chap3_旋转机械故障诊断_YJR

chap3_旋转机械故障诊断_YJR
chap3_旋转机械故障诊断_YJR

旋转机械的常见故障诊断

龙源期刊网 https://www.360docs.net/doc/971051184.html, 旋转机械的常见故障诊断 作者:马昊刘天保刘鸿亮 来源:《科技资讯》2014年第16期 摘要:沈鼓做为一家世界知名的鼓压风机制造企业,旋转机械是我们厂的支柱产品。所以,旋转机械的故障诊断与分析,对于我厂产品的质量的好坏,产品是否能够让用户满意,以至于企业的生存和核心竞争力,都有着致关重要的作用。作为一门独立的学科,依靠振动分析仪对旋转机械的异常故障进行诊断和判别,必须有较高的技术水平。这个诊断和判别与医学上的诊断和判别是一个道理。要能够准确地诊断和判别,要依靠大量的临床实践和临床经验,这必须有医学上的理论基础根据。 关键词:鼓压风旋转机械诊断判别 中图分类号:TH165 文献标识码:A 文章编号:1672-3791(2014)06(a)-0105-01 尽管旋转机械的故障是由机械仪表自行诊断是最终目的,但机械还是机械,它不是万能的,现实的问题不能全部死搬硬套,自动诊断。系统的诊断只能做参考,最终诊断还需要人的大脑。人—机对话,还需要人的大脑。 下面举几个各种类型振动的典型例子,可以认为是固定模式的一类,可以在判断故障时做以参考。 1 不平衡 大家知道,转动部分在转动过程中,一定会产生振动,振动是绝对的,不振动是相对的,不平衡是绝对的,平衡也是相对的。转动部分或多或少会有残余的不平衡量存在。这种不平衡量是由于转子的重心偏移所产生的。由于重心偏移而引起离心力F=W/gεω2(W:转子重量,kg;g:重力加速度,cm/s2;ε:偏心量;ω:回转角速度;F:离心力)。这种情况,机械在转动时会发生振动,明显地表现为1次/转。如是3000 r/min,振动频率为50 Hz。这种由于偏心、不平衡产生的离心力,迫使转子在运转过程中发生振动,其振动频率为转速的一次方成正比,转速高而高,转速低而低,这是判断转子由于偏心而产生振动的不平衡的最简单也是最直观的判断方法。 2 热的不平衡 已在常温下平衡好的转子,当进入工况后,由于热的影响温度的上升,转子转轴导热性的影响,转子可能会产生弯曲。这种振动可随时间的延长而变大。也可能随负荷的变化而改变。 3 找正同轴度的变化,而引起的不平衡振动

旋转机械故障相关诊断技术(标准版)

旋转机械故障相关诊断技术 (标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0100

旋转机械故障相关诊断技术(标准版) 一、旋转机械故障的灰色诊断技术 灰色诊断技术就是在故障诊断中应用灰色系统理论,利用信息间存在的关系,充分发挥采集到的振动信息的作用,充分挖掘振动信息的内涵,通过灰色方法加工、分析、处理,使少量的振动信息得到充分的增值和利用,使潜在的故障原因显化。 二、旋转机械故障的模糊诊断技术 模糊诊断技术就是在故障诊断中引入模糊数学方法,将各类故障和征兆视为两类不同的模糊集合,同时用一个模糊关系矩阵来描述二者之间的关系,进而在模糊的环境中对设备故障的原因、部位和程度进行正确、有效地推理、判断。 三、旋转机械故障的神经网络诊断技术 所谓的神经网络就是模仿人类大脑中的神经元与连结方式,以

构成能进行算术和逻辑运算的信息处理系统。神经网络模型由许多类似于神经元的非线性计算单元所组成,这些单元以一种类似于生物神经网络的连结方式彼此相连,以完成所要求的算法。在旋转机械故障的诊断中,引入神经网络技术,以类似于人脑加工信息的方法对收集到的故障信息进行处理,从而对故障的原因、部位和程度进行正确的判断。 XXX图文设计 本文档文字均可以自由修改

机械故障诊断考试题目

机械故障诊断考试--题库 (部分内容可变为填空题) 第一章: 1、试分析一般机械设备的劣化进程。 答:1)早期故障期 阶段特点:开始故障率高,随着运转时间的增加,故障率很快减小,且恒定。 早期故障率高的原因在于:设计疏忽,制造、安装的缺陷,操作使用差错。 2)偶发故障期 阶段特点:故障率恒定且最低,为产品的最佳工作期。 故障原因:主要是使用不当、操作失误或其它意外原因。 3)耗损故障期 阶段特点:故障率再度快速上升。 故障原因:零件的正常磨损、化学腐蚀、物理性质变化以及材料的疲劳等老化过程。 2、根据机械故障诊断测试手段的不同,机械故障诊断的方法有哪些? 答:1′直接观察法-传统的直接观察法如“听、摸、看、闻”是最早的诊断方法,并一直沿用到现在,在一些情况下仍然十分有效。 2′振动噪声测定法-机械设备在动态下(包括正常和异常状态)都会产生振动和噪声。进一步的研究还表明,振动和噪声的强弱及其包含的主要频率成分和故障的类型、程度、部位和原因等有着密切的联系。 3′无损检验-无损检验是一种从材料和产品的无损检验技术中发展起来的方法 4′磨损残余物测定法(污染诊断法 5′机器性能参数测定法-机器的性能参数主要包括显示机器主要功能的一些数据 3、设备维修制度有哪几种?试对各种制度进行简要说明。 答:1o事后维修 特点是“不坏不修,坏了才修”,现仍用于大批量的非重要设备。 2o预防维修(定期维修) 在规定时间基础上执行的周期性维修 3o预知维修 在状态监测的基础上,根据设备运行实际劣化的程度决定维修时间和规 模。预知维修既避免了“过剩维修”,又防止了“维修不足”;既减少了 材料消耗和维修工作量,又避免了因修理不当而引起的人为故障,从而 保证了设备的可靠性和使用有效性。 第二章: 1、什么是故障机理? 答:机械故障的内因,即导致故障的物理、化学或机械过程,称为故障机理。 2、什么是机械的可靠性?机械可靠性的数量指标有哪两个?他们之间互为什么关系?

旋转机械常见故障诊断分析案例

第5章旋转机械常见故障诊断分析案例 积累典型设备诊断案例在设备监测诊断工作中具有重要作用。首先它为设备诊断理论提供支撑。常见的设备故障有成熟的理论基础,一个成功的案例通常是诊断理论在现场正确应用和诊断人员长期实践的结果。典型诊断案例具有强大的说服力,一次成功而关键的诊断足可以改变某些人根深蒂固的传统观念,对现场推广设备诊断技术具有重要意义。 其次它为理论研究提供素材。在医学上,由典型的特例研究发现病理或重大理论的案例很多。设备故障的情形多种多样,现场疑难杂症还比较多,有许多故障很难用现有理论解释,只能作为诊断经验看待,这种经验有没有通用参考价值,需要在理论上进行说明。 另外,有许多案例无法在试验室模拟,而它们在不同的现场又常常出现,因此典型案例为同行提供了宝贵经验和经过证实的分析方法。诊断人员可以参考相似案例的解决方案解决新的问题,提供快速的决策维护支持,并为基于案例的推理方法提供数据基础。 典型案例分析的重要性还表现在它是监测诊断人员快速成长的捷径。目前实用的振动诊断方法、技术和诊断仪器已经相当完善,而许多企业在诊断技术推广应用方面存在困难除了思想观念方面的原因外,更主要的原因是缺乏专业人才。研究案例的一般做法是,从新安装设备或刚检修好的设备开始,可以选择重点或典型设备进行监测,根据不同设备制定不同的监测方案和监控参数,定期测试设备的振动,包括各种幅值、振动波形和频谱等。如果设备出现劣化迹象或异常,要缩短监测周期,倍加留心振动波形和频谱的变化,注意新出现的谱线及其幅值的变化,在检修之前做出故障原因的判断。设备检修时要到现场,了解第一手资料,全程跟踪设备拆检情况,掌握设备参数(如轴承型号,必要时测量有关尺寸、齿轮齿数、叶片数、密封结构、联轴器和滑动轴承形式等),做好检修记录(有时需要拍照记录),比较自己的判断对在哪里,错在哪里,进行完善的技术总结。几个过程下来,水平自然有很大提高。总之,添置几件诊断仪器是很容易的事,诊断成果和效益的产生不是一朝一夕的事,需要柞大量艰苦、细致的工作,长期积累设备的状态数据,对此应有应清醒地认识。 表5-1为某钢铁公司多年来162例典型故障的原因或部位分布情况。可见转子不平衡、轴承故障、基础不良、不对中和齿轮故障是主要原因。 5.1 转子动平衡故障诊断、现场校正方法与实例分析 5.1.1 转子不平衡的几种类型与诊断【左经刚,设备故障的相位分析诊断法,中国设备管理,2001年第5期】

旋转机械振动故障诊断的图形识别方法研究

旋转机械振动故障诊断的图形识别方法研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

旋转机械振动故障诊断的图形识别方法研究我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则 采集诊断依据

被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选和处理,目前普遍采用专业的机器来对这些信息进行分析和研究以及进一步的转换,经过这些处理之后所得到的信息要保证具有至关、价值性强等特点。 对故障进行诊断 对旋转机械振动故障诊断方面对工作人员的要求比较高,要求其具有过硬的理论知识功底以及丰富的实际工作经验。工作人员应该充分了解机械方面的相关知识,熟练掌握机械的维修要点以及安装过程。正确的对机械振动故障进行诊断,并且能够对故障的发展形势进行预想,只有这

大型旋转机械故障诊断

湖北汽车工业学院 课程论文大型旋转机械故障诊断 姓名:高俊斌 班级:T1113-5 学号:20110130106 日期:2015.1.11

目录 1.引言 (2) 2.旋转机械故障产生的原因及频率特征 (2) 2.1不平衡故障及其诊断 (2) 2.1.1故障机理 (2) 2.1.2频率特点 (2) 2.2转子不对中故障及其诊断 (3) 2.2.1故障机理 (3) 2.2.2频率特点 (3) 2.3涡动故障及其诊断 (4) 2.3.1故障机理 (4) 2.3.2频率特征 (4) 3.常用的故障诊断方法 (5) 3.1振动检测诊断法 (5) 3.2噪声检测诊断法 (5) 3.3温度检测诊断法 (6) 3.4声发射检测诊断法 (6) 3.5油液分析诊断法 (6) 4.大型旋转机械故障诊断案例 (7) 4.1某厂04年09月27日空压机断叶片故障诊断分析 (7) 4.2某厂04年06月24日主风机断叶片故障诊断分析 (9) 5.结论 (12) 参考文献: (13)

大型旋转机械故障诊断 高俊斌 摘要:文章概述了旋转机械故障产生的原因及频率特征、旋转机械故障诊断的基本方法,然后分析了一些大型旋转机械故障诊断的案例。 关键词:旋转机械;故障诊断 1.引言 旋转机械故障诊断技术是伴随着现代工业生产设备的发展形成的一项专门的设备诊断技术。该技术主要研究机械设备在运行过程中或停机状态下不对设备进行拆卸,掌握设备的运行现状,分析判断设备故障的部位、故障原因以及故障严重程度,并估算出设备可靠性和使用寿命,从而提出解决方法的技术。大型旋转机械如风机、压缩机、汽轮机和燃气轮机等设备,是石油、化工、冶金、航天及电力等现代重要生产部门中的关键生产工具,对这些设备开展性能监测与故障诊断工作,具有重要的意义。 2.旋转机械故障产生的原因及频率特征 2.1不平衡故障及其诊断 2.1.1故障机理 质量不平衡是大型旋转机械最为常见的故障。众所周知,旋转机械的转子由于受材料质量和加工技术等各方面的影响,转子上的质量分布相对于旋转中心线不可能做到“绝对平衡”,这就使得转子旋转时形成周期性的离心力的干扰,在轴承上产生动载荷,使机器发生振动。机组不平衡按发生过程可分为原始不平衡、渐发性不平衡和突发性不平衡等几种情况。其中原始不平衡是由于转子制造误差、装配误差及材质不均匀等原因造成的;渐发性不平衡是由于不均匀积灰造成的;突发性不平衡是由于转子上零件脱落造成的,机组振幅突然增大后稳定在一定水平上。 2.1.2频率特点 转子转动一周,离心力方向改变一次,因此不平衡振动的频率与转速一致。即f= w /60,转速频率也称为工频(即工作频率),这种频率成分很容易在频谱图上观察到。 转子不平衡故障的特征是: ⑴在转子径向测得的频谱图上,频谱能量集中于基频,转速频率成分具有突出的峰值; ⑵转速频率的高次谐波幅值很低,因此反映在时域上的波形很接近于一个正弦波;

旋转机械故障相关诊断技术(正式版)

文件编号:TP-AR-L6749 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 旋转机械故障相关诊断 技术(正式版)

旋转机械故障相关诊断技术(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、旋转机械故障的灰色诊断技术 灰色诊断技术就是在故障诊断中应用灰色系统理论,利用信息间存在的关系,充分发挥采集到的振动信息的作用,充分挖掘振动信息的内涵,通过灰色方法加工、分析、处理,使少量的振动信息得到充分的增值和利用,使潜在的故障原因显化。 二、旋转机械故障的模糊诊断技术 模糊诊断技术就是在故障诊断中引入模糊数学方法,将各类故障和征兆视为两类不同的模糊集合,同时用一个模糊关系矩阵来描述二者之间的关系,进而在模糊的环境中对设备故障的原因、部位和程度进行

正确、有效地推理、判断。 三、旋转机械故障的神经网络诊断技术 所谓的神经网络就是模仿人类大脑中的神经元与连结方式,以构成能进行算术和逻辑运算的信息处理系统。神经网络模型由许多类似于神经元的非线性计算单元所组成,这些单元以一种类似于生物神经网络的连结方式彼此相连,以完成所要求的算法。在旋转机械故障的诊断中,引入神经网络技术,以类似于人脑加工信息的方法对收集到的故障信息进行处理,从而对故障的原因、部位和程度进行正确的判断。 此处输入对应的公司或组织名字 Enter The Corresponding Company Or Organization Name Here

大型旋转机械的状态检测与故障诊断

第四期全国设备状态监测与故障诊断实用技术培训班讲义 大型旋转机械的状态检测与故障诊断 沈立智 中国设备管理协会设备管理专题交流中心 2007年9月 西安

目录 第一节状态监测与故障诊断的基本知识 (6) 一、状态监测与故障诊断的意义及发展现状 (6) 1. 状态监测与故障诊断的定义 (6) 2. 状态监测与故障诊断的意义 (6) 3. 状态监测与故障诊断的发展与现状 (8) 二、大机组状态监测与故障诊断常用的方法 (9) 1. 振动分析法 (9) 2. 油液分析法 (10) 3. 轴位移的监测 (11) 4. 轴承回油温度及瓦块温度的监测 (11) 5. 综合分析法 (11) 三、有关振动的常用术语 (11) 1. 机械振动 (11) 2. 涡动、进动、正进动、反进动 (11) 3. 振幅 (12) 3.1 振幅 (12) 3.2 峰峰值、单峰值、有效值 (12) 3.3 振动位移、振动速度、振动加速度 (13) 3.4 振动烈度 (13) 4. 频率 (15) 4.1 频率、周期 (15) 4.2倍频、一倍频、二倍频、0.5倍频、工频、基频、转频 (15) 4.3 通频振动、选频振动 (15) 4.4 故障特征频率 (16) 5. 相位 (19) 5.1 相位 (19) 5.2 键相器 (19) 5.3 绝对相位 (19) 5.4 相位差、相对相位 (20) 5.4 同相振动、反相振动 (21) 5.5 相位的应用 (21) 6. 刚度、阻尼、临界阻尼 (23) 7. 临界转速 (24) 8. 挠度、弹性线、主振型、轴振型 (25) 9. 相对轴振动、绝对轴振动、轴承座振动 (26) 10. 横向振动、轴向振动、扭转振动 (26) 11.刚性转子、挠性转子、圆柱形振动、圆锥形振动、弓状回转(弯曲振动) (26) 12. 高点、重点 (27) 13. 机械偏差、电气偏差、晃度 (28) 14. 同步振动、异步振动、亚异步振动、超异步振动 (28) 15. 谐波、次谐波(分数谐波) (28) 16. 共振、高次谐波共振、次谐波共振 (29) 17. 简谐振动、周期振动、准周期振动、瞬态振动、冲击振动、随机振动 (29)

机械故障诊断论文 旋转机械故障诊断技术

XX大学机械交通学院 机械故障诊断论文 题目:旋转机械故障诊断技术 姓名学号: 指导教师: 年级专业:机械设计制造及其自动化084班所在学院:机械交通学院 课程评分: 二零一一年12月18日

旋转机械故障诊断技术 摘要:通过分析旋转式机械各种故障产生机理的基础上,归纳和概括了传统故障诊断的基本原理和典型故障振动特征分析方法及模糊理论、神经网络、遗传算法等在诊断决策算法研究中的应用,并对国内外旋转机械故障诊断的发展现状进行了详细论述最后对其发展趋势进行了展望。旋转机械是各种类型机械设备中数量最多应用最广的一类机械,特别是一些大型旋转机械,如汽轮机、球磨机、离心式压缩机等支持国家经济命脉的一些工业门是属于关键设备。由于检测技术在当今轻工业广泛应用,如电力、石化、冶金、汽车和造船等国民经济重要部门,都需要用机械振动的测试和分析,来检测机械是否正常运作。 关键字:机械故障诊断;旋转机械

前言 设备状态监测与故障诊断是通过掌握设备过去和现在运行中或基本不拆卸的情况下的状态量,判断有关异常或故障的原因及预测对将来的影响,从而找出必要对策的技术。它是一门综合性技术,涉及传感及测试技术、电子学、信号处理、识别理论、计算机技术以及人工智能专家系统等多门基础学科,是对这些基础理论的综合应用。 旋转机械的主要功能是由旋转动作完成的,转了是其最主要的部件。旋转机械发生故障的重要特征是机器伴有异常的振动和噪声,其振动信号从幅值域、频率域和时间域实时地反映了机器故障信息。转子常见的故障有转子不平衡、转子不对中、转子弯曲、油膜涡动和油膜振荡等[1]。 1.旋转机械故障诊断的内容 作为设备故障诊断技术的一个分支--旋转机械状态监测与故障诊断技术.其研究领域也同样主要集中在故障信息检测、故障特征分析、状态监测方法、故障机理研究、故障识别及其专家系统。 2.旋转机械的振动关系及故障分类 旋转式机械的主要组成部分是转轴组件,又称转子系统,它包括转子、轴承、支座及密封装置等部分。由于转子类型及振动性质的不同,其产生故障的原因,机理及振动特征各不相同。 2.1转子不平衡 2.1.1转子不平衡产生原因 在旋转机械中,若转子的质心与旋转轴不重合,就存在不平衡。转子不平衡包括转了系统的质量偏心及转子部件出现缺损。转子质量偏心是由于转子的制造误差、装配误差、材质不均匀等原因造成的,称此为初始不平衡。转了部件的缺损是指转子在运行中由于腐蚀、磨损、介质结垢以及转子受疲劳力的作用使转子的零部件(如叶轮、叶片等)局部损坏、脱落、碎块飞出,从而造成新的转了不平衡。转子质量偏心和转子部件缺损是两种不同的故障但其不平衡振动机理却有共同之处。 2.1.2转子不平衡的振动特征 转子不平衡故障的主要振动特征为:频谱图中,谐波能量集中于基频;振动的时域波形为正弦波;当工作转速一定时,相位稳定;转子的轴心轨迹为椭圆;转子的进动特征为同步正进动;转子振动的强烈程度对工作转速的变化很敏感,振动幅值与转速的平方成正比,而与负荷大小无关;当转速大于第一临界转速后,转速上升,振幅趋向于一个较小的稳定值。当转速接近第一临界转速时,发生共振,振幅具有最大峰值;不平衡故障主要有静不平衡和动不平衡两种。对于静不平衡,其振动方向主要反映在径向,与轴向振动无关,转子两端轴承同一方向的径向振动为同相。 2.2转子不对中 2.2.1转子不对中产生原因 机组各转子之间由联轴器联接构成轴系传递运动和转矩。由于机器的安装误

旋转机械故障诊断

旋转机械故障诊断 旋转机械是指依靠转子旋转运动进行工作的机器,在结构上必须具备最基本的转子、轴承等零部件。 典型的旋转机械:各类离心泵、轴流泵、离心式和轴流式风机、汽轮机、涡轮发动机、电动机、离心机等。 用途:1、在大型化工、石化、压缩电力和钢铁等部门,某些大型旋转机械属于 生产中的关键设备 2、炼油厂催化工段的三机组或四机组 3、大化肥装置中的四大机组或五大机组 4、乙烯装置中的三大机组 5、电力行业的汽轮发电机、泵和水轮机组 6、钢铁部门的高炉风机和轧钢机组 旋转机械可能出现的故障类型:1、转子不平衡故障 2、转子不对中故障 3、转轴弯曲故障 4、转轴横向裂纹的故障 5、连接松动故障 6、碰摩故障 7、喘振 转子的不平衡振动机理及特性: 旋转机械的转子由于受材料的质量分布、加工误差、装配因素以及运动中的冲蚀和沉积等因素的影响,致使其质量中心与旋转中心存在一定程度的偏心距。偏心距较大时,静态下,所产生的偏心力矩大于摩擦阻力距,表现为某一点始终恢复到水平放置的转子下部,其偏心力矩小于摩擦阻力距的区域内,称之为静不平衡。偏心距较小时,不能表现出静不平衡的特征,但是在转子旋转时,表现为一个与转动频率同步的离心力矢量,离心力F=Mew2,从而激发转子的振动。这种现象称之为动不平衡。静不平衡的转子,由于偏心距e较大,表现出更为强烈的动不平衡振动。 虽然做不到质量中心与旋转中心绝对重合,但为了设备的安全运行,必须将偏心所激发的振动幅度控制在许可范围内。 1、不平衡故障的信号特征 1)时域波形为近似的等福正弦波。 2)轴心轨迹为比较稳定的圆或椭圆,这是因为轴承座及基础的水平刚度与垂直刚度不同所造成。 3)频谱图上转子转动频率处的振幅。 4)在三维全息图中,转动频率的振幅椭圆较大,其他成分较小。 2、敏感参数特征 1)振幅随转速变化明显,这是因为,激振力与角速度w是指数关系。

旋转机械振动故障诊断的图形识别方法研究(2020版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 旋转机械振动故障诊断的图形识别方法研究(2020版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

旋转机械振动故障诊断的图形识别方法研 究(2020版) 我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械

故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则采集诊断依据 被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选

大型旋转机械状态监测与故障诊断

大型旋转机械状态监测与故障诊断 1 故障诊断的含义 故障就是指机械设备丧失了原来所规定的性能和状态。通常把运行中的状态异常、缺陷、性能恶化及事故前期的状态统称为故障,有时也把事故直接归为故障。 而故障诊断则是根据状态监测所获得的信息,结合设备的工作原理、结构特点、运行参数及其历史运行状况,对设备有可能发生的故障进行分析、预报,对设备已经或正在发生的故障进行分析、判断,以确定故障的性质、类别、程度、部位及趋势。 大型旋转机械是指由涡轮机(如汽轮机、水轮机、燃气轮机、烟气轮机等)及其驱动的工作机(如离心式压缩机、轴流式压缩机、发电机等)所组成的透平式流体动力机械,习惯上简称大型机组。大型机组是化工、石化、电力、钢铁等行业的关键设备,例如:乙烯装置的三机(裂解气压缩机、乙烯压缩机、丙稀压缩机),化肥装置的五机(原料气压缩机、空气压缩机、合成气压缩机、氨压缩机、二氧化碳压缩机),炼油装置的三机(烟机、主风机、富气式压缩机),大型空分装置的空气压缩机,中心电站的大型汽轮机或水轮发电机组,钢铁企业的氧压缩机及高炉风机等。大型机组由于功率大、转速高、流量大、压力高、结构复杂、监控仪表繁多,运行及检修要求高,因此在设计、制造、安装、检修、运行等环节稍有不当,都会造成机组在运行时发生种种故障。大型机组本身价格昂贵,大型机组的故障停机又会引起整个生产装置的全面停产,给企业、社会、国家造成巨大的经济损失。因此,认真做好大机组的状态监测与故障诊断工作,对避免恶性设备损坏事故的发生,降低停机次数和缩短停机时间、减少企业的经济损失是十分有益的。 2 故障诊断的目的 故障诊断的根本目的就是要保证大型机组的安全、稳定、长周期、满负荷、优良运行,其目的主要为: ①对机组运行中的各种异常状态作出及时、正确、有效的判断,预防和消除故障,或者将故障的危害性降低到最低程度;同时对设备运行进行必要的指导,确保运行的安全性、稳定性和经济性。 ②确定合理的故障检修时机及项目,既要保证设备在带病运行时安全、不发生重大设备故障,又要保证停机检查时发现设备的确有问题,合理延长设备的使用寿命和降低维修费用。 ③通过状态监测,为提高设备的性能而进行的技术改造及优化运行参数提供数据和信息。

机械故障诊断技术 习题参考答案

参考答案 教材:设备故障诊断,沈庆根、郑水英,化学工业出版社,2006.3第1版 2010.6.28 于电子科技大学 1第1章概论 1.1 机械设备故障诊断包括哪几个方面的内容? 答:机械设备故障诊断所包含的内容可分为三部分。 第一部分是利用各种传感器和监测仪表获取设备运行状态的信息,即信号采集。采集到的信号还需要用信号分析系统加以处理,去除无用信息,提取能反映设备状态的有用信息(称为特征信息),从这些信息中发现设备各主要部位和零部件的性能是处于良好状态还是故障状态,这部分内容称为状态监测,它包含了信号采集和信号处理。 第二部分是如果发现设备工作状态不正常或存在故障,则需要对能够反映故障状态的特征参数和信息进行识别,利用专家的知识和经验,像医生诊断疾病那样,诊断出设备存在的故障类型、故障部分、故障程度和产生故障的原因,这部分内容称为故障诊断。 第三部分称为诊断决策,根据诊断结论,采取控制、治理和预防措施。 在故障的预防措施中还包括对设备或关键零部件的可靠性分析和剩余寿命估计。有些机械设备由于结构复杂,影响因素众多,或者对故障形成的机理了解不够,也有从治理措施的有效性来证明诊断结论是否正确。 由此可见,设备诊断技术所包含的内容比较广泛,诸如设备状态参数(力、位移、振动、噪声、裂纹、磨损、腐蚀、温度、压力和流量等)的监测,状态特征参数变化的辨识,机器发生振动和机械损伤时的原因分析,故障的控制与防治,机械零部件的可靠性分析和剩余寿命估计等,都属于设备故障诊断的范畴。 1.2 请简述开展机械设备故障诊断的意义。 答:1、可以带来很大的经济效益。 ①采用故障诊断技术,可以减少突发事故的发生,从而避免突发事故造成的损失,带来可观的经济效益。 ②采用故障诊断技术,可以减少维修费用,降低维修成本。 2、研究故障诊断技术可以带动和促进其他相关学科的发展。故障诊断涉及多方面的科学知识,诊断工作的深入开展,必将推动其他边缘学科的相互交叉、渗透和发展。 2第2章故障诊断的信号处理方法 2.1 信号特征的时域提取方法包括哪些? 答:信号特征的时域提取方法包括平均值、均方根值、有效值、峰值、峰值指标、脉冲指标、裕度指标、偏度指标(或歪度指标、偏斜度指标)、峭度指标。这些指标在故障诊断中不能孤立地看,需要相互印证。同时,还要注意和历史数据进行比较,根据趋势曲线作出判别。 2.2 时域信号统计指标和频谱图在机械故障诊断系统中的作用分别是什么?

旋转机械故障诊断技术在炼钢设备的应用

旋转机械故障诊断技术在炼钢设备的应用 发表时间:2019-08-05T11:51:14.593Z 来源:《基层建设》2019年第11期作者:荣银龙[导读] 摘要:炼钢设备在运营当中,由于受到多种因素影响,导致炼钢设备经常出现故障,影响着炼钢设备的正常运行。旋转机械故障诊断技术作为全新的技术,在炼钢设备当中的应用,能够及时诊断出故障出现的原因,帮助技术人员处理设备出现的故障,不但提高了旋转机械设备诊断的效率,也极大提高了设备诊断的质量。 中国船舶重工集团公司第七一三研究所河南省郑州市 450001 摘要:炼钢设备在运营当中,由于受到多种因素影响,导致炼钢设备经常出现故障,影响着炼钢设备的正常运行。旋转机械故障诊断技术作为全新的技术,在炼钢设备当中的应用,能够及时诊断出故障出现的原因,帮助技术人员处理设备出现的故障,不但提高了旋转机械设备诊断的效率,也极大提高了设备诊断的质量。因此,炼钢企业在故障诊断过程当中,要注重发挥旋转机械故障诊断技术的应用,并不断强化其科技投入,提升该技术的科技含量,充分发挥旋转机械故障诊断技术的优势,从而推动机械设备的正常运行。基于此,本文对旋转机械故障诊断技术在炼钢设备的应用进行分析。 关键词:旋转机械;故障诊断技术;炼钢设备;应用 1旋转机械故障特点旋转机械故障的故障特点与其他类型的机械故障存在一定的区别,且是机械设备中最为常用的一类,所以有必要对其进行单独的深入研究。旋转机械故障是指有转子系统的机械设备在运行过程中出现异常的工作状态,比如不正常的噪声、异常大的振动、温度急剧升高,或者其他指标不正常。旋转机械的结构复杂,故障发生具有一定的阶段性,并且部分故障的发生有一个渐进的过程,在进行故障诊断时,必须综合考虑多项因素,使得进行准确故障诊断的难度较大。 2结合振动分析诊断旋转机械设备的故障 2.1仪器松动 仪器发生松动是旋转机械发生最普遍的故障,松动分为两种,一是螺栓松动,它会引发整个仪器都松动;二是构件配合之间发生松动,比如内圈与转轴、滚动与轴承等,因此造成配合精度减小。因为松动而引发的振动是非线性的,它的信号频率非常复杂,刨除基频,还会产生分频波动,进而造成旋转机器故障。 2.2转子不平衡 转子不平衡带来的而影响是巨大的,因其是核心组成部分,引发的故障也是十分常见的。对于转子发生不平衡原因有材料的不合格、长时间损耗以及配件偏离中心,或是固件松动引发附着物堆积等因素,都是致使转子发生不平衡的原因以及质心出现偏移。不平衡分为两种模式,一是动不平衡,二是静不平衡。在发生不平衡时它的振率与平时会有极大的不同,主要对转子旋转的频率进行观察即可。另外,发生不平衡振动以后会连带着其他构件的频率。产生不平衡振动的原因有三种,其中包含了转子的速度、转子的质量以及偏心距。转子在旋转过程中会产生一个力即为离心力,离心力的功能就是支撑轴承,其方向是与轴承垂直的。在进行故障诊断时,一定要将其以上因素进行深入分析。 2.3油膜振荡和油膜涡动故障 因为旋转机械在高速运行中大多用的是流体动压滑动轴承。油膜涡动由涡动力产生,使转轴除了自转外还绕中心进行公转。在共振的状态下,油膜振荡非常强烈,造成共振现象破坏力极大的,对高速旋转机械危害很大。转子的一阶自振频率为:当油膜涡动的特征频率约为旋转频率的一半,油膜振荡时其转速与涡动的频率无关。 3现行故障识别与诊断分析方法简介 3.1基于控制模型的故障诊断 对于一个旋转机械系统,若通过理论或实验方法能够建立其模型,则系统参数或状态的变化可以直接反映该系统及其动态过程,从而为故障诊断提供依据。基于控制模型的故障诊断方法主要涉及到模型建立、参数与状态估计和观测器应用等技术。其中,参数与状态估计技术是该方法的关键"参数估计的参数包含两类:第一,系统参数,即描述系统动态特性的参数。基于系统参数估计的故障诊断方法与状态估计方法相比较,前者更有利于故障的分离,但是它也存在不足之处:求解物理元件参数很困难;系统故障引起系统模型结构和参数变化的形式是不确定的,目前还缺少有效的方法。第二,故障参数,即用于描述系统出现的故障时信号自身特性的参数。其基本思想是:对故障系统构造适当形式的包含有可调参数的状态观测器,并使其处于零状态"当系统发生故障时,用观测器中的可调部分来补偿故障对系统状态和输出的影响,使得观测器在系统处于故障状态下仍然保持零状态观测误差,此时观测器中可调部分的输出即为故障参数的估计结果。使用该方法的优点是可对故障信号进行在线建模,但是当系统出现强非线性时,目前仍无有效算法。 3.2基于模式识别的故障诊断 故障诊断实质上是利用被诊断系统运行的状态信息和系统的先验知识进行综合处理,最终得到关于系统运行状况和故障状况的综合评价过。如果事先对系统可能发生的故障模式进行分类,那么故障诊断问题就转化为模式识别问题。当系统的模型未知或者非常复杂时,模式识别则为解决故障诊断问题提供了一种简便有效的手段。基于模式识别的故障诊断方法主要分为统计模式识别和句法模式识别两大类,它们在旋转机械故障诊断领域中得到广泛应用。基于BayeS分类器的统计模式识别法是旋转机械故障诊断中一种经典方法。 3.3基于人工神经网络的故障诊断 神经网络具备可学习性和并行计算能力,能够实现分类、自组织、联想记忆和非线性优化等功能,它是通过试图模拟生物神经系统而建立的自适应非线性动力学系统。在故障诊断领域中使用神经网络,可以解决诊断推理和趋势预测问题。一旦输入特定的设备状态模式,则经过大量标准样本学习的故障诊断系统网络将会通过各个神经元之间的互连与权值构成的大规模非线性并行处理模式来进行计算,从而实现隐含的专家知识的应用,最终得出诊断推理结果。 4旋转机械故障诊断的实际案例分析某地区的炼钢厂煤气风机,其高压电机(6000V)驱动耦合器,型号为JK850-2,850kW额定功率、额定转数为2970r/min,50Hz频率,在进行炼钢工艺吹氧操作时,风机为高速运转状态,而其他时则保持低速的运行状态。 4.1测量振动值分析

大型旋转机械状态监测与故障诊断

大型旋转机械的状态监测与故障诊断 大型旋转机械作为连续化工生产的单系列心脏设备,对其运行的可靠性有非常高的要求,要求它在装置的运行周期内必须稳定的运转。对其进行准确的状态监测和故障诊断就显得尤为重要,必须随时准确的掌握其运行状态,并且在其出现异常时,能够准确的分析出异常原因,找出对策。再不影响其安全运行的基础上进行故障运行或进行特护,以优化生产与设备维护的时间。 本章节对公司内普遍采用的在线及离线状态监测与故障诊断系统作一介绍,并对机组出现的常见故障作一些介绍,并根据经验,教授一些实际处理问题的方法。 第一节:基本参量与监测系统 一部运转的机器,都伴有振动信号的产生,它的变化常常隐含着初期故障特征信号,因此需 对振动信号进行监测,这种监测方法有以下特点: 1. 方便性: 利用现代的各种振动传感器及二次仪表,可以很方便的检测出设备振动的信号。 2. 在线性: 监测可以在现场以及在设备正常运转的情况下进行。 3. 无损性: 在监测过程中,通常不会给研究对象造成任何形式的损坏。 但是一部机械是非常复杂的,仅仅靠振动信号来判断它是否正常,显然不够,这就需要对它多方面进行了解,亦即需要对多方面的参量进行测量。每一种故障在下列参数上均有不同表现,因此测量以下基本参数,再通过分析,可以掌握机器的运转状态。 基本参量 一. 振动参量 1. 振幅 振幅值有三个单位,即振动位移(卩m),速度(mm/s),加速度(mm/s2),都是振动强度的标志, 用来表明机器运行是否平稳,振动位移是通过非接触式的电涡流传感器直接测量的轴与轴承座(探头安装的基础)的相对位移量。 振动速度与加速度是通过测量机壳而得到的振动数据。振动速度是通过惯性式速度传感器 (磁力线圈)测量的,而加速度是通过压电式加速度传感器测量的,振动位移,速度,加速度

旋转机械常见故障总结

旋转机械常见故障总结 旋转机械的常见故障有很多,包括不平衡、不对中、轴弯曲和热弯曲、油膜涡动和油膜振荡、蒸汽激振、机械松动、转子断叶片与脱落、摩擦、轴裂纹、旋转失速与喘振、机械偏差和电气偏差等。1不平衡 不平衡是各种旋转机械中最普遍存在的故障。 引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。 2不对中 转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。 转子不对中可分为联轴器不对中和轴承不对中。联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。平行不

对中时振动频率为转子工频的两倍。偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。 轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。 轴承不对中使轴系的载荷重新分配。负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还会使轴系的临界转速发生改变。 3轴弯曲和热弯曲 轴弯曲是指转子的中心线处于不直状态。转子弯曲分为永久性弯曲和临时性弯曲两种类型。

转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。 转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。 转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。转子不论发生永久性弯曲还是临时性弯曲,都会产生与质量偏心情况相类似的旋转矢量激振力。

旋转机械的故障诊断

旋转机械的故障诊断 1.不平衡 不平衡是各种旋转机械中最普遍存在的故障。 引起转子不平衡的原因是多方面的,如转子的结构设计不合理、机械加工质量偏差、装配误差、材质不均匀、动平衡精度差;运行中联轴器相对位置的改变;转子部件缺损,如:运行中由于腐蚀、磨损、介质不均匀结垢、脱落;转子受疲劳应力作用造成转子的零部件(如叶轮、叶片、围带、拉筋等)局部损坏、脱落,产生碎块飞出等。 2.不对xx 转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。 转子不对中可分为联轴器不对中和轴承不对中。联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。平行不对中时振动频率为转子工频的两倍。偏角不对中使联轴器附加一个弯矩,以力图减小两个轴中心线的偏角。 轴每旋转一周,弯矩作用方向就交变一次,因此,偏角不对中增加了转子的轴向力,使转子在轴向产生工频振动。平行偏角不对中是以上两种情况的综合,使转子发生径向和轴向振动。轴承不对中实际上反映的是轴承座标高和轴中心位置的偏差。 轴承不对中使轴系的载荷重新分配。负荷较大的轴承可能会出现高次谐波振动,负荷较轻的轴承容易失稳,同时还使轴系的临界转速发生改变。 3.轴弯曲和热弯曲 轴弯曲是指转子的中心线处于不直状态。转子弯曲分为永久性弯曲和临时性弯曲两种类型。 转子永久性弯曲是指转子的轴呈永久性的弓形,它是由于转子结构不合理、制造误差大、材质不均匀、转子长期存放不当而发生永久性的弯曲变形,

或是热态停车时未及时盘车或盘车不当、转子的热稳定性差、长期运行后轴的自然弯曲加大等原因所造成。 转子临时性弯曲是指转子上有较大预负荷、开机运行时的暖机操作不当、升速过快、转轴热变形不均匀等原因造成。 转子永久性弯曲与临时性弯曲是两种不同的故障,但其故障的机理是相同的。转子不论发生永久性弯曲还是临时性弯曲,都会产生与质量偏心情况相类似的旋转矢量激振力。 4.油膜涡动和油膜振荡 油膜涡动和油膜振荡是滑动轴承中由于油膜的动力学特性而引起的一种自激振动。 油膜涡动一般是由于过大的轴承磨损或间隙,不合适的轴承设计,润滑油参数的改变等因素引起的。根据振动频谱很容易识别油膜涡动,其出现时的振动频率接近转速频率的一半,随着转速的提高,油膜涡动的故障特征频率与转速频率之比也保持在一个定值上始终不变,常称为半速涡动。 油膜涡动和油膜振荡是两个不同的概念,它们之间既有区别,又有着密切的联系。 当机器出现油膜涡动,而且油膜涡动频率等于系统的固有频率时就会发生油膜振荡。油膜振荡只有在机器运行转速大于二倍转子临界转速的情况下才可能发生。当转速升至二倍临界转速时,涡动频率非常接近转子临界转速,因此产生共振而引起很大的振动。通常一旦发生油膜振荡,无论转速继续升至多少,涡动频率将总保持为转子一阶临界转速频率。 转子发生油膜振荡时一般具有以下特征: ①.时间波形发生畸变,表现为不规则的周期信号,通常是在工频的波形上面叠加了幅值很大的低频信号; ②.在频谱图中,转子的固有频率ω0处的频率分量的幅值最为突出;

相关文档
最新文档