已知三角函数值求角知识讲解_

已知三角函数值求角知识讲解_
已知三角函数值求角知识讲解_

已知三角函数值求角

【学习目标】

1、掌握已知三角函数值求角的解题步骤;

2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合

【要点梳理】

要点一:反正弦,反余弦,反正切函数的定义

(1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ??

-????

上有唯一的x 值

和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ??

-????

上正弦等于y

的那个角.

(2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =.

(3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ??

- ???

内,

有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22

x y x ππ

=∈-.

要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步:

第一步,决定角可能是第几象限角.

第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x .

第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果.

【典型例题】

类型一:已知正弦值、余弦值,求角

例1.已知sin 2

x =-

,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】

(1)由sin 2

x =-

x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42π=,所

以第三象限的那个角是544π

ππ+

=

,第四象限的角是7244

ππ

π-=. (2)在R 上符合条件的角是所有与

54

π终边相同的角和所有与74π

终边相同的角.因此x 的取值集合为

57|2()|2()44x x k k z x x k k z ππππ????=+∈=+∈????????

. 【总结升华】(1)定象限,根据三角函数值的符号确定角是第几象限角.

(2)找锐角;如果三角函数值为正,则可直接求出对应的锐角1x ,如果三角函数值为负,则求出与其绝对值对应的锐角1x .

(3)写形式.根据 π±α,2 π - α 的诱导公式写出结果.第二象限角:1x π-;第三象限角:1x π+ 第四象限角:12x π- .

如果要求出[ 0 ,2 π ]范围以外的角则可利用终边相同的角的三角函数值相等写出所有结果.

例2.(1)已知cos x =-0.7660,且x ∈[0,π],求x ; (2)已知cos x =-0.7660,且x ∈[0,2π],求x 的取值集合.

【思路点拨】因为所给的余弦值是负数,所以先求出其绝对值对应的锐角,然后再求出其他象限的角. 【解析】

(1)由余弦曲线可知

y =cos x 在[0,π]上是减函数 又由已知cos x =-0.7660<0 得x 是一个钝角

又由cos(π-x )=-cos x =0.7660

利用计算器求得π-x =2

9

π

∴79

x π=

∴符合条件的有且只有一个角7

9

π.

(2)∵cos x =-0.7660<0,所以x 是第二或第三象限角,由y =cos x 在[0,π]上是减函数 y =cos x 在[π,2π]上是增函数

因为cos(π+29π)=cos(π-2

9

π)= -0.7660.

可知:符合条件的角有且只有两个,即第二象限角79π或第三象限角11

9π.

∴所求角x 的集合是{79π,11

9

π}.

举一反三:

【变式1】已知sinX= - 0.3332,且X ∈[ 0 ,2π] ,求角X 的取值集合. 【答案】arcsin 0.3332π+或2arcsin 0.3332π- 【变式2】根据下列条件,求△ABC 的内角A

(1)2

3cos -

=A (2)3sin 5A =

【思路点拨】因为∠A 为△ABC 的内角,所以0<A <π.根据余弦函数在),0(π内是单调递减的,故符合条件的∠A 只有一个,而根据正弦函数的单调性,在),0(π中符合条件的有两个. 【解析】(1)∠A 为△ABC 的内角 ∴0<A <π

∵余弦函数在区间),0(π中为减函数,所以符合条件2

3

cos -

=A 的角A 只有一个 ∵236

cos

=

π

∴2

3

65cos -

=π ∴π65=∠A (2)∵0<A <π,根据正弦函数的单调性,在),0(π内符合条件3

sin 5

A =的角A 有两个 ∵5

3sin )sin(=

=-A A π ∴5

3arcsin 5

3arcsin -=∠=∠πA A 或

类型二:已知正切值,求角

例3.已知.,)3( ]2,0[)2( )2

,2()1(.2tan ααπαπ

παα求角若R ∈∈-

∈-= 【思路点拨】由正切函数的单调性可知,在开区间)2

,2(π

π-

内,符合条件2tan -=α的角只有一个,而在]2,0[πα∈内,符合条件2tan -=α的就有两个.再根据正切函数的周期性可知,第(3)题中符合条件的角α就有无穷多个了.

【解析】(1)由正切函数在开区间)2

,2(π

π-

上是增函数可知;符合2tan -=α的角只有一个,即

arctan(2)α=-

(2)∵,02tan <-=α∴α是第二或第四象限角,又∵]2,0[πα∈,由正切函数在区间),2

(

ππ

]2,2

3

(ππ上是增函数知,符合2tan -=α的角有两个. ∵,2tan )2tan()tan(-==+=+ααπαπ且)0,2

()2arctan(π

-

∈-

∴)2arctan(2)2arctan(-+=-+=παπα或

(3)∵正切函数的最小正周期为π

∴只需在长为一个周期的区间上求出满足条件的α,再加上πk 即可 在(1)中,)2arctan( )2

,2(-=-

∈απ

πα ∴Z R ∈-+=∈k k ),2arctan(,παα 举一反三:

【变式1】(1)已知tan x =31,x ∈(-2π,2

π

),求x . (2)已知tan x =

3

1

,且x ∈[0,2π],求x 的取值集合. 【思路点拨】(1)由正切曲线可知

y =tan x 在(-

2π,2

π

)上是增函数;

可知符合条件的角有且只有一个,利用计算器可求得x =10

π

=18°26′

(2)由正切函数的周期性,可知

当x =

10π+π时,tan x =31 且10π+π=10

11π∈[0,2π] ∴所求x 的集合是{10π,10

11π

类型三:反三函数的综合应用

例4.已知θθπθcos sin ],2,0[和∈分别是方程012

=++-k kx x 的两个根,求θ.

【思路点拨】利用一元二次方程的根与系数的关系和同角三角函数关系式1cos sin 2

2

=+αα求k ,然后利用θθcos sin 和的值求θ.

【解析】∵θθcos sin 和是方程012

=++-k kx x 两个根

∴?

??+=?=+ 1cos sin cos sin k k θθθθ

①2–②×2,得:)1(2cos sin 222+-=+k k θθ 整理得:0322

=--k k 解得:31=-=k k 或

又∵0)1(42

≥--k k ∴2222-≤+≥k k 或 ∵22322+<<- ∴k =3应舍去,k = –1 当k =–1时,原方程为02

=+x x ∴?

?

?-==??

?-==1sin 0

cos 1cos 0sin θθθθ或 ∵)2,0[πθ∈ ∴πθπθ2

3

==或 例5.求证arctan1+arctan2+arctan3=π

【思路点拨】由于等式右边的三个角都在开区间)2

,0(π

内,故三个角的和在开区间(0,π2

3)内,

若解求得这三角和的正切为0,那么证明就算完成了.

证明:令,3arctan ,2arctan ,1arctan ===γβα则α、β、)2

,0(π

γ∈

∴3tan 2tan 4

===

γβπ

α

① ②

∵tan tan 23

tan()11tan tan 123

βγβγβγ+++=

==---?

而),0(πγβ∈+ ∴πγβ43=+ ∴πππγβα=+=++4

3

4 即arctan1+arctan2+arctan3=π

(完整版)三角函数特殊角值表

角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan √3/3 1 √3 -√3 -1 -√3/3 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=2 1 ,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 2、列表法: 说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 1 22 23 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 30? 1 2 3 1 45? 1 2 1 2 60? 3

三角函数知识点归纳

第一章:三角函数 §、任意角 1、 正角、负角、零角、象限角的概念. 2、 与角α终边相同的角的集合: {}Z k k ∈+=,2παββ. §、弧度制 1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、 r l = α. 3、弧长公式:R R n l απ== 180 . 4、扇形面积公式:lR R n S 2 1 3602== π. §、任意角的三角函数 y =α αcos ,sin 1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么: 2、 设点(),A x y 为角α终边上任意一点,那么: (设r = sin y r α= ,cos x r α=,tan y x α=,cot x y α= 3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法. 正弦线:MP; 余弦线:OM; 正切线:AT 5、 特殊角 . 1、 平方关系:1cos sin 22=+αα. 2、 商数关系:α α αcos sin tan = . 3、 倒数关系:tan cot 1αα= §、三角函数的诱导公式 (概括为“奇变偶不变,符号看象限”Z k ∈) 1、 诱导公式一:、 诱导公式二: ()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k ()()(). tan tan ,cos cos , sin sin ααπααπααπ=+-=+-=+(其中:Z k ∈)

3、诱导公式三: 4、诱导公式四: ()()(). tan tan ,cos cos ,sin sin αααααα-=-=--=- ()()(). tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=- 5、诱导公式五: 6、诱导公式六: .sin 2cos ,cos 2sin ααπααπ=??? ??-=??? ??- .sin 2cos ,cos 2sin ααπααπ-=?? ? ??+=??? ??+ §、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象: 2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中 心、奇偶性、单调性、周期性. 3、会用五点法作图. sin y x =在[0,2]x π∈上的五个关键点为: 30010-1202 2 π π ππ(,)(,,)(,,)(,,)(,,). §、正切函数的图象与性质 1、记住正切函数的图象: 2、记住余切函数的图象: 3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. 周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()(),那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.

三角函数特殊角值表

三角函数特殊值 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°= 21 sin45°=cos45°=2 2 tan30°=cot60°=3 3 tan 45°=cot45°=1 2 30? 1 2 3 1 45? 1 2 1 2 60? 3

说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 3 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 巧记特殊角的三角函数值 初学三角函数,记忆特殊角三角函数值易错易混。若在理解掌握的基础上,经过变形,使其呈现某种规律,再配以歌诀,则可浅显易记,触目成诵。 仔细观察表1,你会发现重要的规律。

任意角的三角函数定义

任意角的三角函数定义 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

教材:任意角的三角函数(定义) 目的:要求学生掌握任意角的三角函数的定义,继而理解角与=2k+(kZ)的同 名三角函数值相等的道理。 过程:一、提出课题:讲解定义: 1.设是一个任意角,在的终边上任取(异于原点的)一点P (x,y ) 则P 与原点的距离0222 2>+=+=y x y x r (图示见P13略) 2.比值 r y 叫做的正弦 记作: r y =αsin 比值r x 叫做的余弦 记作: r x = αcos 比值x y 叫做的正切 记作: x y = αtan 比值 y x 叫做的余切 记作: y x =αcot 比值x r 叫做的正割 记作: x r =αsec 比值 y r 叫做的余割 记作: y r =αcsc 注意突出几个问题: ①角是“任意角”,当=2k+(kZ)时,与的同名 三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等。 ②实际上,如果终边在坐标轴上,上述定义同样适用。(下面有例 子说明) ③三角函数是以“比值”为函数值的函数

④0>r ,而x,y 的正负是随象限的变化而不同,故三角函数的符号 应由象限确定(今后将专题研究) ⑤定义域: αααtan cos sin ===y y y )(2 Z k k R R ∈+≠π πα αααcsc sec cot ===y y y ) ()(2) (Z k k Z k k Z k k ∈≠∈+≠∈≠παπ παπα 二、例一 已知的终边经过点P(2,3),求的六个三角函数值 解:13)3(2,3,22 2=-+=-==r y x ∴sin=13133 cos=1313 2 23 cot=32 213 csc=3 13 例二 求下列各角的六个三角函数值 ⑴ 0 ⑵ ⑶ 2 3π ⑷ 2 π 解:⑴ ⑵ ⑶的解答见P16-17 ⑷ 当=2 π 时 r y x ==,0 ∴sin 2π=1 cos 2π=0 tan 2π不存在 cot 2π=0 sec 2π不存在 csc 2 π =1 例三 《教学与测试》P103 例一 求函数x x x x y tan tan cos cos + =的值域 解: 定义域:cosx0 ∴x 的终边不在x 轴上

三角函数知识点归纳

三角函数 一、任意角、弧度制及任意角的三角函数 1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角. ?? ??? 正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 ②按终边位置不同分为象限角和轴线角. 角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

特殊角的三角函数值的巧记

特殊角的三角函数值的巧记 特殊角的三角函数值在计算,求值,解直角三角形和今后的学习中,常常会用到,所以一定要熟记.要在理解的基础上,采用巧妙的方法加强记忆.这里关键的问题还是要明白和掌握这些三角函数值是怎样求出的,既便遗忘了,自己也能推算出来,切莫死记硬背. 那么怎样才能更好地记熟它们呢?下面介绍几种方法,供同学们借鉴。 1、“三角板”记法 根据含有特殊角的直角三角形的知识,利用你手里的一套三角板,就可以帮助你记住30°、45°、60°角的三角函数值.我们不妨称这种方法为“三角板”记法. 首先,如图所标明的那样,先把手中一套三角板的构造特点弄明白,记清它们的边角是什么关系. 对左边第一块三角板,要抓住在直角三角形中,30°角的对边是斜边的一半的特点,再应用勾股定理.可以知道在这个直角三角形中30°角的对边、邻边、 斜边的比是掌握了这个比例关系,就可以依定义求出30°、60°角的任意 一个锐角三角函数值,如:001sin 30,cos302== 求60°角的三角函数值,还应抓住60°角是30°角的余角这一特点. 在右边那块三角板中,应注意在直角三角形中,若有一锐角为45°,则此三 角形是等腰直角三角形,且两直角边与斜边的比是1∶1 住:00sin 45cos 452 == ,00tan 45cot 451==。这种方法形象、直观、简单、易记,同时巩固了三角函数的定义. 二、列表法:

说明:正弦值随角度变化,即0? →30?→45? →60? →90?变化;值从 0→2 1 →22→23→1变化,其余类似记忆. 三、口诀记忆法 口诀是:“一、二、三,三、二、一,三、九、二十七,弦是二,切是三,分子根号不能删.”前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45°,60°角的正弦、余弦、正切值中分子根号内的值.弦是二、切是三是指正弦、余弦的分母为2,正切的分母为3.最后一句,讲的是各函数值中分子都加上根号, 不能丢掉.如tan60°= =tan45°1=.这种方法有趣、简单、易记. 四、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ①有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sinA <sinB ;tanA <tanB ;cosA >cosB ;cotA >cotB ;特别地:若0°<α<45°,则sinA <cosA ;tanA <cotA ;若45°<A <90°,则sinA >cosA ;tanA >cotA . 例1.tan30°的值等于( )

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

已知三角函数值求角知识讲解

【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin x =,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin x =知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 4π=,所以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=. (2)在R 上符合条件的角是所有与 54 π终边相同的角和所有与74π 终边相同的角.因此x 的取值集合为

三角函数知识点汇总

1三角函数的概念 【知识网络】 【考点梳理】 考点一、角的概念与推广 1.任意角的概念:正角、负角、零角 2.象限角与轴线角: 与α终边相同的角的集合:},2|{Z k k ∈+=απββ 第一象限角的集合:{|22,}2 k k k Z π βπβπ<<+∈ 第二象限角的集合:{| 22,}2 k k k Z π βπβππ+<<+∈ 第三象限角的集合:3{|22,}2 k k k Z π βππβπ+<<+∈ 第四象限角的集合:3{| 222,}2 k k k Z π βπβππ+<<+∈ 终边在x 轴上的角的集合:{|,}k k Z ββπ=∈ 终边在y 轴上的角的集合:{|,}2 k k Z π ββπ=+∈ 终边在坐标轴上的角的集合:{|,}2 k k Z π ββ=∈ 要点诠释: 要熟悉任意角的概念,要注意角的集合表现形式不是唯一的,终边相同的角不一定相等,但相等的角终边一定相同,还要注意区间角与象限角及轴线角的区别与联系. 三角函数的概念 角的概念的推广、弧度制 正弦、余弦的诱导公式 同角三角函数的基本关系式 任意角的三角函数

考点二、弧度制 1.弧长公式与扇形面积公式: 弧长l r α= ?,扇形面积21 122 S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数). 2.角度制与弧度制的换算: 180π=o ;18010.017451()57.305718'180 rad rad rad π π = ≈=≈=o o o o ; 要点诠释: 要熟悉弧度制与角度制的互化以及在弧度制下的有关公式. 考点三、任意角的三角函数 1. 定义:在角α上的终边上任取一点(,)P x y ,记r OP ==则sin y r α= , cos x r α=, tan y x α=,cot x y α=,sec r x α=,csc r y α= 2. 三角函数线:如图,单位圆中的有向线段MP ,OM ,AT 分别叫做α的正弦线,余弦线,正切线. 3. 三角函数的定义域:sin y α=,cos y α=的定义域是R α∈;tan y α=,sec y α=的定义域是 {|,}2 k k Z π ααπ≠+ ∈;cot y α=,csc y α=的定义域是{|,}k k Z ααπ≠∈. 4. 三角函数值在各个象限内的符号: 考点四、同角三角函数间的基本关系式 1. 平方关系:2 2 2222sin cos 1;sec 1tan ;csc 1cot α+α=α=+αα=+α. 2. 商数关系:sin cos tan ;cot cos sin α α α= α= α α . 3. 倒数关系:tan cot 1;sin csc 1;cos sec 1α?α=αα=α?α= 要点诠释: ①同角三角函数的基本关系主要用于:(1)已知某一角的三角函数,求其它各三角函数值;(2)证明三角恒等式;(3)化简三角函数式. ②三角变换中要注意“1”的妙用,解决某些问题若用“1”代换,如2 2 1sin cos =α+α, 221sec tan tan 45=α-α==o L ,则可以事半功倍;同时三角变换中还要注意使用“化弦法”、消去法 及方程思想的运用. 考点五、诱导公式 1.2(),,,2k k Z πααπαπα+∈-±-的三角函数值等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值所在象限的符号.

必修4--三角函数所有知识点归纳总结

《三角函数》 【知识网络】 应用 弧长公式同角三角函数诱导应用计算与化简 的基本关系式公式证明恒等式 应用 任意角的概念角度制与任意角的三角函数的应用已知三角函 图像和性质数值求角 弧度制三角函数 和角公式应用 倍角公式 应用 差角公式 应用 一、任意角的概念与弧度制 1、将沿x轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为k 360 k Z x 轴上角:k 180 k Z y 轴上角:90k 180k Z 3、第一象限角:0 k 36090k 360 k Z 第二象限角:90k 360180k 360k Z 第三象限角:180k 360270k 360k Z 第四象限角:270k 360360k 360k Z 4、区分第一象限角、锐角以及小于90 的角 第一象限角:0 k 36090 k 360 k Z 锐角:090小于90的角:90

5、若 为第二象限角,那么 为第几象限角? 2 2k 2k k 2 k 2 4 2 k 0, 4 , k 1, 5 3 , 2 4 2 所以 在第一、三象限 2 6、弧度制:弧长等于半径时,所对的圆心角为 1弧度的圆心角,记作 1rad . 7、角度与弧度的转化: 1 0.01745 1 180 57.30 57 18 180 8、角度与弧度对应表: 角度 0 30 45 60 90 120 135 150 180 360 弧度 2 3 5 2 6 4 3 2 3 4 6 9、弧长与面积计算公式 弧长: l R ;面积: S 1 l R 1 R 2 ,注意:这里的 均为弧度制 . 2 2 二、任意角的三角函数 P (x, y) 1、正弦: sin y x y ;余弦 cos ;正切 tan x r r r 其中 x, y 为角 终边上任意点坐标, r x 2 y 2 . 2、三角函数值对应表: 度 30 45 60 90 120 135 150 180 270 360 弧度 2 3 5 3 2 6 4 3 2 3 4 6 2 sin 1 2 3 1 3 2 1 0 1 2 2 2 2 2 2 cos 3 2 1 0 1 2 3 0 1 2 1 1 2 2 2 2 2 tan 3 1 3 无 3 1 3 0 无 3 3 3、三角函数在各象限中的符号

特殊三角函数数值表

两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA) 和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a)

已知三角函数值求角知识讲解

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42 π=,所以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=. (2)在R 上符合条件的角是所有与 54 π终边相同的角和所有与74π 终边相同的角.因此x 的取值集合为

高一三角函数知识点整理

§04. 三角函数 知识要点 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系: ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360± +=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad = π180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745 (rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在 α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y = αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. 7. 三角函数的定义域: SIN \COS 1、 2、3、4表示第一、二、三、 四象限一半所在区域16. 几个重要结论:

知识讲解_已知三角函数值求角

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2 x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42π=,所 以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=.

高中数学三角函数知识点总结归纳

高中数学必修4知识点总结 第一章 三角函数 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落 在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ=. 2.α是第三象限角,2 1)sin(= -πα,则αcos =)25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ???(B),3ππ?? ???(C)4,33ππ?? ???(D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是。 2.若函数()(1)cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为最大值为。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ???? 上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为. 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B C D .2 8.函数2 ()sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 32

已知三角函数值求角教案1

已知三角函数值求角教案1 教学目标 1.使学生掌握已知三角函数值求角(给值求角)的方法和步骤. 2.通过启发学生总结给值求角的步骤,培养学生归纳、类比、总结的能力. 3.培养学生严谨的科学态度,促进良好个性品质发展. 教学重点与难点 重点是给值求角的基本方法.难点在于归纳给值求角的基本步骤. 教学过程设计 一、复习引入 师:我们学习了5组诱导公式,如何概括这5组公式? 生:k·360°+α(k∈Z),-α,180°±α,360°-α的三角函数值等于α的同一三角函数值,前面加上一个把α看成锐角时原函数值的符号. 师:那么k·360°+α,……这些角从“形”这一角度看,与α又有什么关系呢? (这应在诱导公式那一节有所渗透,或曾经留给同学思考过.) 生:角k·360°+α(k∈Z)的终边与α角的终边相同,180°-α的终边与α的终边关于y轴成轴对称图形,180°+α的终边与α的终边关于原点成中心对称图形,360°-α和-α终边相同,与α的终边关于x轴成轴对称图形. 师:α是什么样角? 生:使三角函数有意义的任意角. 师:如果把α看作是锐角,那么k·360°+α(k∈Z),180°±α,360°-α各是第几象限角?它们的三角函数值与α的同一三角函数值有什么联系?

生:k·360°+α(k∈Z)是第一象限角,180°-α是第二象限角,180°+α是第三象限角,360°-α是第四象限角.这些角的三角函数与α的同一三角函数值相等或互为相反数. (如图1,帮助学生形象思维与记忆.) 师:利用这幅图,记忆诱导公式的符号是不是变得直观了?!那么诱导公式又有什么功能呢? 生:把任意角的三角函数转化为0°~90°间角的三角函数,然后就可以查表求值了. 师:这些任意角的终边和某个锐角α0的终边有刚才所说的对称关系,那么同一三角函数值之间有没有关系? 生:有关系,那些角的三角函数值要么等于α0的同一三角函数值,要么等于这个值的相反数,相等还是相反由这些角所在象限决定. 师:可以这样说,这些角的三角函数值的绝对值等于α0的同一三角函数值.每个角α都可通过一个锐角α0求得这个角的三角函数值(当值存在时),这个值由α唯一确定.那么反过来,知道某个角α的某个三角函数值,要反求α,这个α怎么求?是否唯一?这与我们本节课要研究的知识有关. 二、讲授新课 (板书)已知三角函数值求角. 师:我们先来研究给正弦值求角. (板书) 例1 求满足下列条件的角α的取值集合.

特殊角的三角函数值及计算

特殊角及计算 0° 30° 45° 60° 90° sinA cosA tanA cotA 当锐角α越来越大时, α的正弦值越来___________,α的余弦值越来___________. 当锐角α越来越大时, α的正切值越来___________,α的余切值越来___________. 1:求下列各式的值. (1)cos 260°+sin 260°. (2)cos 45sin 45? ? -tan45°. 2:(1)如图(1),在Rt △ABC 中,∠C=90,6,3,求∠A 的度数. (2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 3倍,求a . 一、应用新知: 1.(1)(sin60°-tan30°)cos45°= .(2)若0sin 23=-α,则锐角α= . 2.在△ABC 中,∠A=75°,2cosB=2,则tanC= .

3.求下列各式的值. (1)o 45cos 230sin 2-? (2)tan30°-sin60°·sin30° (3)cos45°+3tan30°+cos30°+2sin60°-2tan45° (4)?+?+? +?-?45sin 30cos 30tan 1 30sin 145cos 222 4.求适合下列条件的锐角. (1)2 1cos =α (2)3 3tan = α (3)2 22sin = α (4)33)16cos(6=-οα (5) (6) 6.如图,在△ABC 中,已知BC=1+ ,∠B=60°,∠C=45°,求AB 的长. 7.在△ABC 中,∠A 、∠B 为锐角,且有 ,则△ABC 的 |tanB-3|+(2sinA-3)2 =002sin 2=-α0 1tan 3=-α3

已知三角函数值求角知识点梳理及例题解释

已知三角函数值求角 例1、已知2 3sin =α,且πα20<≤,求α 解:① 23sin = α>0 α∴是第一、第二象限角,且πα20<≤ ②又 2 33sin =π 2 33sin )3sin(==-π π π ③∴适合条件的角是3 π或32π 说明:若用解集的形式,则应写为:所求α的集合是{ 3π,32π} 练习:已知2 1cos = α,且πα20<≤,求α 例2、已知2 1cos - =α,且πα20<≤,求α 解:① 2 1cos -=α<0 α∴是第二、第三象限角,且πα20<≤ ②满足条件21cos =α的锐角3 πα= 又 2 13cos )3cos(-==-πππ 2 13cos )3cos(-==+πππ ③∴适合条件的角是3ππ-或3ππ+,即32π或34π 小结:由已知三角函数值求角,其解法步骤: (1)由已知三角函数值,确定α所在象限; (2)先求出与其函数值的绝对值对应的锐角θ,再根据α所在象限得出0到2π的角; 若适合条件的角在第二象限,则它是θπ- 若适合条件的角在第三象限,则它是θπ+ 若适合条件的角在第四象限,则它是θπ-2 (3)写出适合条件的角或用集合表达出来。

练习:写出适合条件的角 (1)21sin = α且πα20<≤,求α (2)23cos - =α且πα20<≤,求α (3)1tan =α且πα20<≤,求α (4)21sin = α且πα<≤0,求α (5)23cos - =α且πα<≤0,求α (6),1sin 22=x πα20<≤,求α (7)2 1sin =α,求α (8)1tan =α,求α

相关文档
最新文档