汽蚀产生的现象

汽蚀产生的现象
汽蚀产生的现象

水轮机汽蚀的产生、机械破坏以及防御措施

水利水电建筑工程专业学生钱进

摘要:汽蚀是指水轮机流道内流动水体中的微小气泡在形成、发展、溃裂过程中对水轮机过流部件所产生的物理化侵蚀作用。本文主要阐述了水电站水轮机汽蚀产生原因及处理,最后针对如何防范水轮机汽蚀的一些防范措施进行论述。

关键词:汽蚀机械破坏防御措施

1、前言

水电站水轮机在发电运行过程中,往往会经常会出现强烈震动、强烈的噪音以及轴承温度过高、机组摆动过大等不良现象,这些现象的产生往往是由于水电站水轮机的汽蚀所造成的。会对水轮机汽蚀产生的原因是有很多种,除了水轮机本身外,还有就是部件的材料性能、制造工艺水平、

2水轮机汽蚀的研究

2.1、水轮机汽蚀的产生及影响

根据汽蚀在水轮机中发生的部位不同,一般有翼型汽蚀、空腔汽蚀和间隙汽蚀等3种。

1)翼型汽蚀它主要是由于轮叶翼型的形状所引起的。反击式水轮机的转轮叶片,沿流线方向的截面为空气动力型,水流绕叶片流动使其正面和反面造成压差,从而使转轮获得力矩,一般叶片正面大部分为正压,叶片背面为负压。如果叶片背面压力降低至汽化压力时,就发生翼型汽蚀,产生大量汽泡,破坏水流正常连续性流动,导致机组出力和效率的降低。另外,由于轮叶制造材料质量不良,形状不对及表面不光等,产生的翼型汽蚀将使轮叶形成蜂窝状孔洞,如不及时检

修.可导致轮叶击穿而破坏。翼型汽蚀一般发生在叶片背面出水边下半部靠轮环处和叶片背面与轮毂靠近处。

2)空腔汽蚀它是由于在尾水管内的水流旋转,使中心空腔处形成了真空而造成的。主要原因是由于水轮机在非设计工况下运行(在水轮机出力的5%限制线以外时),破坏了水轮机的法向出口,产生了脱流和旋涡,再加上整个转轮出口的旋转水流,在转轮出口和尾水管进口形成一个涡带,其中心产生很大压降,当降至汽化压力时,便产生了空腔汽蚀。这种涡带以一定的频率在尾水管内旋转,其中心的真空带周期性地冲击尾水管的四周,造成对尾水管壁的汽蚀破坏,产生周期性的压力波动,形成强烈的噪音、金属打击声、轰隆声或雷鸣声,甚至发生放电、闪光现象,严重时会引起机组的强烈振动,影响水轮机的稳定运行。空腔汽蚀通常发生在水轮机座环内侧和尾水管上半段。

3)间隙汽蚀这是水流通过某些间隙或较小的通道时,因局部流速升高,压力降低到汽化压力时而产生的。反击式水轮机常发生在导叶端部间隙处和转轮止漏环间隙处,轴流转桨式水轮机叶片和转轮室的间隙处。间隙汽蚀破坏范围一般较小,但在水轮机运行中表现较突出。在间隙汽蚀的作用下,转轮室、叶片周缘、叶片法兰下表面以及转轮体的局部发生破坏,高水头的水电站较为严重。

2.2水轮机汽蚀的机械破坏作用及处理和防治措施

2.2.1水轮机汽蚀的机械破坏作用及处理

(一)汽蚀对水轮机的破坏作用

水流在水轮机中流动通过压力低于汽化压力区界,水汽化沸腾产生气泡,流到高压区界气泡迅速溃灭,气泡周围的水体高速占据此空间,产生局部冲击压力升高,于是使水挤人金属表面的细缝中,当压力突降时,挤入的水又要从金属缝中快速拉出,这样就会对金属产生周期性的撞击并产生水击压力,使金属表面受到反复的冲击载荷,造成材料的破坏,导致金属晶粒脱落,当汽蚀反复发生在同一个部位时,就会使金属表面变暗、粗糙、出现蜂窝以致穿孔或断裂现象,最终成块脱落。总之汽蚀时对水轮机的机械破坏,使机组大修周期缩短,延长了检修工期,增加了检修费用,减少了机组的运行时间,降低了发电量,影响了水电站的经济效益和社会效益。

(二)对转轮汽蚀破坏部位的处理方法

1.对转轮汽蚀破坏的部位,首先要测定面积、深度及失重量。对破坏部位

的清理,一般用电弧气刨或偏铲将汽蚀部位的破坏层处理掉,使之露出母材为宜。

2.对于轻度的汽蚀破坏,可采用金属喷镀法。喷镀材料为自熔性合金。喷镀时使自熔性合金与母材相结合,使之对母料起到修补和保护作用。

3.对于水轮机较严重的汽蚀破坏,可采取补焊法。当汽蚀破坏部位浸蚀深度小于8毫米时,可直接在清理好的汽蚀部位堆焊抗腐蚀耐磨及干燥的焊条。西大洋发电厂3#机组转轮是混流式的,因运行年限较长,15个叶片与下环连接处的背面均发生了汽蚀破坏,其每个叶片的汽蚀面积约为7O一80平方厘米,深度1.5毫米左右,对这样严重的浸蚀深度,首先用低碳钢焊条打底,当距底面6毫米时,再用抗汽蚀耐磨损的焊条堆焊。为了消除焊接应力,每焊完一道焊波,须马上进行锤击,锤击到焊波波纹模糊不清为止。补焊时,应采用小电流短弧施焊方法,防止因大电流将叶片熔化较深,热影响区域扩大,母材中的碳渗人焊缝形成碳化铬而降低补焊层的含铬量,降低了抗汽蚀性能。施焊中运条速度应均匀,电弧应稳定。补焊完应高出原型2毫米左右,以作为打磨的余量,打磨应光滑平整,表面形状应符合母材的原型。转轮在补焊处理完毕之后,应做静动平衡试验和转轮的测圆工作,使之符合规程要求,并且在补焊前做好防止母材变形的技术措施。

2.2.2水轮机汽蚀的防治措施

近年来,合金钢广泛用于水轮机部件,特别是用于制造大型和巨型水轮机过流部件。我国科研T 作者先后研制出Cr5Cu、Cr8CuMo、0Crl3Ni4CuMo、0Crl3Ni6Mo、OCrl3Ni4Mo、17—4PH等钢种。目前为止,综合我国水轮机抗磨蚀所普遍采用的材料,可分为以下6个系列近20个牌号:·碳钢类:ZG25,ZG30,zG35等;·低合金钢类:ZG20SiMn.ZG15MnMoVCu,5MnCuTi等;·中合金钢类:ZGCr5Cu.ZGCr8CuMo等:·高合金钢类:0Cr13NiCu,1Cr13,2Cr13,0Crl3Ni 等;·镍铬不锈钢类:ZGOCrl3Ni4Mo.ZGOCrl3Ni6Mo.马氏体沉淀强化不锈钢17—4PH等:·表面工程材料:环氧金刚砂涂层,陶瓷涂层,高分子复合涂层等。在主体材料已定的情况下.最主要的措施还应该是加强过流部件表面的防护措施.主要包括以下几方面:

(1)电镀。就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程,是利用电解作用使金属或其它材料制件的表面附着一层金属膜的工艺从而到防止腐蚀,提高耐磨性。

(2)加软涂层。软涂层包括聚氨酯橡胶、尼龙等,通过实践表明涂有软涂层的水轮机过流部件的抗汽蚀磨损能力具有显著提高。

(3)加硬涂层。硬涂层包括不锈钢抗气蚀焊条堆焊;纳米碳化钨超音速火焰喷

涂:金属陶瓷等材料喷焊、喷涂等。

4)ARC陶瓷涂层技术

ARC高含量陶瓷涂层系列是针对不同行业、不同设备、不同工况存在的严重磨损和腐蚀情况而发展的新技术,通过严格工艺生产的复合材料可以方便、简单地施工于被保护表面,起到优异的耐磨作用和防腐作用,具有超高附着力、高强度、高致密度等特点,可大大提高设备使用寿命。

ARC陶瓷涂层技术具有其它传统技术无法比拟的优点:

①、100%的纯固态,不含任何水及有机溶剂,固化后不收缩,保护层致密,不会产生气泡,不会产生针孔腐蚀;

②、超高的附着力(594kg/cm2),不产生内层腐蚀,有效避免涂层下产生腐蚀,完全消除了传统材料脱落现象,在一定程度的流体冲涮、腐蚀等工况下不会发生脱落现象。

③、类似涂料的施工方式,易于成型。可根据需要任意调整厚度及形状。

④、可以使设备表面更光滑,减少液体流动时所产生的阻力,提高设备运行效率。

⑤、在不稳定的化学环境中,仍然能保持其优越的抗化性。

ARC 855EN技术参数

ARC 855EN是一种革新性的陶瓷涂层,用于保护设备,防止腐蚀磨损以及化学介质对设备的侵害。ARC 855EN是100%固化材料,低黏度,非收缩性物质,颜色为灰色或绿色。

ARC 855EN最小的厚度是250微米,一般厚度为375-500微米,应以2层方式涂抹,使用刷子或滚轮将完全涂抹于表面来达到理想的厚度。如果有需要, ARC 855EN是可以重复喷涂而不需要额外的表面处理,只要表面是无污染的,且依循固化时间表在初凝状态下涂抹。

ARC 855EN可以单独使用,也可以与其他ARC产品复合使用。这种两层的体系可以很好的预防和保护表面不受侵害。固态的陶瓷涂层表现出优秀的抗化性和抗腐蚀性,光滑表面。

技术参数

固化时间表(小时)

ARC 855EN的施工

①、喷砂处理:分段对煤泥深锥圆筒钢板表面进行喷砂处理,去除铁锈、原有覆层、油污,每一段喷完砂后用丙酮或无水酒精快速清洁金属表面,紧接着进行(ARC 855EN)涂装施工,然后再进行下一段的喷砂。

喷砂检测目标值:光洁度SA2.5,粗糙度75~125微米。

②、涂层施工:将混合好ARC高含量陶瓷涂料855EN对叶轮表面已经腐蚀穿

孔形成的小洞和坑进行修补,涂抹过程中应尽量使涂层表面平整。

③、涂层施工:将混合好ARC高含量陶瓷涂料ARC 855EN涂抹在修补好的水轮机叶轮表面,涂层厚度均匀,覆层完整,无漏洞。

④、涂层固化:对涂层施工完成工件进行加热固化,固化温度:32℃左右。

⑤、表面修整:待涂层固化后,对涂层表面进行修整,使表面光滑,提高施工表面质量。

3、结语

水轮机的汽蚀是一种复杂的物理与化学现象,它直接影响到机组的稳定性、机组的检修及经济效益,它使水轮机效率降低,材料破坏,它威胁水轮机的安全运行,所以防止和减轻汽蚀是一个重要的课题,只要我们不断进取,大胆探索勇于实践,一定会在防止和减轻水轮机的汽蚀方面取得满意的效果,使机组达到安全稳定经济的运行

参考文献:

[1]刘启钊,胡明-水电站[m](第四版)-北京:中国水利水电出版社,2010. 47-48

[2] 黄志焰-双庙湖水电站气蚀的检查及处理[j]-安徽省:小水电,2005.36-38

[3] 王晶—水轮机转轮汽蚀的危害及处理[j]- 河北省:现代文化企业,2009,12-13

[4] 王昌生,陈芳—关于湖南中小水电站汽蚀磨损防护的探讨[n]. 湖南水利水电职业技术学院报, 2011,13(4):25

[5]周银康,论水电站水轮机汽蚀产生原因分析及防范措施[j]-云南:国新技术产品,2011.21-23

汽蚀的成因及危害

汽蚀的成因及危害 液体在一定温度下,降低压力,当压力达到该温度下的汽化压力时,液体便产生汽泡而汽化。这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,在其过流部分的局部区域,通常是叶轮叶片进口稍后的区域,因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力,液体便在该处开始汽化,产生大量蒸汽,形成气泡。 当含有大量气泡的液体向前流动,经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在这个及其短暂的瞬间,液滴质点将产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒数万次,严重时会将壁板击穿。 在水泵中产生气泡和气泡破裂,过流部件遭受到损坏乃至破坏的过程称之为水泵的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,同时导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 降低汽蚀现象的措施 一、增大装置的汽蚀余量 准确计算离心泵的安装高度选择合适的安装位置增大泵前贮液罐中液面的压力,降低被输送液体的温度以降低,的值减小吸入管路的阻力增加吸入管直径缩短吸入长度减少弯管阀门选用吸入良好的喇叭管,将调节阀安装在排出管线上在满足生产需要的前提下降低叶轮的转速,可适当降低离心泵工作时的流量,也可起到增大装置汽蚀余量的目的。将吸上装置改为倒灌装置。 二、1)提高泵本身的抗汽蚀性能 改进泵本身结构或结构形式使泵具有尽,可能小的允许汽蚀余量,改进泵的入口至叶轮附近的结构设计增大,过流面积,增大叶轮盖板进口段的曲率半

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下。 5、剧烈震动

离心泵产生气蚀现象的原因及防止措施

离心泵因其操作简易、运行平稳、性价比高及便于维修护理而受到多数使用客户的喜爱并广泛应用于工业领域和日常生活。但凡是机械设备,在经过长时间的持续工作状态下,难免会出现设备的损坏和故障问题,离心泵的气蚀现象就是离心泵的常见故障之一。泵一旦发生汽蚀,其流量和扬程性能不仅会下降,还会表现出噪声、振动明显偏高,严重时甚至会使泵中液流中断,不能正常工作。汽蚀还会对泵的过流部件产生破坏,甚至影响管路系统。产生气蚀现象的原因有很多,例如离心泵产品质量有问题,操作人员的使用不当等。产品在出厂前会经过多道程序的质量检测,所以人为因素的影响比例更大。在工作状态下,离心泵的工作环境及操作因素的影响,占到离心泵发生气蚀现象比例的绝大部分。下面深圳恒才具体为大家介绍下气蚀产生的原因。 气蚀原因: 离心泵在工作的时候,离心泵输送的液体压力,会随着泵内液体从入口到叶轮入口下降而下降。当叶片入口附近的液体压力达到最低的时候,叶轮开始对液体做功,液体压力开始上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就会发生汽化的现象。同时溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力突然增加。这样,不仅阻碍了离心泵输送的液体正常流动。而且当这些气泡在叶轮壁面附近破裂的时候,则液体就会连续不断地撞击离心泵的内壁表面。长期的撞击之下就会造成离心泵内壁的结构损坏和剥落。如果气泡内掺杂着一些化学气体例如氧气,这些气体就会借助气泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击

汽蚀现象

液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPS Hc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下: 1.减小几何吸上高度hg(或增加几何倒灌高度); 2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等;3.防止长时间在大流量下运行; 4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5.泵发生汽蚀时,应把流量调小或降速运行; 6.泵吸水池的情况对泵汽蚀有重要影响; 7.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料。

离心泵大流量工况汽蚀现象分析及运行优化

离心泵大流量工况汽蚀现象分析及运行优化 发表时间:2018-05-28T09:47:19.547Z 来源:《电力设备》2018年第1期作者:赵英淳毛伟峰刘攀 [导读] 摘要:本文针对大型离心泵大流量工况下出现的汽蚀现象,基于离心泵汽蚀机理,分析了两个典型案例中离心泵发生汽蚀的原因,提出了采用改变离心泵的运行方式、改变泵出口管道阻力特性以及优化泵的再循环调阀的热工控制逻辑等三个方面的措施,解决了工程实际问题,为有效避免和预防大型离心泵大流量工况下汽蚀现象的发生,实现泵的安全稳定运行,提供参考。 (中国能源建设集团西北电力试验研究院有限公司西安 710032) 摘要:本文针对大型离心泵大流量工况下出现的汽蚀现象,基于离心泵汽蚀机理,分析了两个典型案例中离心泵发生汽蚀的原因,提出了采用改变离心泵的运行方式、改变泵出口管道阻力特性以及优化泵的再循环调阀的热工控制逻辑等三个方面的措施,解决了工程实际问题,为有效避免和预防大型离心泵大流量工况下汽蚀现象的发生,实现泵的安全稳定运行,提供参考。 关键词:离心泵;汽蚀;运行方式及控制逻辑优化 1. 概述 大型发电厂的凝结水泵及锅炉给水泵均采用多级离心泵。在电厂启动至带满负荷过程中,凝结水泵和给水泵流量变化范围大,机组通常设计两台甚至多台离心泵并联运行,以满足不同负荷、不同流量的运行要求。当离心泵在大流量工况下运行时,易出现汽蚀现象,损害设备的同时,严重危害机组运行安全,导致机组停炉停机[1]~[3]。 本文在对离心泵大流量工况下汽蚀机理分析基础上,结合两个典型案例,提出了相应工况下的几点运行优化建议。 2. 离心式水泵大流量工况汽蚀机理分析 离心水泵在运转过程中,当其通流部分液体的绝对压力下降到小于或等于当时温度下的汽化压力时,液体就会汽化,大量蒸汽及溶解在液体中的气体逸出,形成气泡。当气泡随液体从低压区移动到高压区时,气泡在高压作用下迅速凝结而破裂,其所占有的空间就会形成具有高真空的空穴,附近的液体在高压差的作用下以极高的速度流向形成的空穴,形成冲击力。由于气泡中的蒸汽和气体来不及在瞬间全部凝结和溶解,因此,在冲击力作用下又分成小气泡,如此反复。当上述过程在叶轮或叶片等流通部件表面发生,将对金属材料产生机械剥蚀。同时,气泡中逸出的氧气等活性气体也会对金属材料产生化学腐蚀。汽蚀过程发生后将会严重影响设备运行状态,缩短泵的使用寿命,甚至由于附带产生的振动等问题引起设备或人身安全问题[4]。 离心泵内最易发生汽蚀的部位为其通流部分的压力最低点,位于叶片进口端偏后的某一界面k处。当k点绝对压强pk小于或等于汽化压强pv时,即发生汽蚀。根据汽蚀基本方程式: (1) 式中:p1和c1分别为流体在泵入口界面处压强和速度;c0为流体在叶片进口边前的绝对速度;m为考虑流体在泵入口截面到临界截面间水力损失和液体绝对速度的不均匀性后引入的压降系数;ω0为流体在叶片进口处的相对速度;λ为流体绕流叶片端部所产生的压降系数。 引入有效汽蚀余量NPSHa和必需汽蚀余量NPSHr两个量。NPSHa表示液体到达泵进口处的能量扣除汽化压头所富裕的能量: (2) 当液体温度、吸入液面压强和泵的安装高度均保持不变情况下,由于吸入管路的流动损失与流量的平方成正比,所以NPSHa随液体流量变化为一条下降的抛物线。 NPSHr表示液体进入泵后压头下降程度: (3) 由于c0和ω0均与流量的增大而增大,所以NPSHr随流量的变化程一条上升的曲线。 NPSHa的曲线和NPSHr的曲线相交于临界流量点Qk,当泵内流量大于Qk时,NPSHa<NPSHr,即有效汽蚀余量提供的富裕能量不足以克服泵体进口液体的压头降时,泵将发生汽蚀[5]。 由离心泵汽蚀机理可知,控制泵入口流量是避免汽蚀的关键,实际工程中可从改变泵的运行曲线或泵出口管路的阻力特性入手,改变泵的工作点,使离心泵工作在小于临界流量Qk的稳定区域,避免和预防汽蚀。 3. 案例分析 3.1 机组锅炉跳闸后凝结水泵汽蚀案例分析及运行优化建议 3.1.1 案例过程 某300MW机组采用的是上海凯士比泵有限公司生产的型号为“NLT350-400x5”的凝结水泵,水泵额定参数:流量为907.3m3/h,扬程250m,转速1480rpm,NPSHr≤3.2m,轴功率756.4kW。 2015年12月20日,锅炉跳闸后的机组恢复过程中,出现了凝结水泵B出力不正常的现象,具体过程如下: 15:45:18,机组在高负荷运行过程中锅炉跳闸,此时凝泵B稳定运行,电流83.2A,泵出口母管压力2.22MPa,凝结水流量859t/h,除氧器上水调阀开度74.3%,凝泵再循环开度11.5%且处于自动控制状态; 15:49:27,由于给水流量迅速下降,除氧器上水调阀快速关至18.4%,凝泵B电流降至48.9A,泵出口母管压力升至2.84MPa,凝结水流量降至121t/h,凝泵再循环调阀超弛开至98.1%,该调阀切至手动控制; 15:50:32,手动打开除氧器上水调门至81.0%,凝泵B电流81.1A,出口母管压力1.29MPa,凝结水流量855t/h,再循环调阀开度98.1%; 15:51:22,除氧器上水调阀再度关小至4.1%,凝泵B电流74.9A,出口母管压力2.48MPa,凝结水流量677t/h,再循环调阀开度98.2%;该工况运行约7min,15:56:07,除氧器上水调阀再度关小至2.2%,凝泵B电流85.3A,出口母管压力2.17MPa,凝结水流量

离心泵的气缚与气蚀现象

离心泵的气缚与气蚀现象 为区分离心泵的“气缚”与“汽蚀”现象,有必要先简要了解离心泵的结构和理解其工作原理。 离心泵的外观是一个蜗牛状的泉壳,里面装有与泵轴相连的叶轮及泵的进出口阀门等构成。离心泵在开泵前,泵内必须充满液体。启动电机后,电机通过轴带动叶轮高速旋转。高速旋转的叶轮带动液体转动,因叶轮的特殊结构,在离心力的作用下使液体获得很高的能量,表现为流速、压力的增大。在泵壳中崮泵壳的蜗壳形状.流速会逐渐减小,而压力会进一步增大,最终以较高的压力从泵的出口排出。同时,当叶轮中心的液体被甩出后,在叶轮中心形成一定的真空度,而液面的压强比叶轮中心处要高,液面与叶轮中心形成一定压力差。在压差的作用下,液体被吸入泵内。通俗地说离心泵的工作过程是吸进来压出去。 “气缚”现象 离心泵运转时,如果泵内没有充满液体。或者在运转中泵内漏入了空气,由于空气很轻(密度很小),产生的离心力小,在吸入口处所形成的真空度低,不足以将液体吸入泵内。这时,虽然叶轮转动,却不能输送液体,这种现象称为“气缚”。 可见“气缚”现象是由于泵内存有气体而不能吸液的现象。没有液体的吸入,当然就没有液体的排出。如果泵安装在液面以上时,在

吸入管底部必须安装一个单向底阀。目的是为了不使泵内液体漏掉,以防“气缚”产生。 对于“气缚”现象,只要赶跑泵内空气,使泵内充满液,泵就能恢复正常运行。 “汽蚀”现象 “汽蚀”现象是由于泵的安装高度过高,泵内叶轮中心附近压力过低,当压力低到等于被输送液体的饱和蒸汽压时,入口处液体将在泵内汽化,产生大量汽泡,随同液体一起进入高压区,在高压区内便被周围高压液体压碎。瞬间内周围的高压液体以极高的速度打向原汽泡所占据的空间,类似于子弹打在这些点上。使叶轮或泵壳出现麻点和小的裂缝,久而久之,叶轮或泵壳将烂成海绵状,这种现象称为“汽蚀”。 简要地说,“汽蚀”现象是由于泵的安装高度过高,叶轮中心附近压力过低.液体在泵内汽化而损坏泵体的现象。当“汽蚀”现象发生时,其特征是泵体震动并发出噪音,泵的流量、扬程也明显下降。 可见“气缚”与“汽蚀”直接导因是不同的。“气缚”是由于泵内存有空气而产生,不会严重损坏泵体。“汽蚀”是由于液体在泵内汽化而产生.会严重损坏泵体。因此在使用中,应严禁“汽蚀”现象的发生。

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍 (一)、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 (二)、离心泵的安装高度Hg 1允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha-10.33) - (Hυ-0.24) (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。

泵的汽蚀现象分析及防止汽蚀措施

泵的汽蚀现象分析及防止汽蚀措施 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下: 1.减小几何吸上高度hg(或增加几何倒灌高度); 2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等; 3.防止长时间在大流量下运行; 4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5.泵发生汽蚀时,应把流量调小或降速运行; 6.泵吸水池的情况对泵汽蚀有重要影响; 7.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 /Detail_289475_102102_%E4%BA%94%E9%87%91%E5%B8%B8%E8%AF%86.shtml 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是水泵自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:轴承损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧螺丝。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下0.5m。 5、剧烈震动 主要有以下几个原因:电动转子不平衡;联轴器结合不良;轴承磨损弯曲;转动部分的

汽蚀现象及解决方案.doc

2汽蚀现象及解决方案 2.1汽蚀现象 由于叶轮叶片入口附近液体压力小于或等于液体输送温度下的饱和蒸汽压力时,液体就汽化,同时还可能有溶解在液体内的气体逸出,形成大量气泡,气泡随液体流到叶道内压力较高处时又瞬时凝结溃灭。在气泡凝结溃灭的瞬间,气泡周围的液体迅速冲入气泡凝失形成的空穴,形成强大的局部高频高压水击,金属表面因疲劳而产生剥蚀。同时,由于活泼气体(如氧气)的存在以及气泡凝结时产生的局部高温,导致金属表面发生电化学腐蚀。上述这一过程称为汽蚀现象。 2.2影响汽蚀的因素 影响液体压力和饱和蒸汽压力的因素都会影响汽蚀的发生。 2.2.1影响的因素 ①泵进口的结构参数:包括叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。 ②泵的操作条件:它包括泵的流量、扬程及转速等。 ③泵的安装位置:它包括泵的吸入管路水力损失及安装高度。 ④环境因素:它包括泵安装地点的大气压力。 2.2.2影响的因素 它包括介质本身的性质及介质操作温度。 2.3解决离心泵汽蚀问题的几个方案 根据以上对影响汽蚀因素的分析,我们可以得到如下几个解决离心泵汽蚀问题的方案: ①改进泵入口的结构参数 这一方案适于在离心泵的设计制造阶段,该方法在生产现场很少采用。 ②在泵的吸入口加装诱导轮 加装诱导轮,对提高离心泵的抗汽蚀性能,解决汽蚀问题,效果很显著。而且其结构简单易于制造安装,运行维修方便,造价低,在不影响生产的前提下即可进行安装调试,特别适于在生产现场推广应用。

③合理设计吸入管路及调整安装高度 该方法虽能彻底消除汽蚀问题,但在生产现场却很少采用。这是因为调整泵的吸入管路及安装高度,工程量大、施工费用高,并且受施工环境的制约,只有在装置停车或大检修时才能进行;同时,由于工艺条件的限制,调整泵的吸入管路及安装高度又将影响后续工艺,具有连锁反应。 ④优化工艺操作条件 在工艺条件允许的情况下,改变泵的流量、扬程、转速及介质的操作温度等操作参数,可以避免汽蚀的发生。但由于工艺条件的限制,优化工艺操作条件具有很大的局限性,大部分情况下效果并不显著。所以,可将该方法作为解决汽蚀问题的辅助方法。 2.4方案的确定 通过对以上几个方案的分析比较,在不影响正常生产的前提下,解决机泵的汽蚀问题,应首选在其入口加装诱导轮。 3诱导轮的设计 当液体流过诱导轮时,诱导轮对液体做功,相当于对进入后面叶轮的液体起到增压作用,从而提高了压力。该方法虽然增加了电机的负荷,但由于电机的功率一般都比较大(一般要比离心泵的轴功率大20~30%),且诱导轮尺寸受吸入口管径的影响,其增压范围有限。一般情况电机仍能满足要求,勿需更换电机。 由于目前对于诱导轮的认识尚处于摸索阶段,对一些理论问题还没有统一的看法。因此,诱导轮的设计在很大程度上是根据经验,并结合机泵的实际结构而进行的。下面将以217-J/JA (型号D1011 3×11/2×8)泵(如图1)为例,介绍诱导轮的设计方法,为生产现场机泵汽蚀问题的解决提供一些参考。 精品策划书

如何防止泵发生汽蚀现象

如何防止泵发生汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHaNPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施

如何解决水泵的气蚀现象

毕业论文 课程名称如何解决水泵的气蚀现象 学生姓名X X X 年级X X 专业X X X X 指导教师X X X

如何解决水泵的气蚀现象 摘要:离心泵以其转速高,体积小,重量轻,效率高,流量大,结构简单,性能平稳,容易操作和维修等优点,使其在输油生产中得到了广泛的应用,汽蚀现象也是离心泵在输油生产中常见的故障。 关键词:离心泵;汽蚀;汽蚀余量 一、气蚀现象含义 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡,把这种产生气泡的现象称为汽蚀。离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的液体压力达到最低,此后由于叶轮对液体做功,液体压力很快上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就汽化。同时,使原来溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些气泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高,于是金属表面因冲击疲劳而剥裂。如若气泡内夹杂某种活性气体(如氧气等),它们借助气泡凝结时放出的热量,产生电

解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为离心泵的汽蚀现象。 二、水泵运行中产生气蚀现象的原因 液体的汽化程度与压力的大小、温度高低有关。当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,便产生汽蚀故障。吸入压力降低;吸入高度过高;吸入管阻力增大;输送液体粘度增大;抽吸液体温度过高等影响液体饱和蒸气压增加的现象都会影响汽蚀的发生,通常的因素有: (1)泵进口的结构参数,叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。 (2)泵的操作条件,泵的流量、扬程及转速等。 (3)泵的安装位置,泵的吸入管路水力损失及安装高度。 (4)环境因素,泵安装地点的大气压力以及输送液体的温度等。 三、水泵气蚀现象所产生的危害 水泵汽蚀是水泵损坏的重要原因,水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。运行中使水泵抽水的效率降低,显著减少了水泵的扬程和流量,也减少了水泵的使用寿命。汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海面状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体震动;

泵的汽蚀现象以及其产生原因

泵的汽蚀现象以及其产生原因 1、汽蚀 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。苏华泵业 2、汽蚀溃灭 汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。苏华泵业 3、产生汽蚀的原因及危害 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。苏华泵业 4、汽蚀过程 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。苏华泵业 什么是泵的特性曲线? 通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量、功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。苏华泵业

什么叫气蚀气蚀现象怎么解决

一、什么叫气蚀: 当离心泵壳内存有空气,因空气的密度比液体的密度小得多而产生较小的离心力。从而,贮槽液面上方与泵吸入口处之压力差不足以将贮槽内液体压入泵内,即离心泵无自吸能力,使离心泵不能输送液体,此种现象称为“气蚀现象”。 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 为了使泵内充满液体,通常在吸入管底部安装一带滤网的底阀,该底阀为止逆阀,滤网的作用是防止固体物质进入泵内损坏叶轮或防碍泵的正常操作。 造成汽蚀的主要原因有: 1、进口管路阻力过大或者管路过细; 2、输送介质温度过高; 3、流量过大,也就是说出口阀门开的太大; 4、安装高度过高,影响泵的吸液量; 5、选型问题,包括泵的选型,泵材质的选型等. 解决办法: 1、清理进口管路的异物使进口畅通,或者增加管径的大小; 2、降低输送介质的温度; 3、减小流量; 4、降低安装高度; 5、重新选泵,或者对泵的某些部件进行改进,比如选用耐汽蚀材料等等。

针对热水泵汽蚀现象的分析和解决方法

针对热水泵汽蚀现象的分析和解决方法 摘要:在如今的很多化工生产过程中,对于管路输送需要伴热要求,在100℃以下的情况下,大多数会选择简单经济的热水循环系统。在温度要求比较高的时候,比如说高于95℃,热水循环泵经常会出现异常情况,表现在噪音和振动,以及输出流量和压力上。针对这种热水循环系统的异常现象,本文通过理论计算判断是泵出现了汽蚀现象。汽蚀轻则会造成系统压力不稳流量减少,重则会降低泵的使用寿命甚至造成泵的损坏。因此使用过程中我们需要想方设法避免汽蚀的出现。本文通过理论推算,将泵的吸入高度提高了3.5米。然后再通过现场整改后的观察验证了之前的分析,泵的运转回归了正常,从而保证了热水循环系统的稳定运行,进而满足了工厂生产条件,为公司和客户消除了一个生产隐患。 关键词:热水泵汽蚀;热水循环系统;热水泵故障分析 作者公司乳化产品工艺生产线的输送管路部分对介质的温度有较高的要求,因此输送管路要求伴热温度在95±3℃,伴热系统选择的是热水循环系统,整个系统由热水箱(采用蒸汽加热),管路、泵和阀门组成,目前这套系统已在十多条生产线上得到推广应用。但在实际生产使用过程中,我发现很多工厂在热水的温度超过95℃时,热水循环泵的运行状态出现不稳定,具体表现为振动和噪音加大,输出流量出现异常波动,输出压力降低等,根据这种现象初步判断为泵出现了明显汽蚀。根据掌握的知识,作者大致分析了汽蚀的发生过程:水汽化时的压力称为汽化压力(饱和蒸汽压力),它汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。可见,一定温度下的压力是促成液体汽化的外界因素。液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡。这种气泡会降低泵吸入端的压强,当泵吸入压强降到水的饱和蒸汽压以下时,液体又会产生气泡。气泡聚集在一起,会在泵腔内在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区。由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生疲劳和裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此需要极力避免和消除汽蚀现象。为了验证分析是否正确,我们通过以下计算来进行理论分析。 作者公司一直选用的热水泵型号为上海中耐制泵有限公司生产的IRG型单级单吸立式热水循环离心泵,适用于能源、冶金、化工、纺织、造纸,以及宾馆饭店等锅炉高温热水增压循环输送及城市采暖系统循环用泵,使用介质温度不超过120℃。1、吸入压力≤1.0MPa,或泵系统最高工作压力≤1.6MPa,即泵吸入口压力+泵扬程≤1.6MPa,泵静压试验压力为2.5MPa,整体采用铸铁结构,密封处为机械密封。

离心泵的汽蚀原因及措施

离心泵的气蚀原因及采取措施 【摘要】:通过掌握离心泵的气蚀原因,我们在设计、安装、和生产中应如何预防与消除气蚀现象。 【关键词】:离心泵气蚀原因消除措施 离心泵的气蚀原理: 离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力p K最低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力p K小于液体输送温度下的饱和蒸汽压力p v时,液体就汽化。同时,使溶解在液体内的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的

综合现象称为气蚀。 离心泵最易发生气蚀的部位有: 1.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧; 2.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧; 3.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间 隙以及叶梢的低压侧; 4.多级泵中第一级叶轮。 提高离心泵本身抗气蚀性能的措施 (1)改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。 (2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。 (3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。 (4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。但正冲角不宜过大,否则影响效率。 (5)采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性

泵的汽蚀现象分析及防止汽蚀措施

泵的汽蚀现象分析及防止汽蚀措施泵的汽蚀现象分析及防止汽蚀措施 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为NPSHc NPSHr NPSHa NPSHa=NPSHr--泵开始汽蚀 NPSHa NPSHa NPSHr--泵无汽蚀 式中 NPSHa--装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr--泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;

NPSHc--临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; --许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取 =(1.1,1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ g+Vs/2g-Pc/ g=Pc/ g hg-hc-Ps/ g 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa NPSHr可防止发生汽蚀的措施如下: 1( 减小几何吸上高度hg(或增加几何倒灌高度); 2( 减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附 件等; 3( 防止长时间在大流量下运行; 4( 在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5( 泵发生汽蚀时,应把流量调小或降速运行; 6( 泵吸水池的情况对泵汽蚀有重要影响; 7( 对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料

相关文档
最新文档