苯的催化

苯的催化
苯的催化

https://www.360docs.net/doc/962271053.html,/Langmuir ?2009American Chemical

Society

Nanostructuring Cadmium Germanate Catalysts for Photocatalytic

Oxidation of Benzene at Ambient Conditions

Jianhui Huang,?,?Kaining Ding,?Xinchen Wang,*,?and Xianzhi Fu ?

?

Research Institute of Photocatalysis,State Key Laboratory Breeding Base of Photocatalysis,Fuzhou University,Fuzhou 350002,P.R.China,and ?Environmental and Life Science Department,Putian University,

Putian 351100,P.R.China

Received February 12,2009.Revised Manuscript Received April 16,2009

A nanostructured Cd 2Ge 2O 6photocatalyst was successfully prepared by a hydrothermal process.The photocatalyst was characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM),UV/vis,N 2adsorption -desorption,and Fourier transform infrared (FTIR)techniques.The photocatalytic property of the material was evaluated via the decomposition of benzene in the gas phase with light illumination and was compared with that of commercial titania (Degussa P25)and Pt/TiO 2.The electronic band structure of Cd 2Ge 2O 6was analyzed by density functional theory (DFT)calculation.Results reveal that the prepared Cd 2Ge 2O 6has unique geometric and electronic properties,which in combination with its superior textural properties makes it a new semiconductor photocatalyst for environmental purification of benzene in air with molecular oxygen under ambient conditions.It was also found that the Cd 2Ge 2O 6was more active and stable than TiO 2-based catalysts in the photocatalytic decomposition of other volatile aromatic pollutants including toluene and ethylbenzene.The enhanced photocatalytic performance of Cd 2Ge 2O 6can be explained by the special band structure,and geometric and electronic feature,in unison with the high surface area nanoporous framework.

1.Introduction

Benzene has been classified as a Class A carcinogenic by the Environmental Protection Agency (EPA)due to its ubiquity in the urban atmosphere and known toxic effects in humans,causing many physiological effects including drowsiness,dizziness,head-ache,lightheadedness,nausea,and even cancers such as leukemia.1,2The development of a green approach to remove benzene from the polluted environment is therefore of vital importance,but it remains a grand challenge due to the stable aromatic benzene structure,especially at ambient conditions.

Various approaches have been developed for the environmental purification of benzene and its derivatives.For example,physical adsorption using activated carbon,3zeolite,4,5and charcoal 6is one of the common methods to remove aromatic hydrocarbons from polluted air.This is however a phase-transfer process that requires further treatment of the adsorbents before final disposal,giving rise to processing problems during post-treatment.Biofilters and hybrid bioreactors have been investigated for the biodegradation of benzene,7-9with activity showing strong dependence on the types of microorganisms used,typically limited to “narrow”

operation conditions.10Chemical destruction of benzene has also been extensively investigated,including catalytic calcinations,11,12oxidation with ozone or supercritical water,13,14degradation using a plasma-based system,15and photocatalytic oxidation.16,17Among these approaches,photocatalytic oxidation could thermo-dynamically allow the destruction of benzene to CO 2and H 2O with clean molecular oxygen at ambient conditions.Intensive studies have been focused on light-harvesting semiconductor TiO 2material for a number of years.Despite the efforts spent on the modification of TiO 2and the optimization of reaction conditions for benzene photooxidation,18-25there remains a general problem of catalytic deactivation for TiO 2-based catalysts in benzene photocatalysis.This intrinsic limitation of TiO 2was reported to be associated

*To whom correspondence should be addressed.E-mail:xcwang@https://www.360docs.net/doc/962271053.html,.Telephone:86-591-83773729.

(1)Oliveira,R.T.S.;Salazar-Banda,G.R.;Santos,M.C.;Calegaro,M.L.;Miwa,D.W.;Machado,S.A.S.;Avaca,L.A.Chemosphere 2007,66,2152–2158.(2)Lan,Q.;Zhang,L.;Li,G.;Vermeulen,R.V.;Weinberg,R.S.;Dosemeci,M.;Rappaport,S.M.;Shen,M.;Alter,B.P.;Wu,Y.;Kopp,W.;Waidyanatha,S.;Rabkin,C.;Guo,W.;Chanock,S.;Hayes,R.B.;Linet,M.;Kim,S.;Yin,S.;Rothman,N.;Smith,M.T.Science 2004,306,1774–1776.

(3)Yun,J.H.;Hwang,K.Y.;Choi,D.K.J.Chem.Eng.Data 1998,43,843–845.(4)Nguyen,C.;Sonwane,C.G.;Bhatia,S.K.;Do,https://www.360docs.net/doc/962271053.html,ngmuir 1998,14,4950–4952.

(5)Coker,E.N.;Jia,C.;Karge,https://www.360docs.net/doc/962271053.html,ngmuir 2000,16,1205–1210.

(6)Braida,W.J.;Pignatello,J.J.;Lu,Y.F.;Ravikovitch,P.I.;Neimark,A.V.;Xing,B.S.Environ.Sci.Technol.2003,37,409–417.

(7)Shim,H.;Yang,S.T.J.Biotechnol.1999,67,99–112.(8)Hameda,T.A.;Bayraktar,E.;Mehmeto g lu,U.;Mehmeto g lu,T.Biochem.Eng.J.2004,19,137–146.

(9)Mu ~n

oz,R.;Villaverde,S.;Guieysse,B.;Revah,S.Biotechnol.Adv.2007,25,410–422.

(10)Zilli,M.;Guarino,C.;Daffonchio,D.;Borin,S.;Converti,A.Process Biochem.2005,40,2035–2043.

(11)Padilla,J.M.;Angel,G.D.;Navarrete,J.Catal.Today 2008,133-135,541–547.

(12)Andreeva,D.;Petrova,P.;Ilieva,L.;Sobczak,J.W.;Abrashev,M.V.Appl.Catal.,B 2008,77,364–372.

(13)Einaga,H.;Futamura,S.J.Catal.2004,227,304–312.

(14)DiNaro,J.L.;Howard,J.B.;Green,W.H.;Tester,J.W.;Bozzelli,J.W.J.Phys.Chem.A 2000,104,10576–10586.

(15)Ratanatawanate,C.;Macias,M.;Jang,B.W.L.Ind.Eng.Chem.Res.2005,44,9868–9874.(16)M e ndez-Rom a n,R.;Cardona-Mart?′nez,N.Catal.Today 1998,40,353–365.

(17)Wu,W.;Liao,L.;Lien,C.;Lin,J.Phys.Chem.Chem.Phys.2001,3,4456–4461.

(18)Einaga,H.;Futamura,S.;Ibusuki,T.Environ.Sci.Technol.2001,35,1880–1884.

(19)Chen,Y.L.;Li,D.Z.;Wang,X.C.;Wu,L.;Wang,X.X.;Fu,X.Z.New J.Chem.2005,29,1514–1519.

(20)Kwon,Y.T.;Song,K.Y.;Lee,W.I.;Choi,G.J.;Do,Y.R.J.Catal.2000,191,192–199.

(21)Fu,X.Z.;Zeltner,W.A.;Anderson,M.C.Appl.Catal.,B 1995,6,209–224.(22)Zhang,W.;Wang,X.X.;Fu,https://www.360docs.net/doc/962271053.html,mum.2003,2196–2197.(23)Chen,Y.L.;Li,D.Z.;Wang,X.C.;Wang,X.X.;Fu,https://www.360docs.net/doc/962271053.html,mum.2004,2304–2305.

(24)Einaga,H.;Futamura,S.;Ibusuki,T.Environ.Sci.Technol.2004,38,285–289.

(25)Einaga,H.;Futamura,S.;Ibusuki,T.Phys.Chem.Chem.Phys.1999,1,4903–4908.

Article Huang et al.

with its active surface sites that strongly bind to the reaction intermediates of benzene photooxidation process.17Fundamental research regarding the surface deactivation mechanism is helpful for the rational design of TiO2-based materials,but the development of new materials as photocatalysts would be one of the alternative approaches to realize efficient benzene photodegradation. Indeed,some miscellaneous oxides such as Zn2GeO4, ZnGa2O4,and Sr2Sb2O7have recently been demonstrated to be new semiconductor photocatalysts capable of catalyzing the oxidation of benzene with molecular oxygen under ambient conditions.26-28Although such miscellaneous oxides have been widely exploited as water-splitting photocatalysts,they are rarely used for photocatalytic purification of aromatic hydrocarbons in polluted air.One of the remaining drawbacks of these water-splitting catalysts is that they are generally synthesized via solid-state reaction methods at high temperatures.The materials prepared in this manner have a very low surface area (ca.<2m2/g),lacking accessible catalytic surface sites and hence are not suitable for gas-solid heterogeneous photocatalysis. Fabrication of catalysts in nanostructural forms can in principle increase the number of available surface sites,facilitating hetero-geneous catalysis to proceed,with the enlarged surface area enhancing the light-harvesting ability and improving mass trans-fer of the materials.Herein,we select Cd2Ge2O6as a new photo-catalyst material due to its unique geometric and electronic structure(see Theoretical Calculations section).Nanoarchitectural fabrication of Cd2Ge2O6was accomplished with a surfactant-assisted soft-chemical synthesis under hydrothermal conditions at <180°C.Materials were fully characterized by XRD,SEM, TEM,UV/vis,N2adsorption-desorption,and FTIR techniques. The photocatalytic oxidation of benzene and its derivatives on Cd2Ge2O6under mild conditions was investigated and analyzed to demonstrate the utility of the as-prepared material.The electronic band structure of nanocrystalline Cd2Ge2O6was also investigated to reveal its high photocatalytic activity and stability.

2.Experimental Section

Preparation of Catalysts.Nanocrystalline Cd2Ge2O6was synthesized by a hydrothermal process.In a typical synthesis,

0.30g of cetyltrimethylammonium bromide(CTAB,Sinopharm

Chemical Reagent,>99.0%),0.52g of GeO2(Sinopharm Chemical Reagent,99.999%),and1.33g of Cd(CH3COO)23 2H2O(Sinopharm Chemical Reagent,>99.0%)were added to

15.0mL of D.I.water.The resulting mixture was adjusted to pH8

by adding NaOH(30wt%).The mixture was stirred for1h and then transferred to a stainless Teflon-lined autoclave of20mL inner volume.The autoclave was heated to100-180°C and then tempered at these temperatures for24h,followed by cooling to room temperature.The product was centrifuged,filtered,and rinsed with alcohol and D.I.water several times.Finally,the product was dried overnight.A white Cd2Ge2O6powder was obtained with a yield of~95%.

Characterization.X-ray diffraction(XRD)patterns were collected inθ-θmode using a Bruker D8Advance X-ray diffractometor(Cu K R1irradiation,λ=1.5406A).The accel-erating voltage and the applied current were40kV and40mA, respectively.Data were recorded at a scan rate of0.02o2θs-1in the2θrange of15-70°.The morphology of the samples was investigated by a field emission scanning electron microscopy (SEM)(JSM-6700F).Transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM) images were obtained by using a JEOL model JEM2010EX instrument at the accelerating voltage of200kV.The powder particles were supported on a carbon film coated on a3mm diameter fine-mesh copper grid.A suspension in ethanol was prepared via sonication and allowed to evaporate to dryness on the support grid prior to analysis.The Brunauer-Emmett-Teller (BET)surface areas were determined by nitrogen adsorption-desorption isotherm measurements at77K by using Micro-meritics ASAP2020equipment.The samples were degassed under vacuum at120°C until a pressure lower than10-6Torr was reached and kept for5h before data acquisition.A Varian Cary 500Scan UV-visible system equipped with a Labsphere diffuse reflectance accessory was used to obtain the reflectance spectra of the catalysts,utilizing BaSO4as the background reference material,with spectra acquired in the200and800nm ranges. Fourier transform infrared(FTIR)spectra were recorded on a Nicolet Nexus670FT-IR spectrometer at a resolution of4cm-1. The catalysts were diluted with KBr powder by a factor of2.5% by weight.FTIR spectra were recorded using40mg of the catalyst/KBr mixture.The amount of OH3produced in the photocatalytic reaction is detected by means of the terephthalic acid(TA)fluorescence(FL)probe method as follows.An aqueous solution containing0.01M NaOH and5.0mM TA was prepared.

A total of80.0mg of Cd2Ge2O6powder was then suspended in

80.0mL of this solution in a Pyrex glass cell.The light source for the excitation of Cd2Ge2O6was three4W UV-lamps with a wavelength centered at254nm(Philips,TUV4W/G4T5).The OH3radicals formed in the system will react with(TA)and generate2-hydroxyterephthalic acid(HTA),the fluorescence of which is directly proportional to the generated OH3.The fluor-escence of HTA excited at321nm is426nm.The fluorescence spectra were measured using an Edinburgh Analytical Instru-ments FL/FSTCSPC920fluorescence spectrophotometer.29,30 Theoretical Calculations.The band structure and density of states(DOS)calculations were performed using CASTEP software utilizing a density functional theory(DFT)plane-wave pseudopotential method.The exchange and correlation terms were described with the local-density approximation(LDA)of Ceperly and Adler31parametrized by Perdew and Zunger.32The unit cell selected for calculation was Cd2Ge2O6.The kinetic energy cutoff was340eV.The fast Fourier transform(FFT)grid of the basis was40?30?30,and the self-consistent field(SCF) tolerance was1.0?10-6eV/atom.The ultrasoft pseudopotential and4?5?5k-point were adopted in this calculation. Photocatalytic Activity Measurements.Photocatalytic ex-periments were conducted with a fixed bed tubular quartz reactor operated in a single-pass mode.The catalyst(0.3g,50-70mesh) was loaded in the reactor surrounded by four4W UV-lamps with a wavelength centered at254nm(Philips,TUV4W/G4T5). Benzene diluted in a pure oxygen stream was used as the test reactant stream.The initial concentrations of benzene and carbon dioxide in the stream were determined as300and0ppm, respectively.The flow rate of the reactant stream was kept at 20mL/min.Simultaneous determination of benzene and CO2 concentrations was performed with an online gas chromatograph (HP6890)equipped with a flame ionization detector,a thermal conductivity detector,and a Porapak R column.The reaction temperature was controlled at29(1°C by an air-cooling system. In the case of photocatalytic degradation of toluene and ethyl-benzene,the experimental conditions were the same as those for the photooxidation of benzene reaction,except that the270ppm of the initial concentration of toluene and ethylbenzene was applied.Control experiments showed that,in the presence of

(26)Huang,J.H.;Wang,X.C.;Hou,Y.D.;Chen,X.F.;Wu,L.;Fu,X.Z. Environ.Sci.Technol.2008,42,7387–7391.

(27)Chen,X.;Xue,H.;Li,Z.H.;Wu,L.;Wang,X.X.;Fu,X.Z.J.Phys.Chem. C2008,112,20393–20397.

(28)Xue,H.;Li,Z.H.;Wu,L.;Ding,Z.X.;Wang,X.X.;Fu,X.Z.J.Phys. Chem.C2008,112,5850–5855.

(29)Hirakawa,T.;Nosaka,https://www.360docs.net/doc/962271053.html,ngmuir2002,18,3247–3254.

(30)Eremia,S.A.V.;Chevalier-Lucia,D.;Radu,G.L.;Marty,J.L.Talanta 2008,77,858–862.

(31)Ceperley,D.M.;Alder,B.J.Phys.Rev.Lett.1980,45,566–569.

(32)Perdew,J.P.;Zunger,A.Phys.Rev.B1981,23,5048–5079.

Huang et al.Article light,but in the absence of catalysts,no degradations were

observed.For comparison,the photocatalytic activities of com-

mercial TiO2(Degussa P25)and Pt/TiO2were also tested under

the same reaction conditions as those employed for Cd2Ge2O6.

3.Results and Discussion

Hydrothermal synthesis is one of the common synthetic

methods for nanostructured materials,and it is generally accepted

that pH value plays an important role in controlling the crystal

structure,composition,and morphology of final products.

We have therefore investigated the effect of pH value on the

formation of Cd2Ge2O6under hydrothermal conditions.Figure1

shows the X-ray diffraction(XRD)patterns of the products

synthesized with different pH values in the presence of CTAB.

When the pH is in the range of4-6,the product is of a pure

tetragonal phase of Cd2Ge7O16(JCPDS:34-0287,a=b=

11.256,c=4.634),whereas pure monoclinic Cd2Ge2O6phase

(JCPDS:43-0468,a=10.184,b=9.652,c=5.377)can be

obtained at pH8and pH10.In addition,the intensity and

sharpness of the XRD peaks decreases with increasing pH value.

This result implies that product crystallinity is influenced

significantly by the pH value of the reaction medium.The sizes

of Cd2Ge2O6crystals calculated by the Scherrer equation and the

surface area values of Cd2Ge2O6prepared at different pH values

are listed in Table1.

We also investigated the impact of crystallization temperatures

on Cd2Ge2O6structure as prepared under hydrothermal condi-

tions.As shown in Figure2,the XRD patterns of material

prepared below100°C indicates that the product is amorphous.

At elevated temperatures of140and180°C,all of the diffraction

peaks for the samples can be assigned to the Cd2Ge2O6crystallites

having a monoclinic structure.Traces of the impurity phase were

not detected using the system resolution employed here for

analysis.The intensities of the diffraction peaks increase and

become sharper with the increase of hydrothermal temperature,

indicating the generation of enhanced crystallinity.The average

crystallite sizes are21and35nm for the Cd2Ge2O6prepared at

140and180°C,respectively.In addition,the intensity of the(131)

reflection of the Cd2Ge2O6of the sample prepared at140°C is

higher than expected,indicating a preferential crystal growth of

the materials under this condition.

Energy-dispersive X-ray(EDX)analysis of different sample

batches revealed that the chemical composition of the samples is

Cd2Ge2O6(Figure S1,Supporting Information).Even for the

material prepared at100°C,the EDX analysis of10dots at

different sample positions showed that the average ratio of Ge/Cd

is1:0.989,approaching the composition of Cd2Ge2O6.No other

element was found except for Pt left on the surface due to the

pretreatment of the sample with sputtering platinum.

Figure3a and b depicts the SEM and TEM images,respec-tively,of Cd2Ge2O6prepared at100°C for24h.The SEM image demonstrates that the as-prepared Cd2Ge2O6consists entirely of small particles with an average size of~10nm,whereas the TEM imaging shows that the material possesses a porous honeycomb structure with fine particulate morphology.However,at higher preparation temperatures,these small particles grow into rod-shaped Cd2Ge2O6with the aid of CTAB as a template.As shown in Figure3c,a large quantity of nanorods with20-80nm in width and150nm to1.5μm in length can be observed.The TEM image(Figure3d)also shows a nanorod-shaped Cd2Ge2O6 prepared at140°C.Figure3e highlights a typical shape of a Cd2Ge2O6nanorod.High resolution TEM(HRTEM)imaging the single crystal nature of the Cd2Ge2O6nanorod.The inter-planar distance of0.313nm observed in this image matches well with the(310)d spacing of the monoclinal Cd2Ge2O6structure. Figure3g corresponding to the fast Fourier transform of Figure3e further supports the single crystal nature of the Cd2Ge2O6nanorod.In combination with the results of XRD and HRTEM,it is clear that the Cd2Ge2O6nanorod grew along the[131]direction of the monoclinal Cd2Ge2O6crystal.

Figure4shows the nitrogen adsorption-desorption isotherms and Barrett-Joyner-Halenda(BJH)pore-size distribution plots of Cd2Ge2O6samples prepared at100and140°C,respectively. Both samples show similar type-IV isotherms,representative of the mesoporous nature of these solids.33The BJH

pore-size Figure1.XRD patterns of the Cd2Ge2O6samples prepared at 140°C for24h under different pH values.

Table1.Effects of Synthetic Conditions on the Compositions and

Crystal Sizes of Result Samples

synthetic conditions

catalyst T(°C)pH crystal size(nm)a S BET(m2/g)b Cd2Ge2O6100898

14082120

140102022

1808359

Cd2Ge7O16140642

140451

a The crystal sizes were calculated via the Scherrer equation:D=

0.89λ/βcosθ,where D is the average crystal size in nm,λis the Cu K R wavelength(0.15406nm),andβis the full-width at half-maximum.

b BET surface

area.

Figure2.XRD patterns of Cd2Ge2O6prepared at different temperatures.

Article Huang et al.

analysis (utilizing the isotherm desorption branch)demonstrates that the Cd 2Ge 2O 6sample prepared at 100°C has a wide pore-size distribution ranging from ~2to 120nm,peaking at 24nm with a pore volume of 0.41cm 3/g.For the Cd 2Ge 2O 6nanorod synthesized at 140°C,the pore volume decreases dramatically UV -vis diffuse reflectance spectra of Cd 2Ge 2O 6samples are presented in Figure 5.The wavelength at the absorption edge,λ,is determined as the intercept on the wavelength axis for a tangent line drawn on absorption spectra.It can be observed that the absorption edge of Cd 2Ge 2O 6prepared at 140and 180°C is 322and 325nm,respectively,corresponding to a band gap of ~3.9eV.The absorption edge of Cd 2Ge 2O 6samples prepared at 100°C equates to approximately 260nm,corresponding to a band gap of ~4.8eV.The blue shifts indicate the presence of a strong quantum confinement effect in the sample synthesized at low temperature.As a result of this confinement,the band gaps of Cd 2Ge 2O 6are increased,and accordingly its redox potentials changes.Thus,the photocatalytic performance of Cd 2Ge 2O 6would change significantly.

Photocatalytic activities of the samples prepared under differ-ent conditions were evaluated by the degradation of benzene in a signal-pass flow-type reactor at constant pressure.The results (see Figure S2in the Supporting Information)show the photo-catalytic performance of Cd 2Ge 2O 6prepared at different tem-peratures.All samples are capable of photocatalytically oxidizing benzene with molecular oxygen;however,the catalytic efficiency of Cd 2Ge 2O 6materials showed strong dependency on the synthetic temperature,with a reduction in efficiency observed with increasing hydrothermal preparation temperature.The concentration of produced CO 2over Cd 2Ge 2O 6samples follows a similar sequence,and all materials tested exceeded that produced over TiO 2.About 10%benzene was converted and 110ppm CO 2was produced for the sample prepared at 140°C.For the sample prepared at 180°C,the photocatalytic activity is slightly lower than that of 140°C.The Cd 2Ge 2O 6sample synthesized at 100°C shows the highest photocatalytic perfor-mance.Over 46%benzene in the stream was converted,and the concentration of produced was 700ppm.Note that GeO 2,CdO,and their mixture cannot convert benzene under the same experimental conditions.Considering the negligible conversion of excited-state benzene on dielectric oxides,34these results suggest that the reaction proceeded photocatalytically on the Cd 2Ge 2O 6samples.

The stability of the catalyst was also investigated.Figure 6shows results of a prolonged photocatalytic reaction over Cd 2Ge 2O 6against the reaction time,together with TiO 2data as a comparison.The initial benzene conversion rate on TiO 2is about 5%,but the activity is not sustainable.It declined with the reaction going on,and after 24h of reaction the conversion

rate

Figure 3.Morphology of Cd 2Ge 2O 6samples.(a)SEM and (b)TEM images of Cd 2Ge 2O 6synthesized at 100°C,(c)SEM and (d)TEM images of Cd 2Ge 2O 6nanorods,(e)typical TEM image of Cd 2Ge 2O 6nanorods,(f)HRTEM image of Cd 2Ge 2O 6nanorods,and (g)fast Fourier transformation pattern of the HRTEM

image.

Figure 4.N 2adsorption -desorption isotherms and pore size dis-

tribution plots for the Cd 2Ge 2O 6sample:(a)100°C and (b)140°

C.

Figure 5.Diffuse reflectance absorption spectra of Cd 2Ge 2O 6

synthesized at different temperature.

Huang et al.Article

decreased to ~1.3%with only ~12ppm CO 2concentration on the stream.After 40h of reaction,the white TiO 2turned black due to the deposition of reaction intermediates,leading to the deactivation of TiO 2.However,for the Cd 2Ge 2O 6sample,the catalyst did not exhibit any significant loss of activity;both the benzene conversion and CO 2concentration were kept steadily at about 46%and 700ppm,respectively,on the stream regardless of the reaction time,with a high mineralization ratio of ~85%.This fact confirms that the photocatalyst is essentially stable.The photocatalytic reaction in 48h produced 1.80mmol of CO 2,exceeding the amount of catalyst used (0.64mmol),further demonstrating that the reaction proceeded catalytically on the Cd 2Ge 2O 6sample.

The FTIR spectra of fresh and used Cd 2Ge 2O 6with a spectrum of TiO 2sample as comparison is presented in Figure S3in the Supporting Information.In the case of Cd 2Ge 2O 6,there is no obvious difference between the spectra of fresh and used samples.This suggests that no detectable reaction intermediates are deposited on the surface of Cd 2Ge 2O 6during the photocatalytic degradation of benzene.The strong redox power of Cd 2Ge 2O 6could allow for the conversion of most reaction intermediates to CO 2,H 2O,or other small molecular substances during the photocatalytic reaction,maintaining a clean active surface for photocatalysis.The clean surface of the used Cd 2Ge 2O 6is also confirmed by a solution NMR analysis (Figure S4,Supporting Information).However,for the TiO 2sample,several IR absorp-tion peaks were found for the used sample but were absent in the fresh sample.The small band at 1483cm -1is the characteristic of aromatic ring stretching vibrations,which demonstrates the deposition of some aromatic compounds on the used TiO 2.35Two bands at 1686and 1711cm -1are the characteristic frequen-cies of C d O stretching,suggesting that attack by the oxygen species upon the carbon deposits also occurred.25As the photo-catalytic reactions take place on the catalyst surface,a clean photocatalytic surface is important for sustaining photocatalysis by maintaining active surface sites for reactants.

In a further set of experiments,we extended this new photo-catalyst to the treatment of other toxic volatile aromatic organic compounds in air.Table 2displays the specific photocatalytic activity of Cd 2Ge 2O 6catalyst toward the degradation of benzene,toluene,and ethylbenzene in the gas phase.The data for com-plementary experiments performed with TiO 2(P25)and Pt/TiO 2are also shown for comparison.Results show that Cd 2Ge 2O 6exhibits high photocatalytic performance for degrading benzene

and its derivatives,whereas TiO 2is almost inactive at the steady state of the reactions.The modification of Pt improved the activity of TiO 2,but the activity was still much lower than that of pure Cd 2Ge 2O 6.In addition,we also tested the activity of samples under humidified conditions (2.5%water vapor)by passing reaction gas through a humidifier.It was found that the photocatalytic activity of Pt/TiO 2and TiO 2can be significantly enhanced,which is accord with the reference,18,36while it has not much influence for Cd 2Ge 2O 6.The degradation rate of benzene over TiO 2and Pt/TiO 2under the humidified condition was enhanced to 11and 12%,respectively.However,the photo-catalytic activity of TiO 2and Pt/TiO 2in the presence of water vapor is still much lower than that of Cd 2Ge 2O 6in dry conditions.An additional experiment was also performed to examine the capability of light-excited Cd 2Ge 2O 6to induce the formation of hydroxyl radicals (OH 3),which is the key reactive species in the degradation of organic compounds.It is well-known that tereph-thalic acid can capture OH 3and form 2-hydroxyterephthalic acid which can be easily detected by its fluorescence signal.29,30In the present work,we applied this fluorescence method for the direct measurement of the amounts of OH 3production.Figure 7a shows fluorescence spectra observed for the Cd 2Ge 2O 6suspen-sion containing 5mM terephthalic acid irradiated for various exposure times.As OH 3could also be produced by irradiation of terephthalic acid with 254nm UV,the fluorescence for the system without photocatalyst of Cd 2Ge 2O 6was also tested.Figure 7b shows the fluorescence intensity as a function of the duration of irradiation.The fluorescence intensity increases linearly with irradiation time for the systems with and without Cd 2Ge 2O 6.However,the slope of the system containing Cd 2Ge 2O 6is much higher than that of the system without the catalyst.This result is a strong indication that the photogenerated charge carriers in Cd 2Ge 2O 6possess strong redox ability,and are long-lived enough to react with H 2O and hydroxyl groups adsorbed on the catalyst surface to form the desirable OH 3radical species.

The calculated band structure supports the high catalytic performance of Cd 2Ge 2O 6.As shown in Figure 8,the top of the valence band of Cd 2Ge 2O 6is made up of O2p levels,and the bottom of the conduction band (CB)is the hybridized orbital of Ge4s4p and Cd5s5p states.37Large overlap among these states enlarges the dispersion of the CB,facilitating the diffusion of free charge carries.This unique electronic structure is a common feature for post-transition metal oxides which are believed to show great promise in photochemical applications.

The edge energy of the conduction band (E CB )of Cd 2Ge 2O 6estimated from the equation of X (Cd 2Ge 2O 6)-0.5E g 38is

Table 2.Photocatalytic Activity of Different Catalysts for Benzene,

Toluene,and Ethylbenzene Photooxidation Reactions

CR b

catalyst S BET (m 2/g)a

benzene toluene ethylbenzene

TiO 2c 510.7 1.70.9Pt/TiO 2c

51 3.1 4.4 1.3Cd 2Ge 2O 6-100d 9824.629.629.9Cd 2Ge 2O 6-140e

20

3.5

5.4

6.1

a

BET surface area.b Conversion rate:n (aromatic compound)per gram catalyst per hour (unit:μmol g -1h -1).c Data from ref 26.d

Cd 2Ge 2O 6prepared at 100°C.e Cd 2Ge 2O 6prepared at 140°

C.

Figure 6.Prolonged photocatalytic experiment of benzene decomposition over Cd 2Ge 2O 6with TiO 2(P25)as comparison.

(35)Hou,Y.D.;Wang,X.C.;Wu,L.;Ding,Z.X.;Fu,X.Z.Environ.Sci.Technol.2006,40,5799–5803.

(36)Einaga,H.;Futamura,S.;Ibusuki,T.Phys.Chem.Chem.Phys.1999,1,4903–4908.

(37)Sato,J.;Kobayashi,H.;Ikarashi,K.;Saito,N.;Nishiyama,H.;Inoue,Y.J.Phys.Chem.B 2004,108,4369–4375.

(38)Butler,M.A.;Ginley,D.S.J.Electrochem.Soc.1978,125,228–232.

Article Huang et al.

-2.86eV AVS (AVS =absolute vacuum scale)and is higher than that of TiO 2(-4.21eV AVS ).39The edge energy of the valence band (E VB )is estimated to be -7.66eV AVS ,lower than that of TiO 2(-7.41eV AVS ).This issue is illustrated in Figure 9,which shows the redox potentials of TiO 2and Cd 2Ge 2O 6.The high energy levels of the conduction and valence band edges allow the photogenerated holes to be kinetically more favorable to react with adsorbed H 2O,producing active OH 3radicals.The wide gap of Cd 2Ge 2O 6might be one drawback;however,it is not a serious problem for treatment devices using bactericidal lamps (emission wavelength 254nm).In addition,our initial experiments have shown that Cd 2Ge 2O 6can be easily modified by doping nitrogen

into the crystal lattice using a NH 3gas flow at high temperature,making the materials responsive to the visible spectrum (see Figure S5in the Supporting Information).Investigations into the utility of these materials in the visible-light induced photo-catalytic degradation of aromatic pollutants are currently under-way.

Figure 10shows the proposed three-dimensional crystal struc-ture of Cd 2Ge 2O 6.The Cd 2Ge 2O 6crystal cell is composed of GeO 4tetrahedrons and CdO 4tetrahedrons.These tetrahedrons are combined with edge oxygen.We have calculated the center of gravity of oxygen ions surrounding a Ge 4+ion by using the crystallographic data regarding the atom positions.There are two kinds of dipole moments of GeO 4tetrahedrons in the Cd 2Ge 2O 6crystal cell:one dipole moment of GeO 4is 0.2D,and the other one inside the tetrahedron is 0.4D.The dipole moment is known to induce the formation of local fields in the interior of the distorted polyhedra,which are considered to promote the separa-tion of electron -hole pairs in semiconductor materials.A corre-lation between the photocatalytic activity and the dipole moment (local fields)has been demonstrated by Inoue et al.40Their study indicated that CaIn 2O 4and SrIn 2O 4showed high photocatalytic activity as a result of the distorted InO 6octahedra,whereas the photocatalytic activity of LiIn 2O 4and NaIn 2O 4was negligible due to their distortion-free structure.

It is known that gas -solid heterogeneous photocatalysis is a surface-based process and therefore a large material surface will benefit such processes.41,42In this study,the samples have a specific surface area as high as 98m 2/g.This relatively large surface area provides more surface sites for the adsorption

of

Figure 7.(a)Fluorescence spectra obtained for the supernatant

liquid of the irradiated Cd 2Ge 2O 6sample suspension containing terephthalic acid (5.0mmol/L)at various irradiation periods.(b)Plots of the induced fluorescence intensity (426nm)against light irradiation

time.

Figure 8.(a)Total and atomic density of states and (b)band

structure for Cd 2Ge 2O 6.In each panel,the top of the valence band was set to

zero.

Figure 9.Position of the energy levels of the conduction band edge (E CB )and the valence band edge (E VB )of TiO 2and Cd 2Ge 2O 6with respect to the

AVS.

Figure 10.Three-dimensional crystal structure of Cd 2Ge 2O 6with

a unit cell.

(39)Xu,Y.;Schoonen,M.A.A.Am.Mineral.2000,85,543–556.

(40)Sato,J.;Kobayashi,H.;Inoue,Y.J.Phys.Chem.B 2003,107,7970–7975.(41)Hoffmann,M.R.;Martin,S.T.;Choi,W.Y.;Bahnemann,D.W.Chem.Rev.1995,95,69.

(42)Huang,J.H.;Wang,X.C.;Hou,Y.D.;Chen,X.F.;Wu,L.;Wang,X.X.;Fu,X.Z.Microporous Mesoporous Mater.2008,110,543–552.

Huang et al.Article

reactant molecules and also for light harvesting,and ultimately makes the photocatalytic processes more efficient.Furthermore, our group has reported a series of catalytic materials including Zn2GeO4and SrSb2O7suitable for the photocatalytic degrada-tion of benzene(see Table S1in the Supporting Information).26,28 These photocatalysts also show higher activity toward benzene degradation than TiO2-based catalysts under ambient conditions. However,none of these catalysts demonstrate as such a high photocatalytic activity under the same conditions as Cd2Ge2O6materials presented here,which together with the ease of modification of these porous materials presents possible future opportunities to further improve Cd2Ge2O6-based catalyst performance.

4.Conclusions

In summary,Cd2Ge2O6was prepared by a surfactant-assisted hydrothermal method and used as a new photocatalytic material. The catalysts can efficiently photocatalyze the oxidation of benzene and its derivatives without the problem of catalytic deactivation.The explanation for the high photocatalytic perfor-mance of Cd2Ge2O6is provided,arising from unique geometric and electronic structure and large surface area,which favors the formation of the reactive hydroxyl radical species.This study demonstrates the promise of complex metal oxide materials with favorable electronic and textural structures for environ-mental photocatalysis especially for the elimination of aromatic pollutants in air.

Acknowledgment.This work is financially supported by the NSFC(Grant Nos.20603007and20777011),the973Program (Grant Nos.2007CB613306and2007CB616907),the New Century Excellent Talents in University of China(Grant No. NCET-07-0192),and the NSF of Fujian Province(Grant Nos. 2006J0160and2008H0089).We are indebted to Prof.J.Q.Li and Dr.R.White for their help and discussion.We also thank the reviewers for their helpful suggestions and comments on the manuscript.

Supporting Information Available:EDX analysis result of Cd2Ge2O6,photocatalytic activity of Cd2Ge2O6prepared at different temperature,FTIR spectra of the fresh and used Cd2Ge2O6and TiO2,and light absorption property of nitrogen doped Cd2Ge2O6.This material is available free of charge via the Internet at https://www.360docs.net/doc/962271053.html,.

阻聚剂

阻聚剂 定义 能使烯类单体的自由基聚合反应完全终止的物质。这 阻聚剂 种作用称阻聚。 为了避免烯类单体在贮藏、运输等过程中发生聚合,单体中往往加入少量阻聚剂,在使用前再将它除去。一般,阻聚剂为固体物质,挥发性小,在蒸馏单体时即可将它除去。常用的阻聚剂对苯二酚能与氢氧化钠反应生成可溶于水的钠盐,所以可用5%~10%的氢氧化钠溶液洗涤除去。氯化亚铜和三氯化铁等无机阻聚剂也可用碱洗除去。 阻聚剂可以防止聚合作用的进行,在聚合过程 作用: 单体在贮存、运输中常加入阻聚剂以防止聚合 中产生诱导期(即聚合速度为零的一段时间),诱导期的长短与阻聚剂含量成正比,阻聚剂消耗完后,诱导期结束,即按无阻聚剂存在时的正常速度进行。 阻聚机理 根据抑制聚合反应的作用,将能终止每个自由基而使聚合反应停止,直到它们完全耗尽的物质称为阻聚剂或抑制剂;而只能使自由基活性减弱,减慢聚合反应速度,但不能终止反应的物质称为阻滞剂。 (1)酚类阻聚剂。多元酚及取代酚是一类应用广泛、效果较好的阻聚剂,但必须在单体中溶解有氧时才显示阻聚效果。其阻聚机理是酚类被氧化成相应的醌与链的自由基结合而起阻聚作用。在酚类阻聚剂存在下,使过氧化自由基很快终止,确保在单体中有足够量氧,可以延长阻聚期。 (2)醌类阻聚剂。醌类阻聚剂是常用的分子型阻聚剂,用量O.01%~O.1%便能达到预期的阻聚效果;但对不同的单体阻聚效果有异.对皋醌是苯乙烯、醋酸乙烯有效的阻聚剂,但对丙烯酸甲酯和甲基丙烯酸甲酯仅起缓聚作用;醌类的阻聚机理尚不完全清楚,可能是醌与自由基进行加成或歧化反应,生成醌型或半醌型自由基,再与活性自由基结合,得到没有活性的产物,起到阻聚作用。每一分子对苯醌能终止的自由基数大于1,甚至达到2。将四氯苯醌、l,4-萘醌等加入到含苯乙烯的不饱和聚酯树脂中能起到良好的阻聚作用,提高储存稳定性。四氯苯醌是醋酸乙烯的有效阻聚剂,但对丙烯腈无阻聚效果。 (3)芳烃硝基化合物阻聚剂。芳烃硝基化合物的阻聚效果不如酚类,只用于醋酸乙烯、异戊二烯、丁二烯、苯乙烯,但对丙烯酸酯和甲基丙烯酸酯类没有阻聚作用:硝基苯通过与自由基生成稳定的氮氧自由基而起阻聚作用。 (4)无机化合物阻聚剂。无机盐是通过电荷转移而起阻聚作用,氯化铁阻聚效率高,并能按化学剂量1:1消灭自由基。硫酸钠、硫化钠、硫氰酸铵能用作水相阻聚剂。 (5)氧气的阻聚作用。分子氧有两个未配对的电子,常被视为双自由基,能起阻聚和引发双重作用,低温时则起阻聚作用。氧能与交联剂的自由基和大分子链自由基反应生成较无活性的过氧化自由基,在室温或稍高温度下都不能引发共聚合反应。这种氧的阻聚作用使不饱和聚酯树脂与空气接触的表面固化不完全而发黏。但在高温时氧与自由基生成的过氧化物自由基能分解成活性自由基,从而引发聚合反应。当氧在单体中的溶解度达10-3mol/L时,就有强烈的阻聚作用。包装厌氧胶的容器不能装满就是保证有足够量的氧气,阻聚而稳定储存。在聚合反应过程中通惰性气体则是防止氧的阻聚作用。[1]

年产20万吨乙苯脱氢制苯乙烯装置工艺设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 毕业设计 20万吨年乙苯脱氢制苯乙烯装置工艺设计 摘要 苯乙烯是最重要的基本有机化工原料之一。本文介绍了国内外苯乙烯的现状及发展概况,苯乙烯反应的工艺条件,乙苯脱氢制苯乙烯催化剂,苯乙烯的生产方法和生产工艺。 本设计以年处理量20万吨乙苯为生产目标,采用乙苯三段催化脱氢制苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。根据设计任务书的要求对整个工艺流程进行了物料衡算,并利用流程设计模拟软件Aspen Plus对整个工艺流程进行了全流程模拟计算,选用适宜的操作单元模块和热力学方法,建立过程模型进行稳态模拟计算并绘制了带控制点的工艺流程图。在设计过程中对整个工艺流程进行了简化计算,将整个流程分为了反应和精馏分离两个部分,利用计算机模拟计算结果对整个工艺流程进行了模拟优化,并确定了整套装置的主要工艺尺寸。 由于本设计方案使用计算机过程模拟软件Aspen Plus进行仿真设计,减少了实际设计中的大量费用,对现有工艺进行改进及最优综合具有重要的实际意义。 关键词:乙苯,苯乙烯,脱氢,Aspen Plus,模拟优化

Abstract Styrene Monomer(SM)is one of the most important organic chemicals. This article describes the present situation and development of styrene at conditions, catalyst for ethylbenzene dehydrogenation to styrene, styrene production methods and production processes. This design is based on the annual targets, ethylbenzene three-stage dehydrogenation using styrene in the process, the entire section in the process design and equipment selection. According to the requirements of the design of the mission statement of the entire process the material balance, process design simulation software Aspen Plus simulation of the whole process of the entire process, choose the appropriate operating unit module and thermodynamic methods, process model for steady-state simulation and draw the P&ID diagram. The entire process in the design process, simplify the calculation, the whole process is divided into reaction and distillation to separate the two parts, the use of computer simulation results on the entire process flow simulation and optimization, and determine the size of the main process of the entire device . This design using computer simulation software Aspen Plus simulation designed to reduce the substantial costs of the actual design, to improve the existing process and optimal synthesis ,Aspen Plus,Simulation and optimization

抽提重组石脑油用于生产优质催化重整及乙烯裂解原料

Hans Journal of Chemical Engineering and Technology 化学工程与技术, 2019, 9(4), 349-360 Published Online July 2019 in Hans. https://www.360docs.net/doc/962271053.html,/journal/hjcet https://https://www.360docs.net/doc/962271053.html,/10.12677/hjcet.2019.94050 Naphtha Recombination for the Production of High-Quality Catalytic Reforming and Ethylene Cracking Feed Siliang Gao, Longsheng Tian, Wencheng Tang, Ming Zhao Research Institute of Petroleum Processing, SINOPEC, Beijing Received: Jul. 10th, 2019; accepted: Jul. 24th, 2019; published: Jul. 31st, 2019 Abstract A novel process was designed to recombine naphtha in order to produce high-quality feed of cata- lytic reforming and ethylene cracking. It included a naphtha pre-fractionation column and an ex-tractive distillation (ED) unit. The light fraction from the top of the pre-fractionation column was sent into the ED column as its feed. The extracted oil together with the heavy components from the bottom of the pre-fractionation column were used as reforming feed; while the raffinate from the ED unit was used as ethylene cracking feed. The experiment results showed that the best solvent for ED unit was the mixture of N-methyl pyrrolidone and diphenyl methane (mass ratio was 7:3), and it was used in the extractive distillation trial test to separate the light fraction after pre-fractionation. The mass fraction of alkanes in the raffinate went up to 68.99%, which was 24.21 percent points higher than naphtha, and the content of aromatics was almost 0. It was good raw material for ethylene plant. The aromatic potential of pre-fractionated heavy components and the extracted oil increased by 5.7 and 6.5 percentage points respectively compared with naphtha, and the final aromatic potential of the mixture was 57.5%. It was suitable to produce benzene-free clean gasoline or to be the reforming feedstock for toluene production. The whole process was simulated by ProII software, and the simulation results were basically consistent with the experi-mental results. Finally, the operating parameters were optimized, and the total energy consump-tion was 20.86 MW. Keywords Naphtha, Extractive Distillation, Alkane, Naphthene, Aromatics 抽提重组石脑油用于生产优质催化重整 及乙烯裂解原料 高思亮,田龙胜,唐文成,赵明 中国石化石油化工科学研究院,北京

苯乙烯生产工艺(完整资料).doc

此文档下载后即可编辑 课题:乙苯脱氢生产苯乙烯 第二节 乙苯脱氢生产苯乙烯 一、概述 1.苯乙烯的性质和用途 苯乙烯的化学结构式如下: 苯乙烯又名乙烯基苯,系无色至黄色的油状液体。具有高折射性和特殊芳香气味。沸点为145 ℃,凝固点 -30.4℃,难溶于水,能溶于甲醇、乙酸及乙醚等溶剂。 苯乙烯在高温下容易裂解和燃烧,生成苯、甲苯、甲烷、乙烷、碳、一氧化碳、二氧化碳和氢气等。苯乙烯蒸气与空气能形成爆炸混合物,其爆炸范围为1.1%~6.01%。 苯乙烯具有乙烯基烯烃的性质,反应性能极强,如氧化、还原、氯化等反应均可进行,并能与卤化氢发生加成反应。苯乙烯暴露于空气中,易被氧化成醛、酮类。苯乙烯易自聚生成聚苯乙烯(PS )树脂。也易与其他含双键的不饱和化合物共聚。 苯乙烯最大用途是生产聚苯乙烯,另外苯乙烯与丁二烯、丙烯腈共聚,其共聚物可用以生产 ABS 工程塑料;与丙烯腈共聚可得AS 树脂;与丁二烯共聚可生成丁苯乳胶或合成丁苯橡胶。此外,苯乙烯还广泛被用于制药、涂料、纺织等工业。 CH=CH 2 CH=CH 2

2.生产方法 工业生产苯乙烯的方法除传统乙苯脱氢的方法外,出现了乙苯和丙烯共氧化联产苯乙烯和环氧丙烷工艺、乙苯气相脱氢工艺等新的工业生产路线,同时积极探索以甲苯和裂解汽油等新的原料路线。迄今工业上乙苯直接脱氢法生产的苯乙烯占世界总生产能力的 90%,仍然是目前生产苯乙烯的主要方法,其次为乙苯和丙烯的共氧化法。本节主要介绍乙苯脱氢法生产苯乙烯。 二、反应原理 1.主、副反应 主反应: +H 2 △H Φ 298=117.6KJ/mol 在主反应发生的同时,还伴随发生一些副反应,如裂解反应和加氢裂解反应: + +CH 4 +C 2H 4 +H 2 +C 2H 6 在水蒸气存在下,还可发生水蒸气的转化反应 +2H +2CO 2+3H 2 CH 2—CH 3 2 CH 2— CH 3 CH 2—CH 3 CH 2—CH 3 CH 2—CH 3

苯乙烯的悬浮聚合

苯乙烯的悬浮聚合 一、实验目的 1.学习悬浮聚合的原理。 2.掌握悬浮聚合的操作方法。 3.了解各种操作条件对合成树脂粒径的影响。 二、实验原理 悬浮聚合通常是依靠激烈的机械搅拌使含有引发剂的单体分散成直径为 0.01~5mm的单体液滴而悬浮于水中。这样,每一个小滴都是一个微型聚合场所,因小 滴的粒径甚小而且水的粘度低,所以传热效果好,整个聚合体系的温度比较容易控制。 因为悬浮体系在热力学上不稳定,故需搅拌和加入悬浮稳定剂以维持稳定。悬浮聚合的配方一般至少有四个组分,即单体、引发剂、水和悬浮稳定剂。悬浮就和中单体不能溶于水,否则就不能使单体分散成小珠滴。不溶于水的单体,如苯乙烯、醋酸乙烯酯、甲基丙烯酸甲酯等。 引发剂(溶于单体),如过氧化二苯甲酰、偶氮二异丁腈、十二烷基过氧化物等。 悬浮稳定剂有三种:(1)水溶性高分子化合物,如明胶、琼脂、果胶、藻朊酸盐、甲基纤维素、聚乙烯醇、聚丙烯酸盐(或聚甲基丙烯酸盐)、聚乙烯基吡咯烷酮、聚甲基丙烯酰胺等。(2)非水溶性矿物质,如矾土、硅胶、磷酸钙、硫酸钡、碳酸镁等。。 (3)可溶性电解质,如氯化钠、氯化钾、硫酸钠、焦磷酸钠等。 悬浮稳定剂的作用在于调节聚合物的表面张力、比重、粘度,避免单体液滴在水相中粘结。例如:添加食盐等电解质当做辅助稳定剂,可用来降低单体与水的相容性、调节水相的比重、表面张力及粘度。 影响粒径的主要因素有下列几点:(1)搅拌速度越快,液滴越小。(2)单体与水的比例越大,粒径越大。通常为1:2左右(实验室中水用量可大一些)。(3)悬浮稳定剂的种类及添加量。(4)搅拌叶片的宽度及位置。 悬浮聚合具有下列特征: ①单体不溶于水。 ②可得圆柱状粒子,机械强度大。 ③聚合热易扩散到水中。 ④加入分散剂,时颗粒不能聚集在一起。 ⑤没有副产品。 ⑥无公害(不用有机溶剂)。 其缺点为 ①单位反应器的产量少。 ②因聚合珠粒上必附有残余的悬浮稳定剂,其纯度不如本体聚合产品。 ③无法进行连续式聚合。 三、仪器及药品 三口烧瓶、温度计、搅拌器、水浴锅、铁架台、冷凝管、量筒、烧杯、抽滤装置 苯乙烯、聚乙烯醇、去离子水、 四、实验步骤 1.取16ml苯乙烯,0.3g BPO 于三口烧瓶溶解。 2.取20ml 1.5%的聚乙烯醇溶液加130ml水加入三口烧瓶。 3.在30min内升温到80~90℃反应1h 4.反应达到1.5h观察反应液有液珠产生,将反应液倒入去离子水中得到透明珍珠粒状物。

乙苯脱氢制苯乙烯

乙苯脱氢制苯乙烯实验指导书 一、实验目的 1、了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。 2、学会稳定工艺操作条件的方法。 3、掌握乙苯脱氢制苯乙烯的转化率、选择性、收率与反应温度的关系;找出最适宜的反应温度区域。 4、了解气相色谱分析方法。 二、实验的综合知识点 完成本实验的测试和数据处理与分析需要综合应用以下知识: (1)《化工热力学》关于反应工艺参数对平衡常数的影响,工艺参数与平衡组成间的关系。 (2)《化学反应工程》关于反应转化率、收率、选择性等概念及其计算、绝热式固定床催化反应器的特点。 (3)《化工工艺学》关于加氢、脱氢反应的一般规律,乙苯脱氢制苯乙烯的基本原理、反应条件选择、工艺流程和反应器等。 (4)《催化剂工程导论》关于工业催化剂的失活原因及再生方法。 (5)《仪器分析》关于气相色谱分析的测试方法。 三、实验原理 1、本实验的主副反应 主反应: 副反应: 在水蒸气存在的条件下,还可能发生下列反应: 此外还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2、影响本反应的因素 (1)温度的影响 乙苯脱氢反应为吸热反应,?H o >0,从平衡常数与温度的关系式20ln RT H T K p p ?= ???? ????可知,

提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为:540~600℃。 (2)压力的影响 乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式Kp=Kn= γ? ? ? ? ? ? ? ∑i n P 总可知,当?γ> 0时,降低总压P总可使Kn增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸气的目的是降低乙苯的分压,以提高乙苯的平衡转化率。较适宜的水蒸气用量为:水﹕乙苯=1.5﹕1(体积比)或8﹕1(摩尔比)。 (3)空速的影响 乙苯脱氢反应系统中有平行副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,故需采用较高的空速,以提高选择性。适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。 3、催化剂 本实验采用氧化铁系催化剂,其组成为:Fe2O3-CuO-K2O3-CeO2。 四、预习与思考 1、乙苯脱氢生成苯乙烯反应是吸热还是放热反应?如何判断?如果是吸热反应,则反应温度为多少?实验室是如何来实现的,工业上又是如何来实现的? 2、对本反应而言是体积增大还是减小?加压有利还是减压有利,工业上是如何来实现加减压操作的?本实验采用什么方法?为什么加入水蒸气可以降低烃分压? 3、在本实验中你认为有哪几种液体产物生成?有哪几种气体产物生成?如何分析? 4、进行反应物料衡算,需要—些什么数据?如何搜集并进行处理? 五、实验装置及流程 乙苯脱氢制苯乙烯实验装置及流程见图1。 六、实验步骤及方法 1、反应条件控制 汽化温度300℃,脱氢反应温度540~600℃,水﹕乙苯=1.5﹕1(体积比),相当于乙苯加料0.5mL/min,蒸馏水0.75 mL/min (50毫升催化剂)。 2、操作步骤 (1)了解并熟悉实验装置及流程,搞清物料走向及加料、出料方法。 (2)接通电源,使汽化器、反应器分别逐步升温至预定的温度,同时打开冷却水。 (3)分别校正蒸馏水和乙苯的流量(0.75mL/min和0.5mL/min) (4)当汽化器温度达到300℃后,反应器温度达400℃左右开始加入已校正好流量的蒸馏水。当反应温度升至500℃左右,加入已校正好流量的乙苯,继续升温至540℃使之稳定半小时。 (5)反应开始每隔10~20分钟取一次数据,每个温度至少取两个数据,粗产品从分离器中放入量筒内。然后用分液漏斗分去水层,称出烃层液重量。 (6)取少量烃层液样品,用气相色谱分析其组成,并计算出各组分的百分含量。 (7)反应结束后,停止加乙苯。反应温度维持在500℃左右,继续通水蒸气,进行催化剂的清焦再生,约半小时后停止通水,并降温。

石脑油

1.定义 石脑油是石油产品之一。英文名称Naphtha,别名轻汽油、化工轻油。词源于波斯语,指易挥发的石油产品。是由C4-C12烷烃、环烷烃、芳烃、烯烃组成的混合物。 2.性状、情况简介。 石脑油在常温、常压下为无色透明或微黄色液体,有特殊气味,不溶于水。密度在650-750kg/m3、。硫含量不大于0.08%,烷烃含量不超过60%,芳烃含量不超有12%,烯烃含量不大于1.0%。3.加工工艺情况 通常由原油直接蒸馏而得到,也可以由二次加工汽油进行加氢精制后获得。石脑油是管式炉裂解制取乙烯,丙烯,催化重整制取苯,甲苯,二甲苯的重要原料。作为裂解原料,要求石脑油组成中烷烃和环烷烃的含量不低于70%(体积);作为催化重整原料用于生产高辛烷值汽油组分时,进料为宽馏分,沸点范围一般为80-180℃,用于生产芳烃时,进料为窄馏分,沸点范围为60-165℃; 用作蒸汽裂解制乙烯原料或合成氨造气原料时,可取初馏点至220℃馏分。国外常用的轻质直馏石脑油沸程为0-100℃,重质直馏石脑油沸程为100-200℃;催化裂化石脑油有<105℃,105-160℃及160-200℃的轻、中、重质三种。 4.用途 石脑油的用途是多方面的,在石油炼制方面是制造清洁汽油的主要原料,在石油化工方面是制造乙烯、芳烃/聚酯、合成氨/化肥和

制氢的原料。在数量关系方面,石脑油使用于油品的数量最大,乙烯料其次,芳烃更小。国际上油品、乙烯料、芳烃料三者大致数量比例为:6.82:1:0.36。这样,对于炼油和石油化工行业来讲,石脑油原料的分配和合理利用存在一个内部竞争的问题。 石脑油由原油蒸馏或石油二次加工切取相应馏分而得。其沸点范围依需要而定,通常为较宽的馏程,如30-220℃。石脑油是管式炉裂解制取乙烯,丙烯,催化重整制取苯,甲苯,二甲苯的重要原料。作为裂解原料,要求石脑油组成中烷烃和环烷烃的含量不低于70(体积);作为催化重整原料用于生产高辛烷值汽油组分时,进料为宽馏分,沸点范围一般为80-180℃,用于生产芳烃时,进料为窄馏分,沸点范围为60-165℃。 5.其它 石脑油闪点在0℃以下,爆炸极限为1.0%-0.8%。毒性随芳烃含量的不同而不同,高浓度蒸发气体有窒息性。石脑油由原油蒸馏或石油二次加工切取相应馏分而得。其沸点范围依需要而定,通常为较宽的馏程,如30-220℃。石脑油是管式炉裂解制取乙烯,丙烯,催化重整制取苯,甲苯,二甲苯的重要原料。作为裂解原料,要求石脑油组成中烷烃和环烷烃的含量不低于70%(体积);作为催化重整原料用于生产高辛烷值汽油组分时,进料为宽馏分,沸点范围一般为80-180℃,用于生产芳烃时,进料为窄馏分,沸点范围为60-165℃。国外常用的轻质直馏石脑油沸程为0-100℃,重质直馏石脑油沸程为100-200℃;催化裂化石脑油有<105℃,105-160℃及160-200℃的轻、中、重质

苯乙烯流程图

课题:乙苯脱氢生产苯乙烯 授课内容: ●乙苯脱氢生产苯乙烯反应原理 ●乙苯脱氢生产苯乙烯工艺流程 知识目标: ●了解苯乙烯物理及化学性质、生产方法及用途 ●掌握乙苯脱氢生产苯乙烯反应原理 ●掌握乙苯脱氢生产苯乙烯工艺流程 能力目标: ●分析和判断影响反应过程的主要因素 ●分析和判断主副反应程度对反应产物分布的影响 思考与练习: ●乙苯脱氢生产苯乙烯反应中有哪些副反应? ●影响乙苯脱氢生产苯乙烯反应过程的主要因素有哪些? ●绘出乙苯脱氢生产苯乙烯工艺流程图 授课班级:

授课时间: 年 月 日 第二节 乙苯脱氢生产苯乙烯 一、概述 1.苯乙烯的性质和用途 苯乙烯的化学结构式如下: 苯乙烯又名乙烯基苯,系无色至黄色的油状液体。具有高折射性和特殊芳香气味。沸点为145 ℃,凝固点 -30.4℃,难溶于水,能溶于甲醇、乙酸及乙醚等溶剂。 苯乙烯在高温下容易裂解和燃烧,生成苯、甲苯、甲烷、乙烷、碳、一氧化碳、二氧化碳和氢气等。苯乙烯蒸气与空气能形成爆炸混合物,其爆炸范围为1.1%~6.01%。 苯乙烯具有乙烯基烯烃的性质,反应性能极强,如氧化、还原、氯化等反应均可进行,并能与卤化氢发生加成反应。苯乙烯暴露于空气中,易被氧化成醛、酮类。苯乙烯易自聚生成聚苯乙烯(PS )树脂。也易与其他含双键的不饱和化合物共聚。 苯乙烯最大用途是生产聚苯乙烯,另外苯乙烯与丁二烯、丙烯腈共聚,其共聚物可用以生产 ABS 工程塑料;与丙烯腈共聚可得AS 树脂;与丁二烯共聚可生成丁苯乳胶或合成丁苯橡胶。此外,苯乙烯还广泛被用于制药、涂料、纺织等工业。 2.生产方法 工业生产苯乙烯的方法除传统乙苯脱氢的方法外,出现了乙苯和丙烯共氧化联产苯乙烯和环氧丙烷工艺、乙苯气相脱氢工艺等新的工业生产路线,同时积极探索以甲苯和裂解汽油等新的原料路线。迄今工业上乙苯直接脱氢法生产的苯乙烯占世界总生产能力的 90%,仍然是目前生产苯乙烯的主要方法,其次为乙苯和丙烯的共氧化法。本节主要介绍乙苯脱氢法生产苯乙烯。 二、反应原理 1.主、副反应 CH=CH 2 CH=CH 2

阻聚剂的性质及作用

生产与技术 阻聚剂的性质及作用 田建波2014/5/26 【摘要】阻聚剂的性质及作用和在苯加氢中的应用。【关键词】阻聚剂、结焦、三苯 一.特性:外观呈橙红色液体,有芳烃气味,不溶于水,易溶于有机溶剂。阻聚剂为有机混合物,和芳香烃互溶性好,可以燃烧,。 指标名称指标 外观橙红色液体 密度(20℃)Kg/M31000-1130 水含量(Wt%)≤0.15 苯不溶物(Wt%)≤0.2 二、阻聚剂的主要成分:由耐高温的特效阻聚剂、抗氧防胶剂、清净分散剂、金属离子钝化剂及石油溶剂按一定比例复配、调和而成。 三、芳烃混合物分离:在芳烃混合物中一般含有大量的苯乙烯、α-甲基苯乙烯、二乙烯基苯、二聚环戊二烯及茚等不饱和物。上述不饱和物在芳烃馏分精馏分离过程中因受热会快速聚合而形成大 量焦油状物,从而造成目的产物收率降低,甚至造成设备堵塞使生产无法顺利进行。阻聚剂具有耐高温、对芳烃馏分中不饱和物阻聚效果好、本身蒸汽压低不影响目的产品纯度等优点。阻聚剂可有效

抑制不饱和物的热聚合,大幅度降低焦油物产生量,提高目的三苯 的收率,避免设备结胶、堵塞。 四、使用方法:阻聚剂成液态,可预先与原料按一定浓度混合好后 再进料;也可在连续进料时用计量泵按一定比例与原料一起加入系 统中。对苯加氢装置而言,可根据装置设计的不同,选择两点或一 点加入:对有脱重组分塔的装置,推荐选择两点加入:即在脱重塔 预热器前和预加氢加热器前加入阻聚剂;对没有脱重组分塔的置, 可在预加氢加热器前加入。 五、阻聚剂既可以用计量泵直接按比例与原料一起连续加入系中, 也可以根据需要用溶剂稀释成合适浓度再使用。 六、推荐用量:对粗苯加氢精制装置而言,推荐使用量一般为: 100~200ppm。 粗苯中不饱和物总量 1.0-1.5% 1.5-2.0% 2.0-2.5% 2.5-3.0% 3.0-3.5%推荐加入量0.05-0.1‰0.1-0.15‰0.15-0.2‰0.2-0.25‰0.25-0.3‰ 七、阻聚剂使用注意事项: (1)危险特性:阻聚剂为有机混合物,可以燃烧,无腐蚀性。 (2)安全措施:·远离火种,避免阳光暴晒,储于阴凉通风处。 ·保持容器密封,竖直向上存放,避免猛烈撞击。 ·避免与食品类接触。 ·注意个体防护,避免身体直接接触。操作者一定 要佩戴防化学品手套。 ·用肥皂水和清水冲洗身体接触部位。

年产90万吨焦化厂洗苯工段的初步设计

一、意义 1.1三苯在国民经济中的作用 苯、甲苯、二甲苯(简称BTX)等同属于芳香烃,是重要的基本有机化工原料,由芳烃衍生的下游产品,广泛用于三大合成材料(合成塑料、合成纤维和合成橡胶)和有机原料及各种中间体的制造。纯苯大量用于生产精细化工中间体和有机原料,甲苯除用于歧化生产苯和二甲苯外,其化工利用主要是生产甲苯二异氰酸脂、有机原料和少量中间体,此外作为溶剂还用于涂料、粘合剂、油墨和农药等方面。二甲苯在化工方面的应用主要是生产对苯二甲酸和苯酐,作为溶剂的消费量也很大。间二甲苯主要用于生产对苯二甲酸和间苯二腈。焦化粗苯主要含苯、甲苯、二甲苯等芳香烃,另外还有一些不饱和化合物、含硫化合物、含氧化合物及氮化合物等杂质。焦化苯是染料、塑料、合成橡胶、树脂、纤维、药物等原料, 也可用作动力燃料以及涂料、橡胶、胶水的溶剂。 1.2三苯来源 苯在工业上由炼制石油所产生的石脑油馏分经催化重整制得,或从炼焦所得焦炉气中回收。苯的生产方法有多种,其中来自催化重整和裂解汽油的苯各占世界苯总产量的38%,甲苯歧化占13%,甲苯加氢脱烷基化占6%,另外还有5%来自焦化工艺。甲苯的主要来源是催化重整和裂解汽油,其中催化重整占世界甲苯产量的71%,甲苯在催化重整产物中的含量大约为9.5%-27%。大部分重整产物中的甲苯并不抽提,而是留在调和汽油中。裂解汽油中的甲苯占世界甲苯供应量的24%。当裂解石脑油和柴油时,通常每100t乙烯可产生10-15t甲苯。煤焦油和焦炉轻油生产的甲苯约占世界甲苯

供应量的1%。 1.3焦化粗苯的成分,性质 粗苯主要组成含量(%) 组分含量组分含量 苯55~80 古马隆0.6~1.0 甲苯12~22 茚 1.5~2.5 二甲苯2~6 硫化氢0.1~0.2 三甲苯2~6 二硫化碳0.3~1.5 乙基苯0.5~1 噻吩0.2~1.0 丙基苯0.03~0.05 甲基噻吩0.1~0.2 乙基甲苯0.08~0.10 吡啶及其同系物0.1~0.5 戊烯0.5~0.8 苯酚及其同系物0.1~0.6 环戊二烯0.5~1.0 萘0.5~2.0 C6~C8直链烯烃0.5~0.6 脂肪烃C6~C8 0.5~1.0 苯乙烯0.5~1.0 二、工艺选择 2.1终冷的几种工艺 焦炉煤气终冷有直接水终冷法、间接水终冷法和直接抽终冷法。其主要设备为焦炉煤气终冷塔。 2.1.1直接水终冷法 直接水终冷法用循环喷洒的冷却水直接与煤气接触,对煤气进行最终冷却。直接水终冷法是焦炉煤气终冷工艺中最通用的一种方法。直接水终冷法分敞开式和封闭式两种。敞开式在煤气终冷前既无脱萘也无脱硫脱氰装置。煤气在终冷中脱萘,煤气中的氰化氢同时大量溶解于终冷水中,氰化氢等有害气体从凉水架上逸散,污染了环境,并且工艺流程复杂,因此,

苯乙烯工艺流程

苯乙烯装置工艺流程叙述 一、乙苯工艺流程简述 本工艺包设计的乙苯装置界区内包括烃化反应系统(亦称烃化反应系统)、苯回收系统、乙苯回收系统、多乙苯回收系统、烷基转移反应系统(亦称反烃化反应系统)。为解决反应器在再生时停产影响,也是为了规避放大风险,烃化反应系统设计成反应器R-2101A/B、加热炉F-2101A/B、换热器 E-2101A/B;E-2102A/B;E-2103A/B 两套并联操作。 来自罐区的新鲜苯、油水分离器的回收苯、精馏工段回收的循环苯在T-2201 苯回收塔汇合,用苯循环泵P-2201A/B 泵入苯进料气化器E-2101A/B 的壳程,管程的高压蒸汽将其加热而气化,气相苯分别进入两套苯换热器E-2103A/B 的壳程,与管程的高温反应器出料换热而被过热。过热后的苯被分成两股:主苯流和急冷苯流。主苯流进入反应器进料加热炉F-2101A/B 被加热到反应温度,进 入烃化反应R-2101A/B。 界区外的原料乙醇用乙醇进料泵P-2101A/B加压,进入工艺水换热器E-2204,与苯塔回流罐底部排出的油水混合物换热回收热量,温度升至接近泡点,导入E-2102A/B乙醇蒸发器,用高压蒸汽将其气化,分段进入两台并联的烃化反应器。 在R-2101A/B中,乙醇发生脱水反应生成乙烯与水蒸汽,继而苯和乙烯发生烃化反应,生成乙苯及少量二乙苯、多乙苯等。为稳定反应器的温度,每段催化剂床层之间都有与进料乙醇蒸气相混合的急冷苯进入,使反应温度在适当范围内。反应器出料依次通过苯换热器E- 2103A/B 管程和苯回收 塔再沸器E-2201 管程被冷却后,便进入苯回收塔T- 2201 进行精馏分离。T- 2201 塔顶馏出苯、水和轻组分尾气,塔底则采出粗乙苯。罐区来的新鲜苯用新鲜苯泵P—2302A/B 加压后通过乙苯/苯换热器冷E-2208与来自乙苯塔回流泵的产品热乙苯换热,进入苯塔回流罐V —2201,补充回流罐的液位。苯塔回流泵将回流罐的一部分苯打入T-2201塔顶。T-2201塔底采出的粗乙苯则送至乙苯回收塔T - 2202 进一步加工。 在T-2201塔顶共沸馏出的水冷凝进入回流罐V-2201,由于高温下苯与工艺水有乳化现象,将大部分是水的乳化液从回流罐底部导出,与乙醇进入反应器的量按1:1的比例排入工艺水换热器E-2204B 管程,将热量交换给进料乙醇,然后进一步进入工艺水冷却器E-2205壳程,用循环水冷却到40C -15C 消除乳化现象,进入油水分离系统,分出的工艺水经汽提脱苯后作为废热回收系统的补充水,苯则回用。 苯塔回流罐V-2201 导出的气相进入苯塔尾冷器,将水蒸汽与苯进一步冷凝下来,凝液自流到V-2201底部乳化液导出管,不凝气则通过苯塔的压力控制排放到反烃化加热炉F-2102进口,进一步利用回收其中的乙烯与苯。 在乙苯塔T-2202 中,塔顶气在乙苯塔冷凝器E—2207 管程被软水冷凝,进入乙苯塔回流罐V—2202。一部分作为回流液打回T—2202,另一部分热乙苯通过乙苯/苯换热器E—2208将热量传给来自罐区的新鲜苯,作为本单元的精制乙苯产品而输往苯乙烯单元或罐区,E—2202中的软水则被蒸 发成低压蒸汽送苯乙烯工段综合利用。 T —2202塔底采出物送入多乙苯(PEB)回收塔T-2203实现精馏分离。可循环组分二乙苯由T —2203塔顶馏出,通入PEB回收塔冷凝器E-2211管程,同壳程的水换热而被冷却冷凝。冷凝液在PEB回流罐V —2203中实现汽/液分离。二乙苯被泵送到F—2102导入反烃化反应系统进行烷基转移反应以增产乙苯。由V —2203析出的不凝气则被PEB塔真空泵P—2206A/B抽吸,从而使二乙苯回收塔T - 2203实现真空操作。T - 2203塔底产物多乙苯残油送至界外。 由二乙苯回流泵P-2205A/B排出的二乙苯与来自E—2208的新鲜苯汇合,一同进入反烃化加热炉F—2102对流段预热,先后进入反烃化加热器E—2104A与反烃化换热器E—2104B,被中压蒸汽完全气化,并回收反烃化出料热量,返回F—2102对流段,被进一步加热到反烃化反应温度,再被导入反烃化反应器R-2102。在R-2102中,PEB同苯发生烷基转移反应,生成乙苯。R-2102的出料先后通过反烃化换热器E—2104B的管程和反烃化反应器出料蒸汽发生器E-2105的管程而被冷却冷凝, 进而被导入反烃化产物闪蒸罐V—2205。在V —2205中,比苯更易挥发的组分从罐顶顶气相口逸出,经尾冷器E—2215 冷凝冷却后,排出系统。苯和比苯更重的组分(乙苯、多乙苯等)则由V—2205罐底排出,用闪蒸罐底泵P—2207送到苯回收塔T-2201。 催化剂再生:考虑切换方便与节省电能,不设置专门的再生气加热炉,催化剂再生系统的再生气加热炉

石脑油

石脑油 石脑油的利用 1、做其他生产单元的原料 比如 乙烯装置 2、做汽油 但不能直接按汽油卖 方法有加氢处理、异构化等 现在有些地方把它与催化汽油按比例掺在一起 加一些助剂进行调和 经济效益也不错。石脑油通过精馏方法是不可能提高辛烷值的。因为石脑油是直链烷烃。但它可以通过异构化的方法提高辛烷值 大概可以提供20多个单位 生产数据显示 RON可以达到78左右。 3、石脑油可以作为重整原料 经过重整加工 可以大幅度提高辛烷值。如果芳烃潜含量高 可以进重整装置 生产辛烷值高的重整汽油 然后去和其它汽油馏分调和。如果石脑油的BMCI值小 则是乙烯裂解的优良原料。有的炼厂的制氢装置也是用轻石脑油作原料的 不过相对用炼厂气制氢 成本就要高一些 石脑油(naphtha):一部分石油轻馏分的泛称。因用途不同有各种不同的馏程。我国规定馏程自初镏点至220℃左右。主要用作重整和化工原料。作为生产芳烃的重整原料,采用70~145℃馏分,称轻石脑油;当以生产高辛烷值汽油为目的时,采用70~180℃馏分,称重石脑油。用作溶剂时,则称溶剂石脑油,来自煤焦油的芳香族溶剂也称重石脑油或溶剂石脑油。 主要用途:可分离出多种有机原料,如汽油、苯、煤油、沥青等。 石脑油是一种轻质油品,由原油蒸馏或石油二次加工切取相应馏分而得。其沸点范围依需要而定,通常为较宽的馏程,如30-220℃。 石脑油是管式炉裂解制取乙烯,丙烯,催化重整制取苯,甲苯,二甲苯的重要原料。作为裂解原料,要求石脑油组成中烷烃和环烷烃的含量不低于70%(体积);作为催化重整原料用于生产高辛烷值汽油组分时,进料为宽馏分,沸点范围一般为80-180℃,用于生产芳烃时,进料为窄馏分,沸点范围为60-165℃。 国外常用的轻质直馏石脑油沸程为0-100℃,重质直馏石脑油沸程为100-200℃;催化裂化石脑油有<105℃,105-160℃及 160-200℃的轻、中、重质三种。 实际关联:由于石脑油市场价格远低于车用无铅汽油(吨价差达600-1200元),使用石脑油和石化助剂调配车用无铅汽油已成为民营石化企业增加成品油利润的重要方式。 石脑油切割产品作用 溶剂油是五大类石油产品之一。溶剂油的用途十分广泛。用量最大的首推涂料溶剂油(俗称油漆溶剂油),其次有食用油,印刷油墨,皮革,农药,杀虫剂,橡胶,化妆品,香料,医药,电子部件等溶剂油。目前约有400-500种溶剂在市场上销售,其中溶剂油(烃类溶剂,苯类化合物)占一半左右。

苯乙烯

苯乙烯 百科名片 苯乙烯结构式 苯乙烯是用苯取代乙烯的一个氢原子形成的有机化合物,乙烯基的电子与苯环共轭,不溶于水,溶于乙醇、乙醚中,暴露于空气中逐渐发生聚合及氧化。工业上是合成树脂、离子交换树脂及合成橡胶等的重要单体。 苯乙烯分子球棍模型 芳烃的一种。分子式C8H8,结构简式C6H5CH=CH2 。存在于苏合香脂(一种天然香料)中。无色、有特殊香气的油状液体。熔点-30.6℃,沸点145.2℃,相对密度0.9060(20/4℃),折光率1.5469,黏度0.762 cP at 68 °F。不溶于水(<1%),能与乙醇、乙醚等有机溶剂混溶。苯乙烯在室温下即能缓慢聚合,要加阻聚剂[对苯二酚或叔丁基邻苯二酚(0.0002%~0.002%)作稳定剂,以延缓其聚合]才能贮存。苯乙烯自聚生成聚苯乙烯树脂,它还能与其他的不饱和化合物共聚,生成合成橡胶和树脂等多种产物。例如,丁苯橡胶是丁二烯和苯乙烯的共聚物;ABS树脂是丙烯腈(A)、丁二烯(B)和苯乙烯(S)的共聚物;离子交换树脂的原料是苯乙烯[1]和少量1,4-二(乙烯基)苯的共聚物。苯乙烯还可以发生烯烃所特有的加成反应。 苯乙烯分子比例模型 在工业上,苯乙烯可由乙苯催化去氢制得。实验室可以用加热肉桂酸的办法得到。 编辑本段基本信息

苯乙烯性质反应 化学品中文名称:苯乙烯[2] 化学品英文名称:phenylethylene ,Ethenylbenzene,Styrol,Vinyl benzene,Cinnamene,Styrolene,Cinnamol? 中文名称2:乙烯基苯,乙烯苯,苏合香烯,斯替林 英文名称2:styrene 英文名简称:ST 俄文名称:Стирол 技术说明书编码:236 CAS No.:100-42-5 EINECS号:202-851-5[3] 分子式:C8H8 分子量:104.14 编辑本段物化性质 性状无色油状液体,有芳香气味。Boiling_point 145℃凝固点-30.6℃相对Density 0.9059 折射率1.5467 flash_point 31.11℃溶解性不溶于水,溶于乙醇及乙醚。 熔点:-31℃ 相对密度:0.902g/cm3 溶解性:0.3 g/L (20℃) 苯乙烯≥99.5% 一级≥99.5%;二级≥99.0%。 苯乙烯中主要的阻聚剂是对苯二酚,可以通过减压蒸馏除去。先用10%NaOH洗一到两次,再用水洗直至检测到水为中性,用无水硫酸镁干燥一夜,过滤以后再减压蒸馏。用水泵一直抽,温度大约为68-70度。纯的苯乙烯是无色液体,如果聚了会变成淡黄色,并且液体黏度也会变大,所以需要低温保存。 编辑本段危险性 危险性类别: 侵入途径: 健康危害:对眼和上呼吸道粘膜有刺激和麻醉作用。急性中毒:高浓度时,立即引起眼及上呼吸道粘膜的刺激,出现眼痛、流泪、流涕、喷嚏、咽痛、咳嗽等,继之头痛、头晕、恶心、呕吐、全身乏力等;严重者可有眩晕、步态蹒跚。眼部受苯乙烯液体污染时,可致灼伤。慢性影响:常见神经衰弱综合征,有头痛、乏力、恶心、食欲减退、腹胀、忧郁、健忘、指颤等。对呼吸道有刺激作用,长期接触有时引起阻塞性肺部病变。皮肤粗糙、皲裂和增厚。 [4] 环境危害:对环境有严重危害,对水体、土壤和大气可造成污染。 燃爆危险:本品易燃,为可疑致癌物,具刺激性。[5] 编辑本段急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。

乙苯脱氢制取苯乙烯

一、实验目的 1、了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。 2、学会稳定工艺操作条件的方法。 二、实验原理 1、本实验的主副反应 主反应:氢气 ?117.8kJ/mol 苯乙烯 乙苯+ 副反应:乙烯 苯 ?105.0kJ/mol 乙苯+ ? +-31.5kJ/mol 乙苯+ 氢气 苯 乙烷 乙苯+ +-54.4kJ/mol ? 乙烯 甲苯 氢气 在水蒸汽存在的条件下,还可能发生下列反应: + ? 2 + + 氢气 乙苯3 二氧化碳 水 甲苯 此外,还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2、影响反应的因素 (1)温度的影响 乙苯脱氢为吸热反应,提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯的选择性下降,能耗增加,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为540~600oC。 (2)压力的影响 乙苯脱氢为体积增大的反应,降低总压可使平衡常数增大,从而增加反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸汽的目的是降低乙苯的分压,以提高平衡转化率。较适宜的水蒸汽用量为:水/乙苯=1.5/1(体积比)。 (3)空速的影响

乙苯脱氢反应系统中有平衡副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为止。 3、本实验采用氧化铁系催化剂,其组成为:Fe2O3-CuO-K2O3-CeO2。 三、实验装置及流程 实验装置及流程如图1所示。 图1乙苯脱氢制苯乙烯工艺实验流程图 1-乙苯流量计;2、4-加料泵;3-水计量管;5-混合器;6-汽化器;7-反应器;8-电热夹套;9、11-冷凝器;10-分离器;12-热电偶 四、反应条件控制 汽化温度300oC,脱氢反应温度540~600oC,水:乙苯=1.5:1(体积比),相当于乙苯加料0.5ml/min,蒸馏水0.75ml/min(50ml催化剂)。

相关文档
最新文档