高分子材料成型加工考试重点复习内容

第二章高分子材料学

1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。受热不熔融,达到一定温度分解破坏,不能反复加工。在溶剂中不溶。化学结构是由线型分子变为体型结构。举例:PF、UF、MF

2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。再次受热,仍可软化、熔融,反复多次加工。在溶剂中可溶。化学结构是线型高分子。举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。

3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。

4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。举例:PA聚酰胺类、ABS、PET、PC

5、缓冷:Tc=Tmax,结晶度提高,球晶大。透明度不好,强度较大。

6、骤冷(淬火):Tc

定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。

7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。透明度一般,结晶度一般,强度一般。

8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。

9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。

第三章添加剂

1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)

2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。

热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。主要用于热敏性聚合物(如PVC聚氯乙烯树脂),是生产PVC塑料最重要的添加剂。

抗氧剂是可抑制或延缓高分子材料自动氧化速度,延长其使用寿命的物质。

光稳定剂是指可有效抑制光致降解物理和化学过程的一类添加剂。

3、热稳定剂分为

A、铅盐类稳定剂(包括三盐基硫酸铅、二盐基亚磷酸铅、二盐基硬脂酸铅),具有优良的热稳定性、电绝缘性、润滑性,毒性大,透明性差。

B、金属皂类稳定剂,包括硬脂酸、油酸等的金属盐。加工性能好,润滑性。

C、有机锡类稳定剂,包括硫醇盐类、马来酸盐型。优良的稳定性、透明性。

D、有机锑类稳定剂,包括硫醇锑类。

E、有机辅助稳定剂,包括环氧化物、亚磷酸酯、多元醇类。

F、复合稳定剂,由金属皂类稳定剂与有机辅助稳定剂以及润滑剂复配而成。

G、稀土类稳定剂,属于镧系稀土元素的有机复合物。

4、增塑剂:是指添加到高分子材料中能使体系的可塑性增加,改进其柔软性、延伸性和加工性的物质。

增塑剂按作用方式,有外增塑作用和内增塑作用。起外增塑作用的增塑剂大多是有机低分子化合物或聚合物,通常为高沸点的油类或低熔点的固体,有极性和非极性之分。

极性增塑剂的溶解度参数高,主要增塑极性聚合物,非极性增塑剂的溶解度参数低,多数用于非极性聚合物的增塑。

非极性增塑剂对非极性聚合物的增塑是溶剂化作用机理,即增塑剂进入聚合物的分子链段之间,加大了大分子之间的距离,降低了聚合物分子间的作用力,其增塑效果与增塑剂的体积成正比,故又称“体积效应”。

极性增塑剂对极性聚合物的增塑机理是“屏蔽效应”,即增塑剂分子中的极性基团与聚合物分子的极性基团互相吸引,取代了聚合物分子间的极性基团的相互作用,从而削弱了聚合物分子间的作用力,其增塑效果与增塑剂分子数有关,同时体积效应也起作用。

5、常用的增塑剂:

塑料增塑剂和橡胶增塑剂。

塑料增塑剂,极性,酯类增塑剂(常用在PVC中)。

橡胶增塑剂,非极性,包括:物理增塑剂(又称软化剂)(包括石油系、煤焦油系、松油系、合成酯类、液体聚合类)和化学增塑剂(又称塑解剂)(包括含硫化合物、噻唑类和胍类)

6、增塑和塑炼的区别:

增塑是加小分子的增塑剂,使制品的塑性增加,改进其柔软性、延伸性和加工性。塑炼:为了满足各种加工工艺的要求,必须使生胶由强韧的弹性状态变成柔软而具有可塑性的状态,这种使弹性生胶变成可塑状态的工艺过程称作塑炼。

区别:增塑是依靠增加小分子增塑剂,塑炼是依靠剪切或塑解剂来降低过高的橡胶分子量,提高橡胶塑性。

7、润滑剂:定义是降低熔体与加工机械或成型模具之间以及熔体内部相互之间的摩擦和黏附,改善加工流动性,提高生产能力和制品外观质量的一类添加剂。

润滑剂是典型的工艺性添加剂,仅在加工时发挥作用。

分为内润滑剂和外润滑剂。

内润滑剂是降低物料之间的内摩擦,外润滑剂是降低物料与设备之间的外摩擦。8、交联剂:定义是凡能引起聚合物交联的物质就称为交联剂。(橡胶的交联剂习惯上称为硫化剂)

a硫磺,适用于不饱和橡胶、含少量双键的三元乙丙橡胶和丁基橡胶。

b含硫化合物,是分子中含有硫原子,能够在硫化温度下分解出活性硫使得橡胶硫化的物质。常用于电线绝缘层。

c有机过氧化物,最常用的是过氧化二异丙苯和过氧化苯甲酰,适用于氟橡胶、硅橡胶、乙丙橡胶等饱和橡胶、部分不饱和橡胶以及聚烯烃的交联,不能用于丁基橡胶和氯磺化聚乙烯橡胶。

d金属氧化物,常用的有氧化锌、氧化镁,适用于含极性基团或活泼酸性基团的聚合物,如氯丁橡胶、氯化丁基橡胶的交联。还可作为硫磺硫化体系中的硫化活性剂。e胺类化合物,含有两个或以上的胺基,主要用于酚醛树脂、氨基树脂等热固性塑料以及氟橡胶的交联。

f双官能团化合物,可作为不饱和聚酯树脂的交联剂。

g合成树脂,主要为酚醛树脂,可作为不饱和丁基橡胶、乙丙橡胶的交联剂。

9、不同交联剂与聚合物的一一对应:

不饱和橡胶选择硫磺、促进剂、活性剂组成的硫化体系。

饱和橡胶选择过氧化物作为硫化剂。

有极性基团的橡胶用金属氧化物交联。

大多数热固性塑料和丙烯酸酯类橡胶一般用胺类交联剂。

10、交联体系:包括交联剂、促进剂、活性剂。

促进剂:凡在胶料中能够提高硫化速度、缩短硫化时间、降低硫化温度、减少硫化剂用量,并能提高或改善硫化胶物理机械性能的物质称为硫化促进剂。按与硫化氢反应的性质分为酸性、碱性、中性促进剂。

活性剂:凡能够提高胶料中硫化促进剂的活性、减少硫化促进剂的用量、缩短硫化时间的物质称为硫化活性剂,也叫“促进助剂”,一般分无机活性剂和有机活性剂。无机活性剂主要是氧化锌、氧化镁、氧化钙等金属氧化物。氧化锌是最重要的,还可作为含卤橡胶的硫化剂。

有机活性剂主要是硬脂酸(HSt)。

11、填充剂(也称“填料”):为了改善高分子材料的成型加工性能,赋予或提高制品某些特定的性能,或为了增加物料体积、降低制品成本而加入的一类物质。

一般为固体物质,分为增量填充剂和补强填充剂。

增量填充剂(又叫“增量剂”),用于橡胶时一般没有补强作用,仅为了增加胶料体积和降低制品成本,对材料的使用性能无影响或影响很小,但往往能够改善压出、

压延等工艺性能。用于塑料时虽不能提高制品的力学性能,但可改善成型加工性能或赋予制品某些新的性能。

补强填充剂(又叫“补强剂”)主要用于橡胶,不但能改善胶料的工艺性能,提高硫化胶的拉伸强度、定伸强度、弹性、耐磨性等力学性能,而且能增大胶料体积、降低制品成本。

最常用的填充剂是碳酸钙。橡胶最常用的补强剂是炭黑。

12、哪一类热塑性聚合物在成型加工中需使用热稳定剂?为什么?对于加有较多增塑剂和不加增塑剂的两种塑料配方,应如何考虑热稳定剂的加入量?为什么?答:热敏性聚合物,如聚氯乙烯PVC树脂,由于PVC是一种极性高分子,分子间作用力很强,导致加工温度超过分解温度,只有加入热稳定剂才能实现在高温下的加工成型,制得性能优良的制品。

加有较多增塑剂的塑料不加或少加热稳定剂,不加增塑剂的塑料应多加热稳定剂。假如增塑剂的塑料降低了聚合物分子间的作用力,制品的玻璃化温度和软化温度均降低,故可少加热稳定剂。

13、什么是增塑剂?根据塑化效率可分为哪些类型?其各自的特点如何?

答:增塑剂是指添加到高分子材料中能使体系的可塑性增加,改进其柔软性、延伸性和加工性的物质。

根据塑化效率可分为三种类型:

a主增塑剂,与聚合物的相容性好,凝胶化能力很强,可大量添加并单独使用。

b辅助增塑剂,与聚合的相容性有限,凝胶化能力较低,只能与主增塑剂并用,但往往起到功能性作用。

c增量剂,与聚合物的相容性很差,凝胶化能力极差,不可单独使用,只可限量使用,以减少主增塑剂用量。

14、橡胶硫化体系主要是由哪些添加剂组成的?各自作用是什么?

答:a硫化促进剂,作用是能提高硫化速度、缩短硫化时间、降低硫化温度、减少硫化剂用量,并能提高、改善硫化胶物理机械性能。

b硫化活性剂,作用提高胶料中硫化促进剂的活性、减少硫化促进剂的用量、缩短硫化时间、可使交联键的数量增加、交联键中硫原子数减少、因而硫化胶的热稳定性能得到提高。

c防焦剂,作用是可防止或延迟胶料在加工和贮存时产生焦烧、提高胶料的操作安全性和贮存稳定性。

第四章制品设计和配方设计

试分析下列配方,要求:(1)指出各成分在配方中的作用;(2)判断制品基本性能,并说出相

第六章高分子材料混合与制备

1、混合:定义是将两种组分相互分布在各自所占的空间中,即,使两种或多种组分所占空间的最初分布情况发生变化。

混合分为非分散混合和分散混合。

非分散混合:在混合中仅增加粒子在混合物中空间分布均匀性而不减小粒子初始尺寸的过程称为非分散混合或简单混合。

分散混合:是指在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。分散混合主要靠剪切应力和拉伸应力作用实现的。混合设备

高速混合机:非分散混合。

挤出机、开炼机、密炼机:分散混合。

2、橡胶的塑炼目的、实质、机理、影响因素:

目的:主要是为了降低生胶的弹性、增加可塑性、获得适当的流动性、使橡胶与配合剂在混炼过程中易于混合分散均匀,有利于胶料进行各种成型操作,使生胶分子量分布变窄,胶料质量均匀一致。

实质:是橡胶分子链断裂,相对分子质量降低,从而橡胶的弹性下降。

机理:塑炼方法分为机械塑炼法和化学塑炼法,机械塑炼法最广泛,机械塑炼分为低温塑炼和高温塑炼,低温塑炼以机械降解作用为主,氧起稳定游离基的作用,高温塑炼以自动氧化降解作用为主,机械作用强化橡胶与氧的接触。

机械塑炼机理:是典型的力化学反应过程,在机械塑炼过程中,机械力作用使大分子链断裂,氧对橡胶分子起化学降解作用,这两个作用同时存在。

低温机械塑炼机理:机械力作用,对橡胶塑炼的直接结果就是使橡胶分子断裂。造成橡胶分子断裂的主要作用力,就是塑炼中的剪切力。

高温塑炼机理:温度提高,橡胶分子和氧均活泼,可直接进行氧化反应,使橡胶分子降解。

影响因素:

机械塑炼有开炼机塑炼、密炼机塑炼、螺杆塑炼机塑炼。

开炼机塑炼:辊距、辊速比、温度是影响塑炼效果的主要因素。

密炼机塑炼:装胶容量和上顶栓压力是影响塑炼效果的主要因素。

螺杆塑炼机塑炼:温度是影响因素。

3、橡胶的混炼,加料次序:

开炼机混炼中最常用的投料顺序是:生胶--固体软化剂--促进剂、促进助剂、防老剂--补强剂、填充剂--液体软化剂--硫磺、超促进剂。

密炼机混炼加料顺序:基本同上,但交联剂和促进剂须在密炼后的开炼辅助操作中加入。

4、什么是“非分散混合”,什么是“分散混合”,两者各主要通过何种物料运动和混合操作来实现?

答:非分散混合:在混合中仅增加粒子在混合物中空间分布均匀性而不减小粒子初始尺寸的过程称为非分散混合或简单混合。

这种混合的运动基本形式是通过对流来实现的,可以通过包括塞形流动和不需要物料连续变形的简单体积排列和置换来达到。

分散混合:是指在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。分散混合主要靠剪切应力和拉伸应力作用实现的。

5、塑料的塑化与橡胶的塑炼二者的目的和原理有何异同?

答:塑料的塑化:是使物料在温度和剪切力的作用下熔融,获得剪切混合的作用,驱出其中的水分和挥发物,使各组分的分散更趋均匀,得到具有一定可塑性的均匀物料,是分散混合过程。

橡胶的塑炼:强迫生胶反复通过两个转速不同的滚筒之间的间隙,使之在强剪切力作用下长分子链被切断,相对分子量减小,降低生胶的弹性,从而流动性增加(即可塑性增加)的工艺过程,使橡胶与配合剂在混炼过程中易于混合分散均匀,此外使得制得的胶料质量也均匀一致。

第七章压制成型

1、压缩率与螺杆压缩比的区别:

压缩率的定义是热固性塑料制品的比重与粉状或粒状的热固性模塑料的表观比重之比。即,压塑料在压制前后的体积变化。

螺杆的压缩比:螺杆第一螺槽的容积/螺杆最后螺槽的容积。压缩比的获得:等距变深,等深变距,变深变距。压缩比升高,制品致密,排除物料中所含空气的能力大。

2、排气的作用、方式:

排气的作用:赶走气泡、水分、挥发物,缩短固化周期,避免制品内部出现气泡或分层现象。

排气的方式:卸压,松模,时间很短即可(零点几秒-几秒),如此连续几次(2-5次)。排气的次数、间隔时间决定于所模压物料的性质。排气不能过早,也不能过迟。

3、保压的作用和方法:

排气后以慢速升高压力,在一定的模压压力和温度下保持一段时间,使热固性树脂的缩聚反应推进到所需的程度。

保压固化时间取决于塑料的类型、模压温度和压力,时间不能过长也不能过段,一般在模内的保压固化时间为数分钟左右。

4、模型硫化:硫化历程分四个阶段:焦烧阶段、预硫阶段、正硫化阶段、过硫阶段。焦烧阶段:又称“硫化诱导期”,是指橡胶在硫化开始前的延迟作用时间,在此阶段胶料尚未开始交联,胶料在模型内具有良好的流动性。

预硫阶段:焦烧期以后橡胶开始交联的阶段。随着交联反应的进行,橡胶的交联程度逐渐增加,并形成网状结构,橡胶的物理机械性能逐渐上升,但尚未达到预期的水平,但有些性能却优于正硫化阶段时的胶料。

正硫化阶段:橡胶的交联反应达到一定的程度,此时各项物理机械性能均达到或接近最佳值,其综合性能最佳。此时交联键会发生重排、裂解等反应,同时存在的交联裂解反应达到了平衡,因此胶料的物理机械性能在一个阶段基本上保持恒定或变化很少,所以也称为“平坦硫化阶段”。

过硫阶段:正硫化以后继续硫化便进入过硫阶段,此阶段往往氧化及热断链反应占主导地位,因此胶料会出现物理机械性能下降的现象。

返原性胶料:在过硫阶段中,天然橡胶、丁基橡胶等主链为线型大分子结构,在过硫阶段断链多于交联而出现硫化返原现象的胶料称为返原性胶料;

非返原性胶料:大部分合成橡胶,如丁苯、丁腈橡胶等在过硫阶段中易产生氧化支化反应和环化结构,胶料的物理机械性能变化很小,甚至保持恒定,这种胶料称为硫化非返原性胶料。

5、硫化仪测得的胶料硫化曲线:

硫化仪能连续的测定与加工性能和硫化性能有关的参数,包括初始黏度、最低粘度、焦烧时间、硫化速度、正硫化时间和活化能等。测定的基本原理是根据胶料的剪切模量与交联密度成正比为基础的。硫化仪在硫化过程中对胶料施加一定振幅的剪切变形,通过剪切力的测定,即可反映硫化交联过程的情况。

第八章挤出成型

1、挤出螺杆分哪三段,各段的作用、结构参数、形式、适应性、温度设置

a加料段。作用是对料斗送来的塑料进行加热,同时输送到压缩段。塑料在该段螺槽内始终保持固体状态。加料段对塑料一般没有压缩作用,故螺距和螺槽深度都可以保持不变,而且螺槽深度也较深,因此加料段通常是等深等距的深槽螺纹。

b压缩段。又叫相迁移段,作用是对加料段送来的物料起挤压和剪切作用,螺杆与料筒配合使物料接触传热面不断更新,在料筒的外加热和螺杆摩擦作用下,固体物料逐渐软化、熔融为黏流态。同时赶走塑料中的空气及其他挥发成分,增大塑料的密度,塑料通过压缩段后,能够成为完全塑化的黏流状态。压缩段应能对塑料产生较大的压缩作用和剪切作用,该段螺槽容积应逐步减小。从螺杆的结构特征来看,压缩作用可以通过减小螺距及螺槽深度来实现。压缩段的长度与塑料的性质有关。(渐变型和突变型螺杆有何区别?各适合哪类塑料的挤出?为什么?答:无定形塑料的压缩段较长,熔融温度范围宽的塑料其压缩段最长,如PVC挤出成型用的螺杆,压缩段为螺杆全长的100%,即全长均起压缩作用,这样的螺杆叫渐变型螺杆。结晶型塑料熔融温度范围较窄,压缩段较短,某些熔化温度范围很窄的结晶型塑料,

如PA,其压缩段更短,甚至仅为一个螺距的长度,这样的螺杆叫突变型螺杆。非晶型塑料适合选用渐变形螺杆,结晶型塑料适合选用突变型螺杆。)

c均化段。又叫计量段,作用是将塑化均匀的物料在均化段螺杆与料筒和机头相配合所产生的强大剪切作用和回压作用下进一步搅拌塑化混合均匀,并定量定压的通过机头口模进行挤出成型。由于从压缩段来的物料已达到所需的压缩比,故均化段一般无压缩作用,螺距和螺槽深度可以不变,这一段常常是等距等深的浅槽螺纹。为了稳定料流,均化段应有足够的长度,通常是螺杆全长的20%-25%。但对于PVC 等热敏性塑料,所采用的渐变型螺杆往往无均化段,可避免黏流态物料在均化段停留时间过长而导致分解。

2、挤出理论:固体输送理论、熔化理论和熔体输送理论。

熔融过程的两种物态:固体物料和熔融物料。

熔体输送(四种流动):通常把物料在螺槽中的流动视为四种类型的流动组成:

a正流。是物料沿螺槽方向向机头的流动,是均化段熔体的主流,起挤出物料的作用。

b逆流。沿螺槽与正流方向相反方向的流动,是由机头口模、过滤网等对料流的阻碍所引起的反压流动,故又称压力流动,它将引起挤出生产能力的损失。

c横流。物料沿X轴和Y轴两方向在螺槽内往复流动,也是由螺杆旋转时螺棱的推挤作用和阻挡作用所造成的,仅限于在每个螺槽内的环流,对总的挤出生产率影响不大,但对于物料的热交换、混合和进一步均匀塑化影响很大。

d漏流。物料在螺杆和料筒的间隙沿着螺杆的轴向往料斗方向的流动,也是由于机头和口模等对物料的阻力所产生的反压流动。

影响挤出机生产能力的是正流、逆流、漏流,横流对挤出量没有影响。

3、橡胶压出,半成品:不是制品,经过硫化才能得到制品。

第九章注射成型

1、柱塞式分流梭的作用:

减毛料,增加流速,促进混合分散。作用是将料筒内流经该处的物料引导成为薄层,使塑料流体产生分流和收敛流动,以缩短传热导程。既加快了热传导,也有利于减

少或避免塑料过热而引起的热分解现象。在塑料熔体分流后,在分流梭与料筒间隙中的流速增加,剪切速度增大,从而产生较大的摩擦热,料温升高,黏度下降,使塑料得到进一步的混合塑化,有效提高柱塞式注射机的生产率及制品质量。

分流梭为柱塞式注射机所特有。(从加热效率出发分析必须使用分流梭的原因)

2、凝封、保压(与热固性塑料模压保压的区别)

凝封前保压,可以将喷嘴、料筒前端的熔融塑化物料通过流道继续缓慢注入到模具型腔,补偿模具当中的冷却收缩而产生的体积收缩。

注射成型工艺,包括充模阶段、保压阶段、倒流阶段、冻结后的冷却阶段。

保压阶段是熔体充满模腔时起至柱塞或螺杆撤回时为止的一段时间,在这段时间,塑料熔体因冷却而收缩,柱塞或螺杆仍需保持对塑料的压力,使模腔中的塑料进一步得到压实,同时料筒内的熔体会继续流入模腔中以补充因塑料冷却收缩而留出的空隙。随模腔内料温下降,模内压力也因塑料冷却收缩而开始下降。

倒流阶段是从柱塞或螺杆后退时开始,到浇口处熔体冻结为止。保压结束后,柱塞或螺杆开始后退,作用在其上的压力随之消失,喷嘴和浇口处压力也迅速下降,而模腔内的压力要高于浇道内的压力,尚未冻结的塑料熔体就会从模腔倒流入浇道并导致模腔内压力迅速下降。随模腔内压力下降,倒流速度减慢,熔体对浇口的加热作用减小,温度也就迅速下降。到t4时刻浇口内的熔体凝固,倒流随之停止,此时也称凝封。

热固性树脂交联是放热反应,这部分热量可使模腔内的物料升温膨胀,对由交联反应而引起的体积收缩有补偿作用,因此在充模结束后不必保压补料。

3、注射成型工艺条件的选择:模具温度。不但影响塑料充模时的流动行为,而且影响制品的物理机械性能和表观质量。模具温度是由冷却介质控制的,决定了制品的冷却速度。

制品透明度、结晶性、强度影响。模具温度越低,冷却越快,透明度越高,结晶度低,强度韧性较好。

应用于结晶型塑料,结晶型塑料注射入模腔后,将发生相转变,冷却速率将影响塑料的结晶速率。缓冷,即模温高,结晶速率大,有利结晶,能提高制品的密度和结

晶度,制品成型收缩率较大,刚度大,大多数力学性能较高,但伸长率和冲击强度下降。反过来,骤冷所得制品的结晶度下降,韧性较好。但骤冷不利于大分子的松弛过程,分子取向作用和内应力较大。中速冷塑料的结晶和取向较为适中。

4、注射机的喷嘴有哪几种类型?各适合何种聚合物材料的注射成型?

热塑性塑料的注射喷嘴类型很多,最普遍的有三种形式:

a通用式喷嘴:最普遍的形式,结构简单,制造方便,无加热装置,注射压力损失小,常用于PVC、PE及纤维素等注射成型。

b延伸式喷嘴。是通用式喷嘴的改进型,结构简单、制造方便,有加热装置,注射压力较小,使用于PMMA等高粘度树脂。

c弹簧针阀式喷嘴。一种自锁式喷嘴,结构复杂,制造困难,流程较短,注射压力损失较大,主要适用于熔体粘度较低的塑料注射。

第十章压延成型

1、辊距大小不均匀性调节。(题目:压延时,压延机的辊筒为什么会产生挠度?对压延质量有何影响?说明对挠度有何补偿方法,并比较优缺点)

制品的厚度首先由辊距调节。物料在辊筒的间隙受压延时,对辊筒有横向压力,这种企图将辊筒分开的作用力称为分离力,将使两端支撑在轴承上的辊筒产生弹性弯曲,其程度大小以辊筒轴线中央部位偏离原来水平位置的距离表示,称为辊筒的挠度。挠度的产生造成压延制品厚度不均,横向断面呈现中间部分厚两端部分薄的现象。

为了克服这种现象,通常采用三种方法补偿辊筒弹性变形对薄膜横向厚度分布均匀性的影响。

a中高度法。又称“凹凸系数法”,即把辊筒的工作表面加工成中部直径大,两端直径小的腰鼓型,沿辊筒的长度方向有一定的弧度。固定不变的中高度补偿法有很大的局限性。但应用普遍,特别是橡胶压延机往往采用中高度法。

b轴交叉法。将压延机相邻两个平行辊筒的轴线加工成交叉状态,则在两个辊筒之间的中心间隙不变的情况下将增大两端的间隙,这样就弥补了由于弹性弯曲所产生

的压延制品的中间厚两端薄的缺陷。优点是可以随产品的品种、规格和工艺条件不同而调节轴交叉角度。

c预应力法。在辊筒两端的轴颈上预先施加额外的负荷,其作用方向正好与工作负荷相反,使辊筒产生的变形与分离力引起的变形方向正好相反,这样,在压延过程中辊筒所产生的两种变形便可以相互抵消,从而达到补偿的目的。这种方法可以调节预应力的大小,使辊筒弧度有较大变化范围,以适应变形的实际要求,比较容易控制。

2、压延工艺条件确定:温度、速度、辊筒间距。(问题:用四辊压延机压延塑料薄膜时各辊的温度和转速应如何控制?为什么?)

a辊温。温度是使物料熔融塑化、延展的必要条件。为了使物料能依次贴合辊筒,防止夹入空气而导致薄膜带有气泡,在操作时辊筒温度应控制为:T辊3>=T辊4>T 辊2>T辊1,辊3的温度大于或近似于辊4的温度,使物料通过辊3和辊4之间隙中,不会包住辊4,这样有利于薄膜的引离。一般辊间温差控制在5-10度。通常辊速快,制品厚度薄,则辊温要偏低些。

b辊速与速比。压延机辊筒最适宜的转速主要由压延物料和制品厚度要求来决定的,一般软质制品压延时的转速要高于硬质制品的压延。操作时辊筒的转速一般控制为:V辊3>=V辊4>V辊2>V辊1。辊筒速比根据薄膜的厚度和辊速来调节,速比过大会出现包辊现象,而速比过小则薄膜吸辊性差,空气极易夹入使产品出现气泡,对硬质制品来说会出现脱壳现象,塑化不良,质量不降。

c辊筒间距。压延时各辊筒间距的调节既是为了适应不同厚度制品的要求,也是为了改变各道辊隙之间的存料量。沿物料前进方向各组辊筒间距越来越小,对四辊压延机操作时一般控制为:d1-2>d2-3>d3-4=压延制品的厚度。

3、压延效应:定义、各向异性、影响因素。

压延效应的定义:在压延过程中,物料在通过压延辊筒间隙时受到很大的剪切力和一些拉伸应力,聚合物大分子会沿着压延方向作定向排列,以致制品在物理机械性能上出现各向异性,这种现象在压延成型中称为压延效应。

压延效应引起制品性能发生变化,使压延薄膜的纵向拉伸强度大于横向拉伸强度,横向断裂伸长率大于纵向,在制品使用温度发生较大变化时,各向尺寸会发生不同

的变化,纵向出现收缩,甚至出现纵向破裂,而横向与厚度则出现膨胀,即表现出各向异性。

压延效应的大小受到压延温度、辊筒转速与速比、辊隙存料量、制品厚度以及物料的性质等因素影响。

适当提高物料温度,增加塑性,压延效应可以降低;辊筒的转速与速比增加,压延效应提高,若转速下降,则压延效应可降低;辊隙存料量多,压延效应也上升;制品厚度小,物料所受剪切作用增加,压延效应也增加;压延制品越薄,质量越难以保证,这也是厚度小于0.05mm的薄膜很少用压延法生产,多采用挤出吹塑法的原因。物料表观粘度大,压延效应也大。

4、压延适于做的制品尺寸:0.05-0.32mm薄膜;0.5-1mm薄片。

材料成型与加工复习详细版

材料成型与加工复习 一、填空题 (1)聚合物加工通常包括两个过程,其一是:使原材料产生变形或流动并取得所需要的形状,其二是:设法保持取得的形状 (2)聚合物所具有的四种加工性质是:可挤压性、可模塑性、可延性、可纺性。P3 (3)物料的混合有扩散、对流、剪切三种基本运动形式,聚合物成型时熔融物料的混合以剪切运动形式为主。 (4)单螺杆挤出机的基本结构包括:传动部分、加料装置、料筒、螺杆、机头与口模五部分P119 (5)挤出成型工艺过程大体相同,其程序为物料干燥、挤出成型、制品的定型与冷却、制品的牵引与卷取,有时还包括制品的后处理。P113 (6)注塑机的基本结构由注射系统、锁模系统和模具三部分组成。P137 (7)橡胶塑炼的实质是使橡胶分子链断裂,降低大分子长度。P207 (8)碳黑在橡胶中分散分三个阶段,分别是第一阶段:润湿;第二阶段:分散;第三阶段:生胶的电化学降解。 (9)成纤聚合物的纺丝过程是在粘流态进行的,而加工过程是在高弹态进行的。 (10)热敏性的PVC宜用深螺槽;熔体粘度低和热稳定性较高的PA宜用浅螺槽螺杆 二、名词解释: 1.均相成核 又称散线成核,是纯净的聚合物中由于热起伏而自发地生成晶核的过程。过程中晶核密度能连续上升。 2.异相成核 又称瞬时成核,是不纯净的聚合物中某些物质(如成核剂,杂质或加热时未完全熔化的残余结晶)起晶核作用成为结晶中心,引起晶体生长过程,过程中晶核密度不发生变化。 3.二次结晶 是在一次结晶完了后在一些残留的非晶区域和晶区不完整部分即晶体间的缺陷或不完善区域,继续进行结晶和进一步完整化过程。聚合物的二次结晶速度很慢。4.后结晶 聚合物加工过程中一部分来不及结晶的区域在加工后的继续结晶的过程,它发生在球晶的界面上,并不断形成新的结晶区域,使晶体进一步长大,是加工中初始结晶的继续。 5.热处理(退火) 为一松弛过程,通过适当的加热能促使分子链段加速重排以提高结晶度和使晶体结构趋于完善。 6.淬火: 是一种很快冻结大分子及链段欲动以防止结晶的过程。

材料加工和成型工艺

天津市咼等教育自学考试课程考试大纲 课程名称:材料加工和成型工艺课程代码:0934 第一部分课程性质与目标 一、课程性质与特点 材料加工和成型工艺是高等教育自学考试工业设计专业所开设的专业基础课程之一,它是一门理论联系实际、理论性较强的课程。本课程使考生全面了解工业造型材料的种类、性能、质感和工艺对产品造型设计的影响,以及常用材料的选用、加工技术和工艺。应用于产品造型设计中材料和加工工艺的选用,以便实现设计的目的和要求。 二、课程目标与基本要求 设置本课程,为了使考生能够熟悉造型设计与材料的关系,掌握各种材料的性能特点及 其加工工艺,了解新型材料,从而运用设计手段,充分利用材料的内在功能和表面特征,创 造出功能好、技术性能高、款式新颖的工业产品 通过本课程的学习,要求考生掌握产品开发设计中有关材料和加工工艺的基本知识、基本原理和方法,掌握产品造型设计材料与工艺的学习方法及理论联系实际方法,提高分析问题和解决问题能力。 三、与本专业其它课程的关系 材料加工和成型工艺是工业设计专业大学专科学生必修的专业基础课,它与工业设计专业的许多其它课程有着密切的关系,是产品改良设计、产品开发设计的先导课程。 第二部分考核内容与考核目标 第一章概论 一、学习目的与要求 通过本章学习,了解造型设计与材料和工艺性的关系,以及造型材料的基本概念,理解质感设计的形式、原则和作用,对造型材料有一个基本的认识。 二、考核知识点与考核目标 (一)产品造型设计与材料(重点) 识记:造型材料的特性、应用与发展 理解:材料与造型 造型材料的种类与基本性能 造型材料应具备的特性 造型材料的应用与发展 (二)工业造型材料的美学基础(重点) 理解:质感的概念 质感设计在造型设计中的作用 应用:造型质感设计形式与原则 (三)产品造型设计与工艺性(次重点) 理解:造型设计与加工工艺 造型设计与装配工艺 造型设计与装饰工艺

高分子材料成型加工考试重点复习内容

第二章高分子材料学 1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。受热不熔融,达到一定温度分解破坏,不能反复加工。在溶剂中不溶。化学结构是由线型分子变为体型结构。举例:PF、UF、MF 2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。再次受热,仍可软化、熔融,反复多次加工。在溶剂中可溶。化学结构是线型高分子。举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。 3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。 4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。举例:PA聚酰胺类、ABS、PET、PC 5、缓冷:Tc=Tmax,结晶度提高,球晶大。透明度不好,强度较大。 6、骤冷(淬火):Tc=Tg,有利晶核生成和晶体长大,性能好。透明度一般,结晶度一般,强度一般。

8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域,继续结晶并逐步完善的过程。 9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。 第三章添加剂 1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂) 2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。 热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。主要用于热敏性聚合物(如PVC聚氯乙烯树脂),是生产PVC塑料最重要的添加剂。 抗氧剂是可抑制或延缓高分子材料自动氧化速度,延长其使用寿命的物质。 光稳定剂是指可有效抑制光致降解物理和化学过程的一类添加剂。 3、热稳定剂分为

高分子材料成型加工

高分子材料成型加工 考试重点内容及部分习题答案 第二章高分子材料学 1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。受热不熔融,达到一定温度分解破坏,不能反复加工。在溶剂中不溶。化学结构就是由线型分子变为体型结构。举例:PF、UF、MF 2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。再次受热,仍可软化、熔融,反复多次加工。在溶剂中可溶。化学结构就是线型高分子。举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。 3、通用塑料:就是指产量大、用途广、成型性好、价格便宜的塑料。 4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。举例:PA聚酰胺类、ABS、PET、PC 5、缓冷:Tc=Tmax,结晶度提高,球晶大。透明度不好,强度较大。 6、骤冷(淬火):Tc=Tg,有利晶核生成与晶体长大,性能好。透明度一般,结晶度一般,强度一般。 8、二次结晶:就是指一次结晶后,在一些残留的非晶区与结晶不完整的部分区域内,继续结晶并逐步完善的过程。 9、后结晶:就是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。 第三章添加剂 1、添加剂的分类包括工艺性添加剂(如润滑剂)与功能性添加剂(除润滑剂之外的都就是,如稳定剂、填充剂、增塑剂、交联剂)

浙江10月自考材料加工和成型工艺试题及答案解析.docx

??????????????????????精品自学考料推荐?????????????????? 浙江省 2018 年 10 月高等教育自学考试 材料加工和成型工艺试题 课程代码: 00699 一、单项选择题( 在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填 在题干的括号内。每小题 2 分,共30分 ) 1.花岗岩属于下列岩石的哪一种?() A. 深成岩 B. 喷出岩 C.火山岩 D. 变质岩 2.在加工玻璃时,不能切割加工的玻璃是()。 A. 压花玻璃 B. 磨砂玻璃 C.铀面玻璃 D. 钢化玻璃 3.下列哪种树木属于针叶木 ?() A. 榉木 B. 杉木 C.樱桃木 D. 胡桃木 4.下列涂料中 ()只宜用于室内使用。 A. 苯——丙涂料 B. 聚乙烯醇系涂料 C.过氯乙烯涂料 D. 乙——丙涂料 5.下列哪项玻璃是制成屏风、扶栏、雕塑等制品?() A. 平板玻璃 B. 玻璃建筑构件 C.建筑艺术玻璃 D. 玻璃绝热材料 6.下列哪项不属于建筑主体的一部分?() A. 墙体 B. 楼板 C.围墙 D. 柱子 7.一般在护壁板与墙体基层间距较大时,踢脚板宜采取()处理。 A. 平接 B. 内凹式 C.外凸式 D. 垂直接 8.()不适合用于室外工程。 A. 陶瓷锦砖 B. 无铀地砖 C.铀面砖 D. 彩铀地砖 9.下图为屋顶花园基本构造层次,()为防水层。 10.下图为屋顶的类型,()为卷棚顶。 1

11.在木结构设计使用,木材不能长期处在()的温度中使用。 A.50 ℃以上 B.60℃以上 C.65℃以上 D.0 ℃以上 12.不属于常见采光屋顶的骨架布置形式的有() 。 A. 四边锥体 B. 多边型锥体 C.重叠体 D. 壳体 13.下图为主龙骨的是()。 14.下列哪项不是影响平板玻璃外观质量的缺陷?() A. 水 B. 气泡 C.疙瘩与砂粒 D. 线道 15.石膏制品不宜用于()。 A. 吊顶材料 B. 影剧院的穿孔贴面板 C.非承重型隔板墙 D. 冷库内的墙贴面 二、填空题 (每空 1 分,共 15 分 ) 1.根据化学成分的不同,建筑装饰材料可分为________、 ________和________三大类。 2.根据树叶的不同,木材可分为________和 ________两大类。 3.防水材料总体可分为________、 ________和 ________。 4.按照门的开启方式分,门有________、________、 ________、 ________等 8 种。 5.采用 ________或 ________ 等骨架结构将表面装饰构造层与建筑构件连接在一起的构造形 式称为结构类装饰构造。 6.陶瓷地砖一般厚________,其规格有400mm× 400mm,300mm × 300mm,250mm × 250mm 。 三、判断题 (判断下列各题,正确的在题后括号内打“√”,错的打“×” 。每小题1 分,共 5分 ) 1.密度是指材料在自然状态下单位体积的质量。() 2.在树木中,靠近髓心的部分称为心材,其材质最好。() 3.大理石楼面与花岗岩楼面的层次及材料基本不同。() 4.油漆是指涂刷在材料表面能够干结成膜的有机涂料。() 5.对于有水作用的房间,楼地面装饰应考虑抗渗漏、排积水等;对于有酸、碱腐蚀的房间, 应考虑耐酸碱、防腐蚀等。 () 四、问答题(每小题 5 分,共 20 分) 2

高分子材料复习要点

UP 定义不饱和聚酯是由二元酸(饱和二元酸和不饱和二元酸)同二元醇,经过缩聚反应而成的一种线型聚合物,通常以该化合物在烯烃类活性单体(如苯乙烯)中的溶液形式出现。 1.力学性能:分子量--分子量增大,树脂强度硬度、抗弯强度增大。不饱和键的 数目--越多,交联密度越大、刚度增大、耐磨性提高。聚酯分子链结构规整性—越规整,树脂分子排布越有序,有利于提高拉伸强度。 2.耐化学药品性:增加不饱和二元酸的量;提高分子的有序性 3.电性能:脂肪烃的比例增多——电性能提高。提高缩聚反应程度——减少未反 应的羧基含量可提高电性能。 4.UP的广泛应用领域: (1)用量最大的热固性树脂 (2)玻纤增强UP(聚酯玻璃钢)比强度高于铝合金 ①通过手糊成型或喷涂成型制造各类型的船体.②通过袋压成型法制造船体、安全帽、机器外罩等. ③采用真空袋压法生产飞机部件、雷达罩.④采用整体模压成型法生产卫生洁具.(2)非玻纤增强UP:浇注UP:可制成人造玛瑙、等装饰性材料;人造大理石;墙面和地面装饰砖。柔性UP,常用滑石粉、木粉等做填料,制造仿木家具。作为涂层材料 PA 1.聚酰胺(俗称尼龙)是指分子主链上含有酰胺基团(-NHCO-)的高分子化合 物。 2.聚酰胺的前30年是作为合成纤维材料,尼龙(Nylon)的俗称就是来自与此。 尼龙的最早发明商——美国杜邦公司曾宣传:尼龙比蜘蛛丝还细、比钢铁还强。 3.脂肪族聚酰胺是线形高分子材料,由亚甲基链段和极性基团(酰胺基)有规 律交替链接而成。 4.聚酰胺中的氢键结构对其聚集态结构和最终的性能起到了决定性的作用 5.脂肪族PA微观结构与性能的关系——氢键的重要作用、酰胺基团的密度、 亚甲基的奇偶性?

高分子材料成型加工考试试题

高分子材料成型加工考 试试题 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

A 卷 一、 填空题:(30X1) 1、高分子或称聚合物分子或大分子 由许多重复单元通过 键有规律地连接而成的分子,具有高的分子量。 2、添加剂包括工艺添加剂和功能添加剂请任意写出四种添加剂的名 称: 、 、 、 。 3、 聚合物物理状态有 、 、 。所对应的温度有: 、 、 。 4、写出四种聚合物成型方法: 、 、 、 。 5、通常单螺杆挤出机由 、 、 组成。 6、据实现功能的不同,可将双螺杆元件分为 (由正向螺纹元件组成,不同的螺杆头数和导程)、 (主要是指反向螺纹元件)、 (是捏合盘及其组合)、 (主要是指齿形盘元件)等。 注塑机性能的基本参数有: 、 、 、 。等。 8、压延辊表面应该具有高的光洁度、机械 和 精度。 9、锁模力的校核公式: 中,p 是 A 分是 。 二、简答题(3X10) 1、聚合物成型过程中降解 2、什么单螺杆的几何压缩比长径比 3、什么是双螺杆传动过程中的正位移移动 分 锁pA F

三、说明题:(2X10) 1、注塑成型的一个工作周期(以生产一产品为例) 2、在单螺杆设计过程中,采用那些方法可实现对物料的压实(从螺杆的结构上说明) 四、分析题:(20) 1、简述管材成型机头的组成(1-10的名称)及工作过程 B卷 一、填空题:(40X1) 1、高分子或称聚合物分子或大分子由许多重复单元通过键有规律地连接而成的分子,具有高的分子量。 2、热塑性塑料的挤出成型工艺过程可分为3个阶段,其分别是: 、、。 3、添加剂包括工艺添加剂和功能添加剂请任意写出四种添加剂的名称:、、、。 4、聚合物物理状态有、、。所对应的温度有:、、。 5、写出四种聚合物成型方法:、、、。 6、通常单螺杆挤出机由、、和温控系统组成。 7、注塑机的基本参数有:、、、。等。

材料成型工艺基础考试复习要点精编版

材料成型工艺基础考试 复习要点 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

材料成型工艺基础 复习资料 13上午九到十一点 一号公教楼407 1铸件的凝固方式及其影响因素 凝固方式:(l)逐层凝固方式 (2)糊状凝固方式 (3)中间凝固方式 影响因素:(l)合金的结晶温度范围:结晶温度范围越小,凝固区域越窄,越倾向于逐层凝固。低碳钢近共晶成分铸铁倾向于逐层凝固,高碳 钢、远共晶成分铸铁倾向于糊状凝固。 (2)逐渐的温度梯度:在合金的结晶温度范围已定时,若铸件的温度梯度↑由小到大,则凝固区由宽变窄,倾向于逐层凝固。 2铸造性能含义及其包括内容,充型能力含义,影响合金流动性因素(合金种类、成分、浇注条件、铸型条件) 铸造性能:合金铸造成形获得优质铸件的能力,、 合金的铸造性能:主要指合金的流动性、收缩性和吸收性等 充型能力:液态合金充满铸型型腔,获得形状完整轮廓清晰的铸件的能力。 影响合金流动性因素:(l)合金的种类。灰铸铁、硅黄铜流动性最好,铝合金次 之,铸钢最 差。

(2)合金的成分。同种合金,成分不同,其结晶特点不 同,流动性也不同。 (3)浇注温度越高,保持液态的时间越长,流动性越好; 温度越高,合金粘度越低,阻力越小,充型能力越强。 在保证充型能力的前提下温度应尽量低。 生产中薄壁件常采用较高温度,厚壁件采用较低浇注温 度, (4) l.铸型的蓄热能力越强,充型能力越差 2.铸型温度越高,充型能力越好 3.铸型中的气体阻碍充型 3合金的收缩三阶段,缩孔、缩松、应力、变形、裂纹产生阶段 l.收缩。合金从液态冷却至常温的过程中,体积或尺寸缩小的现象。 合金的收缩过程可分为三阶段(l)液态收缩 (2)凝固收缩 (3)固态收缩 缩孔(1)形成条件:金属在恒温或很窄的温度范围内结晶,铸件壁以逐层凝固方式凝固。(2)产生原因:是合金的液态收缩和凝固收缩值大于固态收缩值,且得不到补偿。 (3)形成部位:在铸件最后凝固区域,次区域也称热节。 缩松(1)形成条件:形成铸件最后凝固的收缩未能得到补足,或者结晶温度范 围宽的合金呈糊状凝固,凝固区域较宽,液、固两相共存,

(全新整理)10月自考试题及答案解析浙江材料加工和成型工艺试卷及答案解析

浙江省2018年10月高等教育自学考试 材料加工和成型工艺试题 课程代码:00699 一、填空题(本大题共9小题,每空1分,共15分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.材料的装饰特性主要包括光泽、__________、__________及花样、质感四个方面的因素。 2.剁斧板、__________、火烧板、__________、__________都是花岗石表面加工方法不同,而呈现出的不同形态。 3.日本由于地震灾害频繁,其高层建筑通常使用的建筑外窗玻璃是__________。 4.饰面构造又称“覆壁式构造”,主要是处理好__________层和__________层的连接构造方法。 5.根据建筑装饰材料的加工性能和饰面部位的不同,饰面构造可分为__________、贴面类饰面构造和__________三类。 6.从楼地面的施工工艺的角度进行分类,可以分为现制整体地面和__________。 7.__________设置在窗的上口,主要用来吊挂窗帘,并对窗帘轨道等构件起遮挡作用。 8.窗的功能有采光、__________、围护、__________、美观。 9.__________是指从天然岩体中开采出来,并加工成块状或板状材料的总称。 二、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.根据化学成分的不同分类,下列不包含在有色金属材料类别中的是() A.不锈钢 B.铝 C.铜 D.钛金 2.用氧气焊枪等喷火,使花岗石表层爆裂脱落,形成表面粗糙的板材是() A.火烧板 B.剁斧板 C.机刨板 D.粗磨板 3._____是安全玻璃的一种。() A.不透视玻璃 B.镜面玻璃 1

高分子材料复习总结

高分子材料复习总结 1、乳白色半透明的蜡质状,易燃烧,离火后能继续燃烧,密度为0、85~ 1、0g/cm 32、熔层:105℃~137℃、脆化温度(Tb)低于-50℃、最高使用温度100℃,最低使用温度-70℃、3、产量居塑料首位,约占塑料总量的1/ 3、4、分子呈非极性,其吸水性低,小于0、01%,加工前可以不进行干燥、合成:自由基聚合:偶氮类如偶氮二异丁腈(AIBN)、过氧类如过氧化二苯甲酰(BPO)配位聚合:Zieger-Natta 引发体系、茂金属引发体系分类:低密度聚乙烯LDPE0、91~0、94g/cm3高密度聚乙烯HDPE0、94~0、99g/cm3中密度聚乙烯MDPE线性低密度聚乙烯LLDPE超高分子量聚乙烯UHMWPE和茂金属聚乙烯mPE 1、LDPE:高压法、压力150~250Mpa,温度180~300℃,在微量氧的存在下,氧气与乙烯作用可能生成乙烯过氧化氢 (CH2=CHOOH),分解后产生自由基,引发自由基聚合、易产生支链,影响了分子的对称性和空间规整性,结晶度小,密度低、2、HDPE:离子型聚合、分子量高,支链短而少,结晶度大,密度高、采用Ziegler-Natta型引发剂或钼、镍、铬的氧化物、知识点:

1、在HDPE,LDPE和LLDPE中,HDPE的透气性能最好,且对油、脂的阻隔性能也最高、 2、 LLDPE:是乙烯与含量约8%的高级α 烯烃(如1-丁烯、1-己烯和1-辛烯等)的共聚物、3、聚乙烯主链基本是饱和的脂肪烃长链,分子链上有甲基、短的或较长的烷基支链、不同类型的双键、4、在低压法获得的HDPE含有较多的双键,而在低密度聚乙烯中还存在有羰基和醚基、5、结晶性高聚 物,LDPE结晶能力64%,HDPE结晶能力高87%~93%,LLDPE的结晶度略高于LDPE,远低于HDPE、6、高分子量聚乙烯(HMWHDPE)和超高分子量聚乙烯(UHMWPE)仍属高密度聚乙烯,分子结构和普通HDPE 相同,1) 耐磨性能、优于PTFE、MC尼龙、POM等、2) 冲击强度、工程塑料中最高的,远高于ABS、PC和尼龙等材料3) 自润滑性能、摩擦系数极低,与PTFE相当、4) 耐化学腐蚀性能、分子链上不存在可反应的基因,且结晶度较高,具有良好的化学稳定性 7、几种聚乙烯的结构: 8、 PE在空气中会被氧化,在高温下更容易被氧化,因此,在加工过程中应避免与空气接触;或者在PE中加入抗氧剂、9、 PE的结晶能力强,结晶度高,成型收缩率大,一般在 1、0~ 3、5%内,对于HDPE的成型收缩率可达5%、

高分子材料成型加工(含答案)

1.高分子材料成型加工:通常是使固体状态(粉状或粒状)、糊状或溶液状态的高分子化合物熔融或变形,经过模具形成所摇的形状并保持其已经取得的形状,最终得到制品的工艺过程。 2.热塑性塑料:是指具有加热软化、冷却硬化特性的塑料(如:ABS、PP、POM、PC、PS、PVC、PA、PMMA等),它可以再回收利用。具有可塑性可逆 热固性塑料:是指受热或其他条件下能固化或具有不溶(熔)特性的塑料(如:酚醛树脂、环氧树脂、氨基树脂、聚胺酯、发泡聚苯乙烯、不饱和聚酯树脂等)具有可塑性,是不可逆的、不能再回收利用。 3. 通用塑料:一般是指产量大、用途广、成型性好、价格便宜的塑料 工程塑料:指拉伸强度大于50MPa,冲击强度大于6KJ/m2,长期耐热温度超过100°C 的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等的、可代替金属用作结构件的塑料. 4.可挤压性:材料受挤压作用形变时,获取和保持形状的能力。 可模塑性:材料在温度和压力作用下,产生形变和在模具中模制成型的能力。 可延展性:材科在一个或两个万向上受到压延或拉伸的形变能力。 可纺性:材料通过成型而形成连续固态纤维的能力。 5.塑化效率:高分子化合物达到某一柔软程度时增塑剂的用量定义为增塑剂的塑化效率。定义DOP的效率值为标准1,小于1的则较有效,大于1的较差. 6.稳定流动:凡在输送通道中流动时,流体在任何部位的流动状况及一切影响流体流动的因素不随时间而变化,此种流动称为稳定流动。 不稳定流动:凡流体在输送通道中流动时,其流动状况及影响流动的各种因素都随时间而变化,此种流动称之不稳定流动。 7. 等温流动是指流体各处的温度保持不变情况下的流动。(在等温流动情况下,流体与外界可以进行热量传递,但传入和输出的热量应保持相等) 不等温流动:在塑料成型的实际条件下,由于成型工艺要求将流道各区域控制在不同的温度下:而且由于粘性流动过程中有生热和热效应,这些都使其在流道径向和轴向存在一定的温度差,因此聚合物流体的流动一般均呈现非等温状态。 8. 熔体破裂: 聚合物在挤出或注射成型时,在流体剪切速率较低时经口模或浇口挤出物具有光滑的表面和均匀的形状。当剪切速率或剪切应力增加到一定值时,在挤出物表面失去光泽且表面粗糙,类似于“橘皮纹”。剪切速率再增加时表面更粗糙不平。在挤出物的周向出现波纹,此种现象成为“鲨鱼皮”。当挤出速率再增加时,挤出物表面出现众多的不规则的结节、扭曲或竹节纹,甚至支离和断裂成碎片或柱段,这种现象统称为熔体破裂. 9. 离模膨胀:聚合物熔体挤出后的截面积远比口模截面积大。此种现象称之为巴拉斯效应,也成为离模效应。离模膨胀依赖于熔体在流动期间可恢复的弹性变形。有如下三种定性的解释:取向效应、弹性变形效应(或称记忆效应)、正应力效应。 10. 均匀程度指混人物所占物料的比率与理论或总体比率的差异。 分散程度指混合体系中各个混人组分的粒子在混合后的破碎程度。破碎度大。粒径小,起分散程度就高;反之。粒径大,破碎程度小,则分散的不好 11. 塑炼:为了满足各种加工工艺的要求,必须使生胶由强韧的弹性状态变成柔软而具有可塑性的状态,这种使弹性生胶变成可塑状态的工艺过程称作塑炼。 混炼就是将各种配合剂与可塑度合乎要求的生胶或塑炼胶在机械作用下混合均匀,制成混炼胶的过程。 12. 固化速率:是以热固性塑料在一定的温度和压力下,压制标准试样时,使制品的物理机械性能达到最佳值所需的时间与标准试件的厚度的比值(s/mm厚度)来表示,此值愈小,固化速率愈大。 13.成型收缩率:在常温常压下,模具型腔的单向尺寸L 。和制品相应的单向尺寸L之差与

1 绪论1绪论材料加工工艺(第2版) 11材料加工工艺在制造业中的地位材料

1 绪论1绪论材料加工工艺(第2版) 11材料加工工艺在制造业中的地位材料.txt珍惜生活——上帝还让你活着,就肯定有他的安排。雷锋做了好事不留名,但是每一件事情都记到日记里面。 1 绪论 1绪论 材料加工工艺(第2版) 1.1材料加工工艺在制造业中的地位 材料加工工艺(materials processing technology)又称材料成形技术,是金属液态成形、焊接、金属塑性加工、激光加工及快速成形、热处理及表面改性、粉末冶金、塑料成形等各种成形技术的总称。它是利用熔化、结晶、塑性变形、扩散、相变等各种物理化学变化使工件成形,达到预定的机器零件设计要求。材料加工成形制造技术与其他制造加工技术的重要不同点是工件的最终微观组织及性能受控于成形制造方法与过程。换句话说,通过各种先进的成形加工工艺,不仅可以获得无缺陷工件,而且能够控制、改善或提高工件的最终使用特性。材料加工工艺与机械切削加工方法不同,在加工过程中机器零件不仅会发生几何尺寸的变化,而且会发生成分、组织结构及性能的变化。因此材料加工工艺的任务不仅要研究如何获得必要几何尺寸的机器零部件,还要研究如何通过加工过程的控制而使零件具有设定的化学成分、组织结构和性能,从而保证机器零部件的安全性、可靠性和寿命。 图11材料科学与工程四要素 关系三角锥 材料的使用性能取决于材料的组织结构和成分,然而材料的应用最终取决于材料的制备与成形加工。因而,材料的成形加工工艺是制造高质量、低成本产品的中心环节,是材料科学与工程四要素中极为关键的一个要素(图11),也是促进新材料研究、开发、应用和产业化的决定因素。 材料加工技术不仅在机械电子工业领域、而且对制造业中的纺织工业、资源加工业及其他工业领域都起着重要作用。机械工业是国民经济的支柱产业。我国机械工业近年来取得了飞速的发展。根据中国机械工业联合会提供的统计数字,2006年我国机械工业的工业增加值占同期国内生产总值(GDP)的6.86%,国际上通常认为:当一个产业的增加值超过国内生产总值的5%即为支柱产业,我国机械工业长期以来高于此值。我国的机械工业无论产值、利润、新产品产值、进出口总额都在我国有着重要地位。 2006年,我国机械工业总产值突破5万亿元大关,全行业连续4年以20%以上的增幅快速发展。在主要机械产品中,2006年发电设备产量为1.1亿千瓦,比2005年创造的9200万千瓦

高分子实验复习要点

复习提纲: 1、市售的单体一般需要蒸馏精制后才能参与聚合反应,为什么? 答:对于一个化学反应必须接触才能进行反应,而市售试剂单体为了防止其聚合变质,必须降低其浓度来阻止反应,所以要加入稀释剂使其不能接触。从而使该单体长时间保存,当然用的时候要把稀释剂除去(一般采用蒸馏法)后才能发生反应。 2、在悬浮聚合中如何控制悬浮聚合产物颗粒的大小。 答:悬浮聚合产物的颗粒尺寸大小与搅拌速度、分散剂用量及油水比(单体与水的体积比)成反比,主要通过控制反应温度,搅拌速度,以及调节分散剂用量来加以控制悬浮聚合粒径。 3、聚合物的分子量与其熔体流动速率有什么关系?为什么熔体流动速率不能在结构不同的聚合物之间进行比较? 答:熔体流动速率(MFR)是指在一定的温度和压力下,聚合物在单位时间内通过规定孔径的量,用g/min来表示熔体流动速率。一般来说,同一类的聚合物如聚乙烯,聚合度越大即分子量越大,分子链之间作用力越大,链缠结越严重,导致聚合物熔体流动阻力增大,它的熔体流动速率越小;同样分子量的聚合物,由于它们的化学结构不同,它的熔体流动速率也不一样,这主要跟它们分子间的滑动系数有关。 由于不同聚合物测定时的标准条件不同,因此不具有可比性。 4、本体聚合的工业生产分两个阶段,先与预聚合到一定转化率,再进入第二阶段聚合。试解释采取上述步骤的原因。 答:如何排散聚合热,维持聚合温度恒定是实施本体聚合时必须考虑和解决的主要问题。本体聚合的生产分段进行,是为了先在较低温度下使单体以较低聚合速率转化,有利于聚合热的排散;同时由于转化率不高,聚合体系的粘度低,也有利于排散自动加速效应带来的集中放热,以避免由局部过热导致产物分子量分布较宽以及由温度失控而引起爆聚。在聚合塔中逐渐升温聚合是为了逐渐提高单体转化率,尽量使单体完全转化,减少残余单体。 5、与其他聚合方法相比较,乳液聚合的特点是什么?有何缺点?在乳液聚合中如何控制乳胶颗粒的大小和数目? 答:优点:(1)易散热。与本体聚合不同;乳液聚合体系的连续相是水,聚合反应发生在分散于水相中的乳胶粒内荨,尽管乳胶粒内黏度很高,但整个反应体系的黏度并不高,基本上接近于连续相水的黏度,并且在聚合过程中体系黏度也不会发生大幅度的变化,因为同本体聚合相比,乳液聚合体系易散姜,不会出现局部过热,更不易发生爆聚。 同乳液聚合体系中的介质水类似,在溶液聚合中要加入溶剂,介质和溶剂的稀释作用均可降妓热强度[kJ/(min·m3)]。但是乳液聚合体系的散热要比溶液聚合容易得多。这一方面是由于乳液聚合体系要比溶液聚合体系黏度低,前者黏度一般小于100mPa·s,而后者可达几万毫啦·秒;另一方面是由于水的比热容要比溶剂大,水的比热容为4.18kJ/(kg·℃),而有机溶蔫的比热容一般在1.05~2.51kJ/(kg·℃)范围内,故放热量相同时,乳液聚合体系要比溶液爱合体系温升幅度小。 尽管悬浮聚合和乳液聚合有相似之处,即它们的反应中心都是分散在介质水中的粒子中,但是芤液聚合要比悬浮聚合更易散热。对悬浮聚合来说,聚合反应发生在分散于水中的单体珠滴中,单体珠滴的直径一般在100~1000gm范围之内。而在乳液聚合体系中,反应中心乳胶粒直弪一般在O.05~O.1ktm之间。若把悬浮聚合体系中的珠滴比作一个10m直径的大球,那么,乳爱粒则仅相当于一颗绿豆粒。所以从乳胶粒内部向水相传热要比从悬浮聚合的珠滴内部向水相传姜容易得多。故乳胶粒中的温度分布要比悬浮聚合的珠滴中均匀得多。如果说在悬浮聚合中常常因为珠滴向外传热不良而导致“鱼眼”、黑点、红点及烧芯现象出现的话,那么可以认为在乳液藿合体系的乳胶粒中不存在因温度不均而导致的产品质量问题。 综上所述,乳液聚合不仅比本体聚合容易散热,而且也比溶液聚合和悬浮聚合更容易散热。

材料成型技术基础复习重点资料讲解

材料成型技术基础复 习重点

1.1 1.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么? 塑性,弹性,刚度,强度,硬度,韧性 1.2 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 1.3 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 1.4 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 1.5 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 1.6 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。

通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 1.8工程材料的发展趋势 据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 2.0材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 2.1

复合材料加工工艺综述

复合材料加工工艺综述 前言: 复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。 复合材料是一种混合物。在很多领域都发挥了很大的作用,代替了很多传统的材料。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属

材料成型技术基础复习题

材料成形技术基础复习题 一、选择题 1.铸造中,设置冒口的目的是()。 a. 改善冷却条件 b. 排出型腔中的空气 c. 减少砂型用量 d. 有效地补充收缩 2.铸造时不需要使用型芯而能获得圆筒形铸件的铸造方法是( )。 a. 砂型铸造 b. 离心铸造 c. 熔模铸造 d. 压力铸造 3.车间使用的划线平板,工作表面要求组织致密均匀,不允许有铸造缺陷。其铸件的浇注位置应使工作面()。 a. 朝上 b. 朝下 c. 位于侧面 d. 倾斜 4.铸件产生缩松、缩孔的根本原因()。 a. 固态收缩 b. 液体收缩 c. 凝固收缩 d. 液体收缩和凝固收缩 5.为提高铸件的流动性,在下列铁碳合金中应选用()。 a. C=3.5% b. C=3.8% c. C=4.0% d. C=4.7% 6.下列合金中,锻造性能最好的是(),最差的是()。 a.高合金钢 b.铝合金 c.中碳钢 d.低碳钢 7.大型锻件的锻造方法应该选用()。 a.自由锻 b.锤上模锻 c.胎膜锻 8.锻造时,坯料的始锻温度以不出现()为上限;终锻温度也不宜过低,否则会出现()。 a.晶粒长大 b.过热 c.过烧 d.加工硬化 9.材料经过锻压后,能提高力学性能是因为()。 a.金属中杂质减少 b.出现加工硬化 c.晶粒细小,组织致密

材料和制造方法应选()。 a.30钢铸造成形 b.30钢锻造成形 c.30钢板气割除 d.QT60-2铸造成形11.设计板料弯曲模时,模具的角度等于成品角()回弹角。 a.加上 b.减少 c.乘以 d.除以 12.酸性焊条用得比较广泛的原因之一()。 a. 焊缝美观 b. 焊缝抗裂性好 c. 焊接工艺性好 13.低碳钢焊接接头中性能最差区域()。 a. 焊缝区 b. 正火区 c. 部分相变区 d. 过热区 14.焊接应力与变形的产生,主要是因为()。 a. 材料导热性差 b. 焊接时组织变化 c.局部不均匀加热与冷却15.焊接热影响区,在焊接过程中是()。 a. 不可避免 b. 可以避免 c. 不会形成的 16.灰口铁的壁越厚,其强度越低,这主要是由于()。 a. 气孔多 b. 冷隔严重 c. 浇不足 d. 晶粒粗大且缩孔、缩松。17.圆柱齿轮铸件的浇注位置,它的外圈面应( )。 a. 朝上 b. 朝下 c. 位于侧面 d. 倾斜 18.合金的体收缩大,浇注温度过高, 铸件易产生()缺陷; 合金结晶温度围广, 浇注温度过低,易使铸件产生()缺陷。 a. 浇不足与冷隔 b. 气孔 c. 应力与变形 d. 缩孔与缩松19.绘制铸造工艺图确定拔模斜度时,其壁斜度关系时()。 a. 与外壁斜度相同 b. 比外壁斜度大 c. 比外壁斜度小 20.引起锻件晶粒粗大的原因是()。 a.终锻温度太高 b.始锻温度太低 c.终锻温度太低

浙江2011年1月材料加工和成型工艺自考试题

浙江省2011年1月自学考试材料加工和成型工艺试题 课程代码:00699 一、填空题(本大题共13小题,每空1分,共32分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.无机非金属材料包括:___________、___________和___________等。 2.加工材料是指介于___________和___________之间,经过不同程度人为加工的材料。 3.不同的材料有不同的成型加工方法。材料的成型技术有很多种,对金属材料而言,有铸造:包括___________和压铸等;有压力加工:包括___________、___________和挤压等;有连接:包括___________、铆接和粘接等。 4.材料的___________ 是物体表面由于内因和外因而形成的结构特征,通过和视觉所产生的综合印象。 5.___________ 是指材料传导电的能力。根据导电能力的强弱,把材料分为___________ ,半导体和___________。 6.材料的加工性能包括:___________,___________,可焊性,切削加工性。 7.铸造工艺通常包括:铸型准备、铸造金属的___________与___________、铸件处理与检验。 8.普通陶瓷产品在日用器皿、___________陶瓷、___________陶瓷、美术陶瓷、烹饪陶瓷、各种工艺品和工业用具 中应用广泛。 9.天然有机高分子材料是指原材料能从自然界中直接获取的有机高分子材料,主要有___________、___________以及部分原材料衍生物等。 10.人造板材是指利用___________、刨花、木屑、废材以及其他植物纤维等为原料,经过___________或化学处理制成的板材。 11.合成高分子材料也称为聚合物材料,是以人工聚合物为基本组成的高分子材料,分为___________、___________、合成树脂涂料、___________、高分子合成黏合剂、特种功能高分子材料六类,其应用已遍及生产、生活、科技的各个领域,是和金属、陶瓷、玻璃等传统材料同样重要的材料分支。 12.生态环境材料,是指同时具有令人满意的使用性能和优良的环境协调性,或者是能够改善环境的材料。其中环境协调性指的是对资源和能源___________ 、对环境___________和循环再生利用率高。对生态环境材料的研究将有助于解决资源短缺、环境恶化等一系列问题,促进社会经济的可持续发展。 13.人类的___________史就是对材料的使用史。人们通常以不同特征的材料来划分人类不同的历史时期,例如___________、陶器时代、___________、铁器时代、人工合成材料时代等,为人类文明的历史树起了一座座里程碑。 二、名词解释(本大题共4小题,每小题5分,共20分) 1.天然材料 2.密度 3.粉末合金 4.构性 第 1 页

#材料成型复习题(答案)

材料成型复习题(答案) 一、 1落料和冲孔:落料和冲孔又称冲裁,是使坯料按封闭轮廓分离。落料是被分离的部分为所需要的工件,而留下的周边是废料;冲孔则相反。 2 焊接:将分离的金属用局部加热或加压,或两者兼而使用等手段,借助于金属内部原子的 结合和扩散作用牢固的连接起来,形成永久性接头的过程。 3顺序凝固:是采用各种措施保证铸件结构各部分,从远离冒口的部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固,在向冒口方向顺序凝固,使缩孔移至冒口中,切除冒口即可获得合格零件的铸造工艺 同时凝固:是指采取一些工艺措施,使铸件个部分温差很小,几乎同时进行凝固获得合格零件的铸造工艺 4.缩孔、缩松液态金属在凝固过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞称为缩孔,而细小而分散的孔洞称为分散性缩孔,简称缩松。 5.直流正接:将焊件接电焊机的正极,焊条接其负极;用于较厚或高熔点金属的焊接。 直流反接:将焊件接电焊机的负极,焊条接其正极;用于轻薄或低熔点金属的焊接。 6 自由锻造:利用冲击力或压力使金属材料在上下两个砧铁之间或锤头与砧铁之间产生变形,从而获得所需形状、尺寸和力学性能的锻件的成形过程。 模型锻造:它包括模锻和镦锻,它是将加热或不加热的坯料置于锻模模膛内,然后施加冲击力或压力使坯料发生塑性变形而获得锻件的锻造成型过程。 7.钎焊:利用熔点比钎焊金属低的钎料作填充金属,适当加热后,钎料熔化将处于固态的焊件连接起来的一种方法。 8.金属焊接性:金属在一定条件下,获得优质焊接接头的难易程度,即金属材料对焊接加工的适应性。 9,粉末冶金:是用金属粉末做原料,经压制后烧结而制造各种零件和产品的方法。 二、 1、铸件中可能存在的气孔有侵入气孔、析出气孔、反应气孔三种。 2、金属粉末的基本性能包括成分、粒径分布、颗粒形状和大小以及技术特征等。 3、砂型铸造常用的机器造型方法有震实造型、微震实造型、高压造型、抛砂造型等。 4、影响金属焊接的主要因素有温度、压力。 5、粉末压制生产技术流程为粉末制取、配混、压制成形、烧结、其他处理加工。 6、影响液态金属充型能力的因素有金属流动性、铸型性质、浇注条件、铸件结构四个方面。 7、金属材料的可锻性常用金属的塑性指标和变形抗力来综合衡量。 8、熔化焊接用焊条通常由焊芯和药皮组成,其中焊芯的主要作用为作为电源的一个电极,传导电流,产生电弧、熔化后作为填充材料,与母材一起构成焊缝金属等。 9、金属塑性变形的基本规律是体积不变定律和最小阻力定律。 10、一般砂型铸造技术的浇注系统结构主要由浇口杯,直浇道,横浇道,内浇道组成。 11、硬质合金是将一些难熔的金属碳化物和金属黏结剂

相关文档
最新文档