[VIP专享]第一章 导数及其应用 章末总结 学案(人教A版选修2-2)

[VIP专享]第一章 导数及其应用 章末总结 学案(人教A版选修2-2)
[VIP专享]第一章 导数及其应用 章末总结 学案(人教A版选修2-2)

2019-2020年高中数学第三章导数应用章末小结知识整合与阶段检测教学案北师大版选修2-2

2019-2020年高中数学第三章导数应用章末小结知识整合与阶段检测教学 案北师大版选修2-2 一、导数与函数的单调性 1.若f′(x)>0,则f(x)是增加的;若f′(x)<0,则f(x)是减少的;若f′(x)=0恒成立,则f(x)为常数函数;若f′(x)的符号不确定,则f(x)不是单调函数.2.若函数y=f(x)在区间(a,b)上是增加的,则f′(x)≥0;若函数y=f(x)在区间(a,b)上是减少的,则f′(x)≤0. 3.利用导数求函数单调区间的步骤: (1)求导数f′(x); (2)解不等式f′(x)>0或f′(x)<0; (3)写出单调增区间或减区间. 特别注意写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“∪”连接. 二、导数与函数的极值和最值 1.极值 当函数f(x)在x0处连续可导时,如果x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;若左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.利用导数求函数极值的一般步骤 (1)确定函数f(x)的定义域; (2)解方程f′(x)=0的根; (3)检验f′(x)=0的根的两侧f′(x)的符号. 若左正右负,则f(x)在此根处取得极大值; 若左负右正,则f(x)在此根处取得极小值; 否则,此根不是f(x)的极值点. 3.最值 对于函数y=f(x),给定区间[a,b],若对任意x∈[a,b],存在x0∈[a,b],使得f(x0)≥f(x)(f(x0)≤f(x)),则f(x0)为函数在区间[a,b]上的最大(小)值.4.利用导数求函数最值的一般步骤 (1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 5.函数最值与极值的区别与联系

高考文科导数考点汇总完整版

高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?) -f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即 x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处 可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0 lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就 说函数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 3.几种常见函数的导数: ①0;C '= ② ()1 ; n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 4.两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)'''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个

高考复习文科导数知识点总结

导数知识点 一.考纲要求 考试内容8 要求层次 A B C 导数及其应用 导数概念及其几何意义 导数的概念 √ △ 导数的几何意义 √ 导数的运算 根据导数定义求函数y c =,y x =, 2 y x =, 1y x = 的导数 √ 导数的四则运算 √ 导数公式表◇ √ 导数在研究函数中的应 用 利用导数研究函数的单调性(其中多项式函数不超过三次) ☆ √ 函数的极值、最值(其中多项式函数不超过三次) ☆ √ 利用导数解决某些实际问题 √ 二.知识点 1.导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为 ).)((0' 0x x x f y y -=- 2.、几种常见函数的导数 ①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 3.导数的运算法则 (1)'''()u v u v ±=±. (2)''' ()uv u v uv =+. (3)'' ' 2 ()(0)u u v uv v v v -=≠. 4. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的 极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;

导数知识点归纳及应用 文科辅导

导数知识点归纳及应用 一、相关概念 1.导数的概念 略 二、导数的运算 1.基本函数的导数公式: ①0;C '=(C 为常数) ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '= ; ⑧()1l g log a a o x e x '=. 例1:下列求导运算正确的是 ( ) A .(x+2 11)1 x x +=' B .(log 2x)′=2ln 1x C .(3x )′=3x log 3e D . (x 2cosx)′=-2xsinx 2.导数的运算法则 法则1:(.)' ''v u v u ±=± 法则2:.)('''uv v u uv += 若C 为常数,则.)(''Cu Cu = 法则3:='?? ? ??v u 2''v uv v u -(v ≠0)。 3.复合函数求导 三、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f ’(x 0)。 相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。 例:曲线3()2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)和(1,4)-- D .(2,8)和(1,4)--

四、导数的应用 1.函数的单调性与导数 (1)如果' f )(x 0>,则)(x f 在此区间上为增函数; 如果'f 0)(

高中数学函数与导数章节知识点总结

高中数学导数章节知识点总结 考点1:与导数定义式有关的求值问题 1:已知 等于 A. 1 B. C. 3 D. 1.已知 ,则 的值是______ . 考点2:导数的四则运算问题 1:下列求导运算正确的是 A. B. C. D. 2:已知函数,为 的导函数,则 的值为______. 考点3:复合函数的导数计算问题 1:设 ,则 A. B. C. D. 2:函数的导函数 ______ 考点4:含)('a f 的导数计算问题 1:已知定义在R 上的函数 ,则 A. B. C. D. 2:设函数满足,则 ______. 考点5:求在某点处的切线方程问题 1:曲线在点处的切线方程为 A. B. C. D. 2:曲线在处的切线方程为_________________. 考点6:求过某点的切线方程问题 1:已知直线过原点且与曲线相切,则直线斜率 A. B. C. D. 2:若直线过点)1,0(-且与曲线x y ln =相切,则直线方程为:

考点7:根据相切求参数值问题 1:已知直线与曲线相切,则a 的值为 A. 1 B. 2 C. D. 2:若曲线在点处的切线平行于x 轴,则 ________. 考点8:求切线斜率或倾斜角范围问题 1:点P 在曲线3 2)(3 +-=x x x f 上移动,设P 点处的切线的倾斜角为α,则α的取值范围是 ( ) A. ?? ????2,0π B. ),4 3[)2,0[πππY C.),43[ ππ D. ]4 3,2(π π 2:在曲线的所有切线中,斜率最小的切线方程为_______ 考点9:求曲线上点到直线距离的最值问题 1:已知P 为曲线x y C ln :=上的动点,则P 到直线03:=+-y x l 距离的最小值为( ) A. 2 B. 22 C.2 D. 3 考点10:求具体函数的单调区间问题 1:函数x e x x f )1()(+=的单调递增区间是 A. ),2[+∞- B. ),1[+∞- C. D. 2:函数x x x f ln )(=的单调减区间为 考点11:已知单调性,求参数范围问题 1:已知函数 在区间 上是增函数,则实数m 的取值范围为 A. B. C. D. 2:若函数在区间上单调递增,则实数a 的取值范围是______. 考点12:解抽象不等式问题 1:已知函数是函数 的导函数, ,对任意实数都有,则不等 式 的解集为 A. B. C. D. 2:函数的定义域为R ,且 , ,则不等式 的解集为______ . 考点13:求具体函数的极值问题 1:函数 ,则 A. 为函数的极大值点 B. 为函数的极小值点 C. 为函数 的极大值点 D. 为函数 的极小值点

高考文科导数考点汇总(2020年整理).doc

高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0), 比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+) ()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x ) 在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函 数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

导数及其应用-(章末测试带答案)

导数及其应用-(章末测试带答案)

2 选修1-1《第三章 导数及其应用》质量评估 一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.曲线y =12x 2-2x 在点? ????1,-32处的切线的倾 斜角为( ). A .-135° B .45° C .-45° D .135° 2.下列求导运算正确的是( ). A.? ????x +3x ′=1+3 x 2 B .(log 2x )′= 1x ln 2 C .(3x )′=3x log 3e D .(x 2 cos x )′= -2x sin x 3.函数y =x 4-2x 2 +5的单调减区间为( ).

A.(-∞,-1)及(0,1) B.(-1,0)及(1,+∞) C.(-1,1) D.(-∞,-1)及(1,+∞) 4.函数y=1+3x-x3有( ). A.极小值-1,极大值1 B.极小值-2,极大值3 C.极小值-2,极大值2 D.极小值-1,极大值3 5.函数f(x)= x2 x-1 ( ). A.在(0,2)上单调递减 B.在(-∞,0)和(2,+∞)上单调递增 C.在(0,2)上单调递增 D.在(-∞,0)和(2,+∞)上单调递减 6.函数y=x4-4x+3在区间[-2,3]上的最 3

小值为( ). A.72 B.36 C.12 D.0 7.已知f(x)=x3+ax2+(a+6)x+1有极大值 和极小值,则a的取值范围为( ). A.-1<a<2 B.-3<a<6 C.a<-1或a>2 D.a<-3或a> 6 8.已知f(x)的导函数f′(x)图象如右图所示,那么f(x)的图象最有可能是图中的( ). 4

第三章《导数及其应用》章末总结(含答案)

第三章 章末总结 知识点一 导数与曲线的切线 利用导数的几何意义求切线方程时关键是搞清所给的点是不是切点,常见的类型有两种,一类是求“在某点处的切线方程”,则此点一定为切点,先求导,再求斜率代入直线方程即可得;另一类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q (x 1,y 1),则切线方程为y -y 1=f ′(x 1)(x -x 1),再由切线过点P (x 0,y 0)得y 0-y 1=f ′(x 1)(x 0-x 1) ① 又y 1=f (x 1) ② 由①②求出x 1,y 1的值. 即求出了过点P (x 0,y 0)的切线方程. 例1 已知曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线,求曲线的切线方程.知识点二 导数与函数的单调性 利用导数研究函数的单调区间是导数的主要应用之一,其步骤为: (1)求导数f ′(x ); (2)解不等式f ′(x )>0或f ′(x )<0; (3)确定并指出函数的单调增区间、减区间. 特别要注意写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“∪”连接.例2 求下列函数的单调区间: (1)f (x )=+sin x ; x 2(2)f (x )=x (x -a )2.

知识点三 导数与函数的极值、最值 利用导数研究函数的极值和最值是导数的另一主要应用. 1.应用导数求函数极值的一般步骤: (1)确定函数f (x )的定义域; (2)解方程f ′(x )=0的根; (3)检验f ′(x )=0的根的两侧f ′(x )的符号. 若左正右负,则f (x )在此根处取得极大值; 若左负右正,则f (x )在此根处取得极小值; 否则,此根不是f (x )的极值点. 2.求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤: (1)求f (x )在(a ,b )内的极值; (2)将(1)求得的极值与f (a )、f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值; 特别地,①当f (x )在(a ,b )上单调时,其最小值、最大值在区间端点处取得,②当f (x )在(a ,b )内只有一个极值点时,若在这一点处f (x )有极大(小)值,则可以断定f (x )在该点处取得最大(小)值,这里(a ,b )也可以是(-∞,+∞). 例3 设0(或f ′(x )<0)仅是一个函数在某区间上递增(或递减)的充分不必要条件,而其充要条件是:f ′(x )≥0(或f ′(x )≤0),且f ′(x )不恒为零.利用导数法解决取值范围问题时可以有两个基本思路:一是将问题转化为不等式在某区间上的恒成立问题,即f ′(x )≥0或f ′(x )≤0恒成立,用分离参数或函数性质求解参数范围,然后检验参数取“=”时是否满足题意;另一思路是先令f ′(x )>0(或f ′(x )<0),求出参数的取值范围后,再令参数取“=”,看此时f (x )是否满足题意. 例4 已知函数f (x )=x 2+ (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调a x 递增的,求a 的取值范围. 例5 已知f (x )=x 3-x 2-2x +5,当x ∈[-1,2]时,f (x )

高考文科导数考点汇总

高考导数文科考点 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0), 比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+) ()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x ) 在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函 数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

高考复习文科函数与导数知识点总结

函数与导数知识点复习测试卷(文) 一、映射与函数 1、映射 f :A →B 概念 (1)A 中元素必须都有________且唯一; (2)B 中元素不一定都有原象,且原象不一定唯一。 2、函数 f :A →B 是特殊的映射 (1)、特殊在定义域 A 和值域 B 都是非空数集。函数 y=f(x)是“y 是x 的函数”这句话的数学 表示,其中 x 是自变量,y 是自变量 x 的函数,f 是表示对应法则,它可以是一个解析式,也可以是表格或图象, 也有只能用文字语言叙述.由此可知函数图像与垂直x 轴的直线________公共点,但与垂直 y 轴的直线公共点可能没有,也可能是任意个。(即一个x 只能对应一个y ,但一个y 可以对应多个x 。) (2)、函数三要素是________,________和________,而定义域和对应法则是起决定作用的要素, 因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二、函数的单调性 在函数f (x )的定义域内的一个________上,如果对于任意两数x 1,x 2∈A 。当x 1

第三章《导数及其应用》章末总结

第三章章末总结 知识再 靈点解读? 知识点一导数与曲线的切线 利用导数的几何意义求切线方程时关键是搞清所给的点是不是切点,常见的类型有两 种,一类是求“在某点处的切线方程”,则此点一定为切点,先求导,再求斜率代入直线方 程即可得;另一类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点 为Q(x i, y i),则切线方程为y—y i = f' (x i)(x—x i),再由切线过点P(x o, y o)得 y o—y i= f' (x i)(x o—x i) ① 又y i= f(x i) ② 由①②求出x i, y i的值. 即求出了过点P(x o , y o)的切线方程. 【例il已知曲线f(x) = x3—3x,过点A(0,佝作曲线f(x)的切线,求曲线的切线方程. 知识点二导数与函数的单调性 利用导数研究函数的单调区间是导数的主要应用之一,其步骤为: (i)求导数f' (x); ⑵解不等式f' (x)>0或f' (x)<0; (3)确定并指出函数的单调增区间、减区间. 特另幾注意写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“U”连接. 【例2】求下列函数的单调区间: x ’ (1)f(x)= 2+ sin x; 知识点三导数与函数的极值、最值

利用导数研究函数的极值和最值是导数的另一主要应用. 1?应用导数求函数极值的一般步骤: (1)确定函数f(x)的定义域; (2)解方程f (x)= 0的根; (3)检验f' (x)= 0的根的两侧f' (x)的符号. 若左正右负,则f(x)在此根处取得极大值; 若左负右正,则f(x)在此根处取得极小值; 否则,此根不是f(x)的极值点. 2?求函数f(x)在闭区间[a, b]上的最大值、最小值的方法与步骤: (1)求f(x)在(a, b)内的极值; (2)将(1)求得的极值与f(a)、f(b)相比较,其中最大的一个值为最大值,最小的一个值为 最小值; 特别地,①当f(x)在(a, b)上单调时,其最小值、最大值在区间端点处取得,②当f(x) 在(a, b)内只有一个极值点时,若在这一点处f(x)有极大(小)值,则可以断定f(x)在该点处取 得最大(小)值,这里(a, b)也可以是(—^o,+^o )? 【例31设|0(或f' (x)<0)仅是一个函数在某区间上递增(或递减)的充分不必要条件,而其充要条 件是:f' (x)> 0(或f' (x) w 0),且f' (x)不恒为零?禾U用导数法解决取值范围问题时可以有两个基本思路:一是将问题转化为不等式在某区间上的恒成立问题,即f' (x) > 0或f' (x)w 0 恒成立,用分离参数或函数性质求解参数范围,然后检验参数取“=”时是否满足题意;另 一思路是先令f' (x)>0(或f' (x)<0),求出参数的取值范围后,再令参数取“=”,看此时f(x)是否满足题意. 【例4 已知函数f(x) = x2+ :(XM 0,常数a€ R).若函数f(x)在x€ [2 , +^ )上是单调递增的,求a的取值范围. 1 【例5丨已知f(x)= x3—^x2—2x+ 5,当x€ [—1,2]时,f(x)

高考文科数学导数知识点总结

2014高考文科数学:导数知识点总结 (4) x x sin )(cos -='. (5) x x )(ln = ';e a x x a log )(log ='. (6) x x e e =')(; a a a x x ln )(='.(7)' ' ' ()u v u v ±=±. (8)' ' ' ()uv u v uv =+. (9)'' '2 ()(0)u u v uv v v v -= ≠. (10)2' 11x x -=?? ? ?? (11) ()x x 21' = 5.导数的应用 ①单调性:如果0)(' >x f ,则)(x f 为增函数;如果0)(' 'x f ,右侧0)(<'x f ,则)(0x f 是极大值;(“左增右减↗↘”) 如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.(“左减右增↘↗”) 附:求极值步骤 )(x f 定义域→)(' x f →)(' x f 零点→列表: x 范围、)(' x f 符号、)(x f 增减、)(x f 极值 ③求[]b a ,上的最值:)(x f 在()b a ,内极值与)(a f 、)(b f 比较

6. 三次函数 d cx bx ax x f +++=23)( c bx ax x f ++=23)(2 / 图象特征:(针对导函数)0,0>?>a 0,0>??有极值;)(0x f ?≤?无极值 (其中“?”针对导函数) 练习题: 一. 选择题 1. 3 2 ()32f x ax x =++,若' (1)4f -=,则a 的值等于( ) A . 319 B .316 C .313 D .3 10 2. 一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度 是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3. 函数3 y x x =+的递增区间是( ) A .),0(+∞ B .)1,(-∞ C .),(+∞-∞ D .),1(+∞ 4. 若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0 5. 函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 6. 函数344 +-=x x y 在区间[]2,3-上的最小值为( ) A .72 B .36 C .12 D .0 7. 函数()3 2 3922y x x x x =---<<有( ) A .极大值5,极小值27- B .极大值5,极小值11- C .极大值5,无极小值 D .极小值27-,无极大值 8. 曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)和(1,4)-- D .(2,8)和(1,4)-- 9. 若' 0()3f x =-,则000()(3) lim h f x h f x h h →+--=( ) A .3- B .6- C .9- D .12- 10. ()f x 与()g x 是定义R 上的可导函数,若()f x ,()g x 满足' ' ()()f x g x =,则()f x 与()g x 满足( )

高考数学一轮复习必备:第103课时:第十三章导数导数小结

高考数学一轮复习必备:第103课时:第十三章导数导数小结 课题:导数小结 一.课前预习: 1.设函数()f x 在0x x =处有导数,且1)()2(lim 000=?-?+→?x x f x x f x ,那么0()f x '=〔C 〕 ()A 1 ()B 0 ()C 2 ()D 2 1 2.设()f x '是函数()f x 的导函数,()y f x '=的图象如以下图〔1〕所示,那么()y f x =的图象最有可能的是 〔 D 〕 ()A ()B ()C ()D 3 .假设曲线3y x px q =++与x 轴相切,那么,p q 之间的关系满足〔 A 〕 ()A 22()()032p q += ()B 23()()023 p q +=()C 2230p q -= ()D 2230q p -= 4.函数23()2 f x ax x =-的最大值不大于16,又当11[,]42x ∈时,1()8f x ≥,那么a =1. 5.假设对任意3,()4,(1)1x R f x x f '∈==-,那么()f x =42x -. 四.例题分析: 例1.假设函数3211()(1)132 f x x ax a x =-+-+在区间(1,4)内为减函数,在区间(6,)+∞上为增函数,试求实数a 的取值范畴. 解:2()1(1)[(1)]f x x ax a x x a '=-+-=---, 令()0f x '=得1x =或1x a =-, ∴当(1,4)x ∈时,()0f x '≤,当(6,)x ∈+∞时,()0f x '≥, ∴416a ≤-≤,∴57a ≤≤. 〔1〕

导数知识点汇总

导数 1.导数的几何意义: 函数()y f x =在0x x =处的导数0'()f x ,就是曲线()y f x =过点0x 的切线斜率. ∴过点00(,)x y 的切线方程为000'()()y y f x x x -=- 0'()0f x =时,切线与x 轴 . 0'()0f x >时,切线的倾斜角为 . 0'()0f x <时,切线的倾斜角为 . 0'()f x 不存在时,切线 . 2.基本初等函数的导数公式: 3.导数运算法则:[()()]''()'()f x g x f x g x ±=± 4.复合函数求导:{[()]}''[()]'()f g x f g x g x =? 5.导数与函数单调性、极值的关系.

① '()0()'()0()f x f x f x f x ?>?↑??,右边'()0f x <,则0x 是()f x 的极大值点 在0x 左边'()0f x <,右边'()0f x >,则0x 是()f x 的极小值点 ★ 0x 为极值点 0'()0f x = 题型一:导数的几何意义 【基础题】 1.曲线y =在点(4,2)P 处的切线方程是 2.已知3y x =在点P 处的切线斜率为3,则P 的坐标为 3.已知直线10x y --=与抛物线2y ax =相切,则a = 4.已知曲线ln y x x =+在点(1,1)处的切线与曲线2(2)1y ax a x =+++相切,则a = 5.若曲线x y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标为 6.若函数()f x 的导数为'()sin f x x =-,则函数图象在点(4,(4))f 处的切线倾斜角为( ) .A 90? .0B ? .C 锐角 .D 钝角 【提高题】 1.设点P 是曲线211ln 42 y x x =+上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是 2.曲线21x y e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为( ) 3.点P 是曲线2ln y x x =-上任意一点,则P 到直线2y x =-的距离的最小值是 变式:函数2()x f x e =的图象上的点到直线240x y --=的距离的最小值是 题型二:导数与函数单调性、极值、最值

导数章末总结学案

《导数及其应用》章末总结学案 2013.4.8 一、知识点归纳(要熟记) 1. 导数的概念 (1)如果当0x ?→时,y x ??有极限,就说函数()y f x =在点0x x =处存在导数,并将这个极限叫做函数 ()f x 在点0x x =处的导数(或变化率),记作0()f x '或0|x x y =',即 00()lim __________________.x y f x x ?→?'==?0()f x '的几何意义是曲线()y f x =在点00(,())x f x 处 的 ;瞬时速度就是位移函数()s t 对 的导数;加速度就是速度函数()v t 对______________的导数. (2)如果函数()f x 在开区间(,)a b 内的每一点都可导,其导数值在(,)a b 内构成一个新函数,这个函数叫做()f x 在开区间(,)a b 内的导函数,记作 或 . 2、 如何求过某点的曲线的切线方程?首先要确定该点是否在曲线上, 若在,则 ;若不在,则 3、导数公式 (1) '____C =(C 为常数);(2)()'________n x =, n ∈N + ;(3)(sin )'_______x =; (4)(cos )'_______x =; (5)()'________x e =; (6)()'_________x a =; (7)(ln )'______x =; (8) =)'(log x a .(9)复合函数求导:若(),()y f u u g x ==,则y '= 4.可导函数的四则运算法则 法则1'[()()]____________.u x v x ±=(口诀:和与差的导数等于导数的和与差). 法则2 [()()]____________u x v x '=.(口诀:前导后不导,后导前不导,中间是正号) 法则3 () [ ]_______________(()0)() u x v x v x '=≠(口诀:分母平方要记牢,上导下不导,下导上不导,中间是负号) 5.函数的单调性 函数()f x 在某个区间(,)a b 内,若()0f x '>,则()f x 为 ;若()0f x '<,则()f x 为 ;若()0f x '=,则()f x 为 。 可导函数()f x 在某个区间(,)a b 内单调递增()0f x '?≥对(,)x a b ?∈恒成立; 可导函数()f x 在某个区间(,)a b 内单调递减()0f x '?≤对(,)x a b ?∈恒成立. 6.(1)函数极值的概念

第二章导数与微分总结

第二章 导数与微分总结 一、导数与微分概念 1.导数的定义 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 导数定义的另一等价形式,令x x x ?+=0,0x x x -=?,则 ()()() 000 lim x x x f x f x f x x --='→ 我们也引进单侧导数概念。 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 2.导数的几何意义与物理意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y

(完整版)高考复习文科导数知识点总结

高考复习文科导数知识点总结 考纲要求 知识点 1.导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 2.、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 3.导数的运算法则 (1)' ' ' ()u v u v ±=±. (2)' ' ' ()uv u v uv =+. (3)'' '2 ()(0)u u v uv v v v -= ≠. 4. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的

极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0① . 此外,函数不 可导的点也可能是函数的极值点② . 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点. ②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点. 极值与最值区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 5.导数与单调性 (1) 一般地,设函数 y = f ( x) 在某个区间可导,如果 f ′( x ) > 0 ,则 f ( x ) 为增函数;如果 f ′( x) < 0 ,则 f ( x) 为减函数;如果在某区间内恒有 f ′( x) = 0 ,则 f ( x) 为常数; (2)对于可导函数 y = f ( x) 来说, f ′( x ) > 0 是 f ( x ) 在某个区间上为增函数的充分非必要 条件, f ′( x ) < 0 是 f ( x ) 在某个区间上为减函数的充分非必要条件; (3)利用导数判断函数单调性的步骤: ①求函数 f ( x ) 的导数 f ′( x ) ;②令 f ′( x ) > 0 解不等式,得 x 的范围,就是递增区间;③令 f ′( x) < 0 解不等式,得 x 的范围,就是递增区间。

相关文档
最新文档