典型污水生化处理过程仿真平台的构造_袁德成

典型污水生化处理过程仿真平台的构造_袁德成
典型污水生化处理过程仿真平台的构造_袁德成

污水处理生化调试技术方案

污水处理生化调试技术方案 一污泥的培养 方法有同步与异步培养与接种,同步是培奍与驯化同时进行或交替进行,异步是先培后驯化,接种是利用类似污水的剩余污泥接种。 活性污泥可用糞便水经曝气培养而得,因为粪便污水中,细菌种类多,本身含有的营养丰富,细菌易于繁殖。?通常为了缩短培菌周期,我们会选择接种培养。?先说粪便水培菌?具体步骤:?将经过过滤的粪便水投入曝气池,再用生活污水或河水稀释,至BOD约为300-400,进行连续曝气。这样过二,三天后,为补充微生物的营养物质和排除由微生物产生的代谢产物,应进行换水,换水根据操作情况分为间断和连续操作。?1.间断操作:?当第一次加料曝气并出现模糊的活性污泥绒絮后,就可停止曝气,使混合液静止沉淀,经1-1.5小时后排放上清液,把排放的上清液约占总体积的60-70%。?然后再加生活污水和粪便水,这时的粪便水可视曝气池内的污泥量来调整,这样一直下去,直至SV达到30%。一般需2周,水温低时时间要延长。 在每次换水时,从停止曝气,沉淀到重新曝气的总时间要控制在2小时之内为宜?成熟的污泥应具有良好的混凝,沉降性能,污泥内有大量的菌胶菌和终生?纤毛类原生动物,如钟虫,等枝虫,盖纤虫等,并可使污水的生化需氧量去除率达90%左右 2.连续操作:?在第一次加料出现绒絮后,就不断地往曝气池投加生活污水或河水,添加粪便水的控制原则与间断投配相同。往曝气池的投加的水量,应保证池内的水量能每天更换一次,随着培奍的进展,逐渐加大水量使在培养后期达到每天更换二次。在曝气池出水进入二次沉淀池后不久(0.5-1)就开始回流污泥,污泥的回流量为曝气池进水量的50%?驯化的方法:可在进水中逐渐增加被处理的污水的比例,或提高浓度,使生物逐渐适应新的环境开始时,被处理污水的加入量可用曝气池设计负荷的20-30%,达到较好的处理效率后,再继续增加,每次以增加设计负荷的10-20%为宜,每次增加负荷后,须等生物适应巩固后再继续增加,直至满负荷为止。?如果被处理工业污水中,缺氮和磷以及其它营养物时,可根据BOD:N:P为100:5:1的比例来调整。?个人认为在此阶段,必要的超赿管路要具备,工艺没设计的可用消防管代替。 而且各种分析要跟上去,和种参数需及时测定,特别是镜检,因为有经验的人可能通过镜检和数据就可以很好的完成任务,另外良好的心理素质也比较重要,有些现象要果断处理,有些则需等侍再认定上面是异步法,同步就是在污泥培养过程中,不断加入工业污水,使污泥在增长过程中逐渐适应工业污水的环境,这样虽可缩短培养和驯化的时间,但在这一过程中发生的问题,又缺实践经验则难以判断问题出在哪一个环节上。 若有条件,就是接种培养,这样可缩短时间,若是相似的污水的污泥,更可提高驯化效果。 二、试运行

污水处理各种工艺大全及优缺点对比

污水处理各种工艺大全及优缺点对比 一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH 3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(N H4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O 在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:

(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2)流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BO D5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5)缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。

污水的生物处理方法生物膜法

污水的生物处理方法生 物膜法 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

污水的生物处理方法——生物膜法 教学要求: 1)掌握生物膜法的微生物学特征和工艺特征 2)掌握高负荷生物滤池、曝气生物滤池、塔式生物滤池以及生物转盘三 相传质和工艺运行特点。 3)掌握生物接触氧化特点及其工艺设计 第一节概述 生物膜——是使细菌、放线菌、蓝绿细菌一类的微生物和原生动 物、后生动物、藻类、真菌一类的真核微生物附着在滤料或某些载体上 生长繁殖,并在其上形成膜状生物污泥。 生物膜法:污水经过从前往后具有细菌→原生动物→后生动物、从 表至里具好氧→兼氧→厌氧的生物处理系统而得到净化的生物处理技 术。 一、生物构造及其对有机物的降解 1 生物膜的构造特征 生物膜(好氧层+兼氧层+厌氧层) Array+附着水层(高亲水性)。 2 降解有机物的机理 1)微生物:沿水流方向为细菌—— 原生动物——后生动物的食物链 或生态系统。具体生物以菌胶团 为主、辅以球衣菌、藻类等,含

有大量固着型纤毛虫(钟虫、等枝虫、独缩虫等)和游泳型纤毛虫(楯纤虫、豆形虫、斜管虫等),它们起到了污染物净化和清除池内生物(防堵塞)作用。 2) 污染物:重→轻(相当多污带→α中污带→β中污带→寡污带). 3) 供氧:借助流动水层厚薄变化以及气水逆向流动,向生物膜表面供 氧。 4) 传质与降解:有机物降解主要是在好氧层进行,部分难降解有机物经 兼氧层和厌氧层分解,分解后产生的H 2S ,NH 3等以及代谢产物由内向外传递而进入空气中,好氧层形成的NO 3--N 、NO 2--N 等经厌氧层发生反硝化,产生的N2也向外而散入大气中。 5) 生物膜更新:经水力冲刷,使膜表面不断更新(DO 及污染物),维持 生物活性(老化膜固着不紧)。 二、生物膜的主要特征 1 微生物相方面的特征 1) 参与净化反应微生物多样化; 2) 食物链长,污泥产率低; 3) 能够存活世代较长的微生物; 4) 可分段运行,形成优势微生物种群,提高降解能力。 2 工艺方面的特征 1) 对水质水量变动有较强适应性; 2) 污泥沉降性能好,宜于固液分离; 3) 能处理低浓度污水;

污水处理工艺简介及对比方案必选比用

污水处理工艺简介及对比方案必选比 用

A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺 一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,因此A/O法是改进的活性污泥法。A/O 工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充分供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,经过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混

凝沉淀,可将COD值降至100mg/L以下,其它指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。特别,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5) 缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。经过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮 (内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。 3. A/O工艺的缺点 1.由于没有独立的污泥回流系统,从而不能培养出具有独特

废水的生化处理方法剖析

废水的生化处理方法 一、专业术语 1.化学需氧量(COD cr) 化学需氧量是指在规定条件下用化学氧化剂(K2Cr2O7或KMnO4)氧化分解水中有机物时,与消耗的氧化剂当量相等的氧量(mg/L)。 当氧化剂用重铬酸钾(K2Cr2O7)时,由于重铬酸钾氧化作用很强,所以能够较完全地氧化水中大部分有机物(除苯、甲苯等芳香烃类化合物以外)和无机性还原物质(但不包括硝化所需的氧量),此时化学需氧量用COD Cr,或COD表示;如采用高锰酸钾(KMnO4)作为氧化剂时,则称为高锰酸指数,写作COD Mn。 与BOD5相比,COD Cr能够在较短的时间内(规定为2小时)较精确地测出废水中耗氧物质的含量,不受水质限制,因此得到了广泛的应用。缺点是不能表示可被微生物氧化的有机物量,此外废水中的还原性无机物也能消耗部分氧,造成一定误差。 如果废水中各种成分相对稳定,那么COD与BOD之间应有一定的比例关系。一般说来,COD Cr>BOD20>BOD5>COD Mn,其中BOD5/COD Cr可作为废水是否适宜生化法处理的一个衡量指标。比值越大,该废水越容易被生化处理。—般认为BOD5/COD Cr大于0.3的废水才适宜采用生化处理。 2.五日生化需氧量(BOD5) 生化需氧量(BOD)是表示在有氧条件下,温度为20℃时,由于微生物(主要是细菌)的活动,使单位体积污水中可降解的有机物氧化达到稳定状态时所需氧的量(mg/L)。BOD的值越高,表示需氧有机物越多。 20℃时在BOD的测定条件(氧充足、不搅动)下,一般有机物20天才能够基本完成在第一阶段的氧化分解过程(完成过程的99%)。就是说,测定第一阶段的生化需氧量,需要20天,这在实际工作中是难以做到的。为此又规定一个标准时间,一般以5日作为测定BOD的标准时间,因而称之为五日生化需氧量,以BOD5表示之。BOD5约为BOD20的70%左右。 3.氨氮(NH3-N) 氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。 4.总磷(TP) 总磷是水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果,以每升水样含磷毫克数计量。水中磷可以元素磷、正磷酸盐、缩合硫酸盐、焦磷酸盐、偏磷酸盐和有机团结合的磷酸盐等形式存在。 5.悬浮固体(SS) 水体中悬浮物的含量是水质污染程度的基本判断指标之一。悬浮物是指在水中呈悬浮状态的

污水生化处理装置操作规程修订稿

污水生化处理装置操作 规程 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

污水处理操作规程 总则1.为加强污水处理的设备管理、工艺管理和水质管理,保证污水处理安全正常运行,达到净化水质、处理和处置污泥、保护环境的目的,制定本规程。 2.污水处理的运行、维护及其安全除应符合本规程外,尚应符合国家现行有关标准的规定。 1一般要求 运行管理要求 1.运行管理人员必须熟悉本厂处理工艺和设施、设备的运行要求与技术指标。 2.操作人员必须了解本厂处理工艺,熟悉本岗位设施、设备的运行要求和技术指标。 3.各岗位应有工艺系统网络图、安全操作规程等,并应示于明显部位。 4.运行管理人员和操作人员应按要求巡视检查构筑物、设备、电器和仪表的运行情况。 5.各岗位的操作人员应按时做好运行记录。数据应准确无误。 6.操作人员发现运行不正常时,应及时处理或上报主管部门。 7.各种机械设备应保持清洁,无漏水、漏气等。 8.水处理构筑物堰口、池壁应保持清洁、完好。 9.根据不同机电设备要求,应定时检查,添加或更换润滑油或润滑脂。 安全操作要求 1.各岗位操作人员和维修人员必须经过技术培训和生产实践,并考试合格后方可上岗。 2.启动设备应在做好启动准备工作后进行。

3.电源电压大于或小于额定电压5%时,不宜启动电机。 4.操作人员在启闭电器开关时,应按电工操作规程进行。 5.各种设备维修时必须断电,并应在开关处悬挂维修标牌后,方可操作。 6.雨天或冰雪天气,操作人员在构筑物上巡视或操作时,应注意防滑。 7.清理机电设备及周围环境卫生进,严禁擦拭设备运转部位,冲洗水不得溅到电缆头和电机带电部位及润滑部位。 8.各岗位操作人员应穿戴齐全劳保用品,做好安全防范工作。 9.应在构筑物的明显位置配备防护救生设施及用品。 10.严禁非岗位人员启闭本岗位的机电设备。 维护保养要求 1.运行管理人员和维修人员应熟悉机电设备的维修规定。 2.应对构筑物的结构及各种闸阀、护栏、爬梯、管道等定期进行检查、维修及防腐处理,并及时更换被损坏的照明设备。 3.应经常检查和紧固各种设备连接件,定期更换联轴器的易损件。 4.各种管道闸阀应定期做启闭试验。 5.应定期检查、清扫电器控制柜,并测试其各种技术性能。 6.应定期检查电动闸阀的限位开关、手动与电动的联锁装置。 7.在每次停泵后,应检查填料或油封的密封情况,进行必要的处理。并根据需要填加或更换填料、润滑油、润滑脂。 8.凡设有钢丝绳的装置,绳的磨损量大于原直径10%,或其中的一股已经断裂时,必须更换。

常见污水处理工艺对比

常见污水处理工艺对比 一、A/O工艺 1、基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2、A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1) 效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的

生化处理工艺说明

生化处理工艺说明 厌氧池 调节池的水由潜水泵打入厌氧池。 厌氧微生物对于杂环化合物和多环芳烃中环的裂解,具有不同于好氧微生物的代谢过程,其裂解为还原性裂解和非还原性裂解。 厌氧生物发酵池的主要目的是去除COD和改善废水的可生化性。厌氧过程对于浓度较高的有机废水,可以将废水中的有机物分解为甲基等,以气体的形式从池中排中,可以去除废水中50~80%左右之COD。同时,还可以将废水中的芳烃类有机质所带的苯、萘、蒽醌等环打开,提高难降解有机物的好氧生物降解性能,为后续的好氧生物处理创造良好条件。厌氧过程分为四个阶段:水解阶段、酸化阶段、酸性衰退阶段及甲烷化阶段。在水解阶段,固胶体性有机物质降解为溶解性有机物质,大分子物质降解为小分子物质。厌氧反应池是把反应控制在第二阶段完成之前,故水力停留时间短,效率高,同时提高了污水的可生化性。 厌氧池启动后,污水由布水系统进入池体,由池底向上流动,经细菌形成的污泥层,污泥层对悬浮物、染料颗粒及细小纤维进行吸附、网捕、生物学絮凝、生物降解作用,使污水在降解COD的同时也得以澄清。 焦化废水厌氧工艺水力停留时间较其他废水长,COD去除率15~30%,同时具有很强的抗冲击负荷能力。 缺氧池 缺氧池是生物脱氮的主要工艺设备,废水中NH3-N在下一级好氧硝化反应池中被硝化菌与亚硝化菌转化为NO3--N与NO2--N的硝化混合液,循环回流于缺氧池,通过反硝菌生物还原作用,NO3--N与NO2--N转化为N2。此转化条件,一是废水中含有足够的电子供体,包括与氧结合的氢源和反硝化异养菌所需之足够的有机碳源,二是厌氧或缺氧条件。由第一

级厌氧池之出水,已留有足够的有机碳源,可供反硝化菌消耗,但不能太大的过量碳源,以免出水含碳源过多,影响后续硝化反应。反硝化反应影响因素: 碳源进入缺氧池之废水中,BOD5/TN>3—5,即认为碳源充足,本系统内碳源充足; pH pH在6.5—7.5为宜,原废水满足要求; 水中溶解氧<0.5mg/L; 适宜温度20~40℃; 硝化混合液回流率100~400%。 厌氧池排出的厌氧消化液在进入好氧活性污泥处理工艺前进行缺氧曝气,其作用如下: 缺氧池回流入大量的曝气池的沉淀污泥,使缺氧池和好氧池组合为A-O工艺,具有较好的脱氮效果; 在缺氧过程中溶解氧控制在0.5mg/L一下,兼性脱氮菌利用进水中的COD作为氢供给体,将好氧池混合液中的硝酸盐及亚硝酸盐还原成氮气排入大气,同时利用厌氧生物处理反应过程中的产酸过程,把一些复杂的大分子稠环化合物分解成低分子有机物。 好氧池 好氧池采用推流式活性污泥曝气池,它由池体、布水和布气系统三部分组成。 缺氧池流出的废水自流入推流式活性污泥曝气池,在此完成含氨氮废水的硝化过程。硝化菌为自养好氧菌,在好氧条件下,将废水中NH3—N氧化为NO3--N,此过程消耗废水中碳酸盐碱度计),一方面须中和过程产生的H+,另一方面,硝化菌细胞生长需要消耗一定量碱度。每硝化1g氨氮,需消耗7.1g碱度(以CaCO3计)。因此需要在此投加适量Na2CO3,以补充碱度。反应温度20~40℃;pH8.0~8.4。此过程,要求较低的含碳有机质,以免异氧菌增殖过快,影响硝化菌的增殖。气水比20:1。与悬浮活性污泥接触,水中的有机物被活性污泥吸附、氧化分解并部分转达化为新的微生物菌胶团,废水得到净化。该工艺在水底直接布气,活性污泥直接受到气流的搅动,加速了微生物的更新,使其经常保持较高的活性。

废水除氨氮工艺比较知识讲解

国内高浓度氨氮废水处理常见工艺 物化法 国内外处理高浓度氨氮废水的物理化学方法很多,主要有空气吹脱法、蒸 汽汽提法、折点加氯法、离子交换法、化学沉淀法、催化湿式氧化法和烟 道气治理法等,这些方法各有优缺点,可用于不同条件的废水处理。 1.2.1.1空气吹脱法 空气吹脱法是使废水作为不连续相与空气接触,利用废水中组分的实际浓 度与平衡浓度之间的差异,使氨氮由液相转移至气相而去除。废水中的氨 氮通常以离子铵(NH4+)和游离氨(NH3)的状态保持平衡而存在,将废水pH值调节至碱性时,NH4+转化为NH3,然后通入空气将NH3吹脱出来。 NH4++ OH-→ NH3+ H2O 在吹脱过程中,废水pH值、水温、水力负荷及气水比对吹脱效果有较大影响。一般来说,pH值要提高至10.8~11.5,水温一般不能低于20℃,水力 负荷为2.5~5 m3/(m2·h),气水比为2500~5000 m3/m3,此时氨氮去除率 在80%~95%。 空气吹脱法工艺流程简单,但NH3-N仅从溶解状态转化为游离态,并没有 彻底除去,需要相应的回收装置,否则易造成二次污染;当温度低时, NH3-N吹脱效率大大低,不适合在寒冷的冬季使用。 另外,在当前越来越严格的排放要求条件下,作为一种较为简单粗糙的氨 氮废水处理工艺,空气吹脱法由于无法达到排放要求(如15 mg?L-1以下),加上氨的回收利用上受到限制,因此采用它的改良方法。

1.2.1.2蒸汽汽提法 蒸汽汽提法是利用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样,即在高pH值时使废水与气体密切接触,从而降低废水中氨浓度的过程。其传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差值。延长汽水间的接触时间及接触紧密程度可提高NH3-N 的处理效率,用填料塔可以满足此要求。由于采用蒸汽作为工作介质,氨自废水进入蒸汽中,然后在塔顶蒸馏成浓氨水、浓氨气或者液氨回收,或是采用酸吸收成为相应的铵盐。 蒸汽汽提法适用于处理连续排放的高浓度氨氮废水(浓度在1000 mg?L-1以上),操作条件易于控制。对于浓度在1000~30000 mg?L-1,甚至更高浓度的氨氮废水,采用该法可以经一次处理后,氨氮浓度达到15 mg?L-1(国家一级排放标准)以下。 蒸汽汽提脱氨技术因为是以蒸汽为脱氨介质,由于蒸汽价格较高(约200元/吨),因此蒸汽消耗就成为了该技术关键指标。传统蒸汽汽提脱氨技术蒸汽消耗达到300kg/吨废水以上,因此传统蒸汽汽提脱氨技术成本很高。随着近些年来技术的进步,一些在传统蒸汽汽提脱氨技术上研究开发的新型蒸汽汽提脱氨技术已经大大降低了蒸汽单耗,达到了30kg/吨废水,因此新型蒸汽汽提脱氨技术正在高浓度工业氨氮废水处理领域得到广泛地推广应用,为我国氨氮污染物减排起到了强有力的技术支撑作用。 1.2.1.3折点加氯法 折点加氯法是将氯气通入水中,当投入量达到某一值(点)时,水中游离氯含量最低而氨的浓度降为零,当投入量超过该点时,水中的游离氯就会增多。因此,该点称为折点,该状态下的氯化称为折点氯化。折点氯化去除氨的的机理为氯气与氨反应生成无害的氮气,氮气逸入大气。

废水的生化处理方法

废水的生化处理方法 、专业术语 1.化学需氧量(COD cr) 化学需氧量是指在规定条件下用化学氧化剂(K2Cr2O7 或KMnO 4)氧化分解水中有机物时, 与消耗的氧化剂当量相等的氧量(mg/L)。 当氧化剂用重铬酸钾(K 2Cr2O7)时,由于重铬酸钾氧化作用很强,所以能够较完全地氧化水中大部分有机物(除苯、甲苯等芳香烃类化合物以外)和无机性还原物质(但不包括硝化所需的氧量),此时化学需氧量用COD cr,或COD表示;如采用高锰酸钾(KMn0 4)作为氧化剂时,则称为高锰酸指数,写作COD Mn。 与BOD5相比,COD cr能够在较短的时间内(规定为2小时)较精确地测出废水中耗氧物质的含量,不受水质限制,因此得到了广泛的应用。缺点是不能表示可被微生物氧化的有机物量,此外废水中的还原性无机物也能消耗部分氧,造成一定误差。 如果废水中各种成分相对稳定,那么COD 与BOD 之间应有一定的比例关系。一般说来,COD cr>BOD 20> BOD5> COD Mn,其中BOD 5/COD cr可作为废水是否适宜生化法处理的一个衡量指标。比值越大,该废水越容易被生化处理。一般认为 BOD5/COD Cr大于0.3的废水才适宜 采用生化处理。 2.五日生化需氧量(BOD 5) 生化需氧量(BOD )是表示在有氧条件下,温度为20C时,由于微生物(主要是细菌)的活动,使单位体积污水中可降解的有机物氧化达到稳定状态时所需氧的量(mg/L)。BOD 的值越高,表 示需氧有机物越多。 20 C时在BOD的测定条件(氧充足、不搅动)下,一般有机物20天才能够基本完成 在第一阶段的氧化分解过程(完成过程的99%)。就是说,测定第一阶段的生化需氧量, 需要20 天,这在实际工作中是难以做到的。为此又规定一个标准时间,一般以 5 日作为 测定BOD的标准时间,因而称之为五日生化需氧量,以BOD 5表示之。BOD 5约为BOD 20 的70% 左右。 3.氨氮(NH 3-N ) 氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。 4.总磷(TP) 总磷是水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果,以每升水样含磷毫克数 计量。水中磷可以元素磷、正磷酸盐、缩合硫酸盐、焦磷酸盐、偏磷酸盐和有机团结合的磷酸盐等形式存在。 5.悬浮固体(SS) 水体中悬浮物的含量是水质污染程度的基本判断指标之一。悬浮物是指在水中呈悬浮状态的固体物质,它包括无机物和有机物,如不溶于水的淤泥、粘土、微生物等,含量用每升水样中含有多少毫克悬浮物来表示,记为毫克/升。 6?溶解氧(DO) 溶解氧是指溶解于1升水中的分子氧的含量,用毫克(氧)/升表示。它是衡量水体污染程度的重要指标,是水环境监测

常用生活污水处理工艺介绍及对比

几种常用生活污水处理工艺的比较 一、概述 生活污水处理工艺目前已相当成熟,其核心技术为活性污泥法和生物膜法,对活性污泥法(或生物膜法)的改进及发展形成了各种不同的生活污水处理工艺,传统的活性污泥法处理工艺在中小型生活污水处理已较少使用。根据污水的水量、水质和出水要求及当地的实际情况,选用合理的污水处理工艺,对污水处理的正常运行、处理费用具有决定性的作用。 本文主要对生活污水几种常用的处理工艺作简单介绍,包括氧化沟、序批式活性污泥法(SBR)、生物接触氧化法、曝气生物滤池(BAF)、A-0工艺、膜生物反应器(MBR)等。 二、中小型生活污水处理工艺简介 典型的生活污水处理完整工艺如下: 污水——前处理——生化法——二沉池——消毒——出水 | | ——-——污泥处理系统-- 前处理也称为预处理技术,常用的有格栅或格网、调节池、沉砂池、初沉池等。 由于生活污水处理的核心是生化部分,因此我们称污水处理工艺是特指这部分,如接触氧化法、SBR法、A/O法等。用生化法(包括厌氧和好氧)处理生活污水在目前是最经济、最适用的污水处理工艺,根据生活污水的水量、水质及现场的条件而选择不同的污水处理工艺对投资及运行成本具有决定性的影响。下面就目前常用的生活污水处理工艺作一简介。 1、氧化沟工艺 氧化沟是活性污泥法的一种变形,其池体狭长,故称为氧化沟。氧化沟有多种构造型式,典型的有:A:卡罗塞式;B:奥巴尔型;C:交替工作式氧化沟;D:曝气—沉淀一体化氧化沟 氧化沟技术已广泛应用于大中型城市污水处理厂,其规模从每日几百立方米至几万立方米,工艺日趋完善,其构造型式也越来越多。其主要特点是:进出水装置简单;污水的流态可看成是完全混合式,由于池体狭长,又类似于推流式;BOD负荷低,处理水质良好;污泥产率低,排泥量少;

常用的生化法处理污水

随着水污染的日益严重,水资源的短缺,对污水的处理越来越受到人们的重视。目前所采用的生物处理方法主要包括普通活性污泥法和生物接触氧化法,普通活性污泥法又称传统活性污泥法,活性污泥废水生物处理系统的传统方式,系统由曝气池、二沉池和污泥回流管/线及设备三部分组成。 需要曝气池容积大,占用的土地较多,基建费用高;好氧菌作用速率会随水中氧含量进行变化,而供氧速度难于与其相吻合、适应,运行效果易受水质、水量变化的影响。今天,博尔环保就给大家说说曝气法处理污水分析。 曝气设备是活性污泥法污水处理工艺系统中的重要组成部分,通过曝气设备向曝气池供氧,同时曝气设备还有混合搅拌的功能,以增强污染物在水处理系统

中的传质条件,提高处理效果。 曝气方法主要有①鼓风曝气②机械曝气 机械曝气也称为表面曝气,机械曝气器大多以装在曝气池水面的叶轮快速转动,进行表层充氧。按转轴方向不同,可分为立式和卧式两类。常用的立式表面曝气机有平板叶轮、倒伞型叶轮和泵型叶轮等,卧式表面曝气机有转刷曝气机和转盘曝气机等。 曝气叶轮的充氧能力和提升能力同叶轮浸没深度、叶轮的转速等因素有关,在适宜的浸深和转速下,叶轮的充氧能力大,并可保证池内污泥浓度和溶解氧浓度均匀。 一般而言,机械曝气常用于曝气池较小的场合,可减少动力消耗,维护管理也较方便。鼓风曝气供应空气的伸缩性较大,曝气效果也较好,一般用于较大的曝气池。 污水处理的曝气方法及其装置,其具有以下优点和功效: (1)藉由上述在水反应槽中,将曝气管设置呈距离槽底面有一段高度距离位置的方式,便能大量培养出对污水槽中环境有益性的微生物菌群。 (2)各水反应槽都设有微曝气设备,藉由水中超微细气体带动水中杂物产生

常见的污水生物处理方法

常见的污水生物处理方法 (1)传统活性污泥法。传统活性污泥处理法是一种最古老的工业污水处理工艺,其工业污水处理的关键组成部分为沼气池与沉淀池,主要处理部分关系框图如图2-1所示。 图2-1传统活性污泥法工艺流程图 污水中的有机物在曝气池停留的过程中,曝气池中的微生物吸附污水中的大部分有机物,并且在曝气池中被氧化成无机物,然后在沉淀池中经过沉淀后的部分活性泥需要回流到曝气池中。该工艺的优点有:有机物去除率高,污泥负荷高,池的容积小,耗电省,运行成本低。该工艺的缺点有:普通曝气池占地多,建设投资大,满足国家标准相关指标范围小、易产生污泥膨胀现象,磷和氮的去除率低。 (2)A/O法。A/O法是在传统活性污泥法的基础上发展起来的一种工业污水处理工艺,其中A代表Anoxic(缺氧的),O代表Oxic(好氧的)。A/O法是一种缺氧----好氧生物工业污水处理工艺。该工艺通过增加好氧池与缺氧池所形成的硝化----反硝化反应系统,很好的处理了污水中的氮含量,具有明显的脱氮效果。但是此硝化----反硝化反应系统需要得到很好的控制,这样就对该工艺提出了更高的管理要求,这也成为了该工艺的一大缺点。其工艺流程图如下:

(3)A2/O法。A2/O法也是在传统活性污泥法的基础上发展起来的一种工业污水处理工艺,其中A2,即A-A,前一个A代表Anaerobic(厌氧的),后一个A代表Anoxic(缺氧的);O代表(好氧的)。A2/O是一种厌氧—缺氧—好氧工业污水处理工艺。A2O法的除磷脱氮效果非常好,非常适合用于对除磷脱氮有要求的工业污水处理。因此,在对除磷脱氮有特别要求的城市工业污水处理厂,一般首选A2/O工艺。其工艺流程图如图2.3所示。 图2-3 A2/O法工艺流程图 (4)A/B法。A/B法是吸附生物降解法的简称,该工艺没有初沉淀,将曝气池分为高低负荷两段,并分别有独立的沉淀和污泥回流系统。高负荷段停留时间约为20~40min,以生物絮凝吸附作用为主,同时发生不完全氧化反应,去除BOD 达50%以上。B段与常规活性污泥法相识,负荷较低。AB法中A段效率很高,并有较强的缓冲能力。B段起到出水把关作用,处理稳定性较好。对于高浓度的工业污水处理,AB法具有很好的适用性,并有较高的节能效益。尤其在采用污泥消化和沼气利用工艺时,优势最为明显。但是,AB法污泥产量较大,A段污泥有机物含量极高,因此必须添加污泥后续稳定化处理,这样就将增加一定的投资和费用。另外,由于A段去除了较多的BOD,造成了碳源不足,难以实现脱氮工艺的要求。对于污水浓度低的场合,B段也比较困难,也难以发挥优势。 总体而言,AB法工艺较适合于污水浓度高,具有污泥消化等后续处理设施的大中规模的城市工业污水处理厂,且有明显的节能效果,而对于有脱氮要求的城市工业污水处理厂,一般不宜采用。 (5)SBR法。SBR法是歇式活性污泥法的简称,是一种按照一定的时间顺序间歇式操作的污水生物处理技术,也是一种按间歇曝气方式来运行的活性污泥工业污水处理技术,又称序批式活性污泥法。其反应机理及去除污染物的机理与传统的活性污泥法基本相同,只是运行操作方式不尽相同。SBR法与传统的水处理工艺的最大区别在于它是以时间顺序来分割流程各单元,以时间分割操作代替空间分割操作,非稳态生化反应代替生化反应,静置理想沉淀代替动态沉淀等。整个过程对于单个操作单元而言是间歇进行的,但是通过多个单元组合调度后又是连续的,在运行上实现了有序和间歇操作相结合。

生物法处理废水

生物法处理废水 研究污水的微生物处理就是研究微生物对废水中的有机物、营养盐类及重金属等物质去处的微生物学原理及其规律,并加以实际应用的一门科学。目前,常用于污水治理的方法可归纳为物理法、化学法、生物法。物理法常作为一种预处理的手段应用于废水处理;化学处理法是指向废水中加入化学药剂如明矾等,使其与污染物发生化学反应而生成无害物的过程,这种方法也常常作为预处理方法使用;而生物处理法是利用微生物降解代有机物为无机物来处理废水。通过人为的创造适于微生物生存和繁殖的环境,使之大量繁殖,以提高其氧化分解有机物的效率。它则作为末端处理装置广泛应用于各行业的废水处理中。与物理法、化学法相比,微生物处理法具有经济、高效的优点,并可实现无害化、资源化,所以长期以来始终占重要位置。根据使用微生物的种类,可分为好氧法、厌氧法和生物酶法等。 一好氧处理法 该办法是根据需好氧微生物生活的特点,提供充足的氧气,使好氧微生物大量繁殖, 通过微生物的新代活动使废水中的有机物最 终氧化分解成CO2 、水、硝酸盐等简单的无机物,已达到净化污水的目的。好氧处理方法包括: 活性污泥法、生物膜法 (一)活性污泥法 1912年英国人Clark and Cage发现对废水进行长时间曝气会产生污泥并使水质明显改善,其后Arden and Lackett进一步研究,发现由于实验容器洗不干净,瓶壁留下残渣反而使处理效果提高,从而发现活性微生物菌胶团,定名为活性污泥。活性污泥法是利用悬浮在废水中人工培养的微生物群体——活性污泥,对废水中

的有机物和某些无机物产生吸附、氧化分解而使废水得到净化,是目前较为经济、应用广泛、处理效果较好的净化废水方法。 1影响活性污泥性能的环境因素 (1)溶解 生化处理的基本要素:营养物、活性微生物、溶解氧,所以要使生化处理正常运行,供氧是重要因素。一般说,溶解氧浓度以不低于2mg/L为宜(2—4mg/L)。 (2)水温 维持在15~25摄氏度,低于5摄氏度微生物生长缓慢。 (3)营养料 细菌的化学组成实验式为C 5H 7 O 2 N,霉菌为C 10 H 17 O 6 原生动物为 C 7H 14 O 3 N,所以在培养微生物时,可按菌体的主要成分比例供给营养。 微生物赖以生活的主要外界营养为碳和氮,此外,还需要微量的钾,镁,铁,维生素等。碳源--异氧菌利用有机碳源,自氧菌利用无机 碳源。氮源--无机氮(NH 3及NH 4 +)和有机氮(尿素,氨基酸,蛋白 质等)。一般比例关系:BOD:N:P=100:5:1。好氧生物处 BOD 5 =500——1000mg/l (4)有毒物质 主要毒物有重金属离子(如锌,铜,镍,铅,铬等)和一些非金属化合物(如酚,醛,氰化物,硫化物等)。 2基本流程 典型的活性污泥法是由曝气池、沉淀池、污泥回流系统和剩余污泥排除系统组成。1916年英国建成第一座污水处理厂,下图为活

污水处理厂工艺流程范本.docx

第二部分 污水处理厂 一、工艺流程 典型的城市污水处理工艺流程主要包括机械处理、生化处理、污泥处理等工段,如图1。由机械处理以及生化处理构成的系统属于二级处理系统,其BOD5 和 SS 去除率可达到9 0%~ 98%。处理效果介于一级和二级处理之间的一般称为强化一级处理、一级半处理或不 完全二级处理,主要有高负荷生物处理法和化学法两大类,BOD5 去除率可达到45%~ 75%。具有生物除磷脱氮功能的二级处理系统通常称为深度二级处理。为了去除特定的物质,在二级处理之后设置的处理系统属三级处理,例如化学除磷、絮凝过滤、活性炭吸附等。 机械处理工段 机械(一级)处理工段包括格栅、污水提升泵房、沉砂池、初沉池等构筑物,以去除粗 大颗粒和悬浮物为目的,处理的原理在于通过物理法实现固液分离,将污染物从污水中分离, 这是普遍采用的污水处理方式。机械(一级)处理是所有污水处理工艺流程必备工程(尽管有时有些工艺流程省去初沉池),城市污水一级处理BOD5 和 SS 的典型去除率分别为25% 和 50%。

生化处理工段 生化处理是整个污水处理过程的核心,因此我们称污水处理工艺是特指这部分,如氧化 沟法、 SBR 法、 A/O 法等。污水生化处理属于二级处理,以去除不可沉悬浮物和溶解性可 生物降解有机物为主要目的。目前大多数城市污水处理厂都采用活性污泥法。生化处理的原理是通过生物作用,尤其是微生物的作用,完成有机物的分解和生物体的合成,将有机污染物转变成无害的气体产物(CO 2)、液体产物(水)以及富含有机物的固体产物(微生物群 体或称生物污泥);多余的生物污泥在沉淀池中经沉淀固液分离,从净化后的污水中除去。 污泥处理工段 生化处理工段的污泥,先到污泥泵房,部分污泥回流至生化处理工段,另一部分污泥(剩余污泥)用污泥泵快速输入到污泥浓缩池。污泥浓缩池浓缩一定时间后,上清液回流到污水提升泵房的集水池;浓缩后的污泥再回到另一格污泥调节池,用污泥泵提升到污泥脱水机房。 污泥在脱水机房脱水后,制成泥饼外运。 格栅

8-几种污水处理工艺的比较分析

几种污水处理工艺的比较分析 摘要:本文主要结合具体的工程实例就常见的污水处理工艺方案的对比和选择作了进一步的分析和探讨。 关键词:污水处理;工艺;比较;选择 污水处理工艺方案众多,具体结合到污水处理工程要根据原污水的水质、出水要求、处理规模、污泥处理方法以及当地的具体条件,慎重分析和选择。在方案的选择上还要考虑经济效益、技术性能、操作管理以及占地面积等因素。 一、常见的污水处理工艺 1、氧化沟污水处理工艺 氧化沟是在传统活性污泥法的基础上发展起来的连续循环完全混合工艺,是用延时曝气法处理废水的一种环形渠道,平面多为椭圆形,总长可达几十米,甚至几百米以上。在沟渠内安装与渠宽等长的机械式表面曝气装置,常用的有转刷和叶轮等。曝气装置一方面对沟渠中的污水进行充氧,一方面推动污水作旋转流动。氧化沟多用于处理中、小流量的生活污水和工业废水,可以间歇运转,也可以连续运转。氧化沟根据其构造和运行特征,并根据发明者和专利分为不同类型。 以Carrousel(卡鲁塞尔)式氧化沟(荷兰DHV公司开发)为例, 图1卡鲁塞尔氧化沟 1—出水堰;2—曝气器 由上图1可知,这是一个多沟串联系统,进水与活性污泥混合后沿箭头方向在沟内作不停的循环流动。Carrousel氧化沟采用垂直安装的低速表面曝气器,每组沟渠安装一个,均安装在同一端,因此形成了靠近曝气器下游的富氧区和曝气器上游以及外环的缺氧区,这不仅有利于生物凝聚,还使活性污泥易于沉淀。BOD5去除率可达95~99%,脱氮效率约90%,除磷效率约为50%。Carrousel氧化沟的表面曝气机单机功率大,其水深可达5m以上,使氧化沟面积减少土建费用降低。由于曝气机功率大,使得氧的转移效率大大提高,平均传氧效率至少达到达2.1Kg/Kw.h。因此这种氧化沟具有极强的混合搅拌耐冲击能力。当有机负荷较低时,可以停止某些气器运行,以节约能耗。 氧化沟的沟渠长度较大,污水在氧化沟内停留的时间长,污水的混合效果好。可以不没初沉池,有机悬浮物在氧化沟内能达到好氧稳定的程度;氧化沟的曝气装置具有两个功能:供氧并推动水流以一定的流速循环流动。污泥的BOD负荷低,同延时曝气法。对水质和水量的变动有较强的适应性;污泥龄长,有利于硝化菌的繁殖,在氧化沟内可产生硝化反应;污泥产率低,且多已达到稳定的程度,不需要再进行硝化处理,可直接进行浓缩脱水。如采用一体式氧化沟,可不单独设二次沉淀池,使氧化沟与二沉池合建。中间的沟渠连续作为曝气池,两侧的沟渠

生化法处理油脂化工废水

生化法处理油脂化工废水 某油脂化工厂以动植物油、废甘油等为原料生产各类硬脂酸、甘油、油酸等产品,废水发黑,COD cr,,BOD5浓度高,呈酸性。目前国内成功治理该类废水的范例较少,在实验室实验的基础上,应用厌氧折流反应器—序批式活性污泥工艺(简称ABR—SBR法)对该废水进行治理,经过一年多的调试和运行,出水水质稳定,可达到国家一级排放标准(CB8978—96),设备运行稳定。 1 废水处理设计 该厂废水主要来自酸化、水解、清洗等工艺,废水中主要含有动植物油、各类硬脂酸、油酸、无机酸等。 设计水量为重50m3/d,.废水经处理后应达到国家一级排放标准(CB8978—96),进出水水质情况见表1。

1.1 废水处理工艺 该工程采用生物法为主体处理工艺,以隔油池,沉淀池为预处理工艺。污泥定期排入污泥池,干化后外运。工艺流程见图1。 1.2主要构筑物及设备 1.2.1隔油池 采用平流隔油池,水力停留时间2h。浮油进行回收。平面尺寸2.0m×3.0m,有效水深3.0m。 1.2.2调节池 调节池停留时间为14h。平面尺寸6.0m×4.0m,有效水深3.2m。 1.2.3斜管沉淀池 沉淀池前端为旋流反应区,混凝区,后段为斜管沉淀区。反应区利用提升水泵的冲力,在反应区内形成旋流,使石灰乳与废水充分反应,Ca(OH)2既可作为一种很好的混凝剂,使废水中的胶体物质发生电中和形成絮体,从而使绝大部分有机物沉淀下来,形成明显的固液分离,又可提高废水的pH值,同时又可降低废水中的SO42-的浓度,有利于后续厌氧水解处理。沉淀区采用斜管沉淀,表面负荷为1.1m3/m2,总停留时间为2.8h。平面尺寸为5.0m×2.0m,有效水深3.5m。 1.2.4 ABR反应器

相关文档
最新文档