燃气轮机燃烧监测问题研究

燃气轮机燃烧监测问题研究
燃气轮机燃烧监测问题研究

燃气轮机燃烧监测问题研究

【摘要】从几次燃烧异常的情况可以看出,在平常运行时要对平均排气温度、排气温度分散度的内容要多分析、检查。当运行中如果排气温度分散度出现阶跃、或存在燃烧低温区,并且随着负荷增减而有规律地扭转时,应果断停机检查。本文分析了燃烧过程中燃料供给系统、燃烧部件和排气热电偶检测等问题;指出了9F燃气轮机排气温度场扭转规律;提出了加强9FA机组燃烧检测管理的建议。

【关键词】能源与动力工程;燃气轮机机组;燃烧检测

1.9F机组燃烧系统的监测

1.1热电偶故障报警

如果热电偶测量到的最高排气温度的分散度S1和允许分散度S之比超过了常数K2,则发出热电偶故障的报警信号,从而使燃气轮机发出报警。在正常情况下,排气温度的分散度S1应小于允许分散度S,当S1>S时说明燃烧不正常。但是S1>K2·S=5S,即排气温度的分散度是允许值的5倍以上显然是不可能的,所以认为这是热电偶出现故障而使测量失常,热电偶故障报警是合理的。

1.2燃烧故障报警

若燃烧不正常使排气温度的分散度S1超过了允许的分散度S,即S1/S大于K1的值,则产生燃烧故障(检测)报警。

1.3排气温度分散度过高而遮断燃烧不正常致使排气温度分散度过高时,需遮断机组

2.9F燃气轮机燃烧故障原因

燃气轮机燃烧监测是通过对排气温度分散度的变化来进行的。影响燃烧变化的因素很多,如燃料分配的均匀程度、燃烧室结构的差异、雾化情况、叶片结垢程度、燃料喷嘴工作情况等,分散度只是间接反应了燃气轮机、燃烧部件及燃料供给系统的工作状况。

2.1燃料供给系统的问题

燃气轮机在使用液体燃料时,喷嘴堵塞、流量分配器故障等均会引起燃烧异常。特别是由于燃油流量分配器的个别齿轮磨损较大,造成间隙偏大,以至供油不足,形成各燃油喷嘴的燃油量不同,从而造成燃气轮机进气温度场的不均匀,进而引起排气温度个别点偏低,分散度增大。但燃料供给系统的问题引起的燃烧故障有一个特点,即随着负荷上升,分散度会增大。

燃气轮机复习题(新)

电站燃气轮机课程复习思考题 1. 词语解释: (1)循环效率:当工质完成一个循环时,把外界加给工质的热能q转化成为机械功l c的百分数。 (2)装置效率(发电效率): 当工质完成一个循环时,把外界加给工质的热能q转化成为电功l s的百分数。 (3)净效率(供电效率): 当工质完成一个循环时,把外界加给工质的热能q转化成为净功l e的百分数。 (4)比功:进入燃气轮机压气机的1kg的空气,在燃气轮机中完成一个循环后所能对外输出的机械功(或电功)l s(kJ/kg),或净功l e(kJ/kg). (5)压气机的压缩比: 压气机的出口总压与进口总压之比。 (6)透平的膨胀比: 透平的进口总压与出口总压之比。 (7)压气机入口总压保持系数:压气机的入口总压与当地大气压之比。 (8)燃烧室总压保持系数:燃烧室的出口总压与入口总压之比。 (9)透平出口总压保持系数:当地大气压与透平的排气总压之比。 (10)压气机的等熵压缩效率:对于1kg同样初温度的空气来说,为了压缩达到同样大小的压缩比,等熵压缩功与所需施加的实际压缩功之比。 (11)透平的等熵膨胀效率:对于1kg同样初温度的燃气来说,为了实现同样的膨胀比,燃气对外输出的实际膨胀功与等熵膨胀功之比。 (12)温度比:循环的最高温度与最低温度之比。 (13)回热循环:在简单循环回路中加入回热器,当燃气透平排出的高温燃气流经回热器时,可以把一部分热能传递给由压气机送来的低温空气。这样,就能降低排气温度,而使进到燃烧室燃料量减少,从而提高机组的热效率。 (14)热耗率:当工质完成一个循环时,把外界加给工质的热能q,转化成机械功(或电工)

燃气轮机运行典型故障分析及其处理

燃气轮机运行故障及典型事故的处理 1 燃气轮机事故的概念及处理原则 111 事故概念 燃气轮机事故指直接威胁到机组安全运行或设备发生损坏的各种异常状态。凡正常运行工况遭到破坏,机组被迫降低出力或停运等严重故障,甚至造成设备损坏、人身伤害的统称为事故。造成设备事故的原因是多方面的,有设计制造方面的原因,也有安装检修、运行维护甚至人为方面的原因。 112 故障、事故的处理原则 当燃气轮机运行过程中发生异常或故障时,处理时应掌握以下原 则:(1) 根据异常和故障的设备反映出来的现象及参数进行综合分析和判断,迅速确定故障原因,必要时立即解列机组,防止故障蔓延、扩大。(2) 在事故处理中,必须首先消除危及人身安全及设备损坏的危险因素,充分评估事故可能的对人身安全和设备损害的后果,及时、果断的进行处理。(3) 在处理事故时牢固树立保设备的观念。要认识到如果设备严重损坏以至长期不能投入运行对电力系统造成的影响更大。所以在紧急情况下应果断的按照规程进行处理,必要时停机检查。 (4) 在事故发生后,运行各岗人员要服从值班长的统一指挥,各施其责,加强联系和配合,尽可能将事故控制在最小的损坏程度。(5) 当设备故障原因无法判断时,应及时汇报寻求技术支持,并按最严重的后果估计予以处理。(6) 事故处理后,应如实将事故发生的地点、时 间及事故前设备运行状态、参数和事故处理过程进行详细记录和总

结。 2 燃气轮机的运行故障、典型事故及处理 211 燃机在启动过程“热挂” “热挂”现象:当燃机启动点火后,在升速过程中透平排气温度升高达到温控线时燃机由速度控制转入温度控制,这抑制了燃油量的增加速率而影响燃机升速,延长燃机启动时间,严重时燃机一直维持在温控状态使燃机无法升速,处于“热挂”状态。随后燃机转速下降致使启动失败,只能停机检查。 “热挂”的原因及处理办法有: (1) 启动系统的问题。①启动柴油机出力不足;②液力变扭器故障。液力变扭器主要由一个离心泵叶轮、一个透平轮和一个带有固定叶片的导向角组成。在启动过程中通过液体将启动柴油机的力矩传送给燃机主轴。液力变扭器的故障可通过比较柴油机加速时燃机0 转速到14HM 的启动时间来判断;③启动离合器主从动爪形状变化,使燃机还没超过自持转速,爪式离合器就提前脱离(柴油机进入冷机后停机) ,这时燃机升速很慢。而燃油参考值是以0105 %FRS/ S 的速度上升的,由于燃机升速慢而喷油量增速率不变使燃油相对过量,使排气温度T4 升高而进入温控,导致燃机的启动失败。(2) 压气机进气滤网堵塞、压气机流道脏,压缩效率下降。进气滤网堵塞会引起空气量不足;压气机流道脏会使压气机性能下降。必须定期更换进气滤网并对压气机进行清洗,及时更换堵塞的滤网和清除压气机流道上的积垢及油污。(3) 燃机控制系统故障。当燃油系统或控制系统异常时,有可能引起燃油

燃气轮机结构-燃烧室

第三章燃气轮机 3.1概述 (1)燃烧室功用及重要性 1.保证燃机在各种工况下,将燃料化学能转换为热能,加 热压气机压缩的空气,用于涡轮膨胀做功。 2.燃烧室是燃机的主要部件之一,燃机的性能、可靠性、寿命 皆与它有密切关系。 (2)燃烧室的工作条件 ①燃烧室在高温、大负荷下工作 ②燃烧室在变工况下工作 ③燃烧室在具有腐蚀性的环境下工作 ④燃烧室内的燃烧过程是一个极其复杂的物理化学过程 ⑤燃烧室中的燃烧在高速气流及贫油混合气情况下进行 (“空气分股”、“减速扩压”、“反向回流”) (3)燃烧室的设计要求 ①不同工况下,燃烧室工作应稳定 ②燃烧要安全 ③燃烧室具有最小的流体阻力 ④燃烧室出口温度场应能满足涡轮的要求 ⑤在任何使用条件下,燃烧室都应该迅速、可靠地启动点火,且联 焰性好 ⑥工作寿命长 ⑦燃烧室的尺寸和质量要小 ⑧排气污染应能满足国家标准要求 ⑨检视、装拆和维修应当方便 3.2三种基本类型燃烧室 的结构概述 (1)分管燃烧室 1.结构特点 管形火焰筒的外围包有一个单独的壳体,构成一个分管,沿燃气轮机周围6-16 个这样的分管,各分管用传焰管连通,以传播火焰和均衡压力。 2.优点: ①装拆、维修、检修方便 ②因各个分管的工质流量不大,调试容易,实验结果比较接近实际 情况 3.缺点: ①装拆、维修、检修方便 ②因各个分管的工质流量不大,调试容易,实验结果比较接近实际 情况

(2)环管燃烧室 1 .结构特点: 若干个火焰筒均匀排列安装在同一个壳体内,相邻火焰燃烧区 之间用传焰管连通。 2.优点: ①适合与轴流式压气机配合,布局紧凑、尺寸小、刚性小; ②气流转弯小,流体阻力小,热散失亦小; ③调试比较容易,加工制造的工作量比分管小。 3.缺点: ①燃烧室出口温度场沿周向不够均匀; ②燃烧室的流体损失较大; ③耗费的材料、工时较多; ④质量较重。

燃气轮机进气蒸发冷却系统

燃气轮机进气蒸发冷却系统 发表时间:2016-10-08T15:24:19.737Z 来源:《电力设备》2016年第13期作者:马良熊少军 [导读] 燃气蒸汽联合循环电站的出力具有很强的进气温度特性,即随着环境温度升高。 (青岛华丰伟业电力科技工程有限公司山东青岛 266100) 摘要:介绍西门子SGT6-5000F燃气轮机进气系统配套的介质式蒸发冷却器系统工艺、工作流程、运行情况,并对其经济性进行了初步分析。 关键词:蒸发冷却器气耗率 1 引言 燃气蒸汽联合循环电站的出力具有很强的进气温度特性,即随着环境温度升高,燃气轮机的压气机单位吸气量的耗功增大,而且燃气轮机进气密度下降,做功工质的质量流量较少,故燃气轮机出力几乎按比例呈较大幅度下降,循环效率在一定温度范围内呈下降趋势。为改善燃气轮机的出力,对燃气轮机实施进气冷却是最快捷而有效的措施。 蒸发式冷却作为压气机进气冷却的方式之一,与其它冷却方式相比(如机械压缩式制冷,吸收式制冷等)具有适用范围广(甚至包括在沿海等高湿度地区),系统简单,投资少等独特优点。目前在实际中应用的蒸发式冷却器具有两种形式:一为雾化式蒸发冷却器;另一为介质式蒸发冷却器。前者将水高细度雾化后喷入空气流中,依靠细微的水滴颗粒对空气进行加湿冷却。后者是使空气通过含水的多孔介质来对其加湿冷却。 本文以西门子SGT6-5000F燃气轮机进气系统配套的介质式蒸发冷却器为例,介绍了系统设备、工作流程、运行情况,从燃气轮机角度对其经济性进行了初步分析,以供参考。 2 介质式蒸发冷却系统设备及工作流程 主要设备为蒸发冷却泵,布水器,湿帘,除水器,水箱及调节阀和滤网。 其工作流程为冷却水经调节阀分三路送至湿帘顶部的布水器后均匀撒在填料表面,由于重力作用冷却水自上而下洒下。空气经粗滤,精滤过滤后,除去杂质后,再经过蒸发冷却装置,与填料中自上而下的冷却水进行热交换,部分水因吸收空气湿热汽化蒸发后变成水蒸气,未蒸发的水流回水箱。空气温度降低,同时因为融进部分水蒸气而使相对湿度增加。空气和水蒸气的混合物流向下游的除雾器,其中部分水雾和小水滴在除雾器上凝结成小水滴,在重力作用下落入水箱,降低了进气的携水率,减少了压气机因进气空气水量增加而导致的负荷消耗,同时空气中的微小尘埃也随水滴落入水箱,起到水除尘的左右,避免其对压气机的腐蚀。 本装置加入了一些安全措施,如流量开关、水位开关和温度开关,以便发送信号,判断运行是否正常,或是否具备启动条件。蒸发冷却系统投入需要满足以下条件:1.负荷率大于60%,2.入口温度大于15℃,3.水箱水位在正常位置。 3 大气温度的变化对于燃气轮机及其联合循环影响分析 大气温度对于简单循环及其联合循环的功率和效率有相当大的影响,这是由于以下三方面造成的,即①随着大气温度的升高,空气的密度变小,致使吸入压气机的空气质量流量减少,机组的做工能力随之变小;②压气机的耗功量是随着吸入空气的热力学温度成正比关系变化的,即大气温度升高时,燃气轮机的净出力减小;③当大气温度升高时,压气机的压缩比将有所下降,这将导致燃气透平做工量的减少,而燃气透平的排气温度却有所增加。这样燃气轮机及其联合循环的效率和净功率将会发生如图一所示的变化。 图一大气温度与燃气轮机及其联合循环的效率和净功率曲线 4 投用蒸发冷却系统相关参数分析 4.1燃气轮机净输出功率比较。根据与西门子签订的性能保证合同参数,对于2+2+1方式设置的联合循环机组,蒸发冷却系统投入前后对燃气轮机单循环净输出功率的区别如下(注:燃气的工况下)。 4.1.1在大气温度为46℃、湿度为40%、大气压力在1013mbar的情况下,不投入蒸发冷却系统,两台燃气轮机的单循环净输出为362707KW; 4.1.2在大气温度为46℃、湿度为40%、大气压力在1013mbar的情况下,投入蒸发冷却系统,两台燃气轮机的单循环净输出为397966KW; 蒸发冷却系统投入前后区别如下:投入后两台燃气轮机的负荷每小时高35259kw,相当于每台燃气轮机每小时高17629.5kw,每台燃气轮机每小时出力高出9%,则燃气轮机出力可达到100%的负荷,如果不投入蒸发冷却系统,则燃气轮机出力只有91%的负荷。 4.2蒸发冷却系统投入前后参数变化分析 某套燃气轮机负荷控制方式为基本负荷,根据蒸发冷却系统投入前后参数变化趋势整理成数据如表一所示,分析如下:

燃气轮机故障类型及原因

燃气轮机故障监测及诊断 1. 国内燃气轮机主要类型 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。 燃气轮机分为: (1)轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。 (2)重型燃气轮机为工业型燃气轮机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 燃气轮机有不同的分类方法,一般情况如图1-1所示。 图1-1

2. 燃气轮机故障类型 1.燃机在启动过程中“热挂” 2.压气机喘振 3.机组运行振动大 4.点火失败 5.燃烧故障 6.启动不成功 7.燃机大轴弯曲 8.燃机轴瓦烧坏 9.燃机严重超速 10.燃机通流部分损坏 11.润滑油温度高 12.燃机排气温差大 3. 燃气轮机故障原因 “热挂”的原因: (1)启动系统的问题。启动柴油机出力不足;液力变扭器故障等。 (2)压气机进气滤网堵塞、压气机流道脏,压缩效率下降。 (3)燃机控制系统故障。 (4)燃油雾化不良。 (5)透平出力不足。 产生压气机喘振的原因: 压气机喘振主要发生在启动和停机过程中。引起喘振的原因主要有:机组在启动过程升速慢,压气机偏离设计工况;机组启动时防喘放气阀不在打开状态;停机过程防喘放气阀没有打开。 机组运行振动大的原因: 引起燃气轮机运行振动的原因较多,对机组安全运行构成威胁,因此应高度重视。下面列举部分引起机组振动的情况: (1)机组启动过程过临界转速时振动略微升高,属正常现象,但在临界转速后振动会下降。按正常程序启动燃气轮机时,机组会快速越过临界转速,如果由于升速慢引起振动偏高,应检查处理升速较慢的原因。 (2)启动过程中由于压气机喘振引起的振动偏高,喘振时压气机内部发

燃气轮机合成气燃烧室燃烧稳定性的实验研究

编订:__________________ 审核:__________________ 单位:__________________ 燃气轮机合成气燃烧室燃烧稳定性的实验研究Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1217-35 燃气轮机合成气燃烧室燃烧稳定性 的实验研究 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 燃气轮机是通过燃烧将化学能转化为机械能的装置,目前燃气轮机广泛的应用到发电、管道输送、船舶动力等领域。对于燃气轮机,燃烧室是燃气轮机最重要的部位,实现稳定安全的燃烧是十分重要的,只有保证燃烧室的稳定燃烧,才能保证燃气轮机的安全稳定的运行。本文通过理论和实验研究,对燃烧室稳定性燃烧进行分析,并且提出了相应促进燃烧稳定的方法,希望为燃气轮机的安全稳定运行提供理论参考。 由于燃气轮机具有功率大、体积小、效率高、污染低等特点,燃气轮机在多种领域具有广阔的应用前景。保证燃气轮机的稳定燃烧,就必须保证燃烧室在任何工况下的稳定燃烧。燃烧室燃烧稳定性关系到燃气轮机的寿命以及安全运行,因此对燃烧室燃烧稳定

M701F燃气轮机燃烧室的特点和燃烧调整_金晓刚(1)

第23卷 第1期 2010年3月 《燃 气 轮 机 技 术》G A ST U R B I N ET E C H N O L O G Y V o l .23 N o .1 M a r .,2010 M 701F 燃气轮机燃烧室的特点和燃烧调整 金晓刚 (深圳市广前电力有限公司,广东 深圳 518052) 摘 要:本文分析了三菱M 701F 燃气轮机燃烧室的特点和燃烧调整的方法,以及这些特点对燃烧室部件的影响。 关 键 词:M 701F 燃气轮机;燃烧室特点;特点;调整 中图分类号:T K 473.2 文献标识码:B 文章编号:1009-2889(2010)01-0058-04 M 701F 燃气轮机的主要参数为:17级轴流式压气机,压比17;20个环管布置D L N 燃烧室;透平入口初温1400℃;采用4级反动式透平,单循环效率38.2%。 M 701F 型燃气轮机的燃烧室采用环管逆流布 置方式,带旁路阀。20个预混干式低N O x (D L N )燃烧器沿机组圆周向均匀地斜插入燃烧室外缸里,燃烧室之间设有联焰管传递火焰。如图1所示,每个燃烧室由燃料喷嘴、火焰筒、过渡段和旁路阀及其它 附件组成。 图1 燃烧室的主要部件 1 燃烧室的结构特点 燃料喷嘴由位于圆心的值班燃料喷嘴和围成一圆圈的8个干式预混主燃料喷嘴组成,如图2所示。干式预混喷嘴可降低燃烧温度,特别是减少局部高温区,减少了N O x 的生成。值班燃料喷嘴采用扩散燃烧方式,形成稳定的值班火焰,用以维持主火焰的稳定。燃烧室设置旁路阀是三菱公司的特有技术,旁路阀装于燃烧室尾部区域,可将压气机的出口空 气直接导入过渡段,根据不同燃烧状态,旁路一部分压气机的排气,以调节进入燃烧系统的空气流量,保证不同预混燃烧状态下的最佳空燃比,保持预混燃烧的稳定。 为满足1400℃透平初温要求,M 701F 机组火焰筒和过渡段均使用了N i 基超合金材质,并采取双层结构,如图3所示。图中a 为火焰筒壁面的空气冷却结构。火焰筒为双层壁面,冷却空气从外壁的小孔进入,并在夹层中沿壁面的沟槽流动形成对流 *收稿日期:2009-06-07 DOI :10.16120/j .cn ki .issn 1009-2889.2010.01.007

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

9E 型燃气轮机燃烧事故分析及预防

28 2008年第3期 9E 型燃气轮机燃烧事故分析及预防 A n al y si s a n d P r ev e n t i on M e a s u r e s f o r C o m b u s t i on E v e n t o f 9E G a s T ur bi n e 摘要:针对一起9E 燃气轮机组的燃烧事故,详细分析了事故的起因与过程,对9E 机组的火焰监测保护存在的问题进行了探讨,并提出防止燃烧事故的技术措施,对运行与维护提出了建议。关键词:燃气轮机;分散度;燃烧;监测中图分类号:TK 477 文献标识码:B 文章编号:1007-1881(2008) 03-0026-03叶仁杰 (台州电厂龙湾发电,浙江 台州318016) 图18号火焰筒烧灼情况 温州300M W 燃气—蒸汽联合循环发电工 程有3台100M W 联合循环机组。在一次运行巡检中发现1号燃气轮机冒黑烟,即手动停 机。经检查, 2只火焰筒、1只过渡段完全烧毁,其余4只火焰筒和7只过渡段经修复后可以使用。事故造成直接经济损失约150万元,抢修时间3天,企业损失电量约900万k W h 。虽然燃烧部件局部已严重损坏,但G E 燃烧监测保护并未动作切断燃料,围绕该起事故进行深入分析,探讨事故发生的原因,可为今后的运行提供借鉴。 1 事故经过 事故发生在当日23时45分,因电气原因,1号燃机满负荷跳机。在其后重新启动过程中,因机务、控制等各方面原因历经了4次高速清吹、点火,直至次日3时28分并列。3时52分机组负荷80M W ,排气分散度 (通常默认是第一分散度) 26.7℃。22时54分负荷100M W ,排气分散度升至38. 3℃,约1h 后升至50℃,减负荷至90M W ,第2日0时54分分散度升至59℃,运行人员再次减负荷至85M W ,排气分散度降至40℃,此后机组一直维持该负荷运行,排气分散度基本 稳定在40. 5℃。凌晨6时20分运行人员巡回检查时发现烟囱冒黑烟,立即停运机组。 经检查,设备损坏情况如下: (1) 7-8和8-9联焰管严重损坏,其中阳联焰管烧穿,管身因高温严重变形,靠7号、9号火焰筒一侧的联焰管头部烧灼情况稍轻,其余燃烧单元的联焰管正常。 (2) 8号火焰筒严重损坏,筒体尾部全部溶化,密封裙环全部丧失,筒体除顶部颜色基本正常外,其余大部分颜色变黑,筒身部分冷却气孔被溶化的金属重新凝固后堵塞,见图1。 (3) 2号、7号、12号过渡段正常,3号、4号、6号过渡段内部表面(气流转弯处)有不同程度的斑坑,但未穿透。其余7只过渡段内有大小和范围不同的穿孔,未穿透的斑坑内部及其他部位有明显结垢。8号过渡段严重溶化、烧穿,见图2。 (4) 8号过渡段对应的3片静叶凹弧表面浙江电力 ZH E J I AN G ELECT R I C P O W E R

燃气轮机EOH解读

燃气轮机等效运行小时计算分析 【摘要】:燃气轮机制造商都有一个预先制定好的维修计划,以便获得最佳的设备可用率和最经济的维修成本,计算燃气轮机的等效运行小时(EOH )就是为了判燃气轮机机在何时应该进行维修。本文对三菱重工、西门子、GE 三大燃气轮机制造商的燃气轮机等效运行小时的计算公式进行了分析,以便充分了解他们的维修计划。 【关键词】:燃气轮机 等效运行小时 EOH 1 前言 从2003年开始,我国新开工建设了一大批F 级的重型燃气-蒸汽联合循环电站,主要作为调峰机组。热力机械疲劳是影响调峰机组寿命的主要因素,蠕变、氧化和腐蚀是影响连续运行机组寿命的主要因素。F 级重型燃气轮机的初温已达1300~1400℃之间,燃气轮机高温部件(热通道部件)的工作条件越来越恶劣。为了保证燃气轮机运行可靠性,就必须定期地检查、检修或更换这些热通道部件。燃气轮机的高温部件是指暴露在从燃烧系统排出的高温气体中的部件,包括燃烧室、火焰筒、过渡段、喷嘴、联焰管和透平动、静叶等。 燃气轮机的高温部件必须要有一个预先制定好的合理的检查维修计划,可以减少电站非计划故障停机,提高机组起动可靠性。高温部件的检查维修计划根据计算机组的等效运行小时EOH (Equivalent Operating Hours )来制定。在国家标准GB/T 14099.9 《燃气轮机 采购》第9部分 (等效国际标准 ISO 3977-9:1999)中,对EOH 的计算公式做出了规定。但三大燃气轮机制造商(GE 、西门子、三菱重工)在各自的运行经验基础上,都规定了各自的EOH 计算公式,制定了相应的高温部件检修计划。 2 国家(国际)标准EOH 计算 在国家标准GB/T 14099 《燃气轮机 采购》第9部分中,对EOH 的计算公式做出了规定,见公式(1),公式中考虑了各种运行过程影响机组寿命的加权系数。 )(22111 2211t b t b f t n a n a T n i i eq ++++=∑=ω (1) 其中:

燃气轮机的空气进气和排气系统

燃气轮机的空气进气和排气系统 发表时间:2017-12-26T15:07:14.253Z 来源:《防护工程》2017年第21期作者:杨士博徐有宁[导读] 本文基于对燃气轮机空气的进气和排气系统,空气质量对燃气轮机的运行性能和可靠性有着巨大的影响。 沈阳工程学院能源与动力工程学院辽宁沈阳 110136 摘要:本文基于对燃气轮机空气的进气和排气系统,空气质量对燃气轮机的运行性能和可靠性有着巨大的影响,文中着重对进气系统的结构、工作规程,以及空气中的大颗粒悬浮物会对进气设备造成腐蚀和污染,进气系统的噪音污染进行了详细描述。关键词:进气系统排气系统进气管道和消音 燃气轮机是以空气为工质,其进口空气质量和纯净度是提高机组性能和可靠性的前提。因为空气中或多或少包含各种无机物和有机物颗粒杂质,在燃气轮机通流部分中将产生侵蚀、积垢和腐蚀,但一般不会同时发生。对于电站燃气轮机,灰尘颗粒对叶片的侵蚀是较为突出的问题,对机组的寿命有很大影响。 1、空气的进气系统 空气的进气系统包括以下部分:一带有防风雨罩的过滤器房,一个采用高效过滤元件的自动清洁的过滤系统,以及一个进气管路系统。采用了向上和向前这一方式的安排,过滤器房处于进气管道支托结构的顶部上面。进气管路系统与进口的放气加热组合件一起也安装在进气管道支托结构的上面。空气进入过滤器房,通过过道,声学的消声器,进气的加热组合件,垃圾杂质的筛网,然后通过进口的压力通风部位进入至汽轮机的压气机。过滤器房处于抬高位置的安排使系统的结构紧凑扎实,可使过滤器房中尘屑的拾取量达到最少进气系统的结构中所采用的材料和涂料,在设计上考虑到使之免于维修保养。过滤器房的外部和内部的所有面积上(因暴露于空气气流中)以及管路上都涂以一种有防腐和保护作用的无机的含锌底层涂料和环氧树脂的外层涂料。进口处的消音打孔板是用不锈钢制作而成。垃圾杂质的筛网也是不锈钢制成。所有支架的钢材都经过镀锌处理。 2、进口部分 过滤器房包括防风雨罩(其后是水分的分离器)以及一个高效的自动清洁过滤站。防风雨罩是防备大雨和防止空气中大的污染物质进入到进口处的过滤器房。方法是把空气向上引入速度则低于下落雨滴和空气中大杂质落下时达到终点的速度。对于沿海的、水上的、离岸面向海面的平台上使用场合中,建议在防护罩中装有水分分离器,在这些地方的空气中,海水中有高度的盐分能成为一个问题或者有可能需要去除掉潜在的有腐蚀性的液体。自动清洁过滤元件装在垂直的尘格板上。它们是放在一薄钢板的封闭室内,是按照确当的气流流通安排和免受天气影响而设计的。当过滤元件上载满了尘屑以及通过过滤介质后的压力降达到了一个预定数值(用一压力微分开关测量)时,换向一脉动型自动清洁装置启动。采用了一自动程控器控制,过滤元件组以规定的次序,依次进行清洁。程控器操纵着一组电磁阀,每一只控制着几个过滤器的清洁。在清洁进行时,每个阀门释放一短暂的脉冲高压空气。这一脉冲空气冲击着过滤网,造成一短暂的逆向气流,这一气流便积聚在网上的尘屑松开而跌落入存放箱中。在清洁循环完成后,尘屑然后被排放出。清洁循环会一直连续进行,直至尘屑被充分地清除掉并且该部分的压力降到达了压力微分开关上较低的一个设置值才停止。 3、进气管道和消音 空气的进气管道将空气气流从示波器房的出口导入燃气轮机压气机的进口。它包括 8 英尺消音,4 英尺结合有进口放气加热组合件的有消音衬里的管路,一个有消音衬里的90°弯管(内有杂质过滤网),一个有消音衬里的挠性连接口,以及进口处的压力通风部分。进口的消音设施包含着一有声学上处理过的衬里的导管,它含有用矿石棉构成的绝缘挡板,包裹着玻璃纤维布,并且用打着孔眼的不锈钢钢板封装。消音管道内壁的经声学上处理的衬里和消声装置的管路下游有着相似的结构。挡板的垂直-平行外形结构是为了消除压气机的基本音频而特殊设计的,同时也可降低其他频率的噪音水平。采用了一个压气机的放气加热装置后,一部分压气机排放出空气气流被用来加热进入的空气。这一点在汽轮机启动,停机和其他操作状态下可加强汽轮机的可操作性。进口放气加热装置包括一组不锈钢管,装至紧接在消音段后面的无衬里管路上,管路外的一集合总管将空气分配至伸入至管路的这些垂直的不锈钢管,在管路中,排放出的空气通过这些分配管子上所集合成的一系列孔分散至进入的空气气流中。弯管内窝藏着 2 件固定的不锈钢杂物滤网。该杂物滤网的目的在于保护压气机免受从过滤器房、管路或由于维修工作中的过失而进入弯管的硬件的散件。位于杂物滤网下游的一个可移动的出入面板用于清除和检查的目的。有消音处理衬里的膨胀接头将进气装置与燃气轮机隔开。进口处的压力通风乃是进气管路与燃气轮机空压机之间的连接点。进气管路系统也包含有露点温度传感器的设置,该传感器用以监测进口放气加热组合件的下游空气气流,可使与进口放气加热装置有相联系的工作性能的退化降低最少,通过与Mark V 的信息传递,进气系统中所有部分的相对湿度都处于结霜点以下。 4、结论 本文主要对燃气轮机的空气的进气和排气系统做了详细的描述,分析了空气质量对燃机运行和可靠性,对设备的污染和受损有什么影响。为了能够发挥出设备运行性能和可靠性的,必须配备良好的进气系统,对进入机组的空气进行过滤,必须滤掉其中的杂质,这一个能起自动清洁作用的过滤系统(装置)可以容易地和有效地除去悬浮于空气中的 10μm 或更大一些的颗粒。这些颗粒一般来说当存在有足够的数量时是造成显著腐蚀和压气机被弄脏的原因。与进气系统相联系的噪音污染问题是大家所关心的。燃气轮机运行时在进气管路中产生了一相当大的噪音。通过装在管道中成为一组成部分的消音器的应用,使噪音削弱。 参考文献: 【1】、焦树建.燃气轮机与燃气-蒸汽联合循环装置上/下[M].北京:中国电力出版社,2007.8 【2】、杨顺虎.燃气-蒸气联合循环发电设备及运行[M].北京:中国电力出版社,2003. 【3】、黄兵,魏海霞,陈涛.初效过滤器在燃机进气系统上的应用[J].冶金动力,2(4)57-59. 【4】、骆桂英,俞立凡.燃气轮机进气过滤系统的运行[J].发电设备,2008(5)398-403.

GE公司6F_01燃气轮机DLN2_5H燃烧系统_张亚平

第28卷第3期2015年9月《燃气轮机技术》GAS TURBINE TECHNOLOGY Vol.28No.3Sep.,2015 收稿日期:2015-01-10改稿日期:2015-02-10 作者简介:张亚平(1982—),女,江苏盐城人, 主要从事燃气轮机本体结构设计及技术服务工作,E-mail :zhangyaping@ntc-china.com 。 GE 公司6F.01燃气轮机DLN 2.5H 燃烧系统 张亚平 (南京汽轮电机(集团)有限公司,南京210037) 摘 要:介绍了GE 公司的6F.01燃气轮机及其主要技术特点, 阐述了在6F.01燃气轮机上应用的DLN 2.5H 燃烧系统的各种燃烧模式,并与GE 公司其它的DLN 燃烧系统进行了比较,分析了各个DLN 燃烧系统在燃烧室结构、喷嘴布置及燃烧模式上的主要技术特点和区别。关 键 词:DLN ;燃烧系统;燃气轮机;燃烧室;燃料喷嘴;燃烧模式 中图分类号:TK473 文献标志码:B 文章编号:1009-2889(2015)03-0014-04 为了降低NO x 排放量,电厂之前普遍采取向燃烧区注水或水蒸汽的措施来降低NO x 的排放水平。但随着环保要求越来越严格,通过注水或水蒸汽来进一步降低NO x 排放水平,会对燃气轮机的性能、部件寿命及检修间隔等产生较大的负面影响,并且 CO 和UHC (未完全燃烧碳氢化合物)等污染物的排放量开始大幅增加。基于这些因素,各大燃气轮机生产厂商开始寻求其它NO x 排放控制技术,目前广泛采用的是干式低NO x (DLN )燃烧技术,即通过对燃气轮机燃料和空气的预混,并合理控制掺混比例,使燃烧室内进行贫燃料燃烧,且燃烧火焰面温度低于1650?(空气里N 2氧化生成NO x 的起始温度),从而控制NO x 排放。 1GE 公司6F.01燃气轮机简介 GE 公司地面发电用燃气轮机以7系列燃气轮 机为基础,模化发展出6系列和9系列燃气轮机,涵盖了各个功率等级。源自GE 大量的运行经验和技术,6F.01燃气轮机应运而生,其在热力回收应用领域提供低成本发电产品,包括针对流程工业的热电联供,市政区域供热和中型联合循环电网支持。6F.01燃气轮机即最早于2004年在土耳其安装运行的6C 燃气轮机,该型燃气轮机在6B 燃气轮机技术的性能和经验基础上又发展了一步,是GE 公司F 级技术经验在40MW 燃气轮机上的运用成果。它吸取了F 级技术的燃料适应性广、可靠性高、可用性强、可维护性好等特点。6C 燃气轮机设计功率为42MW ,在通过一系列的系统升级和冷却密封等技术的研发改进后重新命名为6F.01,原机型已经累计运行超过11万小时。 6F.01燃气轮机燃烧温度达1370?,透平排气温度602?,单机输出功率51MW ,热效率38%;“1+1”联合循环输出功率75MW ,热效率接近56%,是迄今为止100MW 以下燃气轮机在联合循环领域可以企及的最高效率。和6C 相比,6F.01燃气轮机出力增加,热效率提高,联合供热后效率更可超过80%。 6F.01燃气轮机的技术特点如下: 1)燃气轮机和辅机模块化设计,易于安装、调试、检修和维护,配备50/60Hz 高效率负荷齿轮箱,Mark Ⅵe 控制系统。 2)12级轴流压气机,全三维气动设计,3级进口可调导叶,压比20.7,贯穿拉杆螺栓结构,所有叶片现场可换。 3)6个环管型燃烧室,先进DLN 燃烧系统,NO x 排放的体积分数为25?10-6,燃烧室设置了检修人孔,过渡段和火焰筒的检修更换无需开缸。 4)3级高效率透平,全三维气动设计,第1级 DOI:10.16120/https://www.360docs.net/doc/924278425.html,ki.issn1009-2889.2015.03.003

9FA燃气轮机干式低NOx燃烧系统及燃烧监视

南京工程学院继续教育学院 毕业论文 9FA燃气轮机干式低NOx燃烧系统及燃 烧监视 姓名:时永兴 学号: 专业:热动 学历:大学 指导教师:赵雅菊 函授站:戚电 中国·南京 2008 年 12 月

目录 前言 (3) 9FA燃气轮机干式低NOx燃烧系统及燃烧监视 (4) 摘要 (4) 一、燃气轮机燃烧系统概况 (4) 1.1燃烧室布置 (4) 1.2气体燃料供给系统 (5) 二、燃烧控制系统 (5) 2.1燃烧模式 (6) 2.1.1扩散模式(L83FXP) (7) 2.1.2次先导预混模式(L83FXL) (7) 2.1.3先导预混(L83FXH) (7) 2.1.4预混(L83FXM) (7) 2.2燃烧模式转换 (8) 2.3实践问题 (9) 三、控制功能的实现 (12) 3.1燃烧基准温度 (12) 3.2进口导叶控制 (12) 3.3进气加热 (13) 3.4气体清吹系统 (13) 四、燃烧监视 (14) 五、造成排烟分散度大的一般原因 (14) 5.1测量 (14) 5.2燃气系统 (15) 5.3燃气喷嘴 (15) 5.4承压室总成 (15) 5.5燃烧系统 (15) 5.6一级喷嘴 (15) 六、排烟分散度大对燃机的影响 (16) 七、排烟分散度允许值TTXSPL的算法 (17) 八、报警与遮断 (18) 九、实例分析 (19) 十、总结 (21) 参考文献: (22) 致谢 (22)

前言 燃气轮机的燃烧调整是一个复杂的过程,需要在不同的负荷段作出相应的调整,最终得出一个最佳的燃料燃烧控制曲线。而且燃气轮机燃烧室的动态特性跟燃料温度、压气机入口空气温度、燃料的成分等有很大的关系,在实际的运行中需要不断总结,努力得到最好的燃烧效果。 燃烧监视就是通过检测反映排烟温度场均匀程度的排烟分散度,来反映燃烧系统或透平的状况的。当排烟分散度大或者说排烟温度场不均匀时,控制系统及时发出报警,提醒运行人员采取措施,或者直接发出遮断指令,这样以防止事故进一步扩大,危及燃烧室、过渡段或透平的寿命。 我们对燃机燃烧过程应有充分的认识,同时在运行中应加以足够的重视。因为,当燃烧真正发生故障时,如果任其发展,将直接导致燃烧室和透平的严重损坏,而对排烟分散度的监视,是我们发现问题的一个极其重要的手段。 我们应注意排烟分散度的变化情况,经常把目前的值与以前类似状况下的值作比较,当发现其变化较大时应及时查明原因。因为,当排烟分散度达到或接近允许值时,很可能燃烧室或透平已经有所损坏了,因此,一旦发现排烟分散度有异常的情况,我们就必须积极地采取有效的方法进行检查,把故障排除在萌芽状态。 本文在撰写过程中,结合9FA燃机实际运行经验,查阅了《燃机控制规范》、《MK-Ⅵ控制程序图》等资料。有不完善之处,欢迎批评指正。

燃气轮机相关系统简介

燃气轮机相关系统简述 1 燃气轮机燃烧系统 燃烧系统主要由燃气轮机和余热锅炉的烟气系统构成。 空气由燃气轮机的进气装置(内部设有过滤器和消声器)引入压气机压缩后,进入环绕在燃机主轴上的分管式燃烧室。 厂外天然气经过厂区调压站分离、过滤和调压后,满足燃机进口要求的天然气再经过燃机天然气前置模块的加热、压力控制阀和流量控制阀的调整后通过燃料喷嘴喷入燃烧室后与进入燃烧室的压缩空气进行混合燃烧,燃烧后的高温烟气进入燃气轮机膨胀作功,带动燃气轮机转子转动,拖动发电机发电。作功后的烟气温度依然很高,高温烟气通过烟进入余热锅炉。在炉内,高温烟气加热锅炉给水产出过热蒸汽去汽机作功,烟气中的热量被充分吸收和利用,最后经余热锅炉的主烟囱排入大气。 2燃气轮机燃料前置处理系统 燃机在主厂房外设有燃料前置处理模块,包括二级精过滤装置、性能加热器和终端过滤器,另外还有在启动时运行的电加热装置,性能加热器的加热源为来自余热锅炉中压省煤器出口的热水,在正常运行工况下将天然气加热到185℃以提高联合循环的效率。启动电加热装置可将天然气加热28℃,使天然气的烃露点过热度和水露点过热度达到燃机启动时的要求。 3燃气轮机的水洗系统 为了保持燃气轮机的出力和效率,清除叶片及通流部分的污垢,三套燃气轮机配有一套公用的水洗系统。燃气轮机的水洗系统包括洗涤剂箱、清洁水箱和清洗泵。水洗疏水直接通过管系统收集排至水洗疏水箱。水洗疏水箱的容量为13300 升,布置在余热锅炉过渡烟道下方。疏水箱内的水洗废水通过水洗废水排水泵打至化水专业的中和池。 4燃气轮机箱体的通风系统 为了适应燃气轮机的快装和抑制噪声的需要,燃气轮机以箱装体的形式供货。透平间和排气扩散段下端靠近运转层处,开有进风消声百页窗,在主厂房屋顶处装有排风机和消声器,以排出透平间和排气扩散段(包括燃机2#轴承)的热量,而负荷联轴器间的热量排放则采取在负荷联轴器间顶部装有送风机,送入主厂房内的空气,热空气由风接至主厂房外。 5 燃气轮机CO2 灭火保护系统

燃气轮机故障诊断毕业论文(含程序)

舰用燃气轮机某关键部件故障诊断方法研究 系别信息工程系 专业测控技术与仪器 班级 学号 姓名 指导教师崔建国 负责教师崔建国 2015年6月

摘要 燃气轮机的关键部件之一滚动轴承是机械设备运行过程中产生最易产生故障的零件,它运行的正常与否直接影响到整台机器的性能。防止故障升级,发生灾难性事故。所以对滚动轴承故障诊断技术进行探讨和学习就具有十分重要的意义。 本文主要以燃气轮机的滚动轴承为研究对象,利用测量的轴承振动信号参数来进行故障诊断,利用神经网络技术对某一动态的模拟原理,应用到对滚动轴承故障诊断的具体方面,设计并构建了基于BP神经网络和自适应模糊神经网络(Adaptive Network Fuzzy Inference System)的滚动轴承故障诊断系统,在MATLAB软件里对构造的训练样本进行训练,利用训练完成后的神经网络我们就可以对滚动状态故障进行诊断。 关键词:滚动轴承;BP神经网络;模糊神经网络

Abstract Rolling bearing is one of the most ordinary parts in mechanical machine, its running state can influence the performance of the whole machine directly, the aircraft stabilizer health status need to be monitored in real time to ensure the aircraft fly safety. so it is important to study the technology of fault diagnosis for rolling bearing. On the basis of analyzing the fault mechanism and vibration signal characteristics of rolling bearing systematically, and after analyzing and processing the vibration signals of right and fault state of rolling bearing, partial appropriate feature parameters are selected as the input of the neural network according to the time and frequency domain characteristics of parameters in this thesis. and the fault diagnosis system for rolling bearing based on BP neural network is built up. Finally,and fuzzy artificial neural network diagnosis technique the training set of right and fault states of rolling bearing is built up by using the measuring data of rolling bearing from former research, the neural network model is trained on the platform of Matlab software.the operating state of rolling bearing has been diagnosed by using the above network which has been trained well. Keywords: rolling bearing; BP neural network; fuzzy artificial neural network

燃气轮机燃烧室性能指标的衡量

燃气轮机燃烧室性能指标的衡量 (1)燃烧效率。目前,一般燃气轮机组中燃烧室的燃烧效率都能达到95%~99%,航空发动机的燃烧效率更高。 (2)总压保持系数。定义为=P3/P2,是衡量燃烧室气动性能好坏的指标,目前一般燃烧室在设计工况的在0.95~0.97左右。对于连续流动的工质,总压下降有两个原因。一是热力学上的“热阻”,它随工质加热程度(用燃烧室出口总温与进口总温之比τ=T3/T2来表示)的增加而增加,是不可避免的;另一个就是摩擦、掺混等不可逆流动的因素导致的损失,其中有的是为了有效组织燃烧过程而不得不付出的代价。燃气轮机燃烧室研制中要致力于最大限度地减少不必要的总压损失。 (3)出口温度均匀度。在许多燃气轮机中,燃烧室的出口是与透平的入口很靠近的,如果出口处燃气的温度不均匀,即有些地方温度高,有些地方温度低。这样就有可能使透平叶片受热不均,甚至有被烧坏的危险。一般希望燃气的最高温度不能比出口平均温度t3高60~80℃。此外,在装有许多个燃烧室的机组中,还应力争每个燃烧室出口温度场的平均值相互之间的偏差不超过15~20℃。 此外,出口温度沿燃气轮机半径方向的分布有一种中间高,两端低的自然趋势,这正是发挥透平叶片材料的潜力所要求的,因为透平叶片尖部(外径处)受气流加热最严重,容易局部金属温度高;而叶片根部(内径处)则应力最大,希望金属温度低些以保证更好的强度。这样叶片中径处气流温度相对高一些正好满足叶片等强度的要求。 (4)污染物排放。随着环境保护要求的提高,控制燃烧污染物的排放已成为燃气轮机燃烧室研制中首要解决的问题之一。目前我国对燃气轮机的燃烧污染物排放还没有制定限制规范,但国际上对燃气轮机特别是航空燃气轮机排放已做出严格的限制。 (5)火焰筒壁温度水平和梯度。火焰筒壁面温度的高低及其均匀程度对于燃烧室的工作寿命有决定性的影响。一般规定,火焰筒的壁面温度不应超过金属材料长期工作所能承受的温度水平。对于工作寿命要求较长的燃烧室来说,希望能把火焰筒的最高壁温控制在650~700℃左右,但在工作寿命较短的燃烧室中,其最高壁温则有可能超过800~850℃,甚至局部有可能达到900℃左右。火焰筒壁面上温度分布的均匀程度也是一个很重要的安全性指标,因为局部温度梯度是导致热应力的原因,特别是在受冷、热气流冲击和接缝、边缘等传热条件不均匀的部位,容易发生金属温度的差异;必须在调试时严密注意和控制。 (6)燃烧室的变工况特性。随着燃气轮机运行工况的变化,燃烧室也往往会在偏离设计工况的条件下工作。这时,流经燃烧室的空气流量、温度、压力、速度以及燃料消耗量都会发生变化。由于燃烧室没有运动部件,因此供入空气的任何变化对燃烧室内部流动的影响只表现在量的方面。简单地说,不同工况下的流动基本上是“相似”的,即气流的模式相同,只是速度大小成比例地加大或减小。供入燃料量的变化,则会从另一方面对燃烧过程产生重要的影响。一般而言,决定燃烧室工况的独立变量有两个,即特征流动状态(例如入口流动状态)和相对燃料量(用过量空气系数表示)。对于在具体燃气轮机中应用的燃烧室而言,这二者之间有一定的函数关系,一般而言燃烧室的值随燃气轮机负荷的升高而下降。燃烧室的变工况特性可以用燃烧室性能参数,即燃烧效率、总压保持系数,壁面温度、出口温度场等随过量空气系数 的变化来表示。 现有对于燃烧室变工况特性的认识远不如对压气机和透平那样清楚和完整,而且都是通过

相关文档
最新文档