数列经典题目汇总

数列经典题目汇总
数列经典题目汇总

14.(全国卷II )

已知{}n a 是各项为不同的正数的等差数列,1lg a 、2lg a 、4lg a 成等差数列.又21

n

n b a =,1,2,3,n = .

(Ⅰ) 证明{}n b 为等比数列;

(Ⅱ) 如果无穷等比数列{}n b 各项的和1

3

S =,求数列{}n a 的首项1a 和公差d .

(注:无穷数列各项的和即当n →∞时数列前n 项和的极限)

解:(Ⅰ)设数列{a n }的公差为d ,依题意,由 2142lg lg lg a a a =+ 得2214a a a =

即)3()(112

1d a a d a +=+,得 10a d d ==或 因1

221+=

+n n a a b b n n ∴ 当d =0时,{a n }为正的常数列 就有11

221

==++n n a a b b n n

当d =1a 时,11

12112)12(,)12(1a a a a a a n n n n -+=-+=++,就有

1221+=+n n a a b b n n 2

1

= 于是数列{n b }是公比为1或

2

1

的等比数列 (Ⅱ)如果无穷等比数列{}n b 的公比q =1,则当n →∞时其前n 项和的极限不存在。 因而d =1a ≠0,这时公比q =21,112b d = 这样{}n b 的前n 项和为11[1()]

2212

n n d

S -=- 则S=11[1()]

122lim lim 112

n n n n d

S d →+∞→+∞-==-

由1

3

S =,得公差d =3,首项1a =d =3

15. (全国卷III)

在等差数列}{n a 中,公差412,0a a a d 与是≠的等比中项.

已知数列 ,,,,,,2131n k k k a a a a a 成等比数列,求数列}{n k 的通项.n k 解:由题意得:412

2a a a =……………1分

即)3()(112

1d a a d a +=+…………3分 又0,d ≠d a =∴1…………4分

又 ,,,,,,2131n k k k a a a a a 成等比数列, ∴该数列的公比为3313===d

d a a q ,………6分 所以1

13

+?=n k a a n ………8分

又11)1(a k d k a a n n k n =-+=……………………………………10分

13+=∴n n k 所以数列}{n k 的通项为13+=n n k ……………………………12分

16. (山东卷)

已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈ (I )证明数列{}1n a +是等比数列;

(II )令212()n n f x a x a x a x =+++ ,求函数()f x 在点1x =处的导数(1)f '并比较

2(1)f '与22313n n -的大小.

解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得

()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当

1n =时

21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+

故总有112(1)n n a a ++=+,*

n N ∈又115,10a a =+≠从而11

21

n n a a ++=+即数列{}1n a +是等比数列;

(II )由(I )知321n n a =?-

因为212()n n f x a x a x a x =+++ 所以112()2n n f x a a x na x -'=+++

从而12(1)2n f a a na '=+++ =()()

23212321(321)n

n ?-+?-++?-

=()

232222n

n +?++? -()12n +++ =()1(1)

31262

n n n n ++-?-

+ 由上()

()22(1)23131212n f n n n '--=-?-()

2

1221n n --= ()()1212121(21)n n n n -?--+=12(1)2(21)n n n ??--+??①

当1n =时,①式=0所以2

2(1)2313f n n '=-;

当2n =时,①式=-120<所以22(1)2313f n n '<-

当3n ≥时,10n ->又()011211n

n n n

n n n n C C C C -=+=++++ ≥2221n n +>+ 所以()()12210n n n ??--+>??即①0>从而2(1)f '>2

2313n n -

17.(上海)本题共有2个小题,第1小题满分6分, 第2小题满分8分.

假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,

(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?

(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? [解](1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列, 其中a 1=250,d=50,则S n =250n+

502

)

1(?-n n =25n 2+225n, 令25n 2+225n ≥4750,即n 2+9n-190≥0,而n 是正整数, ∴n ≥10.

到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列, 其中b 1=400,q=1.08,则b n =400·(1.08)n-1·0.85. 由题意可知a n >0.85 b n ,有250+(n-1)·50>400·(1.08)n-1·0.85. 由计箅器解得满足上述不等式的最小正整数n=6.

到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 18. (天津卷)

已知)0,0,( 1221>>∈+++++=*---b a N n b ab b a b a a u n n n n n n . (Ⅰ)当b a =时,求数列{}n u 的前n 项和n S ; (Ⅱ)求1

lim

-∞→n n

n u u .

(18)解:(Ⅰ)当b a =时,n n a n u )1(+=.这时数列}{n u 的前n 项和

n n n a n na a a a S )1(432132++++++=- . ①

①式两边同乘以a ,得 1432)1(432+++++++=n n n a n na a a a aS ② ①式减去②式,得 132)1(2)1(++-++++=-n n n a n a a a a S a 若1≠a ,

a a n a

a a S a n n n ++---=-+1)1(1)

1()1(,

2

21212)1(2)2()1(1)1()1()1(a a a a n a n a a n a a a a S n n n n n -+-+-+=

-+-+--=+++

若1=a ,2

)

3()1(32+=

+++++=n n n n S n (Ⅱ)由(Ⅰ),当b a =时,n

n a n u )1(+=,则a n

n a na

a n u u n n n

n n n n =+=+=∞

→-∞

→-∞

→)1(lim )1(lim lim 1

1

. 当b a ≠时,112[1()()n n n n n

n n b b b u a a b ab b a a a a

--=++++=+

+++ 1

111()1()1n n n n b

a a a

b b a b a

+++-==---

此时,n

n

n n n n b a b a u u --=++-1

11. 若0>>b a ,a a

a b b a b a b

a u u n

n

n n

n

n n n n n n =--=--=∞→++∞→-∞→)(1)(lim

lim lim

1

11

. 若0>>a b ,b b

a b b a

a u u n

n n n n

n =--==∞→-∞→1)()(lim lim

1

19. (天津卷)若公比为c 的等比数列{n a }的首项1a =1且满足:12

2

n n n a a a --+=(n =3,4,…)。

(I )求c 的值。

(II )求数列{n na }的前n 项和n S 。

20. (浙江卷)已知实数a ,b ,c 成等差数列且和为15,a +1,b +1,c +4成等

比数列,求a ,b ,c .

解:由题意,得215 (1)2(2)(1)(4)(1)(3)a b c a c b a c b ?++=?

+=??++=+?

………………

由(1)(2)两式,解得5b =

将10c a =-代入(3),整理得2

13220a a -+=

解得 2a =或11a =

故2a =,5,8b c ==或11,5,1a b c ===- 经验算,上述两组数符合题意。

21(浙江卷)设点n A (n x ,0),1

(,2

)n n n P x -和抛物线n C :y =x 2

+a n x +b n (n ∈N *),其中a n =-2-4n -

1

12

n -,n x 由以下方法得到:

x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2

+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1

上点的最短距离,…,点11(,2)n n n P x ++在抛物线n C :

y =x 2

+a n x +b n 上,点n A (n x ,0)到1n P +

的距离是n A 到n C 上点的最短距离. (Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.

解:(I )由题意,得2111(1

,0),:7A C y x x b =-+。 设点(,)P x y 是1C

上任意一点,则1||A P =

=令 2221()(1)(7),f x x x x b =-+-+则'21()2(1)2(7)(27).f x x x x b x =-+-+- 由题意,得'2()0,f x =即2222122(1)2(7)(27)0.x x x b x -+-+-= 又22(,2)P x 在1C 上,

222127,x x b ∴=-+ 解得213,14.x b ==

故1C 方程为2714.y x x =-+

(II)设点(,)P x y 是n C

上任意一点,则||n A P = 令

222

()()()n n n g x x x x a x b =-+++,则

'2()2()2()(2)n n n n g x x x x a x b x a =-++++.

由题意得g 1'()0n x +=,即211112()2()(2)0n n n n n n n n x x x a x b x a ++++-++++= 又2112,n n n n n x a x b ++=++

11()2(2)0(1).n n n n n x x x a n ++∴-++=≥即11(12)20n n n n n x x a +++-+= (*) 下面用数学归纳法证明21n x n =- ①当n=1时,11,x = 等式成立。

②假设当n=k 时,等式成立,即21,k x k =-

则当1n k =+时,由(*)知 110(12)2k k k k k x x a ++=+-+ 又11

242

,k k a k -=---

11

22 1.12

k k k

k k x a x k ++-∴==++ 即当1n k =+时,等式成立。 由①②知,等式对n N ∈成立。 {}n x ∴是等差数列。

22. (重庆卷)数列{a n }满足a 1=1且8a n +1-16a n +1+2a n +5=0 (n ≥1)。记2

1

1-

=

n n a b (n ≥1)。

(1) 求b 1、b 2、b 3、b 4的值;

(2) 求数列{b n }的通项公式及数列{a n b n }的前n 项和S n 。

解法一:

(I )111

1,2;112a b ==

=-故22718

,718382

a b ===-故

3344311320,4;,.420342a b a b =====-故故

(II )因2

1344284()()()33333

b b --=?=,

222213244444()(),()()()33333

b b b b -=--=-

故猜想42

{},2.33

n b q -=是首项为公比的等比数列

因2≠n a ,(否则将2=n a 代入递推公式会导致矛盾)。152(1).168n n

a

a n a ++=

≥-故

∵11

16820164144133633632

n n

n n n n a a b a a a ++---

=-=-=

--- 112016428442(),01336333

2

n n n n n

a b b b a a +--=-==--≠--

故2|3

4

|=-q b n 确是公比为的等比数列.

n n b b 23

1

34,32341?=-=-故因, )1(34231≥+?=n b n n ,121

2

11

+=-

=

n n n n n b b a a b 得由 n

n n b a b a b a S +++= 2211故121

()2

n b b b n =

++++ 1

(12)

51

3(251)1233

n n n n -=+=+--

解法二: (Ⅰ)由11111

,816250,1

2

2

n

n n n n n n n b a a a a a b a ++==

+-++=-

得代入递推关系 整理得

1114634

0,2,3

n n n n n n b b b b b b +++-+==-即 .3

20,4,38,2,143211=====b b b b a 所以有由

(Ⅱ)由11144442

2,2(),0,33333

n n n n b b b b b ++=--=--=≠

所以42

{},233n b q -=是首项为公比的等比数列

故4114

2,2(1).3333

n n n n b b n -=?=?+≥即

由12

n n b a =

-

得1

12

n n n a b b =

+ 故1122n n n S a b a b a b =+++ 121

(12)

15

3()2123

n n b b b n n -=++++=+-

1

(251)3

n n =+- 解法三:

(Ⅰ)同解法一 (Ⅱ)2213243248284,,,()333333

b b b b b b -=

-=-=?= 11121

{},2,233

522,(1).168n

n n n n n

n n n

b b q b b a a a n a +++-=-=?+≠=≥-猜想是首项为公比的等比数列又因故因此

111112

1152121221682

n n n n n n n b b a a a a a ++-=-=-

+----

- 1681086;636363

n n n n n a a a a a --=

-=---

12112116816811116363

2

2

n n

n n n n n n a a b b a a a a ++++++---=

-

=

----

-

1362416820162().636363

n n n

n n n n n a a a b b a a a +---=

-==----

211121

0,{}2,2,33

n n n n n b b b b q b b ++-=

≠-=-=?因是公比的等比数列 从而112211)()()(b b b b b b b b n n n n n +-++-+-=---

1211

(222)23114

(22)22(1).333

11

1,

122

n n n n n n n n n n b a b b a --=++++=-+=?+≥==+- 由得 故1122n n n S a b a b a b =+++ n b b b n ++++=

)(2

1

21

1

(12)

51

3(251).1233

n n n n -=+=+--

23. (重庆卷)数列{a n }满足)1(2

1

)11(1211≥+++

==+n a n n a a n

n n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;

(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数

e=2.71828….

(Ⅰ)证明:(1)当n=2时,222≥=a ,不等式成立. (2)假设当)2(≥=k k n 时不等式成立,即),2(2≥≥k a k

那么22

1

))1(11(1≥+++

=+k k k a k k a . 这就是说,当1+=k n 时不等式成立.

根据(1)、(2)可知:22≥≥n a k 对所有成立. (Ⅱ)证法一:

由递推公式及(Ⅰ)的结论有 )1.()2

1

11(21)11(221≥+++≤+++=+n a n n a n n a n n

n n n 两边取对数并利用已知不等式得 n n n a n n a ln )2

1

11ln(ln 21

++++≤+

.21

1ln 2n n n n a +++

≤ 故n

n

n n n a a 21)1(1ln ln 1++≤-+ ).1(≥n 上式从1到1-n 求和可得

1212

1

2121)1(1321211ln ln -++++-++?+?≤

-n n n n a a .2211112

1121

121111)3121(211<-+-=--

?+--++-+-=n n n n n 即).1(,2ln 2≥<

(Ⅱ)证法二:

由数学归纳法易证2)1(2≥->n n n n

对成立,故

).2()1(1

)1(11(21)11(21≥-+-+<+++

=+n n n a n n a n n a n

n

n n

令).2())

1(1

1(),2(11≥-+

≤≥+=+n b n n b n a b n

n n n 则

取对数并利用已知不等式得 n n b n n b l n ))

1(1

1l n (l n 1+-+

≤+

).2()

1(1ln ≥-+

≤n n n b n

上式从2到n 求和得 )

1(1

321211l n l n 21-+

+?+?≤

-+n n b b n .11

113121211<--++-+-

=n

n 因).2(3,3ln 1ln .313ln 11122≥=<+<=+=+++n e

e b b a b n n 故

故1,,,2,132222121≥<<<≥<-<+n e a e a e a n e e a n n 对一切故又显然成立 24. (江西卷)已知数列{a n }的前

n 项和S n 满足S n -S n

2=3

,2

3

,1),3()21(211-==≥--S S n n 且求数列{a n }的通项公式. 解:方法一:先考虑偶数项有:212122211

3()3()22

n n n n S S ----=?-=-? 2323222411

3()3()22

n n n n S S -----=?-=-? ………

33

42112()3().22

S S -=?-=-?

212332123322211111111

3[()()()]3[()()()]

2222222111()

1111

22434[()]2()(1).

1224214

n n n n n n n n S S n -----∴=-+++=-++++-=-?=--?=-+≥-

同理考虑奇数项有:222121113()3().22n n

n n S S ---=-=?

22222123

11

3()3()22

n n n n S S -----=?-=?

………

.)2

1

(3)21(32213?=-?=-S S

22222211221221212221212221111111

3[()()()]2()(1).

2222

111

2()(2())43()(1).222111

2()(2())43()(1).

222

1.

n n n n n n n n n n n n n n n n S S n a S S n a S S n a S -+-++---∴=++++=-≥∴=-=---+=-?≥=-=-+--=-+?≥==

综合可得???

?????+-?-=--.,)21(34,,)2

1(3411为偶数为奇数n n a n n n

方法二:因为),3()2

1(31

112≥-?=++=-----n a a a a S S n n n n n n n 所以

两边同乘以n )1(-,可得:

.)2

1

(3)21()1(3)1()1(1111----?-=-?-?=---n n n n n n n a a

令).3()2

1(3,)1(1

1≥-?-=-∴-=--n b b a b n n n n n n 所以,)2

1(31

1---?-=-n n n b b

,)2

1

(3221----?-=-n n n b b

………

2321

3(),2

b b -=-?-

212222111()

1114423[()()()]3122212

n n n n b b b ----?∴=-+++=-?

- ).3()2

1(3231

2≥?+-=-n b n

又1122135

1,1,22

a S a S S ===-=--=-

1211225

(1)1,(1)2

b a b a ∴=-=-=-=-

∴11

53113()43()(1)2222

n n n b n --=--+?=-+?≥

∴11(1)4(1)3(1)()2

n n n

n n n a b -=-=--+?-?

31143(),,2143(),.2

n n n n --?-???=??-+???为奇数为偶数 25. (江西卷)

已知数列:,}{且满足的各项都是正数n a 011

1,,(4),.2

n n n a a a a n N +==-∈ (1)证明12,;n n a a n N +<<∈ (2)求数列}{n a 的通项公式a n . 解:(1)方法一 用数学归纳法证明:

1°当n=1时,,2

3)4(21,10010=-=

=a a a a ∴210<

1,(4)(4)22

k k k k k k n k a a a a a a +--=+-=

---时 111111

2()()()

2

1

()(4).2

k k k k k k k k k k a a a a a a a a a a -----=---+=---

而1110.40,0.k k k k k k a a a a a a ----<-->∴-<

又2

111(4)[4(2)] 2.22

k k k k a a a a +=-=--<

∴1+=k n 时命题正确.

由1°、2°知,对一切n ∈N 时有.21<<+n n a a

方法二:用数学归纳法证明:

1°当n=1时,,23

)4(21,10010=-=

=a a a a ∴2010<<

令)4(2

1

)(x x x f -=

,)(x f 在[0,2]上单调递增,所以由假设 有:),2()()(1f a f a f k k <<-即),24(22

1

)4(21)4(2111-??<-<---k k k k a a a a

也即当n=k+1时 21<<+k k a a 成立,所以对一切2,1<<∈+k k a a N n 有

(2)下面来求数列的通项:],4)2([2

1)4(212

1+--=-=+n n n n a a a a 所以

21)2()2(2--=-+n n a a

n

n n n n n n n n b b b b b a b 2

22121

2222211

2

)2

1()21(21)21(2121,2-+++----==?-=--=-=-= 则令,

又b n =-1,所以121

2

)2

1(22,)

2

1(---=+=-=n

n

n n n b a b 即

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

数列全部题型归纳(非常全面-经典!)(新)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且23 1n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a += -,* N n ∈.

求证:11n a ?? ??-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2)8 n n a S +=则,数列n a 3 4)1a +求数列a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(1 1≥-+=-n n n a a n n ,求此数列的通项公式 (3) 1a = (4 (四)一次函数的递推形式 1. 若数列{}n a 满足111 1,12 n n a a a -==+(2)n ≥,数列n a

2 .若数列{}n a 满足111 1,22 n n n a a a -==+ (2)n ≥,数列n a (1 (2 (六)求周期 16 (1) 121,41n n n a a a a ++==-,求数列2004a

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

数列经典题目集锦答案

数列经典题目集锦一 一、构造法证明等差、等比 类型一:按已有目标构造 1、 数列{a n },{b n },{c n }满足:b n =a n -2a n +1,c n =a n +1+2a n +2-2,n ∈N * . (1) 若数列{a n }是等差数列,求证:数列{b n }是等差数列; (2) 若数列{b n },{c n }都是等差数列, 求证:数列{a n }从第二项起为等差数列; (3) 若数列{b n }是等差数列,试判断当b 1+a 3=0时, 数列{a n }是否成等差数列?证明你的结论. 类型二: 整体构造 2、设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n +1+λ)a n =(S n +1)a n +1对一切n ∈N * 都成立. (1) 若λ=1,求数列{a n }的通项公式; (2) 求λ的值,使数列{a n }是等差数列. 二、两次作差法证明等差数列 3、设数列{}n a 的前n 项和为{}n S ,已知11,6,1321===a a a , 且* 1,)25()85(N n B An S n S n n n ∈+=+--+,(其中A ,B 为常数). (1)求A 与B 的值;(2)求数列{}n a 为通项公式; 三、数列的单调性 4.已知常数0λ≥,设各项均为正数的数列{}n a 的前n 项和为n S , 满足:11a =,() 1 1131n n n n n n a S S a a λ+++= +?+(*n ∈N ). (1)若0λ=,求数列{}n a 的通项公式; (2)若11 2 n n a a +<对一切*n ∈N 恒成立,数λ的取值围. 5.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=. (1)求数列{}n a 的通项公式; (2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序 后能构成等差数列”成立的充要条件; (3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++L 1 3246n n +=?--, 且集合*| ,n n b M n n N a λ??=≥∈???? 中有且仅有3个元素,求λ的取值围.

数列必会常见题型归纳

数列必会基础题型 题型一:求值类的计算题(多关于等差等比数列) A )根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37, 中间两数之和为36,求这四个数. 5在等差数列{a n }中, (1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8. 6、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 7、已知△ABC 中,三内角A 、B 、C 的度数成等差数列,边a 、b 、c 依次成等比数列.求证:△ABC 是等边三角形. B )根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、 {}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .. 6、已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .

数列常见题型总结经典(超级经典)

数列常见题型总结经典(超 级经典) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.

例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

(完整版)数列经典试题(含答案)

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).

数列常见题型分析与方法总结

数列常见题型分析与做法 一、等差、等比数列的概念与性质 1、已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比,求n a ; (I )依题意032),(32244342=+--+=a a a a a a a 即 03213131=+-∴q a q a q a 2 1101322 = =?=+-∴q q q q 或2 11= ∴≠q q 1)2 1 (64-?=n n a 故 二、求数列的通项 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+2 11,求n a 答案:n n a n 12 3112 1- = - += ∴ 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+= +,求n a 答案:n a n 32= ∴ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元 法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 提示:)3(231+=++n n a a 答案:321-=+n n a . 类型4 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用???≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例:已知数列{}n a 前n 项和2 2 14---=n n n a S . (1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2 2 14-- -=n n n a S 得:1 112 14-++- -=n n n a S 于是) 2 12 1( )(1 2 11--++- +-=-n n n n n n a a S S 所以1 112 1 -+++ -=n n n n a a a n n n a a 2 12 11+ = ?+.

数列全部题型归纳(非常全面-经典!)讲解学习

数列全部题型归纳(非常全面-经典!)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a +=-,*N n ∈.

求证:11n a ????-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2) 8n n a S +=则,数列n a 3)若数列{}n a 的前n 项和n S 满足,111 ,0,4n n n n a S S a a -=-≠=则,数列 n a 4)12323...(1)(2)n a a a na n n n +++=++ 求数列n a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式 (3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式. (4)若数列{}n a 的前n 项和n S 满足,211,2 n n S n a a ==则,数列n a (四)一次函数的递推形式 1. 若数列{}n a 满足1111,12 n n a a a -== +(2)n ≥,数列n a

高中数列经典题型大全

高中数列经典题型大全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121==x x ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

数列常见题型总结经典

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n项和法(知n S 求n a )?? ?-=-11 n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和2 12n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122 -=,求数列|}{|n a 的前n项和n T 练习: 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。答案:???=-12 2n n a )2() 1(≥=n n 2、若数列}{n a 的前n 项和32 3-=n n a S ,求该数列的通项公式。答案:n n a 32?= 3、设数列}{n a 的前n项和为n S ,数列}{n S 的前n 项和为n T ,满足2 2n S T n n -=, 求数列}{n a 的通项公式. 4.n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +) 5、设数列{}n a 满足2 *12333()3 n n a a a a n N +++= ∈n-1 …+3,求数列{}n a 的通项公式(作差法) 2。形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+。 (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 1 3-=n n a 例2.已知数列{}n a 的首项为1,且* 12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 例3.已知数列}{n a 满足31=a ,)2() 1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式。 3。形如 )(1 n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =1 1-?n q a 。 (2)当f(n )为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式.答案:12+=n a n 练习: 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。答案:)1(2 +=n n a n 2、求数列)2(1 232,111 ≥+-==-n a n n a a n n 的通项公式。 4。形如s ra pa a n n n += --11 型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1 211 ≥+=--n a a a n n n ,求通项公式n a

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S

4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式.

1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -= . 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b =1)34(33 41)34(1211 -=--+--n n , (2≥n ), 当n=1时也满足,所以1)3 4 (31-=-n n b . 2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32 34 9a a =所以21 9 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113a =。故数列{a n }的通项式为a n =1 3 n 。 (Ⅱ )111111log log ...log n b a a a =+++ (12...) (1) 2 n n n =-++++=- 故 12112()(1)1 n b n n n n =-=--++ 12111111112...2((1)()...())22311 n n b b b n n n +++=--+-++-=-++

(经典)高中数学最全数列总结及题型精选

高中数学:数列及最全总结和题型精选 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始 依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2) n n n S n a S S n -=?=? -?≥ 二、等差数列 (一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥ 例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-; 说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116 a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”) (三)、等差中项的概念:

最新浙江高考数列经典例题汇总

浙江高考数列经典例题汇总 1. 【2014年.浙江卷.理19】(本题满分14分)已知数列 {}n a 和{}n b 满足 ()()* ∈= N n a a a n b n 221Λ.若{}n a 为等比数列,且. 6,223 1 b b a +== (Ⅰ)求n a 与 n b ; (Ⅱ)设 () * ∈-= N n b a c n n n 1 1。记数列{}n c 的前n 项和为n S . (i )求 n S ; (ii )求正整数k ,使得对任意* ∈N n ,均有 n k S S ≥. 2. 【2011年.浙江卷.理19】(本题满分14分)已知公差不为0的等差数列 {} n a 的首项 1a a = (a R ∈),设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列 (Ⅰ)求数列 {} n a 的通项公式及 n S (Ⅱ)记1231111...n n A S S S S = ++++ , 212221111...n n B a a a a =++++,当2n ≥时,试比 较 n A 与 n B 的大小.

3. 【2008年.浙江卷.理22】(本题14分)已知数列 {}n a ,0≥n a ,01=a , 22111() n n n a a a n N ?+++-=∈. n n a a a S +++=Λ21)1()1)(1(1 )1)(1(11121211n n a a a a a a T +++++++++= ΛΛ. 求证:当? ∈N n 时, (Ⅰ) 1 +n S n ; (Ⅲ)3

相关文档
最新文档