主防水稻稻瘟病。 6、稻瘟酰胺。属苯氧酰胺类杀菌剂,其作用机理为黑色素生物合成抑制剂,主要是抑制小柱孢酮脱氢酶的活性,从而抑制稻瘟病菌黑色素形成。具有良好内吸性和卓越的特效性,施药后对新展开的叶片也有很好效果,施药40天仍能抑制病斑上孢子的脱落和飞散,从而避免了二次感染。主防水稻稻瘟病。 7、甲基硫菌灵。当该药喷施于植物表面。并被植物体吸收后,在植物体内,经系列生化反应,被分解为甲基苯并咪唑一乙一氨基甲酸酯(即多菌灵),干扰菌的有丝分裂纺锤体的形成,使病菌孢子萌发长出的芽管扭曲异常,芽管细胞壁扭曲等。防治灰霉病、白粉病、炭疽病、褐斑病、叶霉病等

化学化工分析方法选择研发分析方法开发进阶

化学化工分析方法选择-研发分析方法开发进阶 第一章衍生的方法与应用 我们在日常的样品分析中经常会遇到一些有机合成反应中控时样品不易气化、热分解、易聚合、又或者是见水分解等等而此时由于条件的有限而又不能做化学分析来进行中控,这时我们总是想到一个熟悉而又陌生的方法---衍生。熟悉是因为我们常常听说这个办法,而陌生是因为我们真的很难找到比较系统、全面的衍生方面的资料或者是方法介绍。 我们常说的衍生,其实我给的定义就是我们人为的加了一步反应,使我们不能直接分析的样品转化为我们能够应用已有的条件来分析。虽然是只加了一步反应,能够分析了,但由此引入的问题也很多,下面逐一的介绍一下。 衍生法种类衍生法种类繁多,用于色谱试样处理的衍生法主要有:硅烷化法、成肟或腙法、酯化法、酰化法、卤化法、环化法及无机试样衍生法。分析工作者可根据待测试样中所含官能团的种类选择适宜的衍生方法。一般地,硅烷化衍生方法适于羟基化合物,也可用于含羧基、巯基、胺基等官能团的化合物。酯化衍生法主要用于含羧基的化合物试样,所得到的衍生物一般为甲酯、乙酯、丙酯或丁酯,其中最常见的是甲酯化合物。酰化衍生法主要用于胺基的酰化衍生物制备,也可用于含羟基、巯基等化合物的衍生处理。卤化衍生法可由不同的卤化方法分析含不饱和键化合物、羟基、羧基、羰基化合物。羟基化合物在适当条件下可与醚化试剂作用衍生成醚。羰基化合物可适用于成肟或成腙的衍生试剂处理后作色谱分析。环化法可用于分析含两个或两个以上官能团的有机物。水、无机气体、无机酸、金属元素等也可通过衍生试剂作衍生处理后作色谱分析。我们最常用衍生化反应可归三类:硅烷化,烷基化和酰化反应。 衍生法的作用1,提高化合物热稳定性。(特别是包含极性官能团的化合物)。2,

三氟乙酸在HPLC中的应用

降低三氟乙酸用量,改善质谱分析 在反相色谱分离多肽和蛋白质的实验中,使用三氟乙酸 (TFA) 作为离子对试剂是常见的手段。流动相中的三氟乙酸通过与疏水 键合相和残留的极性表面以多种模式相互作用,来改善峰形、克 服峰展宽和拖尾问题。三氟乙酸与多肽上的正电荷及极性基团相 结合以减少极性保留,并把多肽带回到疏水的反相表面。以同样 的方式,三氟乙酸屏蔽了固定相上残留的极性表面。三氟乙酸的 行为可以理解为它滞留在反相固定相的表面,同时与多肽及柱床 作用,这已在 Vydac Advances for Spring, 1997 中得到了报导。 三氟乙酸优于其他离子修饰剂的原因是它容易挥发,可以方 便地从制备样品中除去。另一方面,三氟乙酸的紫外最大吸收峰 低于 200nm ,对多肽在低波长处的检测干扰很小。 改变三氟乙酸的浓度,可以细微地调整多肽在反相色谱上的 选择性。这一影响对于优化分离条件、增大复杂色谱分析(如多 肽的指纹图谱)的信息量是非常有益的。 三氟乙酸添加在流动相中的浓度一般为 0.1% ,在这个浓度下,大部分的反相色谱柱都可以产生良好的峰形,当三氟乙酸浓 度大大低于这个水平时,峰的展宽和拖尾就变得十分明显。 LC/MS 液质联用 在过去的十年中,反相色谱与电喷雾质谱联用已成为多肽和 蛋白质的分子量测定和结构分析的重要工具。然而,含有三氟乙

酸的流动相对离子的产生具有抑制作用,一定程度上降低了液质联用技术的灵敏性和分析可靠性。这种抑制作用可以通过柱后加成技术部分地克服,但将使色谱系统极大地复杂化。将流动相中三氟乙酸的浓度降低 10 倍可以消除这种抑制作用,但同时也会造成色谱分析质量的降低。 Vydac 公司开发了三种液质联用专用反相色谱柱,在使用较低浓度的三氟乙酸时,仍可以得到对称性好、柱效高的多肽和蛋白质色谱峰。这些柱子基于 Vydac 公司品质卓越的高纯硅胶( 300A)及 C18 和 C4 键合相,并通过专利的硅胶处理技术大大减轻了对 TFA 的依赖。 二种可选的 C18 反相填料 -- 多元键合型和单体键合型,具有细微的选择性差异。在复杂样品,如蛋白质消化物的分离时,这种差异有助于优化分离效果或提供二套特征峰的位置。对于某些样品,特别是蛋白质消化物在 Vydac 液质联用专用反相色谱柱上的分离,在流动相中仅添加乙酸而不使用三氟乙酸就能够获得出色的分离效果。关于在单体键合 C18 液质联用色谱柱上的分离及以乙酸作为流动相改性剂来分离蛋白质和多肽的更多信息,请参阅 Vydac 公司的 2000/2001 年度的产品目录的相关内容。

重氮化反应

1.重氮化反应及其特点 (2) 四、重氮化操作技术 (3) 1.直接法 (3) 2.连续操作法 (3) 3.倒加料法 (4) 4.浓酸法 (5) 5.亚硝酸酯法 (6) 五、反应设备及安全生产技术 (6) 1.重氮化反应设备 (6) 2.安全生产技术 (8) 3.芳伯胺重氮化时应注意的共性问题 (12) 5.重氮化工艺 (13) 8.磺化工艺 (15)

1.重氮化反应及其特点 芳伯胺在无机酸存在下低温与亚硝酸作用,生成重氮盐的反应成为重氮化反应。工业上,常用亚硝酸钠作为亚硝酸的来源。反应通式为 Ar NH2+NaNO2 +2HX ArN2+ X- + 2H2O + NaX 式中,X可以是Cl、Br、NO3、HSO3等。工业生产上常采用硫酸、盐酸。 芳胺称作重氮组分,亚硝酸称为重氮化剂。亚硝酸易分解,故工业生产中常用亚硝酸钠与无机酸作用生成亚硝酸,以避免亚硝酸分解。 在重氮化过程中至反应终止时,要始终保持反应介质对刚果红试纸呈强酸性。如果酸量不足,可能导致生成的重氮盐与没有起反应的芳胺生成重氮氨基化合物。 ArN2X +ArNH2ArN NNH Ar + HX 在重氮化反应过程中,亚硝酸要过量或加入亚硝酸钠溶液的速度要适当,不能太慢,否则,也会生成重氮氨基化合物。 重氮化反应是放热反应,必须及时一处反应热。一般在0~10℃进行,温度过高,会使亚硝酸分解,同时加速重氮化合物的分解。重氮化反应结束时,过量的亚硝酸通常加入尿素或氨基磺酸分解掉,加入少量芳胺,使之与过量的亚硝酸作用。

四、重氮化操作技术 在重氮化反应中,由于副反应多,亚硝酸也具有氧化作用,而不同的芳胺所形成盐的溶解度也各有不同。隐藏,根据这些性质以及制备该重氮盐的目的不同,重氮化反应的操作方法基本上可分一下几种。 1.直接法 本法适用于碱性较强的芳胺,即含有给电子基团的芳胺,包括苯胺、甲苯胺、甲氧基苯胺、二甲苯胺、甲基萘胺、联苯胺和联甲氧基苯胺等。这些胺类与无机酸生成易溶于水但难以水解的稳定铵盐。 其操作方法是:将计算量(或稍过量)的亚硝酸钠水溶液在冷却、搅拌下,先快后慢的滴加到预先将芳胺溶于稀的无机酸水溶液并已冷却的稀酸水溶液中,进行重氮化,直到亚硝酸钠稍微过量为止。此法亦称正加法,应用最为普遍。 反应温度一般为0~10℃进行。盐酸用量一般为芳伯胺的3~4mol 为宜。水的用量一般应控制在到反应结束时,反应液总体积为胺量的10~12倍。应控制亚硝酸钠的加料速率,以确保反应正常进行。 2.连续操作法 本法也是适用于碱性较强芳伯胺的重氮化。工业上以重氮盐为合成中间体时多采用这一方法。由于反应过程的连续性。可较提高重氮

中药制剂分析整理之HPLC法

HPLC法 掌握HPLC法实验条件的选择 掌握HPLC法的定量分析方法 ?特点 1.适用范围广(可分析80%有机化合物) 2.分离性能好 3.分析速度快 4.灵敏度高 5.色谱柱可反复使用 6.流出组分容易收集 ?HPLC实验条件的选择 1. HPLC前处理 2. 色谱柱的选择 3. 流动相的选择 4. 洗脱方式的选择 5. 检测器的选择 HPLC前处理 1.流动相的处理 溶剂的纯化 流动相脱气:除去流动相中的空气 方法:超声波振荡脱气、惰性气体鼓泡吹扫脱气、抽真空、加 热脱气、在线脱气系统 过滤除去固体微粒;常用的滤头:亲水、亲脂、两用;0.45μm 色谱纯试剂

重蒸水 2.样品的处理 ?除去杂质、纯化样品 ?浓缩样品或进行衍生化 ?过滤/高速离心 色谱柱的选择 根据被分离物质的化学结构、极性和溶解度 用途:制备型、分析型 ?色谱柱的分类 ?正相色谱柱:固定相极性大于流动相,一般指硅胶柱,以正己烷系列为流 动相。正相色谱法 ?主要用于分离分析能溶于有机溶剂的极性及中等极性分子型物质 ?反相色谱柱:固定相极性小于流动相,其技术就是在硅胶基质上键合有机 碳链。 一般指C18、C8、苯基柱等,以甲醇、乙腈、水为流动相。反相色谱法 ?适用于非极性及中等极性化合物 ?目前用的最多的色谱柱是反相键合相色谱柱 最常用:(octadecylsilane) ODS柱/C18 (十八烷基键合相) ?键合相的优点 ①使用过程不流失 ②化学性能稳定,在PH2-8的溶液中不变质 ③热稳定性好,一般在70℃以下稳定 ④载样量比硅胶约大一个数量级 ⑤适于作梯度洗脱

流动相的选择 ?对流动相的基本要求 ①不与固定相发生化学反应 ②对样品有适宜的溶解度 要求容量因子k在2~5 (最佳) 或1~10 (可用) k值太小,不利于分离;k值太大,可能使样品在流动相中沉淀 ③必须与检测器相适应 例如用紫外检测器时避免末端吸收 ④粘度小 (容量因子(capacity factory):也称为分配容量(partition volume)、 容量比(capacity ratio),是在达到分配平衡后,组分在固定相 中的量与流动相中的量之比。也称为质量分配系数。) 流动相的选择 反相键合相色谱 正相键合相色谱 反相离子对色谱 键合相色谱法:化学键合相为固定相的色谱法,分离机制以分配作用为主,对不封尾的键合相还有一定的吸附作用。应用最广泛的色谱法 ?反相键合相色谱流动相的选择 1.部分含水溶剂:水为基础溶剂,再加入可与水互溶的有机极性调节剂(如甲醇、乙腈、四氢呋喃) 适用于分离中等极性、弱极性药物 常用甲醇-水、乙腈-水系统 有机极性调节剂的性质及其与水的比例对保留值和分离选择性有影响 2.缓冲溶液

磷酸化蛋白质的分析方法

磷酸化蛋白质的分析方法 试剂: 乙腈(Acetonitrile,ACN),三氟乙酸(Trifluoroacetic acid,TFA) 购自 Merck 公司(Darmstadt,Germany)。尿素(urea),氯化钠(Sodium chloride,NaCl)购自Sigma 公司。甲酸(Formic acid,FA)、乙酸(Acetic acid,HAC)购自Aldrich(St. Louis,MO,USA)。盐酸胍(Guanidine hydrochloride,GuCl),二硫苏糖醇(dithiothreitol,DTT),碳酸氢铵(Ammonium bicarbonate),碘乙酰胺(Iodoacetamide,IAA) 购自Bio-Rad (Hercules,CA,USA)。胰蛋白酶(Trypsin)购自Promega (Madison,WI)。所有的化学品的纯度级别除了乙腈是色谱纯外都是分析纯。实验所用水都经过Milli-Q system (Millipore,Bedford,MA,USA)处理。 样品制备 样品用2D 裂解液裂解(8 M Urea,4% CHAPS,65 mM DTT,40 mM Tris),100W 30 s 超声后,15,000g 离心45 min。取上清,Bradford法定量;取500μg 样品加入2ul 1M DTT,于37℃还原反应2.5h;再加入10ul 1M IAA 于室温避光烷基化40min。100%丙酮沉淀过夜,100mM碳酸氢铵(pH 8.5)溶解样品,按50:1加入胰蛋白酶酶解过夜。 磷酸化多肽的富集: Loading buffer: (饱和glutamic acid/65%乙腈/2%TFA) Wash buffer 1: (65%乙腈/0.5%TFA) Wash buffer 2: (65%乙腈/0.1% TFA)

重氮化和重氮化合物

一.重氮化和重氮化合物 1.重氮化反应及影响因素 芳香族伯胺和亚硝酸作用生成重氮盐的反应称为重氮化。   重氮化反应要在强酸中进行,实际上是亚硝酸作用于铵离子。由于亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸,使反应生成的亚硝酸立刻与芳伯胺反应,避免亚硝酸的分解。为了使反应能顺利进行,必须首先把芳伯胺转化为铵正离子。芳胺的碱性较弱,因此重氮化要在较强的酸中进行。有些芳胺碱性非常弱,要用特殊的方法才能进行重氮化。 重氮化是放热反应,重氮盐对热不稳定,因此要在冷却的情况下进行,一般都用冰盐浴冷却,并调节亚硝酸钠的加入速度,维持反应温度在0℃附近,由于重氮盐不稳定,一般就用它们的溶液,随做随用。固体重氮盐遇热或震动、摩擦,都将发生爆炸,必需应用某些稳定性好的固体重氮盐时,也需谨慎小心。 自重氮化反应发现以来,人们为了弄清楚其反应的影响因素,对重氮化反应的机理进行了反复研究,已普遍接受了重氮化反应的亚硝化学说即重氮化反应是由亚硝酸产生的亲电质点对游离芳伯胺基进行亲电取代反应的机理,其反应的主要影响因素如下。 (1).酸的影响 酸的影响主要考虑酸的种类、用量及浓度的影响。 重氮化所用的酸,从反应速度来说,以盐酸或氢溴酸等最快,硫酸与硝酸较次。由反应式可以看出酸的理论用量为2摩尔,在反应中无机酸的作用是:首先是使芳胺溶解,其次可和亚硝酸钠生成亚硝酸,最后是生成稳定的重氮盐。重氮盐一般来讲是容易分解的,只有在过量的酸液中才稳定,所以重氮化时实际上酸用量过量很多,常达3~4摩尔。反应完毕时介质应呈强酸性,PH值为3,对刚果红试剂呈蓝色,重氮化过程经常检查介质的PH值是十分重要的。反应时若酸量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮胺基化合物。

相关文档
最新文档