杨氏模量的测定

杨氏模量的测定
杨氏模量的测定

南昌大学物理实验报告

课程名称:大学物理实验

实验名称:杨氏模量的测量

学院:信息工程学院

专业班级:

学生姓名:学号:

实验地点:基础实验大楼

座位号:

实验时间:

一、实验目的:

(1)学会测量杨氏模量的一种方法,掌握“光杠杆镜”测量微小长度变化的原

理。

(2)学会用“对称测量”消除系统误差。

(3)学会如何以实际情况对各个测量量进行误差估算。

(4)练习用逐差法,作图法处理数据。

二、实验仪器

弹性模量测定仪(包括:细钢丝、光杠杆、望远镜、标尺、砝码);钢卷尺、螺旋测微

器、游标卡尺。

三、实验原理

(1)杨氏弹性模量定义式

任何固体在外力作用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)

时发生的伸长(或缩短)形变。设金属丝的长度为L ,截面积为S ,一端固定,一端在伸长

方向上受力为F ,伸长为△L 。

根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即

L

L E S F ?= 则有:

L

S FL E ?= 式中的比例系数E 称为杨氏弹性模量(简称弹性模量)。

实验证明:弹性模量E 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于

物体的材料本身的性质。它是表征固体性质的一个物理量。

对于直径为D 的圆柱形钢丝,其弹性模量为:

L

D FL

E ?=24π 根据上式,测出等号右边各量,杨氏模量便可求得。式中的

F 、D 、L 三个量都可用一

般方法测得。唯有L ?是一个微小的变化量,用一般量具难以测准。故而本实验采用光杠杆

法进行间接测量。

(2)光杠杆放大原理

光杠杆测量系统由光杠杆反射镜、倾角调节架、标尺、望远镜和调节反射镜组成。实验

时,将光杠杆两个前足尖放在弹性模量测定仪的固定平台上,后足尖放在待测金属丝的测量

端面上。当金属丝受力后,产生微小伸长,后足尖便随着测量端面一起作微小移动,并使得

光杠杆绕前足尖转动一个微小角度,从而带动光杠杆反射镜转动相应的微小角度,这样标尺

的像在光杠杆反射镜和调节反射镜之间反射,便把这一微小角位移放大成较大的线位移。

如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改

变后的镜面和改变前的镜面必然有一

个角度差,用θ来表示这个角度差。

从下图我们可以看出:

θθb tan b ≈?=?L ,式中b

为光杠杆前后足距离,称为光杠杆常

数。

设开始时在望远镜中读到的标尺读数为0r ,偏转后读到的标尺读数为i r ,则放大后的钢丝伸长量为0r -r =?n ,由图中几何关系有:

H t 2

/n 2an 2?=≈θθ,H

4n ?=θ 由上式得到:H

n L 4b ?=? 代入计算式,即可得下式:

n

b D 162?=

πFLH E 这就是本实验所依据的公式。 四、实验步骤

(1)调整测量系统

1、目测调整

首先调整望远镜,使其与光杠杆等高,然后左右平移望远镜与调节平面镜,直到凭目测从望远镜上方观察到光杠杆反射镜中出现调节平面镜的像,再适当转动调节平面镜直到出现标尺的像。

2、调焦找尺

首先调节望远镜目镜旋轮,使“十”字叉丝清晰成像;然后调节望远镜物镜焦距,直到标尺像和“十”字叉丝无视差。

3、细调光路水平

观察望远镜水平叉丝所对应的标尺读数和光杠杆在标尺上的实际位置是否一致,若明显不同,则说明入射光线与反射光线未沿水平面传播,可以适当调节平面镜的俯仰,直到望远镜读出的数恰好为其实际位置为止。调节过程中还应该兼顾标尺像上下清晰度一致,若清晰度不同,则可以适当调节望远镜俯仰螺钉。

(2)测量数据

1、首先测量不放砝码时刻度尺的读数,然后逐渐增加砝码,读取对应受力下刻度尺的读数。 由于物体受力后和撤销外力后不是马上能恢复原状,而会产生弹性滞后效应,所以为了减小该效应带来的误差,应该在增加拉力和减小拉力过程中各测一次对应拉力下标尺读书,然后取两次结果的平均值。

2、根据量程及相对不确定度大小,用钢卷尺测量L 和H ,千分尺测量D ,游标卡尺测量b 。考虑到钢丝直径因为钢丝截面不均匀而产生误差,应该在钢丝的不同位置测量多组D 在取平均值。

(3)数据处理

由于在测量C 时采取了等间距测量,适合用逐差法处理,故采用逐差法对视伸长n ?求平均值,并估算不确定度。其中L 、H 、b 只测量一次,由于实验条件的限制,其不确定度不能简单地由量具仪器规定的误差限决定,而应该根据实际情况估算仪器误差限。

i 、测量钢丝长度L 时,由于钢丝上下端装有紧固夹头,米尺很难测准,故误差限应该取0.1 cm ;

ii 、测量镜尺间距H 时,难以保证米尺水平,不弯曲和两端对准,若该距离为1.0~1.5m ,则误差限应该取0.5cm ;

iii 、用卡尺测量光杠杆前后足距b 时,不能完全保证是垂直距离,该误差限可定为0.02mm 。

五、数据记录与处理

(1)计算钢丝弹性模量

钢丝长度L=37.60cm,平面镜到标尺的距离D=91.6cm,光杠杆前后足间距b=4.468cm

钢丝直径D测量结果:

钢丝伸缩量的记录表:

数据处理计算杨氏模量的平均值及相对误差和不确定度

六、实验讨论

(1)误差分析

实验过程中读数时的人为原因产生误差,用望远镜读取反光镜中的刻度时,桌面的震动产生的系统误差。以及增放砝码过程中,砝码未稳定造成受力不稳定导致读数误差。(2)改进意见

在实验中通过亲身经历,我总结出本实验中可以做出改进的几个方面:

1、测量钢丝长度L的改进。

在测量钢丝长度L时,由于钢丝上下端装有紧固夹头,同时钢丝处于竖直拉长状态,这给测量带来很大不便。一来由于紧固夹头的阻碍,很难将钢卷尺贴近钢丝,而必须将钢卷尺放置在距离钢丝有一定距离的位置进行测量,这样由于人眼读数的视差,必然会减低读数准确度;

2、测量镜尺间距H的改进。

在测量镜尺间距H时,由于距离较远,很难保证钢卷尺水平放置、不弯曲而且两端对齐,显然这样带来的误差将会相当大。为了减少该误差,可以参考光学实验中测量光学元件间距时采用带刻度的光具座的方法,将望远镜、钢丝固定装置置于一个带有刻度的导轨上,从而简化测量和提高精度。

3、测量光杠杆前后足间距b的改进。

在测量光杠杆前后足间距b时,不能保证完全是垂直距离,同时由于光杠杆的尺寸和形状问题,也会使得游标卡尺不能很好地卡紧前后足。可以考虑将光杠杆置于白纸上,用铅笔

描出光杠杆三足位置,然后连接两个后足,再过前足作后足的垂线,测量前足到垂足的距离,则可以比较简便地测出前后足间距。但是这样操作则不能用游标卡尺测量前后足间距,故而将会损失一定测量精度。

六、原始数据:

金属的杨氏模量的测量

金属的杨氏模量的测量 当固体受外力作用时,它的体积和形状将要发生变化,这种变化,称为形变。当外力不太大时,物体的形变与外力成正比,且外力停止作用物体立即恢复原来的形状和体积,这种形变称为弹性形变。当外力较大时,物体的形变与外力不成比例,且外力停止作用,物体形变不能恢复原来的形状和体积,这种形变称为范性形变。范性形变的产生,是由于物体形变而产生的内应力超过了物体的弹性限度的缘故。如果再继续增大外力,物体内产生的内应力将会超过物体的强度极限时,物体便被破坏了。 固体材料的弹性形变可以分为纵向、切变、扭转、弯曲等,对于纵向弹性形变可以引入杨氏模量来描述材料抵抗形变的能力。杨氏模量是反映材料形变与内应力关系的一个重要的物理量。杨氏模量越大,越不易发生形变。杨氏模量一般只与材料的性质和温度有关,与其几何形状无关。材料杨氏模量测量方法很多,有静态法和动态法。对于静态法来说,又可分为拉伸法和弯曲法。 I .拉伸法测定钢丝的杨氏弹性模量 【实验目的】 1. 学会用拉伸法测定钢丝的杨氏弹性模量。 2. 掌握几种长度测量工具的使用方法及其不确定度的分析和计算。 3. 进一步掌握逐差法、作图法和最小二乘法的数据处理方法。。 【实验仪器】 杨氏模量测量仪、螺旋测微器、钢卷尺、读数显微镜装置等。 【实验原理】 一、拉伸法测金属丝的杨氏弹性模量 设有一根粗细均匀的金属丝,长度为L,截面积为S ,将其上端紧固, 下端悬挂质量为m的砝码。当金属丝受外力F= mg作用而发生形变L时,金属丝受外力作用发生形变而产生的内应力RS,其应变为LL,根据虎克

定律有:在弹性限度内,物体的应力 F 「S 与产生的应变成正比,即 Fl S L 式中E 为比例恒量,将上式改写为 L F EwlL 其中E 为该材料的杨氏弹性模量 (又称杨氏模量) 变的应力。实验证明,杨氏模量 E 与外力 F 、金属丝的长度L 、横截面积S 的 大小无关,它只与制成金属丝的材料有关。 1 若金属丝的直径为d ,则S = - Q ?d 2 ,将其代入(I .2 )式中可得 4 4F L 二 d 2 .丄 (I .3 )式表明,在长度、直径和所加外力相同的情况下,杨氏模量大的金属丝 伸长量较 小,杨氏模量小的金属丝伸长量较大。 因此,杨氏模量反映了材料抵抗 外力引起的拉伸(或压缩)形变的能力。实验中,测量出 F 、L 、d 和厶L 值就 可以计算出金属丝的杨氏模量 E 。其中F 、L 、d 都可用一般方法测得,唯有 L 是一个微小的变化量,约 10‘mm 数量级,用普通量具如钢尺或游标卡尺 是难以测准的。因此,实验的核心问题是对微小变化量 L 的测量。在本实验 中用读数显微镜测量(也可利用光杠杆法或其他方法测量) 二、杨氏模量测量仪 杨氏模量测量仪的基本结构如图1所示。在一个较重的三脚底座上固定有两 根立柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。整个 支架受力后变形极小,可以忽略。通过调节三角底座的水平调节螺母13使整个支 架铅直。待测样品是一根粗细均匀的金属丝(长约 90Cn )O 金属丝上端用上端紧 固座2夹紧并固定在上横梁上,钢丝下端也用一个钳形平台5夹紧并穿过平台的中 心孔,使金属丝自由悬挂。钢丝的总长度 L 就是从上端固定座2的下端面至钳形 平台5的上端面之间的长度。钳形平台5下方的挂钩上挂一个砝码盘,当盘上逐次 加上一定质量的砝码后,钢丝就被拉伸,标尺刻线6也跟着下降。读数标尺9相对 (I .1 ) (I .2 ) ,在数值上等于产生单位应 (I ?3 )

杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度

杨氏模量(Young's Modulus) 杨氏模量就是弹性模量,这是材料力学里的一个概念。对于线弹性材料有公式(T (正应力)=E£(正应变)成立,式中。为正应力,£为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。杨 (Thomas You ng17791829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。钢的杨氏模量大约为2X 1011N-m-2,铜的是X 1011 N -m。 弹性模量(Elastic Modulus ) E: 弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。 弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。在工程上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。 弹性模量E在比例极限内,应力与材料相应的应变之比。对于有些材料在弹性范围内应力-应变曲 线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension ( 杨氏模量)、剪切弹性模量shear modulus of elasticity ( 刚性模量)、体积弹性模 量、压缩弹性模量等。 剪切模量G(Shear Modulus): 剪切模量是指剪切应力与剪切应变之比。剪切模数G=剪切弹性模量G=切变弹性模量G切变弹性模 量G,材料的基本物理特性参数之一,与杨氏(压缩、拉伸)弹性模量E、泊桑比v并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。 其定义为:G=T / 丫,其中G(Mpa)为切变弹性模量; T为剪切应力(Mpa); Y为剪切应变(弧度) 体积模量K(Bulk Modulus) 体积模量可描述均质各向同性固体的弹性,可表示为单位面积的力,表示不可压缩性。公式如下 =E/(3 X (1 -2X v)),其中E为弹性模量,v为泊松比。具体可参考大学里的任一本弹性力学书 性质:物体在p o的压力下体积为V o;若压力增加(p o Tp o+d p),则体积减小为 (V0-d V)。则K=(p°+d p)/(V 0-d V)被称为该物体的体积模量(modulus of volume

动态法测量杨氏弹性模量

动态法测量杨氏弹性模量 郑新飞 杨氏模量是固体材料在弹性形变范围内正应力与相应正应变(当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量)的比值,其数值的大小与材料的结构、化学成分和加工制造方法等因素有关。杨氏模量的测量是物理学基本测量之一,属于力学的范围。根据不同的测量对象,测量杨式模量有很多种方法,可分为静态法、动态法、波传播法三类。 一、实验目的 1、理解动态法测量杨氏模量的基本原理。 2、掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3、了解压电陶瓷换能器的功能,熟悉信号源和示波器的使用。 4、培养综合运用知识和使用常用实验仪器的能力。 二、实验仪器 1、传感器I(激振):把电信号转变成机械振动。 2、试样棒:由悬线把机械振动传给试样,使试样受迫做共振动。 3、传感器II(拾振):机械振动又转变成电信号。 4、示波器:观察传感器II转化的电信号大小。

三、实验原理 理论上可以得出用动态悬挂法测定金属材料的杨氏模量,为 2436067.1f d m l E = (1) 式中l 为棒长,d 为棒的直径,m 为棒的质量。如果在实验中测定了试样(棒)在不同温度时的固有频率f ,即可计算出试样在不同温度时的杨氏模量E 。 四、实验内容 1、测定试样的长度l 、直径d 和质量m 。每个物理量各测六次,列表记录。 2、在室温下不锈钢和铜的杨氏模量分别为211102m N ?和 211102.1m N ?,先由公式(1)估算出共振频率f ,以便寻找共振点。 3、把试样棒用细钢丝挂在测试台上,试样棒的位置约距离端面l 224.0和l 776.0处,悬挂时尽量避开这两个位置。 4、把2-YM 型信号发生器的输出与2-YM 型测试台的输入相连, 测试

材料杨氏模量的测量

霍耳位置传感器的定标和杨氏模量的测定 一、 实验目的 1. 熟悉霍耳位置传感器的特性; 2. 掌握用弯曲法测量黄铜的杨氏模量; 3. 测黄铜杨氏模量的同时,对霍耳位置传感器定标; 4. 用霍耳位置传感器测量可锻铸铁的杨氏模量。 二、 仪器和用具 1. 霍耳位置传感器测杨氏模量装置一台(底座固定箱、读数显微镜、95A 型集成霍耳位置 传感器、磁铁两块、支架、砝码盘、砝码等); 2. 霍耳位置传感器输出信号测量仪一台(包括直流数字电压表)。 三、 实验原理 1、霍尔元件置于磁感应强度为B 的磁场中,在垂直于磁场方向通以电流I ,则与这二者垂直的方向上将产生霍尔电势差U H : U H =K· I·B (1) (1) 式中K 为元件的霍尔灵敏度。如果保持霍尔元件的电流I 不变,而使其在一个均匀梯度的磁场中移动时,则输出的霍尔电势差变化量为: Z dZ dB I K U H ??? ?=? (2) (2)式中?Z 为位移量,此式说明若 dZ dB 为常数时,? U H 与?Z 成正比。 为实现均匀梯度的磁场,可以如图1所示两块相同的磁铁(磁铁截面积及表面磁感应强度相同)相对放置,即N 极与N 极相对,两磁铁之间留一等间距间隙,霍尔元件平行于磁铁放在该间隙的中轴上,间隙大小要根据测量范围和测量灵敏度要求而定,间隙越小,磁场梯度就越大,灵敏度就越高。磁铁截面要远大于霍尔元件,以尽可能的减小边缘效应影响,提高测量精确度。 若磁铁间隙内中心截面处的磁感应强度为零,霍尔元件处于该处时,输出的霍尔电势差应该为零。当霍尔元件偏离中心沿Z 轴发生位移时,由于磁感应强度不再为零,霍尔元件也就产生相应的电势差输出,其大小可以用数字电压表测量,由此可以将霍尔电势差为零时元件所处的位置作为位移参考零点。 霍尔电势差与位移量之间存在一一对应关系,当位移量较小(<2mm ),这一一对应关系具有良好的线性。 2、在横梁弯曲的情况下,杨氏模量E 可以用下式表示: ;433Z b a Mg d E ????= (3) 其中:d 为两刀口之间的距离;M 为所加砝码的质量;a 为梁的厚度;b 为梁的宽度;?Z 为

杨氏弹性模量的测量

金属丝拉伸变形 图3.1.1 杨氏弹性模量的测量 【实验目的】 (1)用拉伸法测量金属丝的杨氏弹性模量。 (2)掌握用光杠杆测量微小长度的原理及方法。 (3)学会用逐差法处理实验数据和不确定度的计算。 【实验原理】 物体在外力的作用下发生形变,若撤走外力后形变消失,即物体恢复原状,这种形变叫做弹性形变,当外力超过某一限度,撤除外力后,物体不能恢复原状而留下剩余形变称为塑性形变,产生塑性形变的最小限度叫弹性极限;当外力 进一步增大到某一点时,物体会突然发生很大的形变,则该 点称为屈服点,超过屈服点后,该物体就会发生断裂。在物 体的弹性范围内,产生一定的形变所需应力与应变(相对形变)之比称为弹性模量。如果物体是柱形或条形,则(由拉力或压力所导致)沿纵向的弹性模量叫杨氏弹性模量。 如图3.1.1所示,设一粗细均匀的金属丝长度为L ,横截面面积为S ,将其上端固定,下端悬挂砝码,金属丝受砝码重力F 的作用而发生形变,伸长量为 L ,F /S 是金属丝截面上单位面积所受的作用力,叫做应力,而L /L 是金属丝单位长度的相对形变,叫做应变,由胡克定律得:在弹性形变范围内,物体所受的应力F/S 与应变△L/L 成正比,即 F L E S L ?= (3.1.1) 其比例系数 //F S E L L =?

杨氏模量测量仪 图3.1.2 (3.1.2) 称为杨氏弹性模量,简称杨氏模量。式中各量的单位均用SI 单位时,E 的单位为帕斯卡(即Pa ,1 Pa =1 N/m 2)。杨氏模量是表征物体(材料)性质的一个参量,与物体的几何尺寸以及外力大小无关,对一定材料而言,E 是一个常数,它仅取决于材料的性质。杨氏模量的大小标志了材料的刚性。 【实验仪器简介】 1. 杨氏模量仪 杨氏模量仪如图3.1.2所示。三脚底座上装有两个 立柱和三个调整螺丝(调节调整螺丝可使钢丝铅直), 立柱的上端装有横梁,横梁中间小孔中有个上夹头A , 用来夹紧金属丝L 的上端。立柱的中部有一个可以沿立 柱上下移动的平台C ,用来承托光杠杆M 。平台上有一 个圆孔和一条横槽,圆孔中有一个可以上下滑动的小圆 柱形的下夹头B ,用来夹紧金属丝的下端,小夹头下面 挂一砝码托盘,用于承托使金属丝拉长的砝码。 2. 镜尺组 镜尺组包括一个支架上安装的望远镜R 和标尺S 。望远镜水平安装,标尺贴近望远镜且竖直安装,与被测长度变化方向相平行。 3. 光杠杆 如图3.1.3所示,光杠杆是将一小圆形平面反射镜M 固定在下面有三 个足尖f 1、f 2和f 3的“T ”形三脚支架上,f 1、f 2、f 3 三点构成一个等腰三角形。 图3.1.3

金属丝杨氏弹性模量的测定试验部分训练题

习 题 一、选择 1.弹性模量的测定中哪个数据是用逐差法处理的?( ) A. 光杠杆读数 B. 金属丝直径 C. 金属丝长度 D. 平面镜到标尺的距离 2.在测量杨氏模量的实验中,用光杠杆镜尺法测量的物理量是:( ) A.标尺到镜面的距离 B.钢丝长度 C.钢丝直径 D. 钢丝长度的伸长量 3.用光杠杆测微小长度的变化,从望远镜视场中所看到的标尺像是( ) A.缩小的倒立实像 B.放大的倒立虚像 C. 缩小的正立实像 D. 放大的正立实像 4.在测定金属丝的弹性模量实验中,通常预加一定重量的负荷,目的是:( ) A. 消除摩擦力 B. 没有目的 C. 拉直金属丝,避免将拉直过程当为伸长过程进行测量 D. 减少初读数,消除零误差 5.对于一定温度下金属的杨氏模量,下列说法正确的是:( ) A.只与材料的物理性质有关而与材料的大小及形状无关; B.与材料的大小有关,而与形状无关; C.与材料的形状有关,而与大小无关; D.与材料的形状有关, 与大小也有关 ; 6.在测量杨氏模量的实验中,若目镜中的叉丝不清晰,则应调节:( ) A.望远镜的目镜 B.望远镜的位置 C.望远镜的调焦轮 D.望远镜的方向 7.光杠杆镜尺法的放大倍数为:( ) A. 2b D B.2b D C.2D b D.2D K 8.在测量杨氏模量的实验中,调节时在望远镜中只能看到镜子,若要看到标尺的像应调节:( )

A. 调焦轮 B. 目镜 C. 望远镜位置 D.望远镜方向 二、判断 1.两根材料相同,长度、粗细均不相同的金属丝,它们的杨氏弹性模量应该相同。 2.在测量杨氏弹性模量的实验中,镜尺间距D 的测量误差对杨氏模量的测量结果影响最大。 3.在测量杨氏弹性模量的实验中,光杠杆的放大倍数与望远镜放大倍数有关。 4.在测量杨氏弹性模量的实验中,钢丝直径d 的测量误差对杨氏模量的测量结果影响最大。 5.拉伸法测杨氏模量实验中,采用加减砝码各测一次取平均的方法测量是为了消除因磨擦和滞后带来的系统误差 三、简答 1.本实验中,为什么测量不同的长度要用不同的仪器进行?它们的最大允差各 是多少? 2.根据实验不确定度几何合成方法,写出杨氏模量E 的相对不确定度的表达式, 并指出哪一个测量影响最大。 3.本实验所用的逐差法处理数据,体现了逐差法的哪些优点?若采用相邻两项 相减,然后求其平均值,有何缺点? 4.若将b D 2作为光杠杆的“放大倍率”,试根据你所得的数值计算b D 2的值,你能想出几种改变“放大倍率”的方法来吗? 5.光杠杆法有何特点?你能应用光杠杆法设计一个测定引力常量G 的物理实验吗?

实验报告-杨氏模量测量

实验报告:杨氏模量的测定

杨氏模量的测定(伸长法) 【实验目的】 1.用伸长法测定金属丝的杨氏模量 2.学习光杠杆原理并掌握使用方法 【实验仪器】 伸长仪;光杆杆;螺旋测微器;游标尺;钢卷尺和米尺;望远镜(附标尺)。 【实验原理】 物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。 设有一截面为S ,长度为l 的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了δ,其单位面积截面 所受到的拉力S F 称为胁强,而单位长度的伸长量l δ称为胁变。根据胡克定律,在弹性形变范围内,棒状 (或线状)固体胁变与它所受的胁强成正比: F E S l δ = 其比例系数E 取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。 Fl E S δ = (1) 右图是光杠杆镜测微小长度变化量的原理图。左侧曲尺状物为光杠杆镜,M 是反射镜,b 为光杠杆镜短臂的杆长,B 为光杆杆平面镜到尺的距离,当加减砝码时,b 边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为l 时,从一个调节好的位于图右侧的望远镜看M 镜中标尺像的读数为0h ;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为i h 。这样,钢丝的微小伸长量δ,对应光杠杆镜的角度变化量θ,而对应的光杠杆镜中标尺读数变化则为Δh 。由光路可逆可以得知,h ?对光杠杆镜的张角应为θ2。从图中用几何方法可以得出: tg b δ θθ≈= (1) tg22h B θθ?≈= (2) 将(1)式和(2)式联列后得: 2b h B δ= ? (3) 考虑到2 =/4S D π,F mg = 所以:2 8Bmgl E D b h π=? 这种测量方法被称为放大法。由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。 图 光杠杆原理 A

杨氏模量

杨氏模量 杨氏模量是描述固体材料抵抗形变能力的物理量。当一条长度为L、截面积为S的金属丝在力F 作用下伸长ΔL时,F/S叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量。应力与应变的比叫弹性模量。ΔL是微小变化量。杨氏模量(Young's modulus),又称拉伸模量(tensile modulus)是弹性模量(elastic modulus or modulus of elasticity)中最常见的一种。杨氏模量衡量的是一个各向同性弹性体的刚度(stiffness),定义为在胡克定律适用的范围内,单轴应力和单轴形变之间的比。与弹性模量是包含关系,除了杨氏模量以外,弹性模量还包括体积模量(bulk modulus)和剪切模量(shear modulus)等。Young's modulus E, shear modulus G, bulk modulus K, 和Poisson's ratio ν 之间可以进行换算,公式为: E=2G(1+v)=3K(1-2v). 表达式E = σ / ε 定义: 杨氏模量,它是沿纵向的弹性模量,也是材料力学中的名词。1807年因英国医生兼物理学家托马斯·杨(ThomasYoung,1773-1829)所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 杨氏弹性模量是选定机械零件材料的依据之一,是工程技术设计中常用的参数。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。 测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。 定义:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。 意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小 说明:又称杨氏模量。弹性材料的一种最重要、最具特征的力学性质。是物体弹性变形难易程度的表征。用E表示。定义为理想材料有小形变时应力与相应的应变之比。E以单位面积上承受的力表示,单位为N/m2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J表示。 拉伸试验中得到的屈服极限бS和强度极限бb,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料塑型变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。一般按引起单位应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:EA0 式中A0为零件的横截面积。 由上式可见,要想提高零件的刚度EA0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此, 构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。

测量钢丝绳的杨氏模量

实验三 测量钢丝绳的杨氏模量 杨氏弹性模量是描述金属材料抗弹性形变能力的重要物理量,它是选定机械构件材料的依据之一,是工程技术上常用的参数。 测量材料杨氏弹性模量的方法很多,例如①静态测量法,包括静态拉伸法、弯曲法、扭转法;②动态测量法,包括横向共振法、纵向共振法、扭转共振法;③波速测量法,包括连续波法、脉冲波法,等等。本实验是用拉伸法测钢丝绳的杨氏模量。 任何物体在外力作用下都要发生形变,形变分为弹性形变和塑性形变两大类。如果外力在一定限度以内,当外力撤除后物体能恢复到原来的形状和大小,这种形变称为弹性形变;如果外力撤除后物体不能恢复原状,而留下剩余的形变,则称为塑性形变。本实验只研究弹性形变,因而要控制外力的大小,以保证物体作弹性形变。 例如一根长约1m 的钢丝,在外力作用下产生了一个微小的伸长,数量级约mm 1 10-,用一般长度量具(如米尺、游标尺和螺旋测微计等)去测量此伸长量,根本无法测量。本实验采用光杠杆镜尺法来测量长度的微小变化,以解决这一难题。镜尺法不仅可以测量长度的微小变化,也可以测量角度的微小变化。 【实验目的】 1、学会测量金属丝的杨氏弹性模量; 2、掌握光杠杆镜尺法测量长度微小变化的原理,学会具体的测量方法; 3、学习用逐差法处理实验数据。 【实验原理】 一根粗细均匀的金属丝,长度为L ,截面积为S 。将其上端固定,下端悬挂质量为m 的砝码。于是,金属丝受外力mg F =的作用伸长了L ?。把单位截面积上所受的作用力 S F /称为应力,单位长度的伸长L L /?称为应变。于是,根据胡克定律有:在弹性限度内, 物体的应力S F /和所产生的应变L L /?成正比,即: L L Y S mg ?= (2.3-1) 比例恒量Y 就是该材料的弹性模量,简称杨氏模量,它在数值上等于产生单位应变的 应力。它的单位为2 /m N 或Pa 。由(2.3-1)式可得:

金属丝杨氏模量的测定

物理实验报告 【实验名称】 杨氏模量的测定 【实验目的】 1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。 2. 掌握各种长度测量工具的选择和使用。 3. 学习用逐差法和作图法处理实验数据。 【实验仪器】 MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。 【实验原理】 一、杨氏弹性模量 设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即 L L Y S F ?= (1) 则 E L L S F Y ?= (2) 比例系数E 即为杨氏弹性模量。在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。Y 的国际单位制单位为帕斯 卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。 本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S 42d S π= 则(2)式可变为 E L d FL Y ?=24π (3) 可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量, F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时, F 每变化1kg 相应的ΔL 约为mm)。因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。 二、光杠杆测微小长度变化 尺读望远镜和光杠杆组成如图2所示的测量系统。光杠杆系统是由光杠杆镜架与尺读望远镜组成的。光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。三个尖足的边线为一等腰三角形。前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。尺读望远镜由一把竖立的毫米刻度尺和在尺旁的一个望远镜组成。

杨氏弹性模量的测定

实验七杨氏弹性模量的测定 测量材料杨氏模量的方法很多,诸如拉伸法、压入法、弯曲法和碰撞法等。拉伸法是最常用的方法之一。但该方法使用的载荷较大,加载速度慢,且会产生驰豫现象,影响测量结果的精确度。另外,此法还不适用于脆性材料的测量。本实验借助于新颖的动态杨氏模量测量仪用振动法测量材料的杨氏模量。该方法可弥补其不足,同时还可扩大学生在物体机械振动方面的知识面,不失为一种非常有用和很有特点的测量方法。 【实验目的】 1.了解振动法测量材料杨氏模量的原理; 2.学会用作图外推求值法测量振动体基频共振频率和杨氏模量; 3. 测量试件机械振动的本征值 4.观察铝平板的振型; 5.通过实验,逐步提高综合运用各种测量仪器的能力。 【实验仪器】 DY-D99型多用途动态杨氏模量测量仪、YXY-3D型音频信号源、示波器(Y轴灵敏度5-10m V)、毫米刻度钢皮尺(250mm长)、0.02mm精度游标卡尺、物理天平(精度0.05克)。 DY-D99型多功能动态杨氏模量测量仪简介 图3 DY-D99型多功能动态杨氏模量测量仪 1电动式激振器、6电动式拾振器、2试件(圆棒)、17试件(金属铝板)、 3、5刀口、26导轨标尺、9标尺支架、25试件压板、24压板固定螺钉、 10接线箱、11试件选择旋钮、12输入接口、13输出接口、22声整流罩、 19发声元件、18小导轨、20声激振器固定螺钉、14-16水平调节螺钉、 4刻度指示板、8备用试件安放支架、7试件限位装置、23底板 该仪器如图3所示。它由棒材试件杨氏模量定量测量装置和板材试件振型演示观察装置两部分组成。两部分用接线箱连接和转换。前一装置包含两个换能器(电动式换能器)、导轨标尺及其支架。其中一个电动式换能器用作激振器,在音频信号发生器输出的音频正弦信号电压的作用下,作机械振动,进而激励试件作机械振动。另一个电动式换能器当作拾振器,将由试件传递过来的机械振动信号转变为电信号,并输到示波器观察波形。当音频信号发生器的信号频率调到与试件的固有频率相同时,试件产生共振,示波器显示的波形幅度达到最大。两个换能器的作用可互换。它们各自设有一个刀口,可搁置棒材试件。标尺用于指示换能器或刀口在试件上的位置。 矩形金属板试件和带有声整流罩的声激振器是振动体振型演示观察装置的基本组成部

实验 杨氏模量的测定(梁弯曲法)

实验 杨氏模量的测定(梁弯曲法) 【实验目的】 用梁的弯曲法测定金属的杨氏模量。 【仪器用具】 攸英装置,光杠杆,望远镜及直尺,螺旋测微计,游标卡尺,米尺,千分表。 【实验原理】 将厚为a 、宽为b 的金属棒放在相距为l 的二刀刃上(图1),在棒上二刀刃的中点处挂上质量为m 的砝码,棒被压弯,设挂砝码处下降λ,称此λ为弛垂度,这时棒材的杨氏模量 λ b a mgl E 3 3 4= . (1) 下面推导上式。图(2)为沿棒方向的纵断面的一部分。在相距dx 的21O O 二点上的横断面, 在棒弯曲前互相平行,弯曲后则成一小角度?d 。显然在棒弯曲后,棒的下半部呈现拉伸状态,上半部为压缩状态,而在棒的中间有一薄层虽然弯曲但长度不变,称为中间层。 计算与中间层相距为y 、厚dy 、形变前长为dx 的一段,弯曲后伸长了?yd ,它受到的拉力为dF ,根据胡克定律有 dx yd E dS dF ? =. 式中dS 表示形变层的横截面积,即bdy dS =。于是

y d y d x d Eb dF ?=. 此力对中间层的转矩为dM ,即 dy y dx d Eb dM 2 ?=. 而整个横断面的转矩M 应是 dx d b Ea dy y dx d Eb M a ??3 2 2 12 12= =? . (2) 如果将棒的中点C 固定,在中点两侧各为2 l 处分别施以向上的力 mg 2 1(图3),则棒的弯曲情 况当和图1所示的完全相同。棒上距中点C 为x 、长为dx 的一段,由于弯曲产生的下降λd 等于 ?λd x l d )2 ( -= (3) 当棒平衡时,由外力mg 2 1对该处产生的力距 )2 ( 21x l mg -应当等于由式(2)求出的转距M , 即 dx d b Ea x l mg ?3 12 1)2 ( 2 1= -. 由此式求出?d 代入式(3)中并积分,可求出弛垂度 b Ea mgl dx x l b Ea mg 3 3210 2 3 4)2 ( 6= -=?λ, (4) 即 λ b a m g l E 3 3 4= . (1)

杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度

杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度、柔度、刚性、柔性、泊松比、剪切应变、体积应变 “模量”可以理解为是一种标准量或指标。材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。这些都是与变形有关的一种指标。 杨氏模量(Young's Modulus): 杨氏模量是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量,也是材料力学中的名词。1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。对于线弹性材料有公式σ(正应力)=Eε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。钢的杨氏模量大约为2×1011N·m-2,铜的是1.1×1011 N·m-2。 弹性模量和杨氏模量很相似,弹性模量有拉伸和剪切的两个方向,杨氏主要指的是拉伸的。 测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。 弹性模量(Elastic Modulus): 弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数。也常指材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比。

动态法测量杨氏模量教案资料

实验四 动态法测定材料杨氏模量 杨氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。 杨氏模量测量方法有多种,最常用的有拉伸法测量金属材料的杨氏模量,这属于静态法测量,这种方法一般仅适用于测量形变较大、延展性较好的材料,对如玻璃及陶瓷之类的脆性材料就无法用此方法测量。动态法由于其在测量上的优越性,在实际应用中已经被广泛采用,也是国家标准指定的一种杨氏模量的测量方法。本实验用悬挂、支撑二种“动态法”测出试样振动时的固有基频,并根据试样的几何参数测得材料的杨氏模量。 一、实验目的 1.理解动态法测量杨氏模量的基本原理。 2.掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3.培养综合运用知识和使用常用实验仪器的能力。 4.进一步了解信号发生器和示波器的使用方法。 二、实验原理 长度L 远远大于直径d (L>>d )的一细长棒,作微小横振动(弯曲振动)时满足的动 解以上方程的具体过程如下(不要求掌握): 用分离变量法:令)()(),(t T x X t x y = 代入方程(1)得: 2 244d d 1d d 1t T T YJ s x X X ρ-= 等式两边分别是x 和t 的函数,这只有都等于一个常数才有可能,设该常数为4 K ,于是得:

0d d 444=-X K x X 0d d 422=+T s YJ K t T ρ 这两个线形常微分方程的通解分别为: Kx B Kx B shKx B chKx B x X sin cos )(4321+++= ) cos()(?ω+=t A t T 于是解振动方程式得通解为: ) cos()sin cos (),(4321?ω++++=t A Kx B Kx B shKx B chKx B t x y 其中式(2)称为频率公式: 2 14??????=s YJ K ρω (2) 该公式对任意形状的截面,不同边界条件的试样都是成立的。我们只要用特定的边界条件定出常数K ,并将其代入特定截面的转动惯量J ,就可以得到具体条件下的计算公式了。 如果悬线悬挂(支撑点)在试样的节点附近,则其边界条件为自由端横向作用力: 033=??-=??-=x y YJ x M F 弯矩 : 02 2=??=x y YJ M 即 0x d X d 0x 3 3== 0x d X d l x 33== 0x d X d 0x 2 2== 0x d X d l x 22== 将通解代入边界条件,得到1cos =KLchKL ,用数值解法求得本征值K 和棒长L 应满足:ΛΛ420.20 ,279.17 ,137.14 ,9956.10 ,8532.7 ,7300.4 ,0=KL , 由于其中第一个根“0”对应于静态情况,故将其舍去。将第二个根作为第一个根,记作L K 1。一般将7300.4 1=L K 所对应的共振频率称为基频(或称作固有频率)。在上述L K n 值中,1,3,5…个数值对应着“对称形振动”, 第2、4、6…个数值对应着“反对称形振动”。图1给出了当4 ,3 ,2 ,1n =时的振动波形。由1n =图可以看出,试样在作基频振动时,存在两个节点,它们的位置距离端面分别为L 224.0和L 776.0处。理论上悬

ANSYS中几个概念解释 杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度,泊松比

杨氏模量、弹性模量、剪切模量、体积模量、强度、刚度,泊松比 “模量”可以理解为是一种标准量或指标。材料的“模量”一般前面要加说明语,如弹 性模量、压缩模量、剪切模量、截面模量等。这些都是与变形有关的一种指标。 杨氏模量(Young'sModulus )—— 杨氏模量就是弹性模量,这是材料力学里的一个概念。对于线弹性材料有公式σ(正应 力)=E ε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常 数,与材料本身的性质有关。杨( ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。 1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。钢的杨氏模量大约为 2×1011N?m -2,C30混凝土是3.00×1010N?m -2。弹性模量(ElasticModulus )E —— 弹性模量E 是指材料在弹性变形范围内, 作用于材料上的纵向应力与纵向应变的比例常数。也常指材料所受应力(如拉伸,压缩,弯曲,剪切等)与材料产生的相应应变之比。 弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结构不敏感参数。在工程 上,弹性模量则是材料刚度的度量,是物体变形难易程度的表征。 弹性模量E 是在比例极限内,应力与材料相应的应变之比。对于有些材料在弹性范围内 应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人 为定义的办法来代替它的弹性模量值。 根据不同的受力情况,有相应的拉伸弹性模量(杨氏模量)、剪切弹性模量(刚性模量) 、体积弹性模量、压缩弹性模量等。剪切模量G (ShearModulus )—— 剪切模量是指剪切应力与剪切应变之比, 它表征材料抵抗切应变的能力。模量大,则表示材料的刚性强。 剪切模数G 是材料的基本物理特性参数之一,可表示材料剪切变形的难易程度;与杨 氏(压缩、拉伸)弹性模量 E 、泊桑比ν并列为材料的三项基本物理特性参数,在材料力学、弹性力学中有广泛的应用。 其定义为: G=τ/γ,其中G (Mpa )为切变弹性模量;τ为剪切应力(Mpa );γ为剪切应变(弧度)。 混凝土的剪切模量G 可取等于0.425E ,E是混凝土的弹性模量。体积模量K (BulkModulus )——

用拉伸法测量杨氏弹性模量教学内容

用拉伸法测量杨氏弹 性模量

用拉伸法测量杨氏弹性模量 任何物体在外力作用下都会发生形变,当形变不超过某一限度时,撤走外力之后,形变能随之消失,这种形变称为弹性形变。如果外力较大,当它的作用停止时,所引起的形变并不完全消失,而有剩余形变,称为塑性形变。发生弹性形变时,物体内部产生恢复原状的内应力。弹性模量是反映材料形变与内应力关系的物理量,是工程技术中常用的参数之一。 一. 实验目的 1. 学会用光杠杆放大法测量长度的微小变化量。 2. 学会测定金属丝杨氏弹性模量的一种方法。 3. 学习用逐差法处理数据。 二. 实验仪器 杨氏弹性模量测量仪支架、光杠杆、砝码、千分尺、钢卷尺、标尺、灯源等。 三. 实验原理 在形变中,最简单的形变是柱状物体受外力作用时的伸长或缩短形变。设柱状物体的长度为L ,截面积为S ,沿长度方向受外力F 作用后伸长(或缩短)量为ΔL ,单位横截面积上垂直作用力F /S 称为正应力,物体的相对伸长ΔL /L 称为线应变。实验结果证明,在弹性范围内,正应力与线应变成正比,即 L L Y S F ?= (3-1-1) 这个规律称为虎克定律。式中比例系数Y 称为杨氏弹性模量。在国际单位制 中,它的单位为N /m 2,在厘米克秒制中为达因/厘米2。它是表征材料抗应变能力的一个固定参量,完全由材料的性质决定,与材料的几何形状无关。 本实验是测钢丝的杨氏弹性模量,实验方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F ,测出钢丝相应的伸长量ΔL ,即可求出Y 。钢丝长度L 用钢卷尺测量,钢丝的横截面积42 d S π=,直径d 用千分尺测出,力F 由砝码的质量求出。在实际测量中,由于钢丝伸长量ΔL 的值很小,约mm 110-数量级。因此ΔL 的测量采用光杠杆放大法进行测量。

杨氏弹性模量测量

杨氏弹性模量测量 【实验目的】 1、学习光杠杆原理及使用光杠杆测量微小长度变化时的调节方法及测量方法。 2、学习使用逐差法处理数据 3、用拉伸法测定钢丝的杨氏弹性模量。 【实验原理】 1.胡克定律和杨氏弹性模量 固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为范性形变。 协强:单位面积上所受到的力(F/S)。 协变是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。 胡克定律:在物体的弹性限度内,胁强于胁变成正比,其比例系数称为杨氏模量(记为Y)。用公式表达为: (1) Y在数值上等于产生单位胁变时的胁强。它的单位是与胁强的单位相同。杨氏弹性模量是材料的属性,与外力及物体的形状无关。本试验主要测量的是钢丝的杨氏弹性模量。 2.光杠杆镜尺法测量微小长度的变化

在(1)式中,在外力的F 的拉伸下,钢丝的伸长量DL 是很小的量。用一般的的长度测量仪器无法测量。在本实验中采用光杠杆镜尺法。 图 光杠杆是一块平面镜直立的装在一个三足底板上。三个足尖f 1,f 2,f 3构成一个等腰三角形。f 1,f 2为等腰三角形的底边。f 3到这底边的垂直距离(即距离三角形底边上的高)为光杠杆常数,记为b 。如果f 1,f 2在一个平台上,而f 3下降DL ,那么平面镜将绕f 1,f 2转动q 。 初始时,平面镜处于垂直状态。标尺通过平面镜反射后,在望远镜中呈像。则望远镜可以通过平面镜观察到标尺的像。望远镜中十字线处在标尺上刻度为r 0。当f 3 下降DL 时,平面镜将绕f 1,f 2转q 角。则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为r 处。由于平面镜转动q 角,进入望远镜的光线旋转2q 角。从图中看出望远镜中标尺刻度的变化a 1 = r 1 – r 0。

钢丝杨氏模量的测定-实验报告

钢丝氏模量的测定 创建人:系统管理员 总分:100 实验目的 本实验采用拉伸法测量氏模量,要求掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方法。 实验仪器 MYC-1型金属丝氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等。 实验原理 在胡克定律成立的围,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的氏模量,又因为ΔL 很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如下图: 图1.光杠杆原理图 当θ很小时,L/l tan ?=≈θθ,其中l 是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:

实验容 1.调节仪器 (1)调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽,支脚放在管制器的槽,刀口和支脚尖应共面。 (4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2.测量 (1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。 (2)在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数i r ,然后再将砝码逐次减去,记下对应的读数' i r ,取两组对应数据的平均值i r 。 (3)用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3.数据处理 (1)逐差法 (2)作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2(6) 其中)/(2SlM DL M =,在一定的实验条件下,M 是一个常量,若以i r 为纵坐标,i F 为横坐标作图应得一直线,其斜率为M 。由图上得到M 的数据后可由式(7)计算氏模量 )/(2SlM DL E = (7) 4.注意事项 (1)调整好光杠杆和镜尺组之后,整个实验过程都要防止光杠杆的刀口和望远镜及竖尺的位置有任何变动,特别在加减砝码时要格外小心,轻放轻取。 (2)按先粗调后细调的原则,通过望远镜筒上的准星看反射镜,应能看到标尺,然后再细调望远镜。调目镜可以看清叉丝,调聚焦旋钮可以看清标尺。

相关文档
最新文档