虹吸进水口的最大真空值及其容许值

虹吸进水口的最大真空值及其容许值
虹吸进水口的最大真空值及其容许值

虹吸进水口的最大真空值及其容许值

王显焕

水利部农村电气化研究所杭州市310012

虹吸进水口按实际布置得到的水力学计算图如图1所示。在运行中,前池水位以上的弯道部分,水流几乎均处于负压状态。对于虹吸进水口,其最大负压发生在喉道断面2-2的O点,而对于虹吸溢洪道则发生在断面2-2的O′点。如最大真空值(即负压)过大,则水流中会产生蒸汽泡,导致虹吸不能正常工作,甚至引起水流断裂或空穴现象。因此最大真空值须予以限制,成为确定进水口喉道顶壁和底部高程的依据,也是控制最大流量的依据。但此一重要课题至今国内外并未得到较好的解答。

1最大真空值的计算

尽管图1中喉道处的水流并不符合渐变流的条件,但现今各种文献或水力学教科书都是对断面1-1及2-2应用的伯努里方程来近似计算O或O′点的最大真空值;在假定V1=0的条件下可容易地求得下式:

h io=(P a/γ-P o/γ)=h′+(α2+ζ0)V22/2g(1-1)

式中,h io为O点最大真空值,P a/γ为当地大气压,P o/γ为O点绝对压强;h′=D2+△Z+Z,即静态真空,它是确定的;V2为喉道平均流速(m/s),α2为动能改正系数;ζ0为断面1-1至2-2的水头损失系数;(α2+ζ0)V22/2g即动态真空,也是最难研究和解答的。原因是:(1)未计弯道水流的离心力压强,而在理论和实验中此一压强是明显的;(2)未计弯道水流的流速脉动。在我国的几个模试中尚未提到此脉动现象,但在文献〔1〕中却谈到此流速脉动很大。另外从我国的原模试中表明位于负压区的测压管读数波动显著,可能是因流速脉动所致。总之国内外对此研究很少,而且它的研究也十分困难;(3)笔者见到不少前池内行近流速V1较大,并存在明显的水面比降。据估算,假定V1=0将导致h io偏大达3cm~4cm。(4)如前两文所述〔8,9〕,在原、模试中只可测出ζs而测不出ζ0,而且式(1-1)中α2也只可近似计算。

笔者仔细分析过长诏二级电站的模试成果〔2,3〕,在测得ζs=0.25外,还对5个前池水位测得3种流

量下喉道顶壁的真空值,如表1所列。

笔者假定O点的离心力压强为α3 V2/2g,流速脉动压强为α4 V22/2g,行近流速水头为α1 V22/2g,

故式(1-1)可写为下式:

h io=(P a/γ-P o/γ)=h′+(β+ζ0)V22/2g(1-2)

式中β=α2+α4-α3-α1,亦即用β来综合反映诸影响因素。笔者用β=0.9、1.0及1.1,而ζ0=0.7、0.8及0.9ζs,按式(1-2)计算h io与表1中实测值相比较,其变化规律及误差变化均甚合理,其中对设计流量9.46m3/s采用β=1.0及ζ0=0.8ζs算得的h io值最为合理,如图2所示,亦即式(1

-2)变为下式:

h io=h′+(1+0.8ζs)V22/2g(2)

必须指出,式(2)只是对一个模试得出的ζ0经验系数。但今后随进水口体型的优化及工程模试的开展,可望得到更合理的ζ0值。从此模试成果的分析,ζ0=0.8ζs相当于2-2断面上游所产生的水头损失只占进水口总损失的30%左右。笔者的解释是:(1)上游各子流段的流速较小;(2)弯道末端为偏矩形断面,受剧烈扰动的水流由此进入渐变段时产生较大的附加损失;(3)一部分损失发生在渐变段的下游管段内;(4)β=1.0引起的部分误差可能转移在ζ0值内。考虑到此问题的研究不足以及流量加大的可能性等,目前将式(2)算得的h io值再乘以1.05的安全系数作为h io设计值是可行的。

2最大真空的容许值[h io]

青海省在初期修建虹吸进水口时〔4,5〕,根据喉道顶壁的绝对压强P o/γ不得小于水体汽化压强(或蒸

汽压强)P v/γ提出下式:

在水电站引水渠道及前池设计规范(SL/T205—97)中提出下式:

h io=h′+α2 V22/2g≤(P a/γ-P v/γ)(4)

式中,用喉道断面的流速水头来近似动态真空,其中α2为动能改正系数,规范中并未提出取值方法。

又美国垦务局〔6〕从防范气蚀的原则出发,要求最大真空值符合下式:

h io≤0.7 P a/γ(5)

式中,h io为喉道底板处的最大真空,按近似的水力学方法计算。式(5)有一定的试验和实践依据。虹吸进水口的最大真空虽发生在喉道顶壁处,但此式对虹吸进水口最大真空的容许值仍具有参考价值。

今从我国虹吸进水口的实践来探讨公式(3)、(4)及(5)。

青海属高海拔地区,虹吸进水口的设计特点或缺点是:(1)喉道流速V2很小(0.8m/s~1.74m /s),即使90年代初修建的哈达亥电站,V2亦仅1.74m/s(压力管流速一般也较小);(2)均不考虑自吸发动;(3)流道截面为矩形,纵剖呈正S型或斜S型,故其ζs及ζ0值均较大。但各子流段的流速

均小,故水头损失和动态真空并不大。

浙江省的设计特点:(1)均为单管单机布置,在水头<31m的情况下是合理的;(2)喉道流速较大(V2=2.25m/s~2.67m/s),考虑了自吸发动的可能性;(3)重视了模试;(4)进水口流道截面

为矩形,流道纵剖接近斜S型。

另一类虹吸电站为一管多机布置,喉道流速接近4m/s,例如新疆农四师75团电站和叠水二级电站(均一管三机布置)以及云南沪西县的若干电站(均一管二机布置,且按自吸发动设计)。

笔者按偏大的ζ0值近似估算了3类电站的1.05h io值,如表3所列。

青海各电站的ζs值很大,但因V2很小,故用0.2h′~0.3h′来近似动态真空均偏于安全。但当h′较小,尤其当V2较大时会导致kh′偏小很多(如农四师75团电站)。

式(4)的推证中明显存在下述问题〔7〕:(1)该文混淆了ζs和ζ0的定义;喉道上游段的损失并不近似等于0.1m。例如叠水二级和75团电站的该项损失即可达0.2m~0.3m;(2)进水口由多个局阻紧邻组成,其水头损失系数与多个因素有关〔8,9〕,该文用流道两个尺寸的比值来整理ζs得不出可信的规律,何况3个电站的原测数据也是不可信的;(3)式(4)未考虑流速脉动压强,也未用安全系数;(4)式(4)中α2 V22/2g的α2为动能改正系数,但规范中并未明确它的取值方法。

喉道上游段的水头损失或ζ0值在原模试中不能测出,本文中ζ0=0.8ζs只是一个体型(并非最优)的模试成果得出的经验值。这是式(2)的最大缺点。但式(2)的动态真空项的表示明确且合理。随着流道体型的优化及工程模试的开展,可望获得较可信的ζ0=kζs值。

下一问题即最大真空的容许值[h io]。按物理学,当流体内某点的绝对压强P o/γ≤水的汽化压强时,水体内即会形成蒸汽泡,因此要求[h io]≤(P a/γ-P v/γ)。后一准则则要求虹吸弯道内任一点的绝对压强P o/γ≥0.3 P a/γ,否则可能产生空穴现象。该准则虽系应用于低水头虹吸溢洪道,但有一定的试验和实践依据。尽管我国已建成的虹吸进水口均未发现气蚀现象(V2均小于4 m/s),基于以下理由,笔者认为采用后一准则较合适:(1)国内过去都认为V2太大将引起过大的水头损失。笔者在前两文中〔8,9〕已探讨了多个局阻紧邻的虹吸进水口的水头损失和流

道体型,只要V2<压力管流速V p,提高现用的V2值并不会增加总水头损失ζs V P2/2g,但会稍微加大动态真空。近年来,国内不少虹吸电站已按自吸发动设计,且有不少原设有抽气装置的单管单机布置的电站,其抽气装置已闲置不用而改用自吸发动,不但运用操作方便,而且节省。笔者认为这是虹吸进水口的一个发展,有关问题拟另文讨论。鉴于适当提高V2的合理性,目前宜考虑防范空穴现象的问题;(2)h io的计算误差主要来自动态真空的计算,其中流速脉动问题的研究十分复杂且困难,本文的式(2)还不能说已计入流速脉动压强。目前即采用[h io]≤(P a/γ-P v/γ)是不妥的;(3)h io值决定了单管的最大流量。尽管式(2)尚不成熟,例如对于圆管型流道,采用后一准则[h io]≤0.7 P a/γ即可使最大流量达到20m3/s。从表3可见,我国已建的几类虹吸电站,其1.05 h io还远未达到0.7 P a/γ。鉴于目前对h io计算的近似性,采用偏于安全的准则较合适。何况此时单管单机布置的机组容量已可达到2MW~25MW了(采用矩形截面流

道)。

3结束语

笔者只是从国内虹吸进水口的实践和若干较可信的研究成果出发,探讨了h io的近似计算和容许值〔h io〕,既要力图节省投资,又须使设计偏于安全和运行可靠。文中建议可供今后设计参考。除流速脉动的研究外,例如流道体型的优化及定型、ζs及ζ0的取值等,可在不多的工程模试中得到较合理的解决。

→参考文献CH(开始)

[1] [2]

虹吸排水工作原理

什么是虹吸排水系统?他的工作原理是? (1)什么是虹吸排水系统?他的工作原理是? 在一个水缸里装有水,用一根管子一端放在水中,另一端在缸沿自然垂下,用嘴在这端端口吸气一会,然后松嘴,那么缸中的水就会从管子中流下来.因为管子呈一段弧形,像彩虹,又能直到吸水的作用,故称为虹吸现象. 虹吸式排水系统就是利用这个原理工作的. 虹吸屋面雨水排放工作原理 虹吸式屋面雨水排水系统和重力式屋面雨水排水系统均由雨水斗、雨水悬吊管、雨水立管、雨水埋地管组成,但因为系统的工作原理完全不同,在二种不同水力条件下工作,因此系统中各部件的功能要求是不一样的,系统也有其相应的一套计算方法。虹吸式屋面雨水排水系统的最大改进和技术进步是开发了一种具有良好整流功能的雨水斗。雨水斗在其额定设计流量时处于淹没泄流排水状态,不渗气;设计排水量大;雨水斗淹没泄流的斗前水深小。采用了虹吸式雨水斗的屋面雨水排水系统,在降雨过程中相当于从屋面上的一个稳定水面的水池中泄水,经屋面内排水管系,从排出管排出,管道全充满的压力流状态,面雨水的排水过程是一个虹吸排水过程。所以,把具有虹吸排水能力的屋面雨水内排水系统称之为虹吸式屋面雨水内排水系统。虹吸式屋面排水系统的管道在设计降雨强度呈负压,管材的选用应考虑承受负压的能力,雨水斗淹没泄流的斗前水位降低到其一定的值,雨水斗开始有空气渗入,排水管道内的真空被破坏,排水系统会从虹吸压力流的工况转向重力流。 (2)虹吸基础知识 建筑雨水排水系统建筑雨水排水系统是建筑物给排水系统的重要组成部分,它的任务是及时排除降落在建筑物屋面的雨水、雪水,避免形成屋顶积水对屋顶造成威胁,或造成雨水溢流、屋顶漏水等水患事故,以保证人们正常生活和生产活动。建筑雨水排水系统的分类根据不同的分类标准,雨水系统有不同的类别:1)屋面雨水系统按照管道的设置位置不同可分为:外排水系统和内排水系统。外排水是指屋面不设雨水斗,建筑物内部没有雨水管道的雨水排放方式。2)按照屋面有无天沟可以分为檐沟外排水和天沟外排水3)根据系统是否与大气相通分为密闭系统和敞开系统4)按雨水管中水流的设计流态可分为重力半有压流雨

真空发生器的工作原理

真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是真空吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体.在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作。笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义。 1、真空发生器的工作原理 真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动.在卷吸作用下,使得喷管出口周围的空气不断地被抽吸走,使吸附腔内的压力降至大气压以下,形成一定真空度。如图1所示。 图1 真空发生器工作原理示意图 由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大。 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2。当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力。

虹吸雨水系统知识

虹吸系统组成和材质 虹吸系统由虹吸试雨水斗、尾管、连接管、悬吊管、立管、埋地管、检查口和固定及悬吊系统组成。 虹吸试雨水斗: 雨水斗一般由反旋涡顶盖、格栅片、底座和底座支管组成。额定流量分12L/s、 25L/s、40L/s、60L/s和72L/s等,最常用的为25L/s和40L/s两种额定流量的雨水斗。 虹吸试雨水斗材质可采用铸铁、铝合金、不锈钢、高密度聚乙烯(HDPE)和聚丙烯(PP)等。 管材和管件: 用于虹吸式屋面雨水排水系统的管道,应采用铁管、钢管(镀锌钢管、涂塑钢管)、不锈钢管和高密度聚乙烯(HDPE)管等材料。用于同一系统的管材和管件以及与虹吸式雨水斗的连接管,宜采用相同的材质。这些管材除承受正压外,还应能承受负压。 固定件: 管道安装时应设置固定件。固定件必须能承受满流管道的重量和高速水流所产生的作用力。对高密度聚乙烯(HDPE)管道必须采用二次悬吊系统固定。)系统布置 根据所计算的有关数据,确定雨水斗的数目和分布位置,在图纸上绘制雨水斗位置和管道系统的布置设计,除了在建筑平面图纸上布置雨水斗和管道,还要进行系统的设计。 系统设计应符合有关规范规定并具备以下要求: 1、当连接有多个虹吸式雨水斗时,雨水斗宜与雨水立管做对称布置,以减少管道用量;雨水斗的排水连接管应连接在悬吊横管上,不得直接接在雨水立管的顶部。 2、虹吸式雨水斗应设置在每个汇水区域屋面的最低点或天沟内的最低点。 3、每个汇水区域的雨水斗数目不宜少于2个。 4、2个雨水斗之间的间隔不宜大于20m。 5、设置在裙房屋面上的雨水斗距裙房与塔楼交界处的间隔不应小于1m,且不大于10m。

6、对于汇水面条中大于5000m2的大型屋面,宜设置不少于2组独立的虹吸排水系统。在进行初步的图纸设计时应与设计院相关的设计职员沟通、协调以免与其他专业产 生冲突。 需要留意的是,管道布置根据不同的工程有不同的要求,可能在柱边,也可能有固 定的管道井,严格按要求来布置的。立管位置宜布置在间隔雨水井较近的位置,这 样可以减少埋地管道的长度和相应的施工量。 在虹吸屋面雨水排放系统中,高密度聚乙烯(HDPE)管材具有卓越的理化性能和耐 腐蚀性能,与金属管材相比,HDPE管同样具有一定的强度、钢度、柔韧性、搞冲击性、耐磨性、耐腐蚀性等。国外的使用经验表明,HDPE管连接方便、可靠施工简单 维修少,使用寿命长、经济上风明显,因此,较多的虹吸供给商选择了HDPE管材,并开发了配套组件和特别适合HDPE管固定安装的管道固定系统和固定件。 高密度聚乙烯管材(HDPE)的连接工艺 在虹吸屋面雨水排放系统应用中,HDPE管连接可采用对口热熔连接和电焊管箍连接。尽不可采用粘接口连接。热熔连接多用于预制管段,首先将管道放在专用焊接设备 的夹具上对齐,使两段管道的中心轴线保持在同一直线上,如管口有偏差应调平夹牢,清除管真个杂质,使用管口创刀或管道切割机具创切,管口应垂直于管中心轴线,移动管道对齐应使两段管道管端平整,紧密无间隙,然后用电加热板进行加热,加热时间应控制得当,可根据管道的壁厚和不同季节环境温度的影响适当调整,并 观察管端加热时管口的软化、膨胀情况,当管端软化程度与管壁厚一半相当,管口 膨胀高度相当于管壁厚的1/4时,即可撤除电加热盘,(留意加热时不可对管道加压) 电加热盘撤除后应立即将两管道段靠紧、施加压力,使熔融表面连成一体,此时两 管端表面会外翻,外翻半径到相当于管壁厚一半即可。施加压力应保持到接口自然 冷却,尽不能采用浇水或其它快速冷却方式。电焊管箍连接,此方式多用于预制完 成的管段在排水管道系统中的连接,具体操纵如下:对接的两管道管口应创切平整,对口无间隙或在答应的微小间隙范围内,管道端部表面就清洁无杂质,可使用细砂 布磨刷。套进电热熔套管前须用色笔作记号,记号应标明电热熔套管套进的深度以 确保两段管道紧密连接,套紧后用电熔焊机加进电流焊接。焊接时管道内应干燥, 尽不能有水滴溢出。电热熔焊接过程由电熔焊设备自动控制,但焊接完后应观察电

虹吸系统原理

虹吸式雨水收集系统 虹吸式雨水收集系统是屋面雨水排水的一种形式,是在设计条件下利用雨水斗至排出管之间的有效位差为动力,使系统内部产生负压的雨水排水系统,其水力计算依据为流体力学的伯努利方程。由于系统适用于各种建筑屋面的雨水排除,因而深受用户的青睐。 虹吸式屋面雨水收集系统的选用主要控制内容包括雨水斗流量、雨水斗材质、系统管材材质。 虹吸式屋面雨水收集系统由虹吸雨水斗、连接管、悬吊管、立管、排出管、配套管件和固定件组成。 1)、为满足不同屋面排水的要求,虹吸雨水斗按使用功能分为带集水槽型雨水斗、无集水槽型雨水斗和防冻型雨水斗。带集水槽型雨水斗适用于平屋面,屋面壅水高度可满足屋面荷载的严格要求。 2)、虹吸式雨水斗由防叶罩、防涡流装置、斗体等主要部件组成。 虹吸流屋面雨水系统适用于各种建筑屋面的雨水排除(如会展中心、体育场馆、航站楼、机库、大型货运库、物流中心、厂房、办公楼等),该系统设计必须采用虹吸雨水斗并进行严格的水力计算。 1)、雨水斗选用

雨水斗常用材质:304不锈钢为斗体,格栅罩及反涡流装置采用硅铝合金材质。 产品有防渗漏、耐气候等性能。泄流量大、斗前水位低、不进气,产品应在标准试验台测试。 产品的水力特性和试验方法与国际标准相同,可达到不同国家的技术标准。 2)、系统管材选用 (1)用于虹吸式屋面雨水收集系统的管道,应采用铁管、钢管(镀锌钢管、涂塑钢管)、不锈钢管和高密度聚乙烯(HDPE)管等材料。用于同一系统的管材和管件以及与虹吸式雨水斗的连接管,宜采用相同的材质。 (2)管材的选择应根据不同建筑的特点和要求,综合考虑系统的工作压力、防火、降噪、安装方便、经济性等因素。 (3)虹吸式屋面雨水收集系统采用的铸铁管管材、管件应符合现行国家标准《排水用柔性接口铸铁管及管件》GB/T 12772、现行行业标准《建筑排水用卡箍式铸铁管及管件》CJ/T 177、《建筑排水用柔性接口接口承插式铸铁管及管件》CJ/T 178等的规定。涂塑钢管应符合现行国家标准《给水涂塑复合钢管》CJ/T 120的规定;镀锌钢管应符合现行国家标准《低压流体输送用焊接钢管》GB/T 3091的规定;高密度聚乙烯(HDPE)排水管应符合现行国际标准《建筑内污废水排放(低温和高温)用塑料管系统——聚乙烯(PE)》ISO 8770的规定。 (4)管材的连接 铸铁管:连接宜采用卡箍式,卡箍宜采用不锈钢卡箍件,且内衬橡胶密封圈

(建筑工程管理)虹吸式雨水系统施工工法

(建筑工程管理)虹吸式雨水系统施工工法

虹吸式雨水系统施工工法 虹吸式雨水系统自诞生于欧洲以来,凭借其泄流量大、耗费管材少、节约建筑空间和减少地面开挖等突出优势,于全球范围内得以迅速发展和不断改进。于中国,随着大跨度、大面积的建筑日趋增多、对建筑空间的要求不断提高,于壹些机场和展览馆等建筑上成功地应用后,虹吸雨水系统也得到迅速发展。 1特点 1.1虹吸式雨水斗采用机械固定的方式,能确保雨水斗和屋面连接的密封,具有优异的抗腐蚀性能,安装时无需做防锈处理。 1.2管道排水实现满管流,从而节省材料、节省空间、减少了各专业之间的交叉作业,使建筑外形美观,节约资金。 1.3虹吸式雨水系统机械强度高,施工简单。而且是有压流,管道不易堵塞。 1.4本工法规定了雨水斗、水平悬吊管、排出管的施工工艺,确保虹吸式雨水系统施工质量符合《建筑给排水和采暖卫生施工质量验收规范》(GB500243—2003)及CECS标准《虹吸式屋面雨水排水系统应用技术规程》的要求。 2适用范围 适用于大面积、大跨度屋面的排水。 3工作原理 虹吸式雨水系统依靠虹吸式的雨水斗于天沟水深达到壹定的深度时实现气水分离,利用建筑物的高度和雨水所具有的势能,于雨水连续流经过雨水悬吊管转入雨水立管跌落时形成虹吸作用,且于该处管道内形成最大负压。从而进入虹吸状态,整个管道呈现满流,实现其迅速、高效的排水功能。该系统壹般由虹吸式雨水斗、管材(悬吊管、立管、排出管)、管件、固定件组成。 4工艺流程及操作要点 4.1施工准备: 认真审查图纸,于管道穿过楼板和剪力墙处预留孔洞。于屋面结构施工时,配合土建预留符合雨水斗安装孔洞,或直接将雨水斗座连同保护螺丝预埋于屋面混凝土中,预埋时应留出屋面找平层厚度(预留位置应参照土建施工图,根据轴线、标高以及水施图准确定出预留洞口的位置)。 4.2支架制作安装: 对应管材按照规范、设计要求进行支架制作安装,应注意: (1)管道安装时应设置固定件,固定件必须能够承受满流管道的重量以及高速水流所产生的冲击力。对于HDPE管道系统,固定件仍应吸收管道热胀冷缩时产生的轴向应力。 (2)固定件应根据各种管材要求设置,位置准确,埋设平整,和管道接触紧密,但得损伤管道表面。 (3)固定件宜采用和虹吸式屋面雨水排放系统配套的专用管道固定系统。其使用寿命不低于虹吸式屋面雨水排放系统的使用寿命。 (4)管道支吊架应固定于承重结构上,位置正确,埋设牢固。 (5)管道的支、吊架间距及设置要求要满足规范要求。o (6)HDPE悬吊管采用方形钢导管进行固定。方形钢导管的尺寸如表4.2.6的规定。方形导管沿HDPE悬吊管悬挂于建筑物结构上,HDPE悬吊管则采用导向管卡和锚固管卡连接于方形钢导管上。 方形钢导管尺寸表4.2.6 HDPE管外径方形钢导管尺寸(mmxmm) DN40~DN20030x30

虹吸雨水排水系统施工工艺方案

第一套方案 一、施工准备工作 1.准备屋面虹吸式雨水排水系统全部材料(包括:管道、管配件、雨水斗等),到场后报请甲方和监理单位检验,入库分类存放备用。 2.会同设计院、甲方、监理进行图纸会审,解决存在的问题。 3.配合屋面安装施工单位按照图纸设计位置在屋面上预留安装雨水斗所需孔洞,孔洞规格尺寸和位置误差应符合规范要求。 4.做好与其它相关专业的协调工作。 二、施工劳动力计划安排及进度部署 1、劳动力计划表 单位:人

3、根据本工程各项工作进度计划,施工工期定为20日历天。

三、拟投入的主要施工机械设备表

四、与其它专业的协调配合 1、积极配合屋面施工单位施工,在保证屋面防水的前提下,作好屋面雨水斗的安装,贯彻“防排结合”的理念。 2、召开工程例会,及时解决虹吸排水工程在安装过程中与水、电、暖通等其它安装专业交叉作业时发生的问题。 五、工程施工技术方案 1、工艺流程和技术措施 1.1系统安装工艺流程 1.2技术措施 1、管道安装部分应做好以下工作:

①、熟悉施工图纸和施工现场。 ②、按图纸设计的要求,密切配合施工总进度要求,理顺施工程序和系统要求。 ③、管道支架在加工场地预制,支架上的孔眼要用台钻,经涂刷防锈漆后方能安装。 ④、按先装大管径干管、立管,后装小管径支管的原则。 ⑤、配合实际施工要求,分段进行施工、试压和接驳。保证施工质量和施工时间。 ⑥、施工完毕或安装中断的敞口处,也要做封闭或临时封闭,以防止杂物进入管腔内。 ⑦、做好材料检验,确保材料及其配件符合要求。 2、虹吸式雨水斗的安装 ?雨水斗与管道的连接:雨水斗与HDPE管道连接采用法兰连接,即利 用一个钢塑转换头和一个法兰片实行雨水斗与HDPE 管道的连接牢固、施工方便等优点。 ?管道检查口(见右图) 安装在压力流排水立管下端,彻底解决了系统管网平时 难以维护的问题。该产品安装方便、运行可靠、美观,制作工艺已达到国际 先进水平。 ●HDPE管道安装 HDPE(高密度聚乙烯)管本身具有良好的抗震性能,但其材质柔软: ① HDPE管管道支架最大间距(表一) 管径(mm)110 125 160 200 250 水平管(m)1.10 1.25 1.60 2.00 2.50 立管(m) 1.65 1.87 2.4 3.0 3.75

虹吸雨水安装规范

虹吸雨水安装规范 【篇一:虹吸雨水系统施工工艺】 虹吸雨水排放系统施工工法 1、特点 1.1设计特点 1.1.1 虹吸式屋面雨水排放系统排水管道均按满流有压状态设计,因此虹吸排水系统中雨水悬吊管可做到无坡度敷设。同时,当产生出虹吸作用时管道内水流流速很高,因此系统具有较好的自清作用。而重力式排水设计计算不按满流计算,雨水悬吊管的敷设坡度不得小于0.005。 1.1.2 虹吸排水系统中排水管泄流量要远大于重力排水系统中同一管径排水管的泄流量,就是说排除同样的雨水流量,采用虹吸排水系统的排水管管径要小于采用重力排水系统的排水管管径。 1.1.3 虹吸排水系统其实质是一种多斗压力流雨水排水系统。因此埋地管相对重力式排水系统要明显减少。 1.2施工特点: 1.2.1 采用虹吸式雨水系统,立管数量少、土方开挖少,大大减少工程量,缩短工期。 1.2.2虹吸式雨水斗,优异的防腐性能、安装时无需做防腐处理,采用独特机械固定方式(类似法兰结构),能彻底解决雨水口的密封问题,屋面预留孔洞小,安装、维护便捷。 1.2.3 由于高密度聚乙烯(hdpe)管具有成本低、质量轻、安装方便等特性,虹吸式雨水系统管道通常采用高密度聚乙烯(hdpe)管,采用高密度聚乙烯(hdpe)管,管道安装快速、需要较少的固定点、无热膨胀、无伸缩节要求、更适合预制安装。 2、适用范围 压力(虹吸)流雨水系统适用于大型会展中心、体育馆、候机楼、飞机库、物流中心、商厦、厂房等大型工业与民用建筑的各种类型屋面的排水。 3、工艺原理 该系统采用特制的雨水斗,配合精确的计算,在设计条件下,充分利用与地面的高差所形成有效作用,水头形成虹吸,使屋面雨水得以快速排泄。虹吸雨水的安装示意图如图3.1所示。 1

真空发生器的工作原理与演示

真空发生器的工作原理与演示 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便.真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体.在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作.笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义. 1 真空发生器的工作原理 真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动.在卷吸作用下,使得喷管出口周围的空气不断地被抽吸走,使吸附腔内的压力降至大气压以下,形成一定真空度.如图1所示. 图1 真空发生器工作原理示意图 由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续 性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大. 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2.当v2增加到一定值,P2将小于一个大气

虹吸式与重力流排水区别

虹吸式与重力流排水区别 虹吸式屋顶雨水系统的原理就是依靠特殊的雨水斗的设计,实行汽水分离,从而使雨水立管中为満流状态,当立管中的水达到一定的容量时,虹吸作用就产生了。在降雨过程中,由于连续不断的虹吸作用,整个系统得以令人惊奇的快速排除屋顶上的雨水。 虹吸系统简介 1.1 虹吸式屋面排水系统的特点虹吸式排水系统在降雨初期,屋面雨水高度未超过雨水斗高度时,整个排水系统工作状况与重力排水系统相同。 随着降雨的持续,当屋面雨水高度超过雨水斗高度时由于采用了科学设计的防漩涡雨水斗,通过控制进入雨水斗的雨水流量和调整流态减少漩涡,从而极大地减少了雨水进入排水系统时所夹带的空气量,使得系统中排水管道呈满流状态,利用建筑物屋面的高度和雨水所具有的势能,在雨水连续流经过雨水悬吊管转入雨水立管跌落时形成虹吸作用,并在该处管道内呈最大负压。屋面雨水在管道内负压的抽吸作用下以较高的流速被排至室外。 1.2 虹吸式与重力式与面雨水排放系统的区别 虹吸式屋面雨水排放系统系统排水管道均按满流有压状态设计,因此虹吸排水系统中雨水悬吊管可做到无坡度敷设。同时,当产生出虹吸作用时管道内水流流速很高,因此系统具有较好的自清作用。而重力式排水设计计算不按满流计算,雨水悬吊管的敷设坡度不得小于0.005。 虹吸排水系统中排水管泄流量要远大于重力排水系统中同一管径排水管的泄流量,也即排除同样的雨水流量,采用虹吸排水系统的排水管管径要小于采用重力排水系统的排水管管径。 虹吸排水系统其实质是一种多斗压力流雨水排水系统。因此埋地管相对重力式排水系统要明显减少。 目前该系统在国内应用刚刚开始,而在国际上该系统已有近二十年的应用历史,涉及建筑有航站楼(法国戴高乐机场航站楼、香港新机场航站楼、瑞士苏黎世机场航站楼)、展览馆(香港会展中心)、体育场(丹麦哥本哈根足球场、澳大利亚悉尼体育场)、工业厂房(奥地利克莱斯勒汽车厂、法国雪铁龙汽车厂)、商

虹吸式雨水系统施工工法模板

虹吸式雨水系统施 工工法

虹吸式雨水系统施工工法虹吸式雨水系统自诞生于欧洲以来, 凭借其泄流量大、耗费管材少、节约建筑空间和减少地面开挖等突出优势, 在全球范围内得以迅速发展和不断改进。在中国, 随着大跨度、大面积的建筑日趋增多、对建筑空间的要求不断提高, 在一些机场和展览馆等建筑上成功地应用后, 虹吸雨水系统也得到迅速发展。1特点 1.1虹吸式雨水斗采用机械固定的方式, 能确保雨水斗与屋面连接的密封, 具有优异的抗腐蚀性能, 安装时无需做防锈处理。 1.2管道排水实现满管流, 从而节省材料、节省空间、减少了各专业之间的交叉作业, 使建筑外形美观, 节约资金。 1.3虹吸式雨水系统机械强度高, 施工简单。而且是有压流, 管道不易堵塞。 1.4本工法规定了雨水斗、水平悬吊管、排出管的施工工艺, 确保虹吸式雨水系统施工质量符合《建筑给排水与采暖卫生施工质量验收规范》(GB500243—)及CECS标准《虹吸式屋面雨水排水系统应用技术规程》的要求。2适用范围适用于大面积、大跨度屋面的排水。3工作原理虹吸式雨水系统依靠虹吸式的雨水斗在天沟水深达到一定的深度时实现气水分离, 利用建筑物的高度和雨水所具有的势能, 在雨

水连续流经过雨水悬吊管转入雨水立管跌落时形成虹吸作用, 并在该处管道内形成最大负压。从而进入虹吸状态, 整个管道呈现满流, 实现其迅速、高效的排水功能。该系统一般由虹吸式雨水斗、管材(悬吊管、立管、排出管)、管件、固定件组成。4工艺流程及操作要点 4.1施工准备: 认真审查图纸, 在管道穿过楼板和剪力墙处预留孔洞。在屋面结构施工时, 配合土建预留符合雨水斗安装孔洞, 或直接将雨水斗座连同保护螺丝预埋在屋面混凝土中, 预埋时应留出屋面找平层厚度(预留位置应参照土建施工图, 根据轴线、标高以及水施图准确定出预留洞口的位置)。 4.2支架制作安装: 对应管材按照规范、设计要求进行支架制作安装, 应注意: (1)管道安装时应设置固定件, 固定件必须能够承受满流管道的重量以及高速水流所产生的冲击力。对于HDPE管道系统, 固定件还应吸收管道热胀冷缩时产生的轴向应力。 (2)固定件应根据各种管材要求设置, 位置准确, 埋设平整, 与管道接触紧密, 但得损伤管道表面。 (3)固定件宜采用与虹吸式屋面雨水排放系统配套的专用管道固定系统。其使用寿命不低于虹吸式屋面雨水排放系统的使用寿命。

HDPE虹吸式雨水管道安装工艺

HDPEtt吸式雨水管道安装工艺 虹吸式雨水收集系统是屋面雨水排水的一种形式,是在设计条件下利用雨水斗至排出管之间的有效位差为动力,使系统内部产生负压的雨水排水系统,其水力计算依据为流体力学的伯努利方程。由于系统适用于各种建筑屋面的雨水排除,因而深受用户的青睐。 虹吸式屋面雨水排水系统以其泄流量大、管材少、节约建筑空间和地面开挖少等优点得 到越来越广泛地应用。在国内的工程中,包括北京鸟巢体育场、首都机场T3航站、中央电 视台新址等一批重点工程,纷纷采用了虹吸排水系统。雨水在管道内高速流动可达到自清洁 作用,排水高效而且噪音小。 、工作原理 虹吸式雨水排放系统利用建筑物屋面高度所形成的水头来实现虹吸排水。降雨来临时,屋面逐渐形成积水,由于采用了科学设计的防漩涡雨水斗,当屋面雨水高度达到一定高度,通过控制进入雨水斗的雨水流量和调整流态减少漩涡,从而极大地减少了雨水进入排水系统 时所夹带的空气量,使得系统中排水管道呈满流状态,当雨水通过管道变径时,在此处产生 负压,加速雨水的排放速度。 、工作特点 2.1虹吸式雨水斗采用机械固定方式,能确保雨水斗与屋面连接密封,具有优异的抗腐蚀性能,且无需作防锈处理。 2.2管道排水可实现满管流,排水畅通,节省雨水斗、立管、横管和雨水检查井等;节约建筑空间,使建筑外形美观。 2.3机械强度高,施工简便。 三、适用范围 本工法适用于工业与民用建筑的屋面HDPE雨水排水系统。 四、工艺原理 虹吸式屋面雨水排水系统依靠虹吸式雨水斗在天沟水深达到一定深度时实现气水分离,使整个管道呈现满流,在雨水连续流过雨水悬吊管转入雨水立管跌落时,产生最大负压而形成抽吸作用,从而进入虹吸状态,实现迅速、高效的排水功能。该系统由虹吸式雨水斗、管材(悬吊管、立管、排出管)、管件、固定件组成。 5E而跖配合土建主体预雷颈埋王忡]—|支衆制也安辐十iBifi雨加4 尊―?詹道安奘(悬吊管」立破義)卜咂地管支舟书统濯札通水啊—?庆工验收 五、施工要点 5.1. 施工准备: 根据图纸检查核对预留孔洞是否正确,将管道坐标、标高、位置画线定位,按施工图纸 所注管道及管件的规格尺寸及预留管口的位置,预先进行排列,经排列各部位尺寸都能达 到设计和技术交底的要求后,方可下料,根据管材及管件的预排尺寸,画好标记,进行断

真空发生器原理

真空发生器原理 真空元件以真空压力为动力源,作为实现自动化的一种手段,已在电子、半导体元件组装、汽车组装、自动搬运机械、轻工机械、食品机械、医疗机械、、塑料制品机械、包装机械、、机器人等许多方面得到广泛的应用. 真空发生装置有和两种。是吸入口形成负压,排气口直接通大气,两端压力比很大的抽除气体的机械。是利用的流动而形成一定的,与真空泵相比,它的结构简单、体积小、质量 轻、价格低、安装方便,与配套件复合化容易,真空的产生和解除快,宜从事流量不大的间歇工作,适合分散使用。 随着自动化生产中,精密控制的要求日趋严格,需要比较精确地知道真空发生器动作处的吸附响应时间,而以往对中吸附响应时间的预估,是由经验公式T=V×60/Q得到的,其中V 为吸管容积(L); Q 为平均吸入流量(NL/ min) ,由经验方法确定。该经验公式有三大不足之处:一是没有考虑真空发生器本身的吸附响应时间;二是稀疏波在配管中的传播;三是没有考虑供气压力对流量的影响。因此使用该经验公式常常会与实际情况有很大的出入。本文的目的是建立更为精确的真空发生器及其配管在各种运行工况下的吸附响应时间的计算模型,为自动化中的精密控制奠定理论基础。 典型的真空发生器的结构原理及其图形符号如图1 所示,它是由先收缩后扩张的1、压腔2 和接收管3 等组成。有供气口、排气口和口。当供气口的供气压力高于一定值后,喷管射出射流。 图1 真空发生器的结构原理图 由于气体的粘性,高速射流卷吸走负腔内的气体,使该腔形成很低的。在真空口处接上配管和,靠真空压力便可吸起吸吊物。图2 为真空系统的示意图,该系统由气源1,2,3,真空发生器4,5,配管6和7组成。 (a) (b) 图2 真空发生器系统示意图 2、真空发生器的主要性能参数 由原理图可以看出真空发生器的性能主要由—吸入与排气特性两部分组成。—吸入流量特性是指供给压力为0.5MPa的条件下,真空口处于变化的不封闭状态下,吸入流量与

虹吸式雨水排水系统施工方案

目录 一、工程概况 (1) 二、编制依据 (1) 三、施工计划 (1) 1、技术准备 (1) 2、物资及材料准备 (2) 3、劳动力准备 (2) 四、施工安排 (2) 1、施工顺序 (2) 2、施工机械设备安排 (3) 五、施工方法及技术措施 (3) l、HDPE管道热熔连工序 (3) 2、用电熔机及电熔套管连接的焊接工艺 (4) 3、雨水斗安装工序 (4) 4.二次悬吊系统及支架的安装工序 (4) 5、灌水试验 (5) 六、质量目标及质量保证措施 (5) 1、质量指标 (5) 2、保证措施 (5) 3、质量保证体系 (5) 七、工期进度计划 (6) 八、安全措施 (6) 九、文明施工措施 (6)

福建省档案馆新馆工程 虹吸式雨水排水系统施工方案 一、工程概况 福建省档案馆项目位于福州,工程内容为项目所属的虹吸屋面雨水排水系统工程,本项目共分8个系统,每个系统又分为埋地管、立管、悬吊管、雨水斗4个子分项。悬吊管采用特制连接件与混凝土连接悬吊。立管就近沿承重结构墙体、柱安装。埋地管采细砂保护与最近设计要求的雨水井相连。工程内容为完成制作、运输、现场安装等工作。 二、编制依据 1、福建省档案馆虹吸雨水原图施工图纸 2、《建筑给水排水及采暖工程质量验收规范》GB50242-xxx 3、《建筑给水聚乙烯(PE管)给水管管道工程技术规程》 CJJ/T98-xxx 4、《建筑设计防火规范》GBJ16-xxx 5、《建筑排水硬聚氯乙烯管道工程技术规程>CJJ/T29-xxx 6、《屋面工程质量验收规范》 GB50207-xxx 7、《屋面工程技术规范》 GB50345-2004 8、我公司在其它雨水工程施工中总结的经验 9、国家及有关部门颁发的有关规程、规范、标准、规定等: GB/T50326-xxx 《建设工程项目管理规范》 JGJ33-xxx 《建筑机械使用安全披术规程》 JGJ46-xxx 《施工现场临时用电安全技术》 J-GJ59-xxx 《建筑施工安全检查标准》 JGJ80-xxx 《建筑工程施工现场供电用电安全规范》 三、施工计划 1、技术准备 技术准备积极组织相关技术人员进图纸会审,明确设计要求。办理开工有关手续,做好技术、质量交底工作,备齐工程所需的资料和标准图集。向施工人员进行施工组织设计和技

虹吸式雨水系统

虹吸式雨水系统施工工法 虹吸式雨水系统自诞生于欧洲以来,凭借其泄流量大、耗费管材少、节约建筑空间和减少地面开挖等突出优势,在全球范围内得以迅速发展和不断改进。在中国,随着大跨度、大面积的建筑日趋增多、对建筑空间的要求不断提高,在一些机场和展览馆等建筑上成功地应用后,虹吸雨水系统也得到迅速发展。 1特点 1.1虹吸式雨水斗采用机械固定的方式,能确保雨水斗与屋面连接的密封,具有优异的抗腐蚀性能,安装时无需做防锈处理。 1.2管道排水实现满管流,从而节省材料、节省空间、减少了各专业之间的交叉作业,使建筑外形美观,节约资金。 1.3虹吸式雨水系统机械强度高,施工简单。而且是有压流,管道不易堵塞。 1.4本工法规定了雨水斗、水平悬吊管、排出管的施工工艺,确保虹吸式雨水系统施工质量符合《建筑给排水与采暖卫生施工质量验收规范》(GB500243-2003)及CECS标准《虹吸式屋面雨水排水系统应用技术规程》的要求。 2适用范围 适用于大面积、大跨度屋面的排水。 3工作原理 虹吸式雨水系统依靠虹吸式的雨水斗在天沟水深达到一定的深度时实现气水分离,利用建筑物的高度和雨水所具有的势能,在雨水连续流经过雨水悬吊管转入雨水立管跌落时形成虹吸作用,并在该处管道内形成最大负压。从而进入虹吸状态,整个管道呈现满流,实现其迅速、高效的排水功能。该系统一般由虹吸式雨水斗、管材(悬吊管、立管、排出管)、管件、固定件组成。 4工艺流程及操作要点 4.1施工准备: 认真审查图纸,在管道穿过楼板和剪力墙处预留孔洞。在屋面结构施工时,配合土建预留符合雨水斗安装孔洞,或直接将雨水斗座连同保护螺丝预埋在屋面混凝土中,预埋时应留出屋面找平层厚度(预留位置应参照土建施工图,根据轴线、标高以及水施图准确定出预留洞口的位置)。 4.2支架制作安装: 对应管材按照规范、设计要求进行支架制作安装,应注意: (1)管道安装时应设置固定件,固定件必须能够承受满流管道的重量以及高速水流所产生的冲击力。对于HDPE管道系统,固定件还应吸收管道热胀冷缩时产生的轴向应力。

虹吸系统施工工艺方案

虹吸系统施工工艺方案 虹吸系统是专业的屋面排水系统,在主体施工阶段,根据合同要求,选择专业分包单位进行施工。 首先需要进行虹吸系统的深化设计工作,将深化设计的图纸报送设计单位审核,审核通过后,方可进行虹吸系统的施工。 虹吸雨水管系统按设计图纸要求选用HDPE (高密度聚乙烯管)排水管安装,热熔连接,雨水斗选用不锈钢雨水斗。 1 施工顺序 在基础施工阶段,需要将穿越基础的出水口的管道进行预埋,在钢结构施工完成后,既可以进行虹吸系统上部管道的安装,首先进行底层立管的安装,在屋面系统施工完成后,开始进行虹吸系统屋面横管的安装,再屋面防水施工完成后,进行雨水斗的安装。 2 工艺流程 工艺流程图如图所示。 施工工艺流程图 3 系统安装 a .施工准备 ⑴技术准备:施工前认真熟悉图纸,做好图纸会审工作,根据施工技术要求和施工验收规范,制定相应的施工方案、工艺标准。施工前对施工人员进行全面的技术交底,其主要内容有:有关施工技术标准及规范;主要施工技术要求;工艺流程及物料性能、用途等。

⑵施工现场准备:依据施工图纸测量定位,确定标高,处理管路径上的预留孔洞,预留孔洞尺寸宜较管外径大50-100mm,架空管道顶上部的净空不小于80mm。 ⑶雨水斗安装:对雨水斗安装位置放样并检查、确认。在有天沟部分汇水天沟内进行开孔,放置雨水斗,安装雨水斗专用安装片(安装片与雨水斗连接是氩弧焊焊接)。安装片与天沟采用射钉连接的方式,连接时在安装片上涂上防水涂料,以起到防水作用 ⑷悬吊管安装 a.测量放线:放线前先根据图纸定位尺寸核对现场是否与建筑物及其它管线有冲突,再放出直线,在直线上定出安装片的位置。 b.安装片安装:水平管安装片不超过2.5米设置一个,立管安装片不超过15倍管径设置一个,具体距离参照管道的固定。安装片装好后要重新拉线检查,如果安装片的中心不在一条直线上,可以通过上面的长形孔作调整。钢结构上可不使用安装片,但支吊点的距离不变。见图4-1. 2.5米 图4-1 安装片安装示意图 c.安装片固定在承重结构上,管道支吊架应固定在安装片上,固定位置要准确,埋设应牢固,立管及水平管道安装。 图4-2 管道安装示意图

虹吸排水工作原理及虹吸排水特点

虹吸排水工作原理及虹吸排水特点 虹吸排水系统和重力式屋面雨水排水系统均由雨水斗、雨水悬吊管、雨水立管、雨水埋地管组成,但因为系统的工作原理完全不同,在二种不同水力条件下工作,因此系统中各部件的功能要求是不一样的,系统也有其相应的一套计算方法。虹吸排水系统的最大改进和技术进步是开发了一种具有良好整流功能的雨水斗。雨水斗在其额定设计流量时处于淹没泄流排水状态,不渗气;设计排水量大;雨水斗淹没泄流的斗前水深小。采用了虹吸式雨水斗的屋面雨水排水系统,在降雨过程中相当于从屋面上的一个稳定水面的水池中泄水,经屋面内排水管系,从排出管排出,管道全充满的压力流状态,面雨水的排水过程是一个虹吸排水过程。所以,把具有虹吸排水能力的屋面雨水内排水系统称之为虹吸式屋面雨水内排水系统。虹吸式屋面排水系统的管道在设计降雨强度呈负压,管材的选用应考虑承受负压的能力,雨水斗淹没泄流的斗前水位降低到其一定的值,雨水斗开始有空气渗入,排水管道内的真空被破坏,排水系统会从虹吸压力流的工况转向重力流。 建筑雨水排水系统建筑雨水排水系统是建筑物给排水系统的重要组成部分,它的任务是及时排除降落在建筑物屋面的雨水、雪水,避免形成屋顶积水对屋顶造成威胁,或造成雨水溢流、屋顶漏水等水患事故,以保证人们正常生活和生产活动。 建筑雨水排水系统的分类根据不同的分类标准,雨水系统有不同的类别: 1)屋面雨水系统按照管道的设置位置不同可分为:外排水系统和内排水系统。外排水是指屋面不设雨水斗,建筑物内部没有雨水管道的雨水排放方式。 2)按照屋面有无天沟可以分为檐沟外排水和天沟外排水 3)根据系统是否与大气相通分为密闭系统和敞开系统 4)按雨水管中水流的设计流态可分为重力半有压流雨水系统、重力无压流雨水系统和压力流雨水系统(虹吸式雨水系统) 5)根据立管连接雨水斗的个数分为单斗、多斗雨水排水系统虹吸系统的原理及其特点降雨时屋面上积水达到一定高度,通过气水分离的雨水斗,利用建筑物屋面的高度差所产生的势能,使流态由附膜壁流转化为气水混合流,最后达到水一相流状态,排水管道内逐渐产生真空进行排水。 系统能充分利用水的动能,在密闭的管道中产生连续不断的虹吸作用,实现快速、高效的排除屋面雨水。它是解决大屋面雨水排放的先进排水技术。由于虹吸排水系统是经过精确的水力计算而设计的排水系统,其管道内按满流状态设计,经过高精度计算,能充分利用水的动能使系统产生虹吸作用。水流流速快、流量大、管道有较好的自洁能力、相同管径排水量大等优点。 和传统重力排水系统相比有以下特点:广泛适用于各种不同类型、用途的建筑物;悬吊管无需坡度敷设;降低管材的管径;现场施工量减少;使用更少的材料;节省安装空间;管道具有自洁能力,不易堵塞;从设计到施工简单快捷。随着建筑技术的不断发展,大空间、大容量、大面积的公共建筑,工业厂房、库房需求量越来越大;对屋面雨水排放技术的要求将越严格,同时也推动新的排水技术的发展。屋面面积的增大,排水管道也必须增大管道数量增多,这必将会影响建筑物美观和实用的要求。传统的排水方式已不能完全满足现代建筑的需求,而虹吸排水系统的应用是解决现代建筑大面积屋面排水问题的有效解决方式。

真空发生器的工作原理

真空发生器的工作原理 【气动元件】2009-12-15 19:01:50 阅读763 评论0 字号:大中小订阅 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便.真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体.在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作.笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义. 上图所示为真空发生器的工作原理图,它由喷嘴、接收室、混合室和扩散室组成。压缩空气通过收缩的喷射后,从喷嘴内喷射出来的一束流体的流动称为射流。射流能卷吸周围的静止流体和它一起向前流动,这称为射流的卷吸作用。而自由射流在接收室内的流动,将限制了射流与外界的接触,但从喷嘴流出的主射流还是要卷吸一部分周围的流体向前运动,于是在射流的周围形成一个低压区,接收室内的流体便被吸进来,与主射流混合后,经接收室另一端流出。这种利用一束高速流体将另一束流体(静止或低速流)吸进来,想互混合后一超流出的现象称为引射现象。若在喷嘴两端的压差达到一定值时,气流达声速或亚声速流动,于是在喷嘴出口处,即接收室内可获得一定的负压。

由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大. 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2.当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力.

虹吸进水口的最大真空值及其容许值培训讲学

虹吸进水口的最大真空值及其容许值

虹吸进水口的最大真空值及其容许值 王显焕 水利部农村电气化研究所杭州市310012 虹吸进水口按实际布置得到的水力学计算图如图1所示。在运行中,前池水位以上的弯道部分,水流几乎均处于负压状态。对于虹吸进水口,其最大负压发生在喉道断面2-2的O点,而对于虹吸溢洪道则发生在断面2-2的O′点。如最大真空值(即负压)过大,则水流中会产生蒸汽泡,导致虹吸不能正常工作,甚至引起水流断裂或空穴现象。因此最大真空值须予以限制,成为确定进水口喉道顶壁和底部高程的依据,也是控制最大流量的依据。但此一重要课题至今国内外并未得到较好的解答。 1最大真空值的计算 尽管图1中喉道处的水流并不符合渐变流的条件,但现今各种文献或水力学教科书都是对断面1-1及2-2应用的伯努里方程来近似计算O或O′点的最大真空值;在假定V1=0的条件下可容易地求得下式: h io=(P a/γ-P o/γ)=h′+(α2+ζ0)V22/2g (1- 1) 式中,h io为O点最大真空值,P a/γ为当地大气压,P o /γ为O点绝对压强;h′=D2+△Z+Z,即静态真空,它是确定的;V2为喉道平均流速(m/s),α2为动能改正系数;ζ0为断面1-1至2-2的水头损失系数;(α2+ζ0)V22/2g即动态真空,也是最难研究和解答的。原因是:(1)未计弯道水流的离心力压强,而在理论和实验中此一压强是明显的;(2)未计弯道水流的流速脉动。在我国的几个模试中尚未提到此脉动现象,但在文献〔1〕中却谈到此流速脉动很大。另外从我国的原模试中表明位于负压区的测压管读数波动显著,可能是因流速脉动所致。总之国内外对此

虹吸式雨水排水系统

虹吸式雨水排水系统 【篇一:虹吸排雨水系统设计原理】 虹吸排雨水系统设计原理 近几年来,屋面虹吸排雨水系统在国内众多大、中、小型建筑应用 像雨后春笋般展现,为不少建筑设计师解除了诸多建筑造型的限制,现代建筑的复杂性,以及建筑界与工程界提出的严格要求,常常使 得落后于现代先进建筑科技的传统屋面排水方案不具有可行性,如 排水量大,重力排水系统影响建筑造型;室内排雨悬吊管放坡影响 室内使用空间,排水管与建筑不协调。同时把屋面排雨水设计带到 新的领域。自从uv排水系统在1968年发明以来,第一个uv系统(1968年发明)提供了屋面排水技术的突破,它在雨水斗周围的水 深达到一定高度时,可以避免空气通过雨水斗进入排水管内。世界 各国越来越多对虹吸排雨水系统的研究。,一些科学家和工程师, 如bernouilli, prandtl, darcy, weisbach, colebroke等建立 起来的设计理论便可以用来进行精确的满管流排水系统的设计,这 项技术对于建筑界的贡献立即表现出来。 一、虹吸系统基本原理介绍 原理简介 基本上,屋面雨水排放系统可分为重力流系统与满管流或虹吸系统。重力流系统 在重力流系统中,水沿着立管的管壁流下。一般情况下,管材断面 约1/5-1/3为水,剩余为空气。水平管的流量系数则可能达到1。因此,重力流系统的流量得视其管子所装置的坡度而定。 虹吸系统 在虹吸系统中,所有的管子在指定的降水强度下将达到1的流量系数。管子内的压力也有别于大气压强。通过利用建筑物(雨水斗与 排放点的高度差距)所产生的压头,管径设计可达到满管流。因此,概念上,利用较小于传统管径的管道便可更快速地排出相同的水量。虹吸系统电脑软件利用建筑物所产生的压头 (h1-h2)来平衡管子内的磨擦系数损失以及计算出以最小的管径来排放所设计的水量。捷流 系统电脑软件通过分析水平管与立管的剖面以及管子的长度来平衡 系统的压力。 正如以上所提及的,管子里的压力有别于大力气强。基本上,系统 可接受管子里的压力超出于大气压强。

相关文档
最新文档