基于ad0832的液晶显示数字电压表

基于ad0832的液晶显示数字电压表
基于ad0832的液晶显示数字电压表

设计题目:基于液晶显示的AD0832两路模

数转换

系别:应用电子与通信技术系

班级:0991321

学生姓名:张潇

指导教师:徐秋景、姜滨

成绩:

2012年7月12日

课程设计任务书

2012年7月2日

目录

第一章绪论 (1)

1.1选题目的 (1)

1.2设计要求 (1)

1.2.1设计题目和设计指标 (1)

1.2.2设计功能 (1)

第二章总体设计及工作原理 (2)

2.1设计原理及方案 (2)

2.2总体设计 (2)

第三章硬件设计及电路图 (3)

3.1芯片资料介绍 (3)

3.1.1 AT89C51 (3)

3.1.2 AD0832 (3)

3.2单片机对 ADC0832 的控制原理 (4)

3.3 LCD显示模块 (5)

3.4时钟电路 (6)

3.5电压调节部分 (6)

3.6复位电路 (7)

3.7系统原理图 (7)

第四章系统程序设计 (8)

4.1软件总体框架设计 (8)

4.2系统子程序设计 (9)

4.2.1初始化程序 (9)

4.2.2A/D转换子程序 (9)

收获和体会 (12)

致谢 (13)

参考文献 (14)

附录1 (15)

附录2完整程序代码 (16)

原件清单 (33)

第一章绪论

1.1选题目的

模-数(AD)和数-模(DA)转换是模拟电路和数字电路进行沟通的渠道,在数字电路里,电平只有高和低两种状态,比如5V和0V,对应着1和0;模拟电路里,电平则理论上有无数个状态,比如0V、0.1V、0.2V…等等。如何将模拟电平值在数字电路里表达出来呢?这就需要AD转换过程。ADC0832是美国国家半导体公司生产的一种8位分辨率、双通道A/D转换芯片。由于它体积小,兼容性强,性价比高而深受单片机爱好者及企业欢迎,且目前已经有很高的普及率。学习并使用ADC0832可是使我们了解A/D转换器的原理,有助于我们单片机技术水平的提高。

1.2设计要求

1.2.1设计题目和设计指标

设计题目:基于液晶显示的AD0832两路模数转换。

设计指标:当改变电压值时,经过AD0832模数转换,液晶显示结果对应改变。

1.2.2设计功能

设计电路,通过AD0832将两路模拟电压转换成数值并通过液晶进行显示。

第二章总体设计及工作原理

2.1设计原理及方案

A/D转换器能把输入的模拟电压或直流电流转变成与它成正比的数字量,既能把被控对象的各种模拟信息变成计算机可以识别的数字信息。而本次课程设计即基于A/D转换器的原理,通过一个A/D(ADC0832模拟数字转换)芯片采集外界信息后,将外测电压信号转换为数字信号,再由单片机(AT89C51)分析并处理信号,最终输出信号,由LCD1602显示出各路电压。

2.2总体设计

本设计从各个角度分析了由单片机组成的数字电压表的设计过程及各部分电路的组成及其原理,并且分析了程序如何驱动单

图2-1总体设计框体

第三章硬件设计及电路图

3.1芯片资料介绍

3.1.1 AT89C51

AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,外形及引脚排列如图所示。

图3-1 AT89C51外形及引脚排列

3.1.2 AD0832

美国国家半导体公司生产的一种 8 位分辨率、双通道 A/D 转换芯片。由于它体积小,兼容性强,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。学习并使用 ADC0832 可是使我们了解 A/D 转换器的原理,有助于我们单片机技术水平的提高。

ADC0832 具有以下特点:

?8 位分辨率;

?双通道 A/D 转换;

?输入输出电平与 TTL/CMOS 相兼容;

?5V 电源供电时输入电压在 0~5V 之间;

?工作频率为 250KHZ,转换时间为 32μS;

?一般功耗仅为 15mW;

?8P、14P—DIP(双列直插)、PICC 多种封装;

?商用级芯片温宽为0℃ to +70℃,工业级芯片温宽为?40℃ to +85℃;

ADC0832有DIP和SOIC;两种封装,DIP封装的ADC0832引脚排列如下图所示:

图3-2 ADC0832的引脚封装图

芯片接口说明:

?CS_ 片选使能,低电平芯片使能。

?CH0 模拟输入通道 0,或作为 IN+/-使用。

?CH1 模拟输入通道 1,或作为 IN+/-使用。

?GND 芯片参考 0 电位(地)。

?DI 数据信号输入,选择通道控制。

?DO 数据信号输出,转换数据输出。

?CLK 芯片时钟输入。

?Vcc/REF 电源输入及参考电压输入(复用)。

3.2单片机对 ADC0832 的控制原理

正常情况下 ADC0832 与单片机的接口应为 4 条数据线,分

别是 CS、CLK、 DO、DI。但由于 DO 端与 DI 端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将 DO 和 DI 并联在一根数据线上使用。

当 ADC0832 未工作时其 CS 输入端应为高电平,此时芯片禁用,CLK 和 DO/DI 的电平可任意。当要进行 A/D 转换时,须先将 CS 使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端 CLK 输入时钟脉冲,DO/DI 端则使用 DI 端输入通道功能选择的数据信号。在第 1 个时钟脉冲的下沉之前 DI 端必须是高电平,表示启始信号。在第 2、3 个脉冲下沉之前 DI 端应输入 2 位数据用于选择通道功能。

3.3 LCD显示模块

LCD显示器分为字段显示和字符显示两种。其中字段显示与LED显示相似,只要送对应的信号到相应的管脚就能显示。字符显示是根据需要显示基本字符。本设计采用的是字符型显示。

系统中采用LCD1602作为显示器件输出信息。与传统的LCD 数码管显示器件相比,液晶显示模块具有体积小、功耗低、显示内容丰富等优点,而且不需要外加驱动电路,现在液晶显示模块已经是单片机应用设计中最常用的显示器件了。LCD1602可以显示2行16个汉字。如图:

图3-3 LCD1602引脚图

3.4时钟电路

时钟电路是外部时钟和内部时钟组成。内部是由单片机本身及外部12MHZ的晶振和两个电容构成工作主频时钟电路,这样外电源断开时钟也不会停止。如图:

图3-4时钟电路

3.5电压调节部分

本部分采用两个滑动变阻器和两个电压表来调节输入同道CHO 和CH1的电压,如图:

图3-5电压调节部分电路

3.6复位电路

单片机的复位方式主要有上电自动复位和按钮手动复位。为了保证单片机系统有效复位,要求RST端脚维持高电平大于10MS 以上。电阻和电容的值随时钟频率的不同而变化。本部分采用的是电动复位,如图:

图3-6复位电路

3.7系统原理图

单片机AT89S51是本系统的核心部分,根据以上各功能模块得到应用电路总原理图。原理图如3-7所示:

图3-7系统原理图

第四章系统程序设计

4.1软件总体框架设计

系统软件的总体框架,主程序采用死循环结构,在其中调用了三个子程序,为初始化程序,AD转换子程序,动态显示子程序,首先,单片机片选A/D转换器,然后发出信号启动A/D转换。若有,即启动信号采集,对A/D转换器的数据输出口送来的数值进行存储,数据处理完之后,将电压数值送显示器显示出来。程序总体流程图如图4-1所示:

图4-1总体流程图

4.2系统子程序设计

4.2.1初始化程序

所谓初始化,是对将要用到的MCS_51系列单片机内部部件或扩展芯片进行初始工作状态设定,初始化子程序的主要工作是设置定时器的工作模式,初值预置,开中断和打开定时器等。

4.2.2A/D转换子程序

A/D转换子程序用来控制对输入的模块电压信号的采集测量,并将对应的数值存入相应的内存单元,其转换流程图如图 4.2所示。

图4-2A/D转换子程序图

ADC0832.C模数转换源程序:

#include

#include

#define uint unsigned int

#define uchar unsigned char

sbit CS = P1^3;

sbit CLK = P1^0;

sbit DI = P1^1;

sbit DO = P1^1;

//函数声明

uchar Get_Value_ADC0832(uchar CH);// 获取指定通道的A/D转换结果

// 获取指定通道的A/D转换结果

uchar Get_Value_ADC0832(uchar CH)

{

uchar i,dat1=0,dat2=0;// 起始控制位

CLK=0; _nop_(); _nop_();

DI=1; _nop_(); _nop_();

CS=0; _nop_(); _nop_();

CLK=1; _nop_(); _nop_();

// 第一个下降沿之前,设置DI=1/0;

// 选择单端/差分(SGL/DIF)模式中的单端输入模式CLK=0; DI=1; _nop_(); _nop_();

CLK=1; _nop_(); _nop_();

// 第二个下降沿之前,设置DI=0/1;选择CH0/CH1

CLK=0; DI=CH; _nop_(); _nop_();

CLK=1; DI=1;_nop_(); _nop_();

//第三个下降沿之前,设置DI=1;

CLK=0;DI=1;_nop_(); _nop_();

//第4-11个脉冲期间读数据(MSB->LSB)

for(i=0;i<8;i++)

{

CLK=1; _nop_(); _nop_();

CLK=0; _nop_(); _nop_();

dat1=dat1<<1|DO;

}

//第11-18个脉冲期间读数据(LSB->MSB)

for(i=0;i<8;i++)

{

dat2=dat2|((uchar)(DO)<

CLK=1; _nop_(); _nop_();

CLK=0; _nop_(); _nop_();

}

CS=1;

return (dat1==dat2)?dat1:0;

}

4.2.3 LCD显示子程序

LCD显示程序的设计一般先要确定LCD的初始化、光标定位、确定显示字符后,显示流程如图4-3显示:

;

图4-3LCD显示子程序

收获和体会

在本次数字电压表的设计过程中,我们做得出来的数字电压表能够实现测电压并显示的功能,但是测量电压范围只有0-5V,测量电压范围太小,这是我们设计的电压表的缺陷。由于我们能力和时间精力有限,没能设计出更大范围的数字电压表。该数字电压表的扩展方向有:

1、改用ADC0809芯片扩大量程、可调节量程或自动转换换量程。

2、输出量可用平均值算法来改善,使测量准确度更高。

3、若能将测量的电压值实时保存,使用时将更方便等。

致谢

在两周的课程设计过程中,不断的阅读资料,以及在老师的指导下与同学的讨论,拓宽了我的思路,并帮助我解决了许多难题,才让我取得本次课程设计的成功。在此谨向他们表示衷心的感谢!感谢学校对我们课程设计工作的关心与支持,为我们提供了良好的课程设计场所和完备的实验器材,使课程设计能够顺利进行。

参考文献

[1] 李朝青.单片机原理及接口技术(简明修订版).杭州:北京

航空航天大学出版社,1998

[2] 李广弟.单片机基础[M].北京:北京航空航天大学出版社,

1994

[3] 阎石.数字电子技术基础(第三版). 北京:高等教育出版社,

1989

[4] 石东海等.单片机数据通信技术从入门到精通.西安:西安电

子科技大学出版社, 2002.148~150. [5] 王忠飞,胥芳.MCS 一51单片机原理及嵌入式系统应用[M].西安:西安电子科技大学出版社,2007.P268-273

[6] 蔡朝洋,单片机控制实习与专题制作[M].北京:北京航空航天

大学出版社,2006

[7] 张毅刚,彭喜源,谭晓昀等.MSC-51单片机应用设计[M].哈尔

滨:哈尔滨工业大学出版社,1999

[8] 周坚.单片机C语言轻松入门[M].北京:北京航空航天大学出

版社,2006

[9] 李全利,迟荣强.单片机原理及接口技术[M].北京:高等教育

出版社,2004

[10]梅丽凤,王艳秋.单片机原理及接口技术(修订本)[M].北京:

清华大学出版社;北京交通大学出版社,2006

附录1

附录2完整程序代码

1.头文件

#ifndef __LCD_160128_H__

#define __LCD_160128_H__

#include

#include

#include

#include

#include

#include

#include

#define uint unsigned int

#define uchar unsigned char

#define STX 0x02 //

#define ETX 0x03 //

#define EOT 0x04//

#define ENQ 0x05 //

#define BS 0x08 //

#define CR 0x0d //

#define LF 0x0a //

#define DLE 0x10 //

#define ETB 0x17 //

#define SPACE 0x20 //

#define COMMA 0x2c //

#define TRUE 1 //

#define FALSE 0 //

#define HIGH 1 //

#define LOW 0 //

//T6963C端口定义

#define LCMDW XBYTE[0x8000] // 数据口

#define LCMCW XBYTE[0x8100] // 命令口

#define DISRAM_SIZE 0x7fff // 设置显示区RAM的大小#define TXTSTART 0x0000 // 设置文本区的起始地址

#define GRSTART 0x6800 // 设置图像区的起始地址

#define CGRAMSTART 0x7800 //设置CGRAM的起始地址

// T6963C命令定义

#define LC_CUR_POS 0x21 //光标位置设置

#define LC_CGR_POS 0x22 // CGRAM偏置地址设置

#define LC_ADD_POS 0x24 // 地址指针位置

#define LC_TXT_STP 0x40// 文本区首地址

#define LC_TXT_WID 0x41// 文本区宽度

#define LC_GRH_STP 0x42// 图像区首地址

#define LC_GRH_WID 0x43 //图像区宽度

#define LC_MOD_OR 0x80// 显示方式:逻辑或

#define LC_MOD_XOR 0x81 //显示方式:逻辑异或

#define LC_MOD_AND 0x82// 显示方式:逻辑与

#define LC_MOD_TCH 0x83 // 显示方式:文本特征

#define LC_DIS_SW 0x90 // 显示开关:D0=1/0:光标闪烁启用/禁用 // D1=1/0:光标显示启用/禁用 // D2=1/0:文本显示启用/禁用// D3=1/0:图形显示启用/禁用

#define LC_CUR_SHP 0xa0 // 光标形状选择:0XA0-0XA7 表示光标占的行数

#define LC_AUT_WR 0xb0 // 自动写设置

#define LC_AUT_RD 0xb1 // 自动读设置

#define LC_AUT_OVR 0xb2// 自动读/写结束

#define LC_INC_WR 0xc0 // 数据写,地址加1

#define LC_INC_RD 0xc1// 数据读,地址加1

#define LC_DEC_WR 0xc2 // 数据写,地址减1

#define LC_DEC_RD 0xc3 // 数据读,地址减1

#define LC_NOC_WR 0xc4// 数据写,地址不变

#define LC_NOC_RD 0xc5 // 数据读,地址不变

#define LC_SCN_RD 0xe0 // 屏读

#define LC_INC_CP 0xe8 // 屏拷贝

#define LC_BIT_OP 0xf0// 位操作:D0-D2定义:D0-D7位:D3:1置位/0清除

#endif

2.LCD_160128.C显示控制程序

//LCD显示控制程序 LCD_160128.C

#include

sbit RESET = P3^3;

//ASCII字模宽度及高度定义

#define ASC_CHR_WIDTH 8

#define ASC_CHR_HEIGHT 12

基于51单片机的简易数字电压表的设计

课题交流毫伏表设计 系别 专业 年级 姓名 学号 指导教师

目录 第一章引言 (2) 1.1摘要 (2) 1.2 设计目的 (2) 1.3设计任务及要求 (2) 1.4 课程设计过程 (2) 第二章系统方案选择和论证 (3) 2.1基本方案论证 (3) 2.2输出部分中各模块的方案选择 (3) 2.3总体方案设计 (4) 第三章AT89C51的结构 (5) 3.1AT89C51的概述 (5) 3.2 AT89C51部结构 (5) 3.3存储器和特殊功能寄存器的介绍 (5) 3.4时钟电路和复位电路 (7) 第4章元器件的选择 (7) 4..1显示 (7) 4.2 模数(A/D)芯片 (11) 4.3 数模AC/DC736芯片 (13) 4.4 OP07 (13) 第五章电路的设计 (14) 5.1时钟电路 (15) 5.2A/D转换程序 (17) 第6章系统的调试 (18) 6.1 硬件的调试 (18) 6.2软件调试 (19) 参考文献 (20) 附录 (20) 程序清单 (20) 元件清单 (25)

容摘要 本次设计主要解决AC/DC转换、A/D转换、数据处理及显示控制等几个模块。控制系统采用AT89C51单片机,A/D转换采用ADC0809。要求交流毫伏表检测信号的电压围:1mv—2v ,输入信号的频率围:10Hz-2000KHz,并在LCD1602液晶上显示测量电压信号。 关键词AT89C51单片机;电压测量;A/D转换;LCD1602液晶显示;AC/DC 转换;放大;衰减。 1.2 设计目的 本课程的任务是通过“交流毫伏表的设计”的设计过程,综合所学课程,掌握目前自动化仪表的一般设计要求,工程设计方法,开发及设计工具的使用方法,通过这一设计实践过程,锻炼学生的动手能力和分析,解决问题的能力;积累经验,培养按部就班,一丝不苟的工作个对所学知识的综合应用能力。 1.3设计任务及要求 1、设计一个交流毫伏表,检测信号的电压围:1mv—2v。 2、输入信号的频率围:10Hz-2000KHz 3、查阅相关资料,了解交流毫伏表的各种现实发法极其特点,并着重掌 握交流毫伏表的设计及显示等。 4、熟悉并掌握个芯片的功能极其管脚分。 5、检测设计电路中所需要的各种电子元器件。 6、对设计的交流毫伏表进行装接与调试,要时设计的电路达标。 7、完成设计交实物图极其设计报告。 1.4课程设计过程 1、各组组成员讨论并进行软硬件系统设计,经指导老师同意进行具体方 案实施。 2、将可行方案硬件电路焊接在万能板上,并检查。 3、软硬件仿真。

简易数字电压表

单片机课程设计报告 简易数字电压表 一、设计任务与要求 1.电压表的测量范围为0-5V; 2.测量精度约为20mV。 二、方案设计与论证 方案一: 选择MC14433A/D转换器、CD4511等元器件设计电路: 方案二: 用单片机设计电路:

设计采用STC89C52单片机、A/D转换器ADC0809和共阴数码管为主要硬件,分析了数字电压表Proteus软件仿真电路设计及编程方法。将单片机应用于测量技术中,采用ADC0809将模拟信号转化为数字信号,用STC89C52实现数据的处理。通过数码管以扫描的方式完成显示。 方案比较: 方案1:3为半双积分式A/D转换器MC14433转换精度为读数的±0.05%±1字,并能很方便地判断出是否超欠量程,以便于量程的自动切换功能的实现,其中集成了双积分式A/D转换器所有的CMOS模拟电路和数字电路。具有输入阻抗高,功耗低,电源电压范围宽,精度高等特点,并且具有自动校零和自动极性转换功能。缺点是工作速度低,且外围电路需配基准电源,短译码驱动器和位驱动器,电路较复杂。 方案2:设计电路简单。易于控制,且性能稳定;单调试过程需要一定的编程基础,可利用Proteus软件仿真电路设计和调试。Proteus软件是一种电路分析和实物模拟仿真软件。它运行于Windows操作系统上,可以进行仿真、分析(SPICE)各种模拟器件和集成电路,是集单片机和SPICE分析于一身的仿真软件,功能强大,具有系统资源丰富、硬件投入少、形象直观等优点,因此可用此软件方便调试电路。 经过以上两种方案的特点比较,方案二中的电路设计采用比较常见的元器件,对这种方案有一定的专业基础,故采用第二种方案。 三、单元电路设计与参数计算 1 A/D转换模块

ICL7106数字电压表电路及组装要点

ICL7106数字电压表电路及组装要点 数字电压表是当前电子、电工、仪器、仪表和测量领域大量使用的一种基本测量工具。有关数字电压表的书籍和应用已经非常普及了。这里展示的一份由 ICL7106 A/D 转换电路组成的数字电压表电路,就是一款最通用和最基本的电路。 ICL7106是美国Intersil公司专为数字仪表生产的数字仪,满幅输入电压一般取200mV 或2V。该芯片集成度高,转换精度高,抗干扰能力强,输出可直接驱动LCD液晶数码管,只需要很少的外部元件,就可以构成数字仪表模块。 一、ICL7106简介 1. ICL7106的性能特点 (1)+7V~+15V单电源供电,可选9V叠层电池,有助于实现仪表的小型化。低功耗(约16mW),一节9V叠层电池能连续工作200小时或间断使用半年左右。 (2)输入阻抗高(1010Ω)。内设时钟电路、+2.8V基准电压源、异或门输出电路,能直接驱动3?位LCD显示器。 (3)属于双积分式A/D转换器,A/D转换准确度达±0.05%,转换速率通常选2次/秒~5次/秒。具有自动调零、自动判定极性等功能。通过对芯片的功能检查,可迅速判定其质量好坏。 (4)外围电路简单,仅需配5只电阻、5只电容和LCD显示器,即可构成一块DVM。其抗干扰能力强,可靠性高。 2. ICL7106的工作原理 ICL7106内部包括模拟电路和数字电路两大部分,二者是互相联系的。一方面由控制逻辑产生控制信号,按规定时序将多路模拟开关接通或断开,保证A/D 转换正常进行;另一方面模拟电路中的比较器输出信号又控制着数字电路的工作状态和显示结果。下面介绍各部分的工作原理。 (1)模拟电路 模拟电路由双积分式A/D转换器构成,其电路如图1所示。

#简易数字电压表的设计

一、简易数字电压表的设计 l .功能要求 简易数字电压表可以测量0~5V 的8路输入电压值,并在四位LED 数码管上轮流显示或单路选择显示。测量最小分辨率为0.019 V ,测量误差约为土0.02V 。 2.方案论证 按系统功能实现要求,决定控制系统采用A T89C52单片机,A /D 转换采用ADC0809。系统除能确保实现要求的功能外,还可以方便地进行8路其它A /D 转换量的测量、远程测量结果传送等扩展功能。数字电压表系统设计方案框图如图1-1。 3.系统硬件电路的设 计 简易数字电压测量电 路由A /D 转换、数据处 理及显示控制等组成,电 路原理图如图1-2所示。A /D 转换由集成电路0809完 成。0809具有8路模拟输人 端口,地址线(23~25脚)可决定对哪一路模拟输入作A /D 转换,22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存,6脚为测试控制,当输入一个2us 宽高电平脉冲时,就开始A /D 转换,7脚为A /D 转换结束标志,当A /D 转换结束时,7脚输出高电平,9脚为A /D 转换数据输出允许控制,当OE 脚为高电平时,A /D 转换数据从该端口输出,10脚为0809的时钟输入端,利用单片机30脚的六分频晶振频率再通过14024二分频得到1 MHz 时钟。单片机的P1、P3.0~P3.3端口作为四位LED 数码管显示控制。P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。P0端口作A /D 转换数据读入用,P2端口用作0809的A /D 转换控制。 4.系统程序的设计 (1)初始化程序 系统上电时,初始化程序将70H ~77H 内存单元清0,P2口置0。 (2)主程序 在刚上电时,系统默认为循环显示8个通道的电压值状态。当进行一次测量后,将 图1-1 数字电压表系统设计方案

基于STCC的数字电压表

基于S T C C的数字电压 表 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

1引言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。本文设计了一种基于单片机的简易数字电压表。该设计主要由三个模块组成:A/D转换模块,数据处理模块及显示模块。A/D转换主要由芯片ADC0804来完成,它负责把采集到的模拟量转换为相应的数字量在传送到数据处理模块。数据处理则由芯片STC89C52来完成,其负责把ADC0804传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;此外,它还控制着ADC0804芯片工作。该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。此数字电压表可以测量0-5V的1路模拟直流输入电压值,并通过7段数码管显示出来。 2 设计总体方案 设计要求 ⑴以MCS-51系列单片机为核心器件,组成一个简单的直流数字电压表。 ⑵采用1路模拟量输入,能够测量0-5V之间的直流电压值。 ⑶电压显示用LED数码管显示,至少能够显示两位小数。 ⑷尽量使用较少的元器件。 设计思路 ⑴根据设计要求,选择STC89C52单片机为核心控制器件。 ⑵A/D转换采用ADC0804实现,与单片机的P1口相连接。 ⑶电压显示采用三个7段LED数码管显示,另外三位数码管显示A/D转换的数 字量的值。

⑷LED数码的段选码和位选码均由单片机P0口经过两片74HC573锁存器输入。 设计方案 硬件电路设计由6个部分组成; A/D转换电路,STC89C52单片机系统,LED显示系统、时钟电路、复位电路以及测量电压输入电路。硬件电路设计框图如图1所示。 图2-1 数字电压表系统硬件设计框图 3 硬件电路设计 单片机系统 本次课设选择的单片机是STC89C52,之所以选择这块芯片,是因为该芯片的各项功能均符合本次课设的指标要求,并且该芯片有很多成熟的资料供我们学习,使用用起来很方便,也有专门的下载程序平台,方便现场调试。 复位电路和时钟电路 单片机在启动运行时都需要复位,使CPU和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作。MCS-51单片机有一个复位引脚RST,采用施密特触发输入。当震荡器起振后,只要该引脚上出现2个机器周期以上的高电平即可确保时器件复位。复位完成后,如果RST端继续保持高电平,MCS-51就

基于单片机的数字电压表

基于单片机的数字电压表 摘要:本文介绍一种基于89S52单片机的一种电压测量电路,该电路采用ICL7135高精度、双积分A/D转换电路,测量范围直流0-±2000伏,使用LCD液晶模块显示,可以与PC机进行串行通信。正文着重给出了软硬件系统的各部分电路,介绍了双积分电路的原理,89S52的特点,ICL7135的功能和应用,LCD1601的功能和应用。该电路设计新颖、功能强大、可扩展性强。 关键词:电压测量,ICL7135,双积分A/D转换器,1601液晶模块 Abstract: The introduction of a cost-based 89S52 MCU a voltage measurement circuits, the circuits used ICL7135 high-precision, dual-scoring A/D conversion circuits, measuring scope DC 0-2000 volts, the use of LCD that can be carried out with a PC serial communications. The paper focuses on providing a software and hardware system components circuit, introduced double integral circuit theory, 89S52 features ICL7135 functions and applications, LCD1601 functions and applications. the circuit design innovative, powerful, can be expansionary strong. Key Words: Digital Voltmeter ICL7135 LCD1601 89S52 1前言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本章重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

简易数字电压表(单片机课程设计)

课程设计说明书 简易数字电压表的设计 院(系) 专业机械电子工程 班级二班 学生姓名 指导老师 2015 年 3月 13 日 课程设计任务书 兹发给机械电子工程(2)班学生课程设计任务书,内容如下:

1.设计题目:简易数字电压表的设计 2.应完成的项目: (1)可测0~5V的8路电压输入值; (2)在LED数码管上轮流显示; (3)单路选择显示; (4)利用功能键可以实现滚动显示,显示启动/停止等; 3.参考资料以及说明: [1]刘瑞新.单片机原理及应用教程[M].北京:机械工业出版社, 2003.7 [2]张俊,钟知原,王日根.简易数字电压表的设计[J].科协论坛:下半月,2012(8)34-35 [3]赵静,刘少聪,丁浩.王莉莎.基于单片机的数字电压表的设计[J].数字技术与应用,2011(6):121-125 [4]魏立峰.单片机原理及应用技术[M].北京大学出版社,2005年 [5]谭浩强.C语言程序设计(第二版)[M].北京:清华大学出版社,2005.12 4.本设计任务书于2015年3月2日发出,应于2015年3月13日前完成,然后进行答辩。 专业教研室、研究所负责人审核年月日 指导教师签发年月日 课程设计评语:

课程设计总评成绩: 课程设计答辩负责人签字: 年月日

摘要 在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。 本实验设计主要讲述了数字电压表的设计过程,主要包括硬件设计和程序设计,硬件主要包括以STC89C51单片机为主要控制电路、数据采样电路、显示电路等,是基于51单片机开发平台实现的一种数字电压表系统。该设计采用STC89C51单片机作为控制核心,驱动控制四块数码管显示被测电压,以ADC0809为模数转换数据采样,实现被测电压的数据采样,使得该数字电压表能够测量0-5V之间的直流电压值。 关键词:STC89C51、ADC0809、显示电路、数据采样

简易数字电压表设计内容

简易数字电压表设计 一、设计要求 1、利用ADC0809设计一简易数字电压表,要求可以测量0—5V之间8路输入电压值、电压值由四位LED数码管显示,并在数码管上轮流显示或单路选择显示; 2、测量最小分辨率为0.019V,测量误差为±0.02V。 二、设计作用与目的 利用AT89S51与ADC0809设计制作一个数字表,能够测量直流电压值。 三、所用设备及软件 单片机AT89S51、ADC0809芯片、PC设计台 四、系统设计方案 本设计采用AT89S51单片机芯片配合ADC0809模/数转换芯片构成一个简易的数字电压表,原理框图如图1所示。该电路通过ADC0809芯片采样输入口IN0输入的0~5 V的模拟量电压,经过模/数转换后,产生相应的数字量经过其输出通道D0~D7传送给AT89S51芯片的P0口。AT89S51负责把接收到的数字量经过数据处理,产生正确的7段数码管的显示段码,并通过其P1口经三极管驱动,再传送给数码管。同时它还通过其三位I/O口P3.0、P3.1、P3.2产生位选信号,控制数码管的亮灭。另外,AT89S51还控制着ADC0809的工作。其ALE管脚为ADC0809提供了1MHz工作的时钟脉冲;P2.3控制ADC0809的地址锁存端(ALE);P2.4控制ADC0809的启动端(START);P2.5控制ADC0809的输出允许端(OE);P3.7控制ADC0809的转换结束信号(EOC)。

图1 系统原理框图 本设计与其它方法实现主要区别在于元器件上例如:AT89C51与AT89C51、AT89S51在AT89C51的基础上,又增加了许多功能,性能有了较大提升。 1.ISP在线编程功能,这个功能的优势在于改写单片机存储器内的程序不需要把芯片从工作环境中剥离。是一个强大易用的功能。 2.工作频率为33MHz,大家都知道89C51的极限工作频率只有24M,就是说S51具有更高工作频率,从而具有了更快的计算速度。 3.具有双工UART串行通道。 4.内部集成看门狗计时器,不再需要像89C51那样外接看门狗计时器单元电路。 5.双数据指示器。 6.电源关闭标识。 7.全新的加密算法,这使得对于89S51的解密变为不可能,程序的保密性大大加强,这样就可以有效的保护知识产权不被侵犯。 8.兼容性方面:向下完全兼容51全部字系列产品。比如8051、89C51等等早期MCS-51兼容产品。在89C51上一样可以照常运行,这就是所谓的向下兼容。 五、系统硬件设计 5.1 模数转换芯片ADC0809 ADC0809是典型的8位8通道逐次逼近式A/D转换器。它可以和微型计算机直接接口。ADC0809转换器的系列芯片是ADC0808,可以相互替换。

简易数字电压表的设计

一、设计题目:简易数字电压表的设计 二、设计目的 自动化专业的专业实践课程。本课程的任务是使学生通过“简易数字电压表的设计”的设计过程,综合所学课程,掌握目前自动化仪表的一般设计要求,工程设计方法,开发及设计工具的使用方法,通过这一设计实践过程,锻炼学生的动手能力和分析,解决问题的能力;积累经验,培养按部就班,一丝不苟的工作个对所学知识的综合应用能力。 三、设计任务及要求 设计电压表并实现简单测量。具有以下基本功能: ⑴可以测量0~5V的8路输入电压值; ⑵可在四位LED数码管上轮流显示或单路选择显示; ⑶测量最小分辨率为0.019V; ⑷.测量误差约为±0.02V; ⑸带有一定的扩展功能; 目录 第一章摘要 (4) 第二章智能仪表目前的发展状况 (4) 第三章设计目的 (6) 第四章设计要求 (6) 第五章设计方案与比较论证 (6) 5.1 单片机电路设计 (6) 5.2 电源方案 (8) 5.3 显示方案 (9) 5.4 A/D采样方案 (10) 5.5串口通讯方案 (12) 5.7 高压,短路报警 (14) 5.8 键盘 (14) 第六章方案设计 (15) 6.1 硬件设计 (15)

6.2 软件设计 (16) 第七章性能测试 (18) 电压测试 (18) 第八章结果分析 (19) 第九章设计体会 (19) 参考文献 (20) 附录 (20) 元器件清单 (20) 程序清单 (20) 第一章摘要 本报告介绍了基于AT89S52单片机为核心的、以AD0809数模转换芯片采样、以1602液晶屏显示的具有电压测量功能的具有一定精度的数字电压表。在实现基础功能要求之上扩展了串口通讯、时钟功能、高压报警、短路测试、电阻测量、交流电压峰峰值和周期测试等功能,使系统达到了良好的设计效果和要求。 关键词:AT89S52单片机模数转换液晶显示扩展功能 ABSTRACT:The report describes the AT89S52 based on the microcontroller as the core, AD0809 digital-to-analog converter chip sampling, to 1602 LCD display with voltage measurement function with a certain precision of digital voltage meter. In achieving functional requirements based upon the expansion of serial communications, high-pressure alarm, short circuit, electrical resistivity measurement, AC voltage and the peak of cycle testing and other functions, allowing the system to achieve good results and the design requirements. Keywords : AT89S52 SCM analog-to-digital conversion functions LCD expansion 第二章智能仪表目前发展状况 在自动化控制系统中,仪器仪表作为其构成元素,它的技术进展是跟随控制系统技术的发展的。常规的自动化仪器仪表适应常规控制系统的要求,它们以经典控制理论和现代控制理论为基础,以控制对象的数学模型为依据。当今,控制理论已发展到智能控制的新阶段,自动化仪器仪表的智能化就成为必然和必须。本文将就自动化仪器仪表的智能化的状况与进展,以及当今对智能仪器仪表研究、开发热点做概要的分析与表述。作者建议人们关注自动化仪器仪表智能化技术的进展,关注仪器仪表装置

基于51单片机的数字电压表设计

目录 摘要........................................................................ I 1 绪论. (1) 1.1数字电压表介绍 (1) 1.2仿真软件介绍 (1) 1.3 本次设计要求 (2) 2 单片机和AD相关知识 (3) 2.1 51单片机相关知识 (3) 2.2 AD转换器相关知识 (4) 3 数字电压表系统设计 (5) 3.1系统设计框图 (5) 3.2 单片机电路 (5) 3.3 ADC采样电路 (6) 3.4显示电路 (6) 3.5供电电路和参考电压 (7) 3.6 数字电压表系统电路原理图 (7) 4 软件设计 (8) 4.1 系统总流程图 (8) 4.2 程序代码 (8) 5 数字电压表电路仿真 (15) 5.1 仿真总图 (15) 5.2 仿真结果显示 (15) 6 系统优缺点分析 (16) 7 心得体会 (17) 参考文献 (18)

1 绪论 1.1数字电压表介绍 数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。因此AD转换是此次设计的核心元件。输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。 本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。其实也为建立节约成本的意识有些帮助。本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。 1.2仿真软件介绍 Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。它运行于Windows 操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是: (1)现了单片机仿真和SPICE电路仿真相结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 (2)支持主流单片机系统的仿真。目前支持的单片机类型有:68000系列、8051系列、 A VR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 (3)提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。 (4)具有强大的原理图绘制功能。 可以仿真51系列、A VR、PIC、ARM、等常用主流单片机。还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。配合系统配置的

简易数字电压表的设计

一、简易数字电压表的设计 l.功能要求 简易数字电压表可以测量0~5V的8路输入电压值,并在四位LED数码管上轮流显示或单路选择显示。测量最小分辨率为0.019 V,测量误差约为土0.02V。 2.方案论证 按系统功能实现要求,决定控制系统采用AT89C52单片机,A/D转换采用ADC0809。系统除能确保实现要求的功能外,还可以方便地进行8路其它A/D转换量的测量、远程测量结果传送等扩展功能。数字电压表系统设计方案框图如图1-1。 图1-1 数字电压表系统设计方案 3.系统硬件电路的设计 简易数字电压测量电路由A/D转换、数据处理及显示控制等组成,电路原理图如图1-2所示。A/D转换由集成电路0809完成。0809具有8路模拟输人端口,地址线(23~25脚)可决定对哪一路模拟输入作A/D转换,22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存,6脚为测试控制,当输入一个2us宽高电平脉冲时,就开始A/D 转换,7脚为A/D转换结束标志,当A/D转换结束时,7脚输出高电平,9脚为A/D 转换数据输出允许控制,当OE脚为高电平时,A/D转换数据从该端口输出,10脚为0809的时钟输入端,利用单片机30脚的六分频晶振频率再通过14024二分频得到1 MHz时钟。单片机的P1、P3.0~P3.3端口作为四位LED数码管显示控制。P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。P0端口作A/D转换数据读入用,P2端口用作0809的A/D转换控制。 4.系统程序的设计 (1)初始化程序 系统上电时,初始化程序将70H~77H内存单元清0,P2口置0。 (2)主程序

基于单片机的数字电压表设计方案

输入电路 A/D 转换 89S52单片机 LCD 显示 通讯模块 基于单片机的数字电压表设计方案 摘要:本文介绍一种基于89S52单片机的一种电压测量电路,该电路采用ICL7135高精度、双积分A/D 转换电路,测量范围直流0-±2000伏,使用LCD 液晶模块显示,可以与PC 机进行串行通信。正文着重给出了软硬件系统的各部分电路,介绍了双积分电路的原理,89S52的特点,ICL7135的功能和应用,LCD1601的功能和应用。该电路设计新颖、功能强大、可扩展性强。 关键词:电压测量,ICL7135,双积分A/D 转换器,1601液晶模块 1前言 数字电压表(Digital Voltmeter )简称DVM ,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC 进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM 扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本章重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。 2 系统原理及基本框图 如图2.1所示,模拟电压经过档位 切换到不同的分压电路衰减后,经隔离 干扰送到A/D 转换器进行A/D 转换,然 后送到单片机中进行数据处理。处理后 的数据送到LCD 中显示,同时通过串行 通讯与上位机通信。

51单片机数字电压表设计

基于51单片机的数字电压表设计 二级学院铜陵学院 专业自动化 班级 组号 组员 指导教师

简易的数字电压表的设计 目录 一课程设计任务书·····························································································································错误!未定义书签。 1.1 设计题目、目的····················································································································错误!未定义书签。 1.2 题目的基本要求和拓展功能··························································································错误!未定义书签。 1.3 设计时间及进度安排··········································································································错误!未定义书签。 二设计内容············································································································································错误!未定义书签。 2.1 元器件选型······························································································································错误!未定义书签。 2.2 系统方案确定·························································································································错误!未定义书签。 2.3 51单片机相关知识··············································································································错误!未定义书签。 2.4 AD转换器相关知识··············································································································错误!未定义书签。 三数字电压表系统设计 (7) 3.1系统设计框图 (8) 3.2 单片机电路 (9) 3.3 ADC采样电路 (10) 3.4显示电路 (11) 3.5供电电路和参考电压·························································································································································· 3.6 数字电压表系统电路原理图·········································································································································四软件部分 4.1 主程序 4.2 显示子程序 五数字电压表电路仿真 5.1 仿真总图 5.2 仿真结果显示 六系统性能分析 七心得体会 - 2 -

简易数字电压表设计报告

摘要--------------------------------------------------------2 1.数字电压表的简介------------------------------------------3 1.1数字电压表的发展--------------------------------------3 1.2数字电压表的分类--------------------------------------4 2.设计的目的------------------------------------------------5 3.设计的内容及要求------------------------------------------5 4.数字电压表的基本原理--------------------------------------5 4.1数字电压表各模块的工作原理----------------------------5 4.2数字电压表各模块的功能--------------------------------5 4.3数字电压表的工作过程----------------------------------6 5.实验器材--------------------------------------------------7 6.电路设计实施方案------------------------------------------7 6.1.实验步骤---------------------------------------------7 6.2各个模块设计------------------------------------------8 6.2.1 基准电压模块-----------------------------------8 6.2.2 3 1/2位A/D电路模块---------------------------10 6.2.3 字形译码驱动电路模块--------------------------12 6.2.4 显示电路模块----------------------------------13 6.2.5 字位驱动电路模块------------------------------16 7.总结-----------------------------------------------------17 参考文件---------------------------------------------------18 附录-------------------------------------------------------19

基于AT89C51和ADC0809简易数字电压表的设计

基于AT89S51的简易数字电压表的设计 摘要: 本课题是利用单片机设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码管显示,使用的元器件数目较少。外界电压模拟量输入到A/D转换部分的输入端,通过ADC0809转换变为数字信号,输送给单片机。然后由单片机给数码管数字信号,控制其发光,从而显示数字。此外,本文还讨论了设计过程中的所用的软件硬件环境,调试所出现的问题等。关键词:单片机; AT89S51;数字电压表; ADC0809,四位数码管 任务书 1.设计题目 基于AT89S51的简易数字电压表的设计。 2.设计内容与要求 用AT89S51单片机和ADC0809组成一个数字电压表,要求能够测量0~5V的直流电压值,并用四位数码管显示,并要求所用元器件最少。 3,。设计目的意义 (1).通过亲身的设计应用电路,将所用的理论知识应用到实践中,增强实践动手能力,进而促进理论知识的强化。 (2).通过数字电压表的设计系统掌握51单片机的应用。掌握A/D转换的原理及软件编程及硬件设计的方法,掌握根据课题的要求,提出选择设计方案,查找所需元器,设计并搭建硬件电路,编程写入EPROM并进行调试等。 目录 一、系统原理框图 二、AT89S51的结构 三、器件的比较与选择 四、系统硬件及仿真图

五、相关软件简介 六、程序流程图与源程序 七、数字电压表发展及未来 八、设计体会 九、参考文献 基于AT89S51的简易数字电压表的设计

第一章系统原理框图 选择AT89S51作为单片机芯片,选用四位8段共阴极LED数码管实现电压显示,利用ADC0809作为数模转换芯片。将数据采集接口电路输入电压传入ADC0809数模转换元件,经转换后通过D0至D7与单片机P0口连接,把转换完的模拟信号以数字信号的信号的形式传给单片机,信号经过单片机处理从LED数码显示管显示。P2口接数码管位选,P1接数码管,实现数据的动态显示,如图4.1所示。 图4.1 系统原理框图 第二章: AT89S51的结构 在本次课题设计中我们选择了AT89S51芯片。AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash 只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51

简易数字直流电压表的设计

电子制作课程考核报告 课程名称简易数字直流电压表的设计 学生姓名贾晋学号1313014041 所在院(系)物理与电信工程 专业班级电子信息工程1302 指导教师秦伟 完成地点 PC PROTEUS 2015年 6 月 13 日

简易数字直流电压表的设计 简易数字直流电压表的设计 摘要本文介绍一种基于AT89C51单片机的简易数字电压表的设计。该设计主要由三个模块组成:A/D转换模块,数据处理模块及显示模块。A/D转换芯片为ADC0808,它主要负责把采集到的模拟量转换为数字量再传送到数据处理模块。数据处理则是由芯片AT89C51来完成,主要负责把ADC0808传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;并且,它还控制着ADC0808芯片工作。 该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。此数字电压表可以测量0-200V的模拟直流输入电压值,并通过数码管显示。 关键词单片机;数字电压表;AT89C51;ADC0808

目录 1 引言............................................................................................... 2 总体设计方案............................................................................... 2.1设计要求 ............................................................................... 2.2 设计思路 .............................................................................. 2.3 设计方案 .............................................................................. 3 详细设计....................................................................................... 3.1 A/D转换模块 .................................................................... 3.2 单片机系统 ........................................................................ 3.3 时钟电路 ............................................................................ 3.4 LED显示系统设计 ........................................................... 3.5 总体电路设计 .................................................................... 4 程序设计....................................................................................... 4.1 程序设计总方案 ................................................................ 4.2 系统子程序设计 ................................................................ 5 仿真............................................................................................. 5.1 软件调试 (11) 5.2 显示结果及误差分析 ........................................................ 结论................................................................................................. 参考文献........................................................................................... 附录...................................................................................................

相关文档
最新文档