圆的证明与计算题专题研究

圆的证明与计算题专题研究
圆的证明与计算题专题研究

《圆的证明与计算》专题研究圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。

一、考点分析:

1.圆中的重要定理:

(1)圆的定义:主要是用来证明四点共圆.

(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等.

(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.

(4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等.

(5)切线的性质定理:主要是用来证明——垂直关系.

(6)切线的判定定理: 主要是用来证明直线是圆的切线.

(7)切线长定理: 线段相等、垂直关系、角相等.

2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.

二、考题形式分析:

主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。

三、解题秘笈:

1、判定切线的方法:

(1)若切点明确,则“连半径,证垂直”。

常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;

(2)若切点不明确,则“作垂直,证半径”。

常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;

总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:

(1)如图,AB是⊙O的直径,BC⊥AB,AD∥OC交⊙O于D点,求证:CD为⊙O 的切线;

(2)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于D,点E为BC的中点,连结DE,求证:DE是⊙O的切线.

(3)如图,以等腰△ABC的一腰为直径作⊙O,交底边BC于D,交另一腰于F,若DE⊥AC于E(或E为CF中点),求证:DE是⊙O的切线.

(4)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C,求证:CD是⊙O的切线.

2、与圆有关的计算:

计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有: (1)构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数.

(2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。

(3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。

3、典型基本图型:

图形1:如图1:AB 是⊙O 的直径,点E 、C 是⊙O 上的两点,基本结论有:

(1)在“AC 平分∠BAE ”;“AD ⊥CD ”;“DC 是⊙O 的切线”三个论断中,知二推一。 (2)如图2、3,DE 等于弓形BCE 的高;DC =AE 的弦心距OF (或弓形BCE 的半弦EF )。

(3)如图(4):若CK ⊥AB 于K ,则:

①CK=CD ;BK=DE ;CK=2

1

BE=DC ;AE+AB=2BK=2AD ;

②⊿ADC ∽⊿ACB AC 2

=AD?AB

(4)在(1)中的条件①、②、③中任选两个条件,当BG ⊥CD

于E 时(如图5),则:

①DE=GB ;②DC=CG ;③AD+BG=AB ;④AD?BG=

24

1

DG

图形2:如图:Rt ⊿ABC 中,∠ACB =90°。点O 是AC 上一点,以OC 为半径作⊙O 交AC

于点E ,基本结论有:

图2

C

图1

图1A 图2A 图3A 图4A 图5

A

(1)在“BO 平分∠CBA ”;“BO ∥DE ”;“AB 是⊙O 的切线”;“BD=BC ”。四个论断中,

知一推三。 (2)①G 是⊿BCD 的内心;②

;③⊿BCO ∽⊿CDE ?BO?DE=CO?CE=2

1CE

2

; (3)在图(1)中的线段BC 、CE 、AE 、AD 中,知二求四。 (4

)如图(3),若①BC=CE ,则:②

AD AE =2

1

=tan ∠ADE ;③BC :AC :

AB =3:4:5 ;(在①、②、③中知一推二)④设BE 、CD 交于点H ,,则BH=2EH

图形3:如图:Rt ⊿ABC 中,∠ABC =90°,以AB 为直径作⊙O 交AC 于D ,基本结论有:

如右图:(1)DE 切⊙O ?E 是BC 的中点; (2)若DE 切⊙O ,则:①DE=BE=CE ;

②D 、O 、B 、E 四点共圆?∠CED =2∠A

③CD·CA=4BE 2, BA

BC BD

CD R

DE ==

图形特殊化:在(1)的条件下

如图1:DE ∥AB ?⊿ABC 、⊿CDE 是等腰直角三角形;

如图2:若DE 的延长线交AB 的延长线于点F ,若AB=BF ,则:

3

1

=EF DE ;②=R BE

图形4:如图,⊿ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点F ,

基本结论有:

(1)DE ⊥AC ?DE 切⊙O ;

(2)在DE ⊥AC 或DE 切⊙O 下,有:①⊿DFC 是等腰三角形;

②EF=EC ;③D 是 的中点。④与基本图形1的结论重合。 ⑤连AD ,产生母子三角形。

图形5::以直角梯形ABCD 的直腰为直径的圆切斜腰于E,

(1)如图1:①AD+BC =CD ; ②∠COD =∠AEB =90°; ③OD 平分∠ADC (或OC 平分∠BCD );(注:在①、②、③及④“CD 是⊙O 的切线”四个论断中,知一推三)

A

图1图2

B

A BF CG=GD 图1图2图3

④AD·BC =

AB 4

1

2=R 2; (2)如图2,连AE 、CO ,则有:CO ∥AE ,CO ?AE =2R 2(与基本图形2重合) (3)如图3,若EF ⊥AB 于F ,交AC 于G ,则:EG =FG .

图形6:如图:直线PR ⊥⊙O 的半径OB 于E ,PQ 切⊙O 于Q ,BQ 交直线PQ 于R 。 基本结论有:

(1)PQ=PR (⊿PQR 是等腰三角形); (2)在“PR ⊥OB ”、“PQ 切⊙O ”、“PQ=PR ”中,知二推一 (3)2PR·RE=BR·RQ=BE·2R=AB 2

图形7:如图,⊿ABC 内接于⊙O ,I 为△ABC 的内心。基本结论有:

(1)如图1,①BD=CD=ID ;②DI 2=DE·DA ;

③∠AIB =90°+

2

1

∠ACB ; (2)如图2,若∠BAC =60°,则:BD+CE=BC.

图形8:已知,AB 是⊙O 的直径,C 是

中点,CD ⊥AB 于D 。BG 交CD 、AC

于E

、F 。基本结论有:

(1)CD =2

1

BG ;BE=EF=CE ;GF=2

DE

(反之,由CD =21

BG 或BE=EF 可得:C 是 中点)

(2)OE=2

1

AF ,OE ∥AC ;⊿ODE ∽⊿AGF

(3)BE·BG=BD·BA

(4)若D 是OB 的中点,则:①⊿CEF 是等边三角形;② 四、范例讲解:

例题1:△ABP 中,∠ABP =90°,以AB 为直径作⊙O 交AP 于C 点,弧?

CF =?

CB ,过C 作AF 的垂线,垂足为M ,MC 的延长线交BP 于D. (1)求证:CD 为⊙O 的切线; (2)连BF 交AP 于E ,若BE =6,EF =2,求AF

EF

的值。

A

BC=CG=AG BG BG 图1

图2

A 例题2:直角梯形ABCD 中,∠BCD =90°,AB=AD+BC ,A

B 为直径的圆交B

C 于E ,连OC 、B

D 交于F . ⑴求证:CD 为⊙O 的切线 ⑵若

53=AB BE ,求DF

BF

的值

例题3:如图,AB 为直径,PB 为切线,点C 在⊙O 上,AC ∥OP 。 (1)求证:PC 为⊙O 的切线。

(2)过D 点作DE ⊥AB ,E 为垂足,连AD 交BC 于G ,CG =3,DE =4,求

DB

DG

的值。

例题4(

2009调考):如图,已知△ABC 中,以边BC 为直径的⊙O 与边AB 交于点D ,点E

为 的中点,AF 为△ABC 的角平分线,且AF ⊥EC (1)求证:AC 与⊙O 相切;

(2)若AC =6,BC =8,求EC 的长

五、练习:

1.如图,Rt △ABC ,以AB 为直径作⊙O 交AC 于点D D 作AE 的垂线,F 为垂足.

(1)求证:DF 为⊙O 的切线; (2)若DF =3,⊙O 的半径为5,求tan BAC ∠的值.

D B BD BD=DE

A

C

2.如图,AB 为⊙O 的直径,C 、D 为⊙O

,过D 作直线BC 的垂

线交直线AB 于点E ,F 为垂足.

(1)求证:EF 为⊙O 的切线;

(2)若AC =6,BD =5,求sin E 的值.

3.如图,AB 为⊙O 的直径,半径OC ⊥AB ,D 为AB 延长线上一点,过D 作⊙O 的切线,E 为切点,连结CE 交AB 于点F .

(1)求证:DE=DF ;

(2)连结AE ,若OF =1,BF =3,求tan A ∠的值.

4.如图,Rt △ABC 中,∠C =90°,BD 平分∠ABC ,以AB 上一点O 为圆心过B 、D 两点作⊙O ,⊙O 交AB 于点一点E ,EF ⊥AC 于点F .

(1)求证:⊙O 与AC 相切;

(2)若EF =3,BC =4,求tan A ∠的值.

5.如图,等腰△ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于点D ,DE ⊥AC 于E. (1)求证:DE 为⊙O 的切线;

(2)若BC =,AE =1,求cos AEO ∠的值.

AD=DC

6.如图,BD 为⊙O 的直径,A 为

的中点,AD 交BC 于点E ,F 为BC

延长线上一点,且FD=FE.

(1)求证:DF 为⊙O 的切线;

(2)若AE =2,DE =4,△

BDF 的面积为,求tan EDF ∠的值.

7、如图,AB 是⊙O 的直径,M 是线段OA 上一点,过M 作AB 的垂线交AC 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且∠ECF =∠E .

(1)求证:CF 是⊙O 的切线;

(2)设⊙O 的半径为1,且AC =CE =AM 的长.

8、如图,AB 是⊙O 的直径,BC ⊥AB ,过点C 作⊙O 的切线CE ,点D 是CE 延长线上一点,连结AD ,且AD+BC=CD .

(1)求证:AD 是⊙O 的切线;

(2)设OE 交AC 于F ,若OF =3,EF =2,求线段BC 的长.

BC

A F B

9、如图,△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,且CD=BD.

(1)求证:BC是⊙O的切线;

(2)已知点M、N分别是AD、CD的中点,BM延长线交⊙O于E,EF∥AC,分别交BD、BN的延长线于H、F,若DH=2,求EF的长.

10、如图,AB是半⊙O上的直径,E是⌒

BC的中点,OE交弦BC于点D,过点C作交AD的平行线交OE的延长线于点F. ∠ADO=∠B.

(1)求证:CF为⊙O的⊙O切线;

(2)求sin∠BAD的值.

11、如图,⊿ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点.

(1)求证:DF是⊙O的切线.

(2)若AE=14,BC=12,求BF的长

B

圆的切线专题证明题

1、.已知:如图,CB 是⊙O 的直径,BP 是和⊙O 相切于点B 的切线,⊙O 的弦AC 平行于OP . (1)求证:AP 是⊙O 的切线.(2)若∠P=60°,PB=2cm ,求AC . 2、⊿ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于D ,D E ⊥AC 于E.求证:DE 为⊙O 的切线 3、、如图,AB=BC ,以AB 为直径的⊙O 交AC 于D ,作D E ⊥BC 于E 。(1)求证:DE 为⊙O 的切线(2)作DG ⊥AB 交⊙O 于G ,垂足为F ,∠A=30°.AB=8,求DG 的长 4、如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线. 5、如图,D 是⊙O 的直径CA 延长线上一点,点 B 在⊙O 上, 且AB =AD =AO .求证:BD 是⊙O 的切线; 6 .如图,在中, ,以 为直径的分别交、于点、,点在的延长 线上,且 求证:直线 是⊙0的切线; O A B P E C

7、如图 9,直线n切⊙O于A,点P为直线n上的一点,直线PO交⊙O于C、B,D在线段AP上, 连接DB,且AD=DB。(1)判断DB与⊙O的位置关系,并说明理由。(2)若AD=1,PB=BO,求弦AC的长 8、如图10,⊙O直径AB=4,P在AB的延长线上,过P作⊙O切线,切点为C,连接AC。(1)若∠CPA=30°,求PC的长(2)若P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的值。 9.如图,MN为⊙O的切线,A为切点,过点A作AP⊥MN,交⊙O的弦BC于点P. 若PA=2cm,PB=5cm,PC=3cm,求⊙O的直径. 10.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线. 11、如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O 的切线交AD的延长线于点F. (1)求证:DE是⊙O的切线; (2)若DE=3,⊙O的半径为5,求BF的长. F E D A C O B P M B D C O N

圆中的证明与计算

圆中的证明与计算及圆与三角形、四边形 知识点圆中的重要知识点 【知识梳理】 1、圆中的重要概念 2、圆中的重要定理 3、易与圆结合的其他知识 【例题精讲一】垂径定理 例1.1、如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30°。(1)求证:弧CF=弧BC;(2)若CD=6,分别求BE、GF的长。

(1)求证:AD=AN;(2)若AB=2 4,ON=1,求⊙O的半径。 3、如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5。 (1)如图(1),若点P是弧AB的中点,求PA的长;(2)如图(2),若点P是弧BC的中点,求PA的长。

【课堂练习】 1、如图,AB为⊙O的直径,弦CD⊥AB于点H,E为AB延长线上一点,CE交⊙O于F,连接BF。 (1)求证:BF平分∠DFE;(2)若EF=DF,BE=5,CH=3,求⊙O半径。 2、如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF。 (1)求证:∠BAD=∠F;(2)若EF=25,AC=4,求⊙O的半径。

【例题精讲二】圆周角定理 例2.1、如图,CD为⊙O的直径,AB、AC为弦,且∠ADC=∠DAB+∠ACD,AB交CD于E。 (1)求证:AB=AC;(2)若DE=2,CE=10,求AC的长。 2、在△ABC中,以AC边为直径的⊙O交BC于点D,在AD上取一点E使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H。 (1)求证:AC⊥BH;(2)若∠ABC=45°,AC=10,BD=8,求CE的长。

中考《圆》有关的证明和计算

半径,证垂直”,难点在于如何证明两线垂直 例1 如图,在△ ABC中,AB=AC,以AB为直径的O O交BC于D,交AC于E, B为切点的切线交OD延长线于F. 求证:EF与O O相切. 例2 如图,AD是/ BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与O O相切. 证明一:作直径AE,连结EC. ?/ AD是/ BAC的平分线, ???/ DAB= / DAC. ?/ PA=PD , ???/ 2=Z 1+ / DAC. ???/ 2=Z B+ / DAB , ???/ 仁/ B. 又???/ B= / E, ???/ 仁/ E ?/ AE是O O的直径, ?AC 丄EC,/ E+ / EAC=90°. ???/ 1 + / EAC=90°. 即OA丄PA. ? PA与O O相切. 证明二:延长AD交O O于E,连结OA , OE. ?/ AD是/ BAC的平分线, ?BE=C1E, c ? OE 丄BC. ?/ E+/ BDE=900. ?/ OA=OE , ? / E=/ 1.

例5 如图,AB 是O O 的直径,CD 丄AB ,且 OA 2=OD ? OP. 求证:PC 是O O 的切线. 说明: 求证: ?/ PA=PD , ???/ PAD= / PDA. 又???/ PDA= / BDE, ???/ 1 + Z PAD=90 0 即OA 丄PA. ? PA 与O O 相切 此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用 如图,AB=AC , AB 是O O 的直径,O O 交BC 于D , DM 与O O 相切. 例4 如图,已知:AB 是O O 的直径,点 C 在O O 上,且/ CAB=30°, BD=OB , D 在AB 的延长线上 求证:DC 是O O 的切线

(完整版)证明圆的切线经典例题

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线I过O O上某一点A,证明I是O O的切线,只需连OA,证明OA丄I 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直? 例1 如图,在厶ABC中,AB=AC ,以AB为直径的O O交BC于D ,交AC于E, B为切点的切线交0D延长线于F. 求证:EF与O 0相切. 证明:连结OE, AD. ?/ AB是O 0的直径, ??? AD 丄BC. 又??? AB=BC , ???/ 3= / 4. —— ? BD=DE,/ 1 = / 2. 又??? OB=OE , OF=OF , ???△ BOF ◎△ EOF ( SAS) ???/ OBF= / OEF. ??? BF与O O相切, ?OB 丄BF. ???/ OEF=9O°. ?EF与O O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD 是/ BAC 的平分线, 求证:PA 与O O 相切. 证明一:作直径AE ,连结EC. ?/ AD 是/ BAC 的平分线, ???/ DAB= / DAC. ?/ PA=PD , ???/ 2= / 1+ / DAC. ???/ 2= / B+ / DAB , ???/ 1 = / B. ?/ AE 是O O 的直径, ? AC 丄 EC ,/ E+ / EAC=90°. ???/ 1 + / EAC=90°. 即OA 丄PA. ? PA 与O O 相切. ?/ PA=PD , ???/ PAD= / PDA. 又???/ PDA= / BDE, 证明二:延长AD 交O O 于E ,连结 ?/ AD 是/ BAC 的平分线, ? BE=CE , ? OE 丄 BC. ???/ E+/ BDE=90 0. ?/ OA=OE , ???/ E=/ 1. P P 为BC 延长线上一点,且 PA=PD.

中考数学总复习专题六圆的有关证明与计算试题新人教版

专题六圆的有关证明与计算 圆的切线的判定与性质 【例1】(2016·临夏州)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点. (1)求证:AB是⊙O的直径; (2)判断DE与⊙O的位置关系,并加以证明; (3)若⊙O的半径为3,∠BAC=60°,求DE的长. 分析:(1)连接AD,证AD⊥BC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证∠ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长. 解:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径 (2)DE与圆O相切,证明:连接OD,∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切 (3)∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC的中点,∴E为CF的中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得BF=错误!=3错误!,则DE=错误!BF=错误! 圆与相似 【例2】(2016·泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC. (1)求证:BE是⊙O的切线; (2)已知CG∥EB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=2,DF=2BF,求AH的值. 分析:(1)证∠EBD=90°即可;(2)由△ABC∽△CBG得错误!=错误!,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC. 解:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线 (2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△ CBG,∴BC BG =\f(AB,BC),即BC2=BG·BA=48,∴BC=4错误!,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF= \r(BC2-FB2)=42,∴CG=CF+FG=5错误!,在Rt△BFG中,BG=错误!=3错误!,∵

圆的有关证明与计算题专题

A B 《圆的证明与计算》专题研究 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 一、考点分析: 1.圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。 三、解题秘笈: 1、判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:(1)如图,AB是⊙O的直径,BC⊥AB,AD∥OC交⊙O于D点,求证:CD为⊙O的切线; (2)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于D,点E为BC的中点,连结DE,求证:DE是⊙O 的切线. (3)如图,以等腰△ABC的一腰为直径作⊙O,交底边BC于D,交另一腰于F,若DE⊥AC于E(或E为CF中点),求证:DE是⊙O的切线. (4)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB 的延长线于点C,求证:CD是⊙O的切线. 2、与圆有关的计算: 计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:

圆的切线判定证明题电子教案

圆的切线判定证明题

仅供学习与交流,如有侵权请联系网站删除 谢谢2 1.如图,在平面直角坐标系xOy 中,⊙O 交x 轴于A 、B 两点,直线FA ⊥x 轴于点A ,点D 在 FA 上,且DO 平行于⊙O 的弦MB ,连DM 并延长交x 轴于点C . (1)判断直线DC 与⊙O 的位置关系,并给出证明; (2)设点D 的坐标为(-2,4),试求MC 的长及直线DC 的解析式. 2.在Rt △ABC 中,BC =9, CA =12,∠ABC 的平分线BD 交AC 与点D , DE ⊥DB 交AB 于点E . (1)设⊙O 是△BDE 的外接圆,求证:AC 是⊙O 的切线; (2)设⊙O 交BC 于点F ,连结EF ,求EF AC 的值. (1)证明: (2)解: 3.如图,AB 是⊙O 的直径,AD 是弦,∠DAB =22.5o,延长AB 到点C ,使得∠ACD =45o. (1)求证:CD 是⊙O 的切线; (2)若AB =22,求BC 的长. 4.如图,四边形ABCD 内接于⊙O ,BD 是O 的直径,AE CD ⊥,垂足为E ,DA 平分 BDE ∠.

仅供学习与交流,如有侵权请联系网站删除 谢谢3 5. 如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB =∠E ; (2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由. (3)当AB =5,BC =6时,求⊙O 的半径. 6. 如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD . (2)若E B =8cm ,CD =24cm ,求⊙O 的直径. 7. 如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC ,过点D 作DE ⊥ AC ,垂足为E . (1)求证:AB =AC ; (2)求证:DE 为⊙O 的切线; (3)若⊙O 的半径为5,∠BAC =60°,求DE 的长. E C A

九年级数学圆中的证明与计算(二)

1、如图,AB是⊙O的直径,D为弧AC的中点,DE⊥AB于E,交AC于F,AC、BD交于点G。 (1)求证:①AC=2DE;②OF∥BD;(2)若AB=10,AC=8,求AF的长。 【例题精讲一】切线的性质 例1.1、如图,AB为⊙O的直径,CD为⊙O的弦,且AB⊥CD于E,F为弧AD上一点,BF交CD于G,FH切⊙O于点F,交CD的延长线于H。 (1)求证:FH=GH;(2)若AB=2FH,GF=3 2,求AG的长。

2、如图,已知直线AB 与⊙O 相切于点A ,弦CD ∥AB 。 (1)如图1,求证:AC =AD ; (2)如图2,E 、F 为⊙O 上两点,且∠CDE =∠ADF 。若⊙O 的半径为 2 5 ,CD =4,求EF 的长。 3、如图,正方形ABCD ,以BC 为直径在正方形内作半圆O ,过D 作DE 与半圆O 相切于点E ,连OE 交AB 于F 。 (1)如图1,连OD 、DF ,求证:∠ODF =45°; (2)如图2,过B 作BM ∥DF 交OF 于G ,交⊙O 于点M 。若AD =6,求BM 的长。

【课堂练习】 1、如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC、AB分别相交于点E、F。 (1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,∠B=2∠AFH,⊙O的半径为5,求FH的长。 2、如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于E,点O在AB上,以OA为半径的圆,交AB于D,交AC于G,且点E在⊙O上,连接DE,BF切⊙O于点F。 (1)求证:BE=BF;(2)若⊙O的半径为R,AG=R+1,CE=R-1,求弦AG的长。

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

中考中圆的切线证明习题集锦

中考中圆切线证明习题 1、如图, PA 为⊙ O 的切线, A 为切点,过 A 作OP 的垂线 AB ,垂足为点 C,交⊙O 于点 B,延长 BO 与⊙ O 交于点 D ,与 PA 的延长线交于点 E, 求证: PB 为⊙ O 的切线; 2、如图,AB=AC ,AB 是⊙ O 的直径,⊙ O 交BC 于D ,DM ⊥AC 于 M 求证:DM 与⊙O 相切. 3、如图,已知: AB 是⊙ O 的直径,点 C 在⊙ O 上,且∠ CAB=300 ,BD=OB ,D 在 AB 的延 长线上 . 求证:DC 是⊙O 的切线 4、已知:如图, A 是e O 上一点,半径 OC 的延长线与过点 1 AC OB . 2 (1)求证: AB 是e O 的切线; 2)若 ACD 45°, OC 2,求弦 CD 的长. P D BC , A

5、已知:如图,在Rt△ABC中, C 90o,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E ,且CBD A. 1)判断直线BD与e O的位置关系,并证明你的结论; 2)若AD:AO 8:5 ,BC 2,求BD的长. B 6、已知:如图,在△ ABC 中,AB=AC,AE 是角平分线,BM 平分∠ ABC 交AE 于点M,经过B,M 两点的⊙ O 交BC 于点G,交AB 于点F,FB 恰为⊙O的直径. (1)求证:AE 与⊙ O 相切; 1 (2)当BC=4,cosC=1时,求⊙ O的半径. 3 7、已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,DOC=2 ACD=90 。

求证:CD 是⊙O 的切线. 10、如图,等腰三角形 ABC 中,AC =BC =10,AB =12。以 BC 为直径作⊙ O 交AB 于点 D , 交 AC 于点 G ,DF ⊥AC ,垂足为 F ,交 CB 的延长线于点 E (1)求证:直线 EF 是⊙O 的切线; (2)求 CF:CE 的值。 11、如图, AB 是⊙O 的直径, AC 是弦,∠ BAC 的平分线 AD 交⊙O 于点 D ,DE ⊥AC ,交 AC 的 延 长线于点 E ,OE 交AD 于点 F .⑴求证: 12、如图, Rt △ ABC 中, ABC 90°,以AB 为直径作⊙O 交AC 边于点 D ,E 是边BC 的中 点,连接 DE . (1)求证:直线 DE 是⊙O 的切线; 2)连接 OC 交DE 于点 F ,若OF CF ,求 tan ACO 的值. 13、如图,点 O 在∠APB 的平分线上,⊙ O 与PA 相切于点 C . (1) 求证:直线 PB 与⊙O 相切; F G E O E B

中考复习专题_圆切线证明

中考复习专题 --------圆的切线的判定与性质 知识考点: 1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。

2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。 精典例题: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.

例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线 例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP. 求证:PC是⊙O的切线. 例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F. 求证:CE与△CFG的外接圆相切.

二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径” 例7 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切. 例8 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900 . 求证:CD 是⊙O 的切线. [习题练习] 例1如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上两点,并且OC=OD ,求证:AC=BD . 例2已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,与AC?交于点E ,求证:△ DEC

中考数学专题圆的切线精华习题

中考数学专题圆的位置关系 第一部分真题精讲 【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线; (2)若DE=2,tan C=1 2 ,求⊙O的直径. A 【思路分析】本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了…近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。对于此题来说,自然连接OD,在△ABC中OD就是中位线,平行于BC。所以利用垂直传递关系可证OD⊥DE。至于第二问则重点考察直径所对圆周角是90°这一知识点。利用垂直平分关系得出△ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。 【解析】(1)证明:联结OD.∵ D为AC中点, O为AB中点, A ∴ OD为△ABC的中位线.∴OD∥BC. ∵ DE⊥BC,∴∠DEC=90°. ∴∠ODE=∠DEC=90°. ∴OD⊥DE于点D. ∴ DE为⊙O的切线. (2)解:联结DB.∵AB为⊙O的直径, ∴∠ADB=90°.∴DB⊥AC.∴∠CDB=90°. ∵ D为AC中点,∴AB=AC. 在Rt△DEC中,∵DE=2 ,tanC=1 2 ,∴EC=4 tan DE C =. (三角函数的意义要记牢) 由勾股定理得:DC= 在Rt △DCB 中, BD=tan DC C ?= BC=5. ∴AB=BC=5. ∴⊙O的直径为5. 【例2】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥ 于点D.(1)求证:DA为⊙O的切线;(2)若1 BD=, 1 tan 2 BAD ∠=,求⊙O的半径.

圆切线证明的方法

切线证明法 切线的性质定理: 圆的切线垂直于经过切点的半径 切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径. 【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD = OB ,点C 在圆上,∠CAB =30o.求证:DC 是⊙O 的切线. 思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90o即可. 证明:连接OC ,BC . ∵AB 为⊙O 的直径,∴∠ACB =90o. ∵∠CAB =30o,∴BC =21 AB =OB . ∵BD =OB ,∴BC =2 1 OD .∴∠OCD =90o. ∴DC 是⊙O 的切线. 【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线. 【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接 OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 图1 图2

思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明 CD 是⊙O 的切线,只要证明∠ODC =90o即可. 证明:连接OD . ∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC , ∴△OBC ≌△ODC .∴∠OBC =∠ODC . ∵BC 是⊙O 的切线,∴∠OBC =90o.∴∠ODC =90o. ∴DC 是⊙O 的切线. 【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB . 思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径. 证明:连接OC . ∵CD 是⊙O 的切线,∴OC ⊥CD . ∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB . 【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直 图3

圆的证明与计算 专 题

2012中考数学复习《圆的证明与计算》专题 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 一、考点分析: 1.圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,圆与相似圆与面积圆与切线动态圆 三、解题秘笈: 1、判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线. 2、与圆有关的计算: 计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:(1)构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数. (2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。 (3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。

圆的切线专题复习

2、如图,AB 是O O 的直径,/ A = 30°,延长 OE 到D,使BD= OB (OCB 是否是等边三角形?说明你的理由; 圆与特殊角度 1.已知,如图,在△ ADC 中, 长线 上,连接BF,交AD 于点E (1)求证:BF 是eO 的切线; ADC 90,以DC 为直径作半圆eO ,交边AC 于点F ,点B 在CD 的延 BED 2 C . (2)若BF FC , AE 3,求eO 的半径. 3 .如图,AB 是O O 的直径,点 D 在O O 上,OC/ AD 交O O 于E , (1)求证: ; 2)求证:CD 是O O 的切线? 证明: 点F 在CD 延长线上,且 BOC ADf =90 . 4.如图,在O O 中,弦 AE BC 于 D, BC 6 , AD 7 , BAC 45 (1) 求O O 的半径。 (2) 求DE 的长。 19.如图,已知直线 PA 交O O 于A 、B 两点,AE 是O O 的直径,C 为O O 上一 点, 且AC 平分/ PAE 过点C 作CDL PA 于D. (1) 求证:CD 是O O 的切线; (2) 若 AD DG 1: 3, AB=8,求O O 的半径. C B O P ZI C O D A B E

32?已知:如图,AB 是O O 的直径,BD 是O O 的弦,延长BD 到点C,使DGBR 连结AC 过点D 作D 巳 AC,垂足为E . 21?如图,已知 △ ABC ,以BC 为直径,O 为圆心的半圆交 AC 于点F ,点E 为弧CF 的中点,连接BE 交AC 于点 M , AD ABC 勺角平分线,且 AD BE ,垂足为点H . (1) 求证:AB 是半圆O 的切线; (2) 若 AB 3, BC 4,求 BE 的长. 圆与三角函数 22.如图,在△ ABC 中,/ 0=90° , AD 是/ BAC 的平分线, (1) 求证:B0是O O 切线; (2) 若 BB 5, DO3,求 AC 的长. 解: O 是AB 上一点,以OA 为半径的O O 经过点D (1)求证:ABAC ⑵求证:DE 为O O 的切线; A A A

圆切线证明题

圆切线证明题 1.如图,PA为O O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交O O于点B,延长B0与O O交于点D,与PA的延长线交于点E, 求证:PB为O 0的切线; 2如图,AB=AC AB是O 0的直径,O O交BC于D, DML AC于M 求证:DM与O O相切.

3如图,已知:AB是O 0的直径,点C在O O上,且/ CAB=30, BD=OB D在AB的延长线上 求证:DC是O 0的切线 3.已知:如图,A是LI 0上一点,半径0C的延长线与过点A的直线交于B点,OC=BC , 1 AC OB ? 2 (1)求证:AB是L O的切线;一一 (2 )若丄ACD=45°OC=2,求弦CD 的长. / \ 4.知:如图,在Rt A ABC中,? C=90〃,点O在AB上,以O为圆心,OA长为半径的

圆与AC, AB 分别交于点D, E ,且.CBD A . (1 )判断直线BD 与LI O 的位置关系,并证明你的结论; 已知:如图,在 △ ABC 中, D 是AB 边上一点,圆 0过D B C 三点,.DOC2. ACD 90。 (1) 求证:直线AC 是圆0的切线; ,如图,AB=AC D 为BC 中点,O D 与AB 切于E 点. 求证:AC 与O D 相切. 如图,等腰三角形 ABC 中,AC= BC= 10,AB= 12。以BC 为直径作O O 交AB 于点D,交AC C B

于点G DF 丄AC 垂足为F ,交CB 的延长线于点 E 。 ⑴求证:直线EF 是O O 的切线; 如图,Rt △ ABC 中,N ABC = 90°以AB 为直径作O O 交AC 边于点D ,E 是边BC 的中点,连接DE . (1)求证:直线DE 是O O 的切线; 如图,点 O 在/ APB 的平分线上,O O 与PA 相切于点 C. (1) 求证:直线 PB 与O O 相切; 23.(2008年南充市)如图,已知]的直径』垂直于弦二 于点二,过」点作’ 交;的延长线于点 」,连接并延长交J U 于点;,且_[「__[」 . E B

中考数学压轴题专项练习:圆的证明与计算题及答案

题库:圆的证明与计算题 1.如图,AB是⊙O的直径,点D是?AE上的一点,且∠BDE=∠CBE,BD与AE 交于点F. (1)求证:BC是⊙O的切线; (2)若BD平分∠ABE,延长ED、BA交于点P,若P A=AO,DE=2,求PD的长. 第1题图 (1)证明:∵AB是⊙O的直径, ∴∠AEB=90°, ∴∠EAB+∠EBA=90°, ∵∠BDE=∠EAB,∠BDE=∠CBE, ∴∠EAB=∠CBE, ∴∠ABE+∠CBE=90°, ∴CB⊥AB, ∵AB是⊙O的直径, ∴BC是⊙O的切线; (2)解:∵BD平分∠ABE, ∴∠ABD=∠DBE, 如解图,连接DO,

第1题解图∵OD=OB, ∴∠ODB=∠OBD, ∵∠EBD=∠OBD, ∴∠EBD=∠ODB, ∴OD∥BE, ∴PD PE =PO PB , ∵P A=AO, ∴P A=AO=OB, ∴PO PB =2 3 , ∴PD PE =2 3 , ∴ PD PD+DE =2 3 , ∵DE=2, ∴PD=4. 2.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DF⊥AC,垂足为点F.

(1)求证:DF是⊙O的切线; (2)若AE=4,cos A =2 5 ,求DF的长. 第2题图 (1)证明:如解图,连接OD, 第2题解图∵OB=OD, ∴∠ODB=∠B, 又∵AB=AC, ∴∠C=∠B, ∴∠ODB=∠C, ∴OD∥AC, ∵DF⊥AC, ∴∠DFC=90°, ∴∠ODF=∠DFC=90°, ∵OD是⊙O的半径, G

∴DF 是⊙O 的切线; (2)解:如解图,过点O 作OG ⊥AC ,垂足为G , ∴AG =1 2AE =2. ∵cos A =AG OA =2OA =2 5, ∴OA =5, ∴OG =OA 2-AG 2=21, ∵∠ODF =∠DFG =∠OGF =90°, ∴四边形OGFD 为矩形, ∴DF =OG =21. 3如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD . (1)求证:AD =AN ; (2)若AB =42,ON =1,求⊙O 的半径. 第3题图 (1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角, ∴∠BAD =∠BCD , ∵AE ⊥CD ,AM ⊥BC ,

人教版九年级上册《圆的证明与计算》专题讲解

《圆的证明与计算》专题讲解 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 圆的有关证明 一、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。 知识点一:判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:

方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B 为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E,

圆的切线的证明专题学案

第1题 B 第2题 A 第3题第4题 圆的切线的证明 圆的切线的证明题,从直线与圆有无公共点来看,有两大类型:一是直线与圆有公共点; 二是直线与圆没有公共点。从具体的证明方法来看又分为多种类型 一、直线与圆有公共点 总体思路:“连”(连接圆心与公共点),证垂直。 (一)利用相似证垂直 1.如图,AB 是圆O 的直径,点P 在BA 的延长线上,弦CD ⊥AB 与点E,且PC 2=PE ×PO. (1)求证:PC 是圆O 的切线. (二)利用全等证垂直 2.如图Rt △ABC 中,∠ACB=90°,以BC 为直径的圆O 交AB 于点D,E 、F 是圆O 上的两点, 连接AE 、CF 、DF ,满足EA=CA. (1)求证:AE 圆O 的切线. (三)利用勾股定理证垂直 3.如图,圆O 的直径AB=12,点P 是AB 延长线上一点,且PB=4,点C 是圆O 上一点,PC=8. 求证:PC 是圆O 的切线. (四)利用平行线证垂直 4.如图,△ABC 内接于圆O,CD 平分∠ACB 交于圆O 于D,过点D 作PQ ∥AB 分别交CA 、CB 的延长线于P 、Q. 求证:PQ 是圆O 的切线.

B B (五)利用角的转化证垂直 5.如图,△ABC 是圆O 的内接三角形,E 是弦BD 的中点,点C 是圆O 外一点,且∠DBC=∠A, 连接OE 并延长与圆相交于点F ,与BC 相交于点C. (1)求证:BC 是圆O 的切线. 二、直线与圆的公共点未知 总体思路:“作”垂直(圆心到直线的垂线),证相等(垂线与半径). (一)利用角平分线证相等 1.如图,梯形ABCD 中,AD ∥BC,AE ⊥BC 于E,∠ADC 的平分线交AE 于O,以点O 为圆心,OA 为半径的圆经过点B. 求证:CD 与圆O 相切. (二) 利用面积法证相等 2.如图,已知△ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,半径为作圆C. 求证:圆C 与AB 相切. 练习: 1.(2017*乐山改编)如图,以AB 边为直径的圆O 经过点P ,且∠ACP=60°,D 是 AB 延长线上一点,PA=PD. 求证:PD 是圆O 的切线.

相关文档
最新文档