嵌入纳米Fe颗粒的Fe液凝固过程的分子动力学模拟

嵌入纳米Fe颗粒的Fe液凝固过程的分子动力学模拟
嵌入纳米Fe颗粒的Fe液凝固过程的分子动力学模拟

[Article]

https://www.360docs.net/doc/993976391.html,

物理化学学报(Wuli Huaxue Xuebao )

Acta Phys.?Chim.Sin .2013,29(2),245-249

February Received:December 3,2012;Revised:December 25,2012;Published on Web:December 25,2012.?

Corresponding author.Email:yqwu@https://www.360docs.net/doc/993976391.html,;Tel:+86-21-56332144.

The project was supported by the National Key Basic Research Program of China (973)(2012CB722805),National Natural Science Foundation of China (50504010,50974083,51174131),Joint Funds of National Natural Science Foundation of China-Steel,China (50774112),and “Phosphor"Project of Shanghai Science and Technology Development Funds,China (07QA4021).

国家重点基础研究发展计划(973)(2012CB722805),国家自然科学基金(50504010,50974083,51174131),国家自然科学基金钢铁联合基金(50774112)及上海市青年科技启明星计划(07QA4021)资助项目

?Editorial office of Acta Physico ?Chimica Sinica

doi:10.3866/PKU.WHXB201212251

嵌入纳米Fe 颗粒的Fe 液凝固过程的分子动力学模拟

吴永全*

陆秀明

赖莉珊

(上海大学材料科学与工程学院,上海市现代冶金及材料制备重点实验室,上海200072)

摘要:

采用Sutton-Chen 势函数及分子动力学(MD)方法对嵌入了Fe 纳米团簇(半径从0.4-1.8nm)的Fe 液凝

固过程进行了模拟.模拟结果表明只有当嵌入的纳米团簇半径超过0.82nm 才能降低凝固时所需要的临界过冷度(ΔT *),起到诱导凝固的作用.同时采用原子键型指数法(CTIM-2)对样本在凝固过程中的原子结构进行了标定,通过观察微观结构演变发现当嵌入纳米团簇能够作为凝固核心时,体系按照hcp-fcc 交叉形核的方式长大.同时还发现嵌入纳米团簇对体系凝固过程晶核的生长方向及凝固的最终构型存在“结构遗传效应”.关键词:

Fe 纳米团簇;过冷度;凝固过程;微观结构演化;分子动力学

中图分类号:

O641;O642;TF01

Solidification of Liquid Fe with Embedded Homogeneous Solid Fe

Nanoparticles from Molecular Dynamics Simulations

WU Yong-Quan *

SHEN Tong

LU Xiu-Ming

ZHANG Ning

LAI Li-Shan

GAO Shuai

(Shanghai Key Laboratory of Modern Metallurgy &Materials Processing ,School of Materials Science and Engineering ,

Shanghai University ,Shanghai 200072,P .R.China )Abstract:Solidification processes of liquid Fe with embedded homogeneous solid nanoparticle with radius ranging from 0.4to 1.8nm were studied by molecular dynamics (MD)simulation adopting the Sutton-Chen potential.It was found that the particles whose radii exceed 0.82nm could obviously decrease the critical undercooling (ΔT *)and induce solidification.The microstructural evolution during the solidification process was traced through the atom definition with cluster-type index method (CTIM-2).Results revealed that when the embedded particle induced solidification,the growth process of nucleus would proceed as a cross-nucleation between hcp and fcc structures,a little similar to the eutectic crystallization process.Moreover,the heredity effect attributed by embedded solid nanoparticle was clearly observed during the microstructural evolution.Key Words:Solid Fe nanoparticle;Undercooling;

Solidification process;

Microstructural evolution;

Molecular dynamics simulation

1Introduction

The macro-properties of metallic materials are mainly deter-mined by their microstructures which are mainly affected by the original configurations in liquid state and the solidification

processes.At deep undercooling,solidification process usually takes place by the homogeneous nucleation if impurities are ex-cluded.1-3However,in many cases,the solidification starts from a solid-liquid interface,which is a heterogeneous process.245

Acta Phys.?Chim.Sin.2013V ol.29

To date,some progresses in the investigation of these kinds of

interfaces have been achieved,4-6but there are still limited un-

derstanding of the interfacial microstructures,the mechanisms

of ordering during the solidification,and the kinetics associat-

ed with the interface moving.

Based on our previous works,7-9we performed the study of

this work.Series samples of liquid Fe with solid Fe nanoparti-

cles with different sizes were introduced to produce the homo-

geneous solidification process in detail.Calculations were per-

formed for a wide range of temperatures and different sizes of

solid Fe nanoparticles.Relationships between the nanoparticle

size and the undercooling were examined and the behaviors of

solid nanoparticles in undercooled liquid Fe were investigated

based on the classical nucleation theory(CNT).Then,a tracing

study by the cluster-type index method(CTIM-2)on the micro-

structural evolution during solidification process was carried

out to determine the role of solid nanoparticle on the final so-

lidified structure.

2Computational methods

2.1Potential function

The simulation is based on the classical molecular dynamics

(MD)method.10The Sutton-Chen potential,11which combines

the N-body potential with a van der Waals tail,is implemented

to describe the inter-atomic interactions of Fe.For a system of

N atoms,the total energy of the Sutton-Chen potential is writ-

ten as:

E r=ε[1

2∑∑

i≠j

V(r ij)-c∑iρi](1)

where,c is a dimensionless parameter,εis the energy parame-ter.r ij is the distance between atoms i and j.The pair potential V(r ij)is given by:

V(r ij)=(a

ij

)n(2) where,a is a parameter with dimension of length and is gener-ally referred to the lattice parameter,and the density termρi will be:

ρi=∑j≠i(a r ij)m(3) where,m and n are positive integers with n>m.Parameters of Sutton-Chen potential for Fe-Fe areε=0.0006eV,a=0.36467nm,n=15,m=4,c=1104.7351,which have been proved very successful to simulate the liquid-solid phase transitions from bulkγ-Fe(fcc)toδ-Fe and then to liquid-Fe.7,8

2.2Model construction

The initial configuration is constructed by embedding a sol-id Fe nanoparticle into the bulk liquid Fe.Construction process-es are shown in Fig.1.

Firstly,the liquid bulk Fe in Fig.1(c)is obtained by continu-ously heating the perfect cell of bcc crystal with16000Fe at-oms from0to2800K at the rate of1K?ps-1,and the solid bulk Fe in Fig.1(a)is prepared by cooling the liquid bulk Fe to1400 K at the same rate.

Secondly,the solid Fe nanoparticle in Fig.1(b)with radius R a is dug from the center of solid bulk Fe in Fig.1(a).At the same time,a centered cavity with radius R b is dug out of liquid bulk Fe,as shown in Fig.1(d).

Thirdly,the solid Fe nanoparticle is placed inside the cavity of liquid Fe,and the relative position is adjusted to make sure concentric for the nanoparticle and the cavity(Fig.1(e)).Mean-while,R b is set as0.35nm larger than R a in order to avoid the unexpected proximity of atoms at the solid-liquid interface be-tween the liquid atoms and the solid atoms of nanoparticle. Finally,the liquid Fe atoms are relaxed with frozen solid Fe nanoparticles for20ps at2800K to eliminate the reserved in-terfacial margin between the liquid Fe and nanoparticles, which will inevitably lead to a slight decrease in the size of this initial cubic cell volume.Thus far,the initial configura-tions are completely prepared for the further MD simulations. Using this method,we prepared a series of samples with the solid nanoparticles with different radii.The size(R a)of the sol-id nanoparticle,the number of atoms in the nanoparticle(N1), and the total number of atoms(N2)are listed in Table1.

2.3Simulation process

The MD simulations were executed using the DL_POLY2.0 software12in a NPT ensemble(fixed number of particles,pres-sure,and temperature).Periodic boundary conditions are ap-plied in all three directions.The Hoover-Nose method13,14is used for controlling the temperature,and the Parrinello-Rahman method15,16is applied to control the pressure.The equa-tion of motion is integrated using leap frog algorithm.The time step is set as2.0fs throughout the

entire simulation and a cut-

Fig.1Schematic diagram of the construction of initial configuration

yellow:solid Fe nanoparticle;blue:liquid bulk Fe

246

WU Yong-Quan et al .:Homogeneous Solidification of Liquid Fe Induced by Emdedded Solid Nanoparticle

No.2

off radius of 1nm is used.All the simulations are performed for 2000ps,i.e.,106steps.

For each initial condition,the system with solid nanoparticle is directly cooled from 2400to 1600K at 100K interval.Par-ticularly,an interval of 1K is set near the solidification point.The phase transition is determined by the g (r ),i.e.,radius distri-bution function,as well as the n (r ),i.e.,the coordination num-ber within a distance r from a central atom.The microstructur-al details of phase transitions in solidification processes are characterized by CTIM-2,2,17which is based on the HA indi-ces 18and has been confirmed able to well distinguish the cen-tered cluster from body-centered cubic (bcc)cluster,face-cen-tered cubic (fcc)cluster,close-packed hexagonal (hcp)cluster,or amorphous cluster by judging the bond types of the sur-rounding atoms.

3

Results and discussion

3.1

Relationship between the size of solid nanopar-ticle and the undercooling

Fig.2shows the g (r )and the n (r )for typical liquid and solid states.In the g (r )of liquid state,peak intensity is relatively low and peak width is relatively broad compared to the counterpart

of solid state.When liquid phase transits to solid phase,intensi-ty of first peak increases apparently;the original second peak splits into two peaks;new peaks emerge at the first and second original valleys.The most characteristic change is the appear-ance of a small peak at the first valley (r=0.35nm),which is the typical symbol of fcc structure.8,19As we know,the first val-ley in g (r )corresponds to the value position of coordination number (CN)of nearest neighbor in n (r ).It is calculated that CN of liquid is around 10.2,which is 4.1%larger than the ex-periment value (9.8),20and CN of solid is 12.3,which is 2.3%larger than ideal γ-Fe (12).From those obvious differences be-tween liquid and solid states,we can easily determine whether the phase transition occurs.

The calculated phase diagram of liquid or solid state as a function of undercooling (ΔT )and nanoparticle size (R a )is shown in Fig.3(a).It can be observed that for each sample,there is a critical undercooling ΔT *,corresponding to the mini-mum undercooling,to demarcate the liquid and solid states,and when ΔT <ΔT *,no solidification occurs and when ΔT ≥ΔT *,all samples solidify.This ΔT *can only be located in a narrow range due to the thermal fluctuation.19,21Here we define the ΔT *as the minimum degree of undercooling.Obviously,ΔT *in-creases with the decreasing of R a ,and it reaches and maintains the maximum when R a ≤0.8nm,which means when R a >0.8nm,the embedded nanoparticle evidently affects the solidification process thermodynamically while when R a ≤0.8nm,the effect no longer exists.On the other hand,the maximum of ΔT *,when sizes of nanoparticles are smaller than 0.8nm,corre-sponds to the minimum undercooling of bulk liquid Fe.We can also change our perspective.If we regard the embedded nanoparticle with R a as an embryo in the liquid,ΔT *corre-sponds exactly to the critical undercooling of the critical size R a of nucleus.Or on the contrary,we found the critical size of nucleus for each ΔT *.These results lead us to the CNT,22from which a unique critical size of nucleus is determined for any given undercooling through the rivalry between the bulk free

Table 1

Some quantities of constructed samples

a 1size of cubic cell;N 2:total number of atoms in the initial cubic cell;k :N 1/N

2

Fig.2(a)Radial distribution function g (r )and (b)the

coordination number n (r )within a distance r from a central atom

shown for the liquid and solid states

Fig.3Phase diagram showing the liquid/solid state and critical undercooling ΔT *as a function of the nanoparticle radius (a)and

the fitting line of the undercooling ΔT *and the inverse of

nanoparticle radius (b)

247

Acta Phys.?Chim.Sin .2013

V ol.29

energy change and the interfacial energy.A key result in CNT is the relationship between the critical radius R *and ΔT *,which is written as:22

ΔT *=2ΓR *

(4)

Here Γis the Gibbs-Thomson coefficient.Hence ΔT *is propor-tional to the inverse of R *.We also reproduced this relationship as shown in Fig.3(b).Actually,we deduced the thermodynamic melting point through extrapolating this linear relation to the 1/R a →0where the temperature is just the thermodynamic melt-ing point.Besides,Fig.3also shows that there exists a mini-mum critical size of nucleus about 0.8nm,under which,no matter how great the undercooling is,the embryo can not be-come nucleus able to spontaneously grow up.Thus,we make the R min precise to be 0.82nm by fitting the data given in Fig.3(b).

3.2Behavior of solid nanoparticle during

solidification

In the following,the evolution of the solid nanoparticle at ΔT *is monitored by the change of the instantaneous energy as well as snapshots for all samples.If the instantaneous energy makes a salutatory drop from a higher value to a lower value,the system will transform from liquid state to solid state.Re-sults in Fig.4indicate that there are two structural evolution processes related to different sizes of the solid nanoparticles.In the case of nanoparticles with radii from 0.4to 0.8nm,instan-taneous energy drops after experiencing a relatively long “incu-bation time ”.And snapshot in Fig.4(b)demonstrates that be-fore solidification occurs,nanoparticle has already been com-pletely melted and diffused in the liquid.It is worth mention-ing that solidification process of these samples is the same as that of bulk Fe,where a critical nucleus is formed by the rare,spontaneous energy fluctuation and the incubation time is ran-dom.On the other hand,the instantaneous energy of nanoparti-cles with radii from 0.9to 1.8nm drops at the very early stage of simulation,and meanwhile,Fig.4(c)shows us that the sys-tem is solidified and the solid nanoparticle still keeps its origi-nal shape.That means,during this solidification process,the

solid nanoparticle acts as an initial nucleus inducing the solidi-fication.These two solidification processes can be reasonably explained again by the CNT,22according to which,there exists a critical radius for a given temperature and the nanoparticle with larger size than the critical radius can grow up spontane-ously,or it will melt.

3.3Microstructure evolution during solidification

process

To analyze the microstructural evolution in solidification af-fected by the solid nanoparticle,CTIM-2is introduced to char-acterize the solidification process of the sample with nanoparti-cles of 0.9to 1.8nm (as described above,nanoparticles rang-ing from 0.4to 0.8nm have dissolved before solidification oc-curs).The sample with nanoparticle of R a =1.5nm is taken as an example to interpret analysis results.

It is concluded from Fig.5that the solidification process has two stages:growth stage (0-100ps)and structural relaxation stage (100-2000ps).The initial nucleus consists of fcc struc-ture with two hcp planes.At first 60ps,fcc and hcp atoms in-crease slowly,and start to grow rapidly from 60ps till reaching a maximum value around 100ps.The percentages of fcc and hcp atoms dramatically increase to 41.24%and 11.34%,respec-tively,while amorphous atoms drop to 47.42%.It is observed from snapshots in Fig.5(b)at t =60,80,100ps that growth of (1,1,1)face proceeds cross-nucleation of the metastable hcp and stable fcc structures,23,24which is essentially governed by kinetics factor.During the structural relaxation stage,the per-centage of fcc atoms is nearly doubled to 73.27%,while hcp at-oms decrease three forths to 2.99%.Decreasing of hcp

atoms

Fig.4Energy curves for all samples with timescale of 2000ps (a);snapshots for samples with nanoparticle size ranging from 0.4to

0.8nm (b)and from 0.9to 1.8nm (c)at ΔT *

yellow:solid Fe nanoparticle;blue:liquid bulk

Fe

Fig.5

CTIM-2analysis on solidification process of sample with

nanoparticle of radius 1.5nm

(a)evolution of the number of fcc,hcp,amorphous atoms with timescale of 2000ps;(b)snapshots of microstructural at 5,60,80,100,and 2000ps.

green:fcc atoms;red:hcp atoms

248

WU Yong-Quan et al.:Homogeneous Solidification of Liquid Fe Induced by Emdedded Solid Nanoparticle No.2

during this stage indicates that the metastable hcp structure is gradually converted into the thermodynamically stable fcc structure.In fact,if the simulation time scale is long enough, all metastable structure should finally turn into fcc structure.25 It is also observed that during growth stage,structure such as orientation and shape of solid nanoparticle is imprinted in solidified structure.Besides,the eventually formed structure (snapshot in Fig.5(b)at2000ps)also shows structural match-ing and structural relevance with the original solid nanoparti-cle.Influences of the solid nanoparticle during solidification are reminiscent of the heredity effect.26,27

One last word,our results in this paper give important en-lightenment for understanding the forming mechanisms and mi-croscopic processes during solidification,and are likely to play important role in enhancing the macroscopic properties of Fe-based materials.

4Conclusions

In this paper,we investigated solidification process of liquid Fe with embedded solid Fe nanoparticles with different sizes. Solid and liquid states were well distinguished by g(r)as well as n(r),and the CNs of both liquid and solid states show good agreement with experimental results.

Size of nanoparticle is of great impact on controlling the un-dercooling temperature during solidification:nanoparticle size larger than a minimum radius of0.82nm acts as an initial nu-cleus and decreases the critical undercooling.On the other hand,nanoparticles below0.82nm dissolve in the liquid be-fore solidification occurs and the critical undercooling tempera-ture is the same as that of bulk liquid Fe.

CTIM-2analysis on solidification process revealed that growth mechanism of(1,1,1)plane is cross-nucleation of fcc and hcp structures.Moreover,the solid nanoparticle is attribut-ed to structural and orientation heredity effect.These results give better understanding of the forming mechanisms and mi-croscopic processes during solidification.

References

(1)Turnbull,D.Journal of Applied Physics1950,21,1022.

(2)Hou,Z.Y.;Liu,R.S.;Liu,H.R.;Tian,Z.A.;Wang,X.;Zhou,

Q.Y.;Chen,Z.H.Journal of Chemical Physics2007,127,

174503.

(3)den Ouden,D.;Vermolen,F.J.;Zhao,L.;Vuik,C.;Sietsma,J.

Computational Materials Science2011,50,2397.doi:10.1016/j.

commatsci.2011.02.044

(4)Hsu,C.S.;Rahman,A.Journal of Chemical Physics1979,70,

5234.doi:10.1063/1.437316

(5)Shibuta,Y.;Watanabe,Y.;Suzuki,T.Chemical Physics Letters

2009,475,264.doi:10.1016/j.cplett.2009.05.051

(6)Hashibon,A.;Adler,J.;Finnis,M.W.;Kaplan,W.D.

Computational Materials Science2002,24,443.doi:10.1016/

S0927-0256(01)00265-8

(7)Cheng,J.W.;Zhang,X.M.;Wu,Y.Q.;Wang,X.L.;Zheng,S.

B.;Jiang,G.

C.Acta Physico-Chimica Sinica2007,23,779.

[程江伟,张先明,吴永全,王秀丽,郑少波,蒋国昌.物理化学

学报,2007,23,779.]doi:10.3866/PKU.WHXB20070531 (8)Liu,Y.H.;Wu,Y.Q.;Shen,T.;Wang,Z.K.;Jiang,G.C.Acta

Metallurgica Sinica2010,46,172.[刘益虎,吴永全,沈通,

王召柯,蒋国昌.金属学报,2010,46,172.]

(9)Lai,L.S.;Wu,Y.Q.;Shen,T.;Zhang,N.;Gao,S.Acta

Physico-Chimica Sinica2012,28,1347.[赖莉珊,吴永全,

沈通,张宁,高帅.物理化学学报,2012,28,1347.]

doi:10.3866/PKU.WHXB201203301

(10)Allen,M.P.;Tildesley,https://www.360docs.net/doc/993976391.html,puter Simulation of Liquid;

Oxford University:New York,1987.

(11)Sutton,A.P.;Chen,J.Philosophical Magazine Letters1990,61,

139.doi:10.1080/09500839008206493

(12)Smith,W.;Forester,T.R.Journal of Molecular Graphics1996,

14,136.doi:10.1016/S0263-7855(96)00043-4

(13)Nose,S.Molecular Physics1984,52,255.doi:10.1080/

00268978400101201

(14)Hoover,W.G.Physical Review A:General Physics1985,31,

1695.doi:10.1103/PhysRevA.31.1695

(15)Parrinello,M.;Rahman,A.Journal of Applied Physics1981,52,

7182.doi:10.1063/1.328693

(16)Parrinello,M.;Rahman,A.Journal of Chemical Physics1982,

76,2662.doi:10.1063/1.443248

(17)Liu,H.R.;Liu,R.S.;Zhang,A.L.;Hou,Z.Y.;Wang,X.;Tian,

Z.A.Chinese Physics2007,16,3747.doi:10.1088/1009-1963/

16/12/032

(18)Honeycutt,J.D.;Andersen,H.C.Journal of Physical

Chemistry1987,91,4950.doi:10.1021/j100303a014

(19)Belonoshko,A.B.;Ahuja,R.;Eriksson,O.;Johansson,B.

Physical Review B2000,61,3838.

(20)Kirshenbaum,A.D.;Cahill,J.A.Transactions of Metallurgy

Society1962,224,816.

(21)Bai,X.M.;Li,M.Journal of Chemical Physics2005,122,

224510

(22)Kurz,W.;Fisher,D.J.Fundamentals of Solidification;Trans

Tech Publications:Durnten-Zurich,1992.

(23)Desgranges,C.;Delhommelle,J.Journal of Physical Chemistry

B2007,111,1465.doi:10.1021/jp067310+

(24)Desgranges,C.;Delhommelle,J.Journal of Physical Chemistry

C2009,113,3607.doi:10.1021/jp8101546

(25)Pronk,S.;Frenkel,D.Journal of Chemical Physics1999,110,

4589.doi:10.1063/1.478339

(26)Li,H.;Li,Y.F.;Liew,K.M.;Zhang,J.X.;Liu,X.F.;Fan,R.

H.Applied Physics Letters2009,95,063106.

(27)Li,Y.F.;Yu,H.Q.;Li,H.;Liew,K.M.;Liu,X.F.Nano2010,

5,361.

249

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

分子动力学方法模拟基本步骤

分子动力学方法模拟基本步骤 1.第一步 即模型的设定,也就是势函数的选取。势函数的研究和物理系统上对物质的描述研究息息相关。最早是硬球势,即小于临界值时无穷大,大于等于临界值时为零。常用的是LJ势函数,还有EAM势函数,不同的物质状态描述用不同的势函数。 模型势函数一旦确定,就可以根据物理学规律求得模拟中的守恒量。 2 第二步 给定初始条件。运动方程的求解需要知道粒子的初始位置和速度,不同的算法要求不同的初始条件。如:verlet算法需要两组坐标来启动计算,一组零时刻的坐标,一组是前进一个时间步的坐标或者一组零时刻的速度值。 一般意思上讲系统的初始条件不可能知道,实际上也不需要精确选择代求系统的初始条件,因为模拟实践足够长时,系统就会忘掉初始条件。当然,合理的初始条件可以加快系统趋于平衡的时间和步伐,获得好的精度。 常用的初始条件可以选择为:令初始位置在差分划分网格的格子上,初始速度则从玻尔兹曼分布随机抽样得到;令初始位置随机的偏离差分划分网格的格子上,初始速度为零;令初始位置随机的偏离差分划分网格的格子上,初始速度也是从玻尔兹曼分布随机抽样得到。 第三步 趋于平衡计算。在边界条件和初始条件给定后就可以解运动方程,进行分子动力学模拟。但这样计算出的系统是不会具有所要求的系统的能量,并且这个状态本身也还不是一个平衡态。 为使得系统平衡,模拟中设计一个趋衡过程,即在这个过程中,我们增加或者从系统中移出能量,直到持续给出确定的能量值。我们称这时的系统已经达到平衡。这段达到平衡的时间成为驰豫时间。 分子动力学中,时间步长的大小选择十分重要,决定了模拟所需要的时间。为了减小误差,步长要小,但小了系统模拟的驰豫时间就长了。因此根据经验选择适当的步长。如,对一个具有几百个氩气Ar分子的体系,lj势函数,发现取h为0.01量级,可以得到很好的相图。这里选择的h是没有量纲的,实际上这样选择的h对应的时间在10-14s的量级呢。如果模拟1000步,系统达到平衡,驰豫时间只有10-11s。 第四步 宏观物理量的计算。实际计算宏观的物理量往往是在模拟的最后揭短进行的。它是沿相空间轨迹求平均来计算得到的(时间平均代替系综平均)

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

MS分子动力学模拟具体实施步骤

第3章 铁基块体非晶合金‐纳米晶转变的动力学模拟过程 3.1 Discover模块 3.1.1 原子力场的分配 在使用Discover模块建立基于力场的计算中,涉及几个步骤。主要有:选择力场、指定原子类型、计算或指定电荷、选择non‐bond cutoffs。 在这些步骤中,指定原子类型和计算电荷一般是自动执行的。然而,在某些情形下需要手动指定原子类型。原子定型使用预定义的规则对结构中的每个原子指定原子类型。在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。 图 3-1 1)计算并显示原子类型:点击Edit→Atom Selection,如图3‐1所示 图3-2 弹出对话框,如图3‐2所示 从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe

原子都将被选中,原子被红色线圈住即表示原子被选中。再编辑集合,点击Edit →Edit Sets,如图3‐3、3‐4所示。 图3-3 图3-4 弹出对话框见图3‐4,点击New...,给原子集合设定一个名字。这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按 钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡,见图3‐5。 图3-5 在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。

分子动力学模拟讲解

分子动力学模拟 一,软件: NAMD:https://www.360docs.net/doc/993976391.html,/Research/namd/免费注册之后进行免费下载, 只需要下载解压不需要安装 VMD:https://www.360docs.net/doc/993976391.html,/Research/vmd/免费,分子可视化和辅助分析软 件 二,分子动力学模拟需要的数据文件包括: (1)蛋白质的PDB文件,此文件只记录原子空间位置,能够从RCSB管理的PDB数据库(https://www.360docs.net/doc/993976391.html,/pdb/)下载。 (2)PSF文件,此文件负责储存蛋白质的结构信息,记录蛋白质原子之间的成键情况。用户需要根据自己要求生成该文件。 (3)力场参数文件。此文件是分子动力学模拟的核心。CHAYMM,X-PLOR,AMBER和GROMACS 是经常用到的四种力场。NAMD能够利用上述每一种力场执行分子动力学模拟。 (4)配置文件(configuration file)。此文件作用是告知NAMD分子动力学模拟的各种参数,例如PDB和PSF两个文件保存的位置,模拟结果储存在哪里,体系的温度是多少等等。此文件也是要用户根据需求自己生成。同一配置的电脑,蛋白质分子大小不同,模拟运行的时间也不同,通常大蛋白质需要较长的时间。 三.以蛋白质1L63为例给出操作说明。 在PDB数据库下载蛋白质1L63. 建立文件夹1L63,其中包括以下几个文件,其中.conf文件需要修改,下面第4步会讲到。 以下生成PSF文件: 1.单击VMD,file-New Molecule-打开Molecule File Browser对话框,单击Browse按钮,在文件浏览器中找到文件夹1L63,在此文件夹中选择1L63.pdb,单击Load按钮载入1L63.pdb 2.除去pdb文件中带有的水分子 单击Extension-TK Console,弹出VMD Tk Console窗口。 首先用cd命令改变当前目录到1L63文件夹下,然后输入下列命令: set L63[atomselect top protein] $L63writepdb L63p.pdb 这样,1L63文件夹下就生成了文件L63P.pdb。这一PDB文件仅包含蛋白质,不包含水分子。 3.生成psf文件。 注意,这里仅讲全自动的psf文件生成器,描述如下: 选择Extensions-Modeling-Automatic PSF Builder菜单项,点击左上角的Options,选择Add solvation box,和Add neutralizing ions,点击右下角的I’m feeling lucky按钮,

分子动力学模拟教学教材

分子动力学模拟

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法)1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动和分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算,在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse 势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此

分子动力学模拟基础知识

分子动力学模拟基础知识 ? Molecular Dynamics Simulation o MD: Theoretical Background Newtonian Mechanics and Numerical Integration The Liouville Operator Formalism to Generating MD Integration Schemes o Case Study 1: An MD Code for the Lennard-Jones Fluid Introduction The Code, mdlj.c o Case Study 2: Static Properties of the Lennard-Jones Fluid (Case Study 4 in F&S) o Case Study 3: Dynamical Properties: The Self-Diffusion Coefficient ? Ensembles o Molecular Dynamics at Constant Temperature Velocity Scaling: Isokinetics and the Berendsen Thermostat Stochastic NVT Thermostats: Andersen, Langevin, and Dissipative Particle Dynamics The Nosé-Hoover Chain Molecular Dynamics at Constant Pressure: The Berendsen Barostat Molecular Dynamics Simulation We saw that the Metropolis Monte Carlo simulation technique generates a sequence of states with appropriate probabilities for computing ensemble averages (Eq. 1). Generating states probabilitistically is not the only way to explore phase space. The idea behind the Molecular Dynamics (MD) technique is that we can observe our dynamical system explore phase space by solving all particle equations of motion . We treat the particles as classical objects that, at least at this stage of the course, obey Newtonian mechanics. Not only does this in principle provide us with a properly weighted sequence of states over which we can compute ensemble averages, it additionally gives us time-resolved information, something that Metropolis Monte Carlo cannot provide. The ``ensemble averages'' computed in traditional MD simulations are in practice time averages : (99) The ergodic hypothesis partially requires that the measurement time, , i , in the system. The price we pay for this extra information is that we must at least access if not store particle velocities in addition to positions, and we must compute interparticle forces in addition to potential energy. We will introduce and explore MD in this section.

分子动力学模拟I

Gromacs中文教程 淮海一粟 分子动力学(MD)模拟分为三步:首先,要准备好模拟系统;然后,对准备好的系统进行模拟;最后,对模拟结果进行分析。虽然第二步是最耗费计算资源的,有时候需要计算几个月,但是最耗费体力的步骤在于模拟系统准备和结果分析。本教程涉及模拟系统准备、模拟和结果分析。 一、数据格式处理 准备好模拟系统是MD最重要的步骤之一。MD模拟原子尺度的动力学过程,可用于理解实验现象、验证理论假说,或者为一个待验证的新假说提供基础。然而,对于上述各种情形,都需要根据实际情况对模拟过程进行设计;这意味着模拟的时候必须十分小心。 丢失的残基、原子和非标准基团 本教程模拟的是蛋白质。首先需要找到蛋白质序列并选择其起始结构,见前述;然后就要检查这个结构是否包含所有的残基和原子,这些残基和原子有时候也是模拟所必需的。本教程假定不存在缺失,故略去。 另一个需要注意的问题是结构文件中可能包含非标准残基,被修饰过的残基或者配体,这些基团还没有力场参数。如果有这些基团,要么被除去,要么就需要补充力场参数,这牵涉到MD的高级技巧。本教程假定所有的蛋白质不含这类残基。 结构质量 对结构文件进行检查以了解结构文件的质量是一个很好的练习。例如,晶体结构解析过程中,对于谷氨酰胺和天冬酰胺有可能产生不正确的构象;对于组氨酸的质子化状态和侧链构象的解析也可能有问题。为了得到正确的结构,可以利用一些程序和服务器(如 WHATIF)。本教程假定所用的结构没有问题,我们只进行数据格式处理。 二、结构转换和拓扑化 一个分子可以由各个原子的坐标、键接情况与非键相互作用来确定。由于.pdb 结构文件只含有原子坐标,我们首先必须建立拓扑文件,该文件描述了原子类型、电荷、成键情况等信息。拓扑文件对应着一种力场,选择何种力场对于拓扑文件的建立是一个值得仔细考虑的问题。这里我们用的是GROMOS96 53a6连接原子力场,该力场对于氨基酸侧链的自由能预测较好,并且与NMR试验结果较吻合。

分子动力学模拟

分子动力学模拟 The Standardization Office was revised on the afternoon of December 13, 2020

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法)1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

分子动力学模拟Word版

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动和分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算,在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但是通常情况下,体系各自由度中运动周期最短的是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其他无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能力。

分子动力学模拟及其在材料中的研究进展

《材料计算设计基础》 学号: 流水号: 姓名: 完成日期:

分子动力学模拟及其在材料中的研究进展 摘要:本文综述了分子动力学模拟技术的发展,介绍了分子动力学的分类、运动方程的求解、初始条件和边界条件的选取、平衡系综及其控制、感兴趣量的提取以及分子动力学模拟在材料中的研究进展。 关键词:分子动力学模拟平衡态系综金属材料感兴趣量径向分布函数 引言 科学工作者在长期的科学研究实践中发现,当实验研究方法不能满足研究工作的需求时,用计算机模拟却可以提供实验上尚无法获得或很难获得的重要信息;尽管计算机模拟不能完全取代实验,但可以用来指导实验,并验证某些理论假设,从而促进理论和实验的发展。特别是在材料形成过程中许多与原子有关的微观细节,在实验中基本上是无法获得的,而在计算机模拟中即可以方便地得到。这种优点使分子动力学模拟在金属材料研究中显得非常有吸引力。 分子动力学MD (Molecular Dynamics)模拟就是用计算机方法来表示统计力学,作为实验的一个辅助手段。MD模拟就是对于原子核和电子所构成的多体系统,求解运动方程(如牛顿方程、哈密顿方程或拉格朗日方程),其中每一个原子核被视为在全部其它原子核和电子作用下运动,通过分析系统中各粒子的受力情况,用经典或量子的方法求解系统中各粒子在某时刻的位置和速度,以确定粒子的运动状态,进而计算系统的结构和性质。该模拟技术主要涉及粒子运动的动力学问题,与蒙特卡罗模拟方法(简称MC)相比,分子动力学是一种“确定性方法”, 它所计算的是时间平均,而MC进行的是系综平均。然而按照统计力学各态历经假设,时间平均等价于系综平均。因此,两种方法严格的比较计算能给出几乎相同的结果。 经典的分子动力学方法是Alder等于1957年提出并首先在“硬球”液体模型下应用,发现了由Kirkwood在1939年根据统计力学预言的“刚性球组成的集合系统会发生有液相到结晶相的转变”。后来人们称这种相变为Alder相变。Rahman

金属铝分子动力学模拟

物理计算与设计报告书 院(系)名称: 学生姓名: 专业名称: 班级: 时间: 金属铝分子动力学模拟

摘要:分子动力学模拟,是指对于原子核和电子所构成的多体系统,用计算机模拟 原子核的运动过程,并从而计算系统的结构和性质,其中每一原子核被视为在全部其它 原子核和电子所提供的经验势场作用下按牛顿定律运动。我们用c语言编写程序,VMD 动画演示得到原子在拉伸过程中的变化。在控制温度不变的情况下,得到了金属铝分子 的动力学模拟过程。通过不断拉伸,趋衡铝分子,计算其势能,力,速度,观察每次拉 伸过程中以及拉伸后铝原子的排列,得到金属铝的运动细节,从而更加利于我们了解铝 的性质。 结论:原子两端的拉力与原子势能的变化曲线基本一致。原子间断层以滑层方式断 裂。 关键词:铝分子,分子动力学,c语言,势能 1 引言 人们很早就知道材料的力学性能随尺度发生变化尺度减小, 材料中缺陷存在的几率降低, 材料的强度提高同时尺度的变化可能导致材料内在变形竞争机制的改变, 例如多晶材料晶粒粒径在微米级以上时, 强度主要受位错强化机制控制, 而粒径进入纳米级后, 材料的变形主要来源于晶界滑移等机制原子尺度下, 微观效应占主导地位, 材料的理化、力学性能表现出与宏观不同、甚至相反的特性。Brenner发现金属单晶晶须拉伸强度与晶须直径呈反比,Fleck在微米级细铜丝的扭转试验中观察到尺寸效应纳米电机系统(NEMS)的出现同迫切要求了解纳米尺度下材料的力学行为, 当前从实验上较难获得详细的信息, 而分子动力学模拟可以提供相关细节. 分子动力学通过直接模拟原子的运动过程, 使我们能够详细了解模拟对象的演化发展历史分子动力学模拟的一个关键在于原子势函数的选取原子势早期一般采用简单的对势, 但对势无法正确描述弹性常数, 其结果不理想世纪年代提出的镶嵌原子法、有效介质理论更客观地反映了原子间多体作用的本质, 可得到较合理的结果.认为体系总能量为

分子动力学模拟方法的基本原理与应用

分子动力学模拟方法的基本原理与应用 摘要: 介绍了分子动力学模拟的基本原理及常用的原子间相互作用势, 如Lennard-Jones势; 论述了几种常用的有限差分算法, 如Verlet算法; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。 关键词: 分子动力学模拟; 原子间相互作用势; 有限差分算法; 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 从统计物理学中衍生出来的分子动力学模拟方法(Molecular Dynamics Simulation, MDS) , 实践证明是一种描述纳米科技研究对象的有效方法, 得到越来越广泛的重视。所谓分子动力学模拟, 是指对于原子核和电子所构成的多体系统, 用计算机模拟原子核的运动过程, 从而计算系统的结构和性质, 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段, 称之为“计算机实验”手段, 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。 科学工作者在长期的科学研究实践中发现,当实验研究方法不能满足研究工作的需求时,用计算机模拟却可以提供实验上尚无法获得或很难获得的重要信息;尽管计算机模拟不能完全取代实验,但可以用来指导实验,并验证某些理论假设,从而促进理论和实验的发展。特别是在材料形成过程中许多与原子有关的微观细节,在实验中基本上是无法获得的,而在计算机模拟中即可以方便地得到。这种优点使分子动力学模拟在材料研究中显得非常有吸引力。 分子动力学模拟就是用计算机方法来表示统计力学,作为实验的一个辅助手段。分子模拟就是对于原子核和电子所构成的多体系统,求解运动方程(如牛顿方程、哈

分子动力学模拟知识点总结

分子动力学模拟: 对于原子核和电子组成的多体体系,求解运动方程(哈密顿,牛顿,拉格朗日),用经典和量子化方法求解粒子的运动状态。 MC方法:系综(抽样)平均法分子动力学:时间平均 一优点:遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。核心算法:粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。缺点:元胞体积和形状不变,不含有自由电子,对金属体系计算不理想。 注意:一般而言,MD模拟时间足够长,初始条件不会影响计算结果,但是会加大构型平衡的计算时间。 二步骤: 1.选取所要研究的系统并建立适当的模拟模型。 2.设定区域的边界条件,选取粒子间相互作用势模型;要注意观察PBC边界条 件的使用,以及计算格子和建模的晶格子之间的关系。体系是单胞沿不同方向重复叠合而组成。但模拟时只保留基本单元,由平移对称矩阵计算得到其他原子的空间坐标。最小近邻的截断半径。 3.设定系统所有粒子的初始位置和初始速度; 4.计算粒子间相互作用力和势能,以及各个粒子的位置和速度;最好与实际模 型相符,以减少达到平衡的时间。势场参数调整,最小近邻的截断半径。 对势:LJ势(惰性气体,过渡金属,柔韧材料),Born-lande势(离子晶体),Morse势,Johnson势(金属)发展到三体势,缺点是导致Cauchy关系,即不能描述晶体的弹性性质。 多体势:80年代以后,EAM势等(晶体对势+核嵌入电子云嵌入能),多用于金属。 5.待体系达到平衡后,构型积分获得体系的宏观性质。选取合适的系综,控制

vasp的分子动力学模拟

vasp的分子动力学模拟 VASP 2010-01-15 02:26:36 阅读57 评论0 字号:大中小 vasp做分子动力学的好处,由于vasp是近些年开发的比较成熟的软件,在做电子scf速度方面有较好的优势。 缺点:可选系综太少。 尽管如此,对于大多数有关分子动力学的任务还是可以胜任的。 主要使用的系综是NVT 和NVE。 下面我将对主要参数进行介绍! 一般做分子动力学的时候都需要较多原子,一般都超过100个。 当原子数多的时候,k点实际就需要较少了。有的时候用一个k点就行,不过这都需要严格的测试。通常超过200个原子的时候,用一个k点,即Gamma点就可以了。 INCAR: EDIFF 一般来说,用1E-4 或者1E-5都可以,这个参数只是对第一个离子步的自洽影响大一些,对于长时间的分子动力学的模拟,精度小一点也无所谓,但不能太小。 IBRION=0 分子动力学模拟 IALGO=48 一般用48,对于原子数较多,这个优化方式较好。 NSW=1000 多少个时间步长。 POTIM=3 时间步长,单位fs, 通常1到3. ISIF=2 计算外界的压力.

NBLOCK= 1 多少个时间步长,写一次CONTCAR,CHG和CHGCAR,PCDAT. KBLOCK=50 NBLOCK*KBLOCK 个步长写一次XDATCAR. ISMEAR=-1 费米迪拉克分布. SIGMA =0.05 单位:电子伏 NELMIN=8 一般用6到8, 最小的电子scf数.太少的话,收敛的不好. LREAL=A APACO=10 径向分布函数距离, 单位是埃. NPACO=200 径向分布函数插的点数. LCHARG=F 尽量不写电荷密度,否则CHG文件太大. TEBEG=300 初始温度. TEEND=300 终态温度。不设的话,等于TEBEG. SMASS -3 NVE ensemble;-1 用来做模拟退火。大于0 NVT 系综。 【转】vasp的分子动力学模拟 ★★★★★★★★ 小木虫(金币+1):奖励一下,谢谢提供资源 uuv2010(金币+1): 您是否可以做一个专题,详细讲讲怎么做?比如第一步需要干什么,第二步需要干什么,结果怎么分析……如果能做一个这样完整的专题就太好了,不知道您是否有兴趣?2011-07-13 18:20:12 uuv2010(金币+1): 多谢提供资源2011-07-16 17:39:55 uuv2010(金币+5, 1ST强帖+1): 多谢您的详细讲解!感谢就此专题与大家分享!2011-08-12 18:25:12 vasp做分子动力学的好处,由于vasp是近些年开发的比较成熟的软件,在做电子scf速度方面有较好的优势。 缺点:可选系综太少。 尽管如此,对于大多数有关分子动力学的任务还是可以胜任的。 主要使用的系综是NVT 和NVE。 下面我将对主要参数进行介绍!

分子动力学模拟方法概述

1 分子动力模拟计算的基本原理 分子动力计算的基本原理,即为利用牛顿运动定律。在分省储存空间。其缺点是位置与速度不同步。这意味着在位置一子动力模拟中,体系原子的一系列位移是通过对牛顿运动方程定时,不可能同时计算动能对总动能的贡献。 的积分得到的,结果是一条运动轨迹,它表明了系统内原子的位置与速度是如何随时间而发生变化。 先由系统中各分子位置计算系统的势能,按照经典力学,系统中任一原子i 所受的力为势能的梯度: 将牛顿运动定律方程式对时间积分,可预测i 原子经过时间t 后的速度与位置: 式中, 及 分别是粒子i 的位置与速度,上标“0”为各物理量的初始值[1]。 2 牛顿运动方程的数值解法 为了得到原子的运动轨迹,必须解式(3)的牛顿运动方程,可采用有限差分法。有限差分法的基本思想就是将积分分 成很多小步,每一小步的时间固定为 。常用的有以下几种算法:① Verlet 算法;② Velocity-Verlet 算法;③ leap-frog 算法(蛙跳算法);④ Beeman 算法;⑤ Gear 算法。leap-frog 算法和Gear 算法由于使用简便,准确性及稳定性高,节省储存空间等作者:photon 优点,已被广泛采用。 2.1 leap-frog算法 Leap-frog 算法速度与位置的数学式为: 为了执行leap-frog 算法,必须首先由t-0.5 时刻的速度与t 时刻的加速度计算出 ,然后由方程 计算出位置 。时间为t 时的速度可由式(6)算 2.2 Gear算法[1] Gear 所提出的一种利用数值解的方法,称为校正预测法(predictor-corrector method )。时间t+ 时的位置、速度等可由时间t 的泰勒展开式预测得到: 式中的 的1次、2次、3次微分。式(7)所产生的速度、加速度不是由牛顿运动方程解得的,所以并非完全正确。可由所预测的位置 计算所受的力及正确的加速度 。设正确的加速度与预测的加速度之间的误差为: 式中, 均为常数。以上为Gear 的一次预测校正法,也可将此计算推展至更高次的校正。 3 势函数 势函数表明了原子间的相互作用。针对不同的计算物质,不同的模拟目的,势函数有不同的形式。计算结果的可靠性与势函数密切相关。在分子动力学发展初期,主要采用对势。随着模拟体系的复杂性,逐渐出现了多体势,以弥补对势的不足。 3.1 对势 主要是Lennard-Jones 势(L-J 势),又叫12-6势能,它的数学表达式是: 式中,r 为原子对间的距离, 、 是势能参数。在 L-J 势能中, 项是排斥项, 项是吸引项。当 r 很大时,L-J 势能趋近于零,表示当原子对相距很远时,彼此之间已经没有非键 分子动力学模拟方法概述 周晓平 田壮壮 忽晓伟 (郑州大学 西亚斯国际学院 河南 郑州 451100) 摘 要: 主要介绍分子动力学模拟的基本原理,阐述分子动力学方法的运动方程、数值解法、势函数、边界条件、适用系综以及体系相关性质的计算。最后指出分子动力学模拟方法的优势和发展方向。 关键词: 分子动力学;势函数;边界条件 中图分类号:O414 文献标识码:A 文章编号:1671-7597(2012)1210040-02 由牛顿第二定律可得i 原子的加速度为: 可得各量的校正式为:

相关文档
最新文档