数学建模实验答案_概率模型

数学建模实验答案_概率模型
数学建模实验答案_概率模型

实验10 概率模型(2学时)

(第9章 概率模型)

1.(验证)报童的诀窍p302~304, 323(习题2)

关于每天报纸购进量的优化模型:

已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。

求每天购进量n 份,使日平均收入,即

1

()[()()()]()()()n

r r n G n a b r b c n r f r a b nf r ∞

==+=----+

-∑∑

达到最大。

视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足

*

()n a b

p r dr a c

-=

-?

已知b =0.75, a =1, c =0.6,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少?

[提示:normpdf, normcdf]

要求:

(1) 在同一图形窗口内绘制10

()()n

y n p r dr =?和2()a b

y n a c

-=

-的图形,观察其交点。

[提示] 22

()2()r p r μσ--

=

,0

()

()()n n

p r dr p r dr p r dr -∞

-∞

=-???

☆(1) 运行程序并给出结果:

(2) 求方程0()n

a b

p r dr a c

-=

-?的根n *(四舍五入取整),并求G (n *)。

☆(2) 运行程序并给出结果:

2.(编程)轧钢中的浪费p307~310

设要轧制长l =2.0m 的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差

σ=0.2m ,问这时钢材长度的均值m 应调整到多少使浪费最少。

平均每得到一根成品材所需钢材的长度为

()()

m

J m P m =

其中,

22

()2()(), ()x m l

P m p x dx p x σ--

==

?

求m 使J (m )达到最小。

等价于求方程

()

()z z z λ?Φ=-

的根z *。

其中:

()z Φ是标准正态变量的分布函数,即 ()()z

z y dy ?∞

Φ=?

()z ?是标准正态变量的概率密度函数,即

22

()z z ?-

=

*

,,*z l m m

l

z σσ

μσ

λμλ-=?=

=

-=

(1) 绘制J (m )的图形(l =2, σ=0.2),观察其最小值的位置。

★(1) 给出程序和运行结果:

(2) 求使J (m )达到最小值的m *。

由(1)可观察到J(m)达到最小值的区间。分别用求无约束最小值的MATLAB 函数fminbnd, fminsearch, fminunc 求解,并比较结果。

★(2) 给出程序及运行结果(比较[310]):

(3) 在同一图形窗口内绘制1()

()()

z y z z ?Φ=和2()y z z λ=-的图形,观察它们的交点。(参考题1的(1))

★(3) 给出程序及运行结果(比较[309]图2):

(4)求方程

()

()

z

z

z

λ

?

Φ

=-的根z*,并求m=l-σz*。(参考题1的(2))

提示:由(3)得到的图形可观察到z*的大概位置。

★(4) 给出程序及运行结果(比较[310]):

3.(验证)航空公司的预订票策略p313~316

模型如下:

给定λ, n , p , b /g ,求m 使单位费用获得的平均利润J (m ) 最大。

∑--=---+-=1

1])()/1([1

)(n m k k p n k m g b qm n m J λ

约束条件为 1

()(01)

m n j j k k P m p α

α---==

≤<<∑

其中:

m 预订票数量的限额。

λ( < 1 ) 利润调节因子。 n 飞机容量。

p 每位乘客不按时前来登机的概率,q = 1 – p 。 b 每位被挤掉者获得的赔偿金。 g 机票价格。

b /g

赔偿金占机票价格的比例。

不按时前来登机的乘客数K 服从二项分布,其概率为

p q p q p C k K P p k m k k

m k -=≤≤===-1,10,)(

被挤掉的乘客数超过j 人的概率为

∑---==

1

)(j n m k k

j p

m P

(等价于m 位预订票的乘客中不按时前来登机的不超过m – n – j – 1人)

该模型无法解析地求解,我们设定几组数据,用程序作数值计算。

[提示:binopdf, binocdf]

要求:

(1)已知n=300,λ=0.6,p=0.05,b/g=0.2和0.4,取一组值m=300:2:330,求出对应的J(m)、P5(m)和P10(m),程序如下。(与教材p315表1 n=300时的计

(2)对(1)中改变p=0.1和m=300:2:344,求对应的结果。

(3)对(1)中改变n=150和m=150:2:170,求对应结果。(与教材时的计算结果比较。)

(4)对(1)中改变n=150、m=150:2:176和p=0.1,求对应结果。注意!结果与教材相差较大,原因待查。

4.(编程)航空公司的预订票策略(改进)p316~317

已知:

第2类乘客(t 人)都按时前来登机。

第1类乘客(m – t 人)不按时前来登机的乘客数K 服从二项分布,其概率为

p q p q

p C k K P p k

t m k k t m k -=≤≤===---1,10,)(

被挤掉的第1类乘客数超过j 人的概率为

∑---==

1

)(j n m k k

j p

m P (等价于预订的第1类乘客中不按时前来登机的不超过

( m – t ) – ( n – t ) – j – 1人) 单位费用获得的平均利润为

∑--=---+------=1

01

])()/1()1([])1([1

)(n m k k p n k m g b t p qm t n m J ββλ

要求:

已知n=300, λ=0.6, p=0.05, b/g=0.2, β=0.75,t=100,取一组值m=300:2:330,求出对应的J(m)、P5(m)和P10(m)。

参考实验10.3的程序,编写解决本问题的程序。

★给出编写的程序和运行结果:

附1:实验提示

附2:第9章概率模型[302]9.2 报童的诀窍

[304]****本节完****

[307]9.4 轧钢中的浪费

数学建模实验答案-概率模型

数学建模实验答案-概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =, a =1, c =,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少 [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 ()()()n n p r dr p r dr p r dr -∞ -∞ =-?? ? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

mu=500;sigma=50; a=1; b=; c=; r=n+1; while (a-b)*n*normpdf(r,mu,sigma)>1e-6 r=r+1; end r=n+1:r; G=sum((a-b)*n*normpdf(r,mu,sigma)); r=0:n; G=G+sum(((a-b)*r-(b-c)*(n-r)).*normpdf(r,mu,sigma)) ☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l=的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差σ=,问这时钢材长度的均值m应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 () () m J m P m = 其中, 2 2 () 2 ()(), () 2 x m l P m p x dx p xσ πσ - - ∞ == ? 求m使J(m)达到最小。 等价于求方程 () () z z z λ ? Φ =- 的根z*。 其中:

《数学模型》

《数学模型》考试大纲 适应专业:数学与应用数学、信息与计算科学、统计学、应用统计学专业 一、课程性质与目的要求 数学模型课亦称为数学建模课,它是数学与应用数学、信息与计算科学、统计学、应用统计学专业必修课或限选课,教育部1998年颁布的高等学校本科专业目录中,把“数学模型”课作为数学类专业的必开课。数学模型是架于实际问题与数学理论之间的桥梁。数学模型就是应用数学语言和方法,对于现实世界中的实际问题进行抽象、简化和假设所得到的数学结构。本课程是研究数学建模的理论、思想和方法,研究建立数学模型、简单的优化模型、数学规划模型、微分方程模型、代数方程与差分方程模型、稳定性模型、离散模型、概率模型等。 数学模型课需要用到数学分析、高等代数、微分方程、图论、概率统计、运筹学等数学知识,它是学生所学数学知识的综合应用,是培养学生综合素质以及应用数学知识解决实际问题的能力的良好课程。该课程的考试评价依据是按照课程目标、教学内容和要求,把握合适的难易程度出试卷,用笔试的方法对学生学习情况和学习成绩做出评价。 二、课程内容和考核要求 第一章建立数学模型 1、考核知识点: 数学建模的背景及重要意义、数学模型与数学建模、数学模型的分类与特点、数学建模的基本方法和步骤、数学建模举例等。 2、考核要求: (1)理解数学建模的背景及意义、原型、模型、数学模型、数学建模等概念。 (2)理解数学模型的各种分类、数学模型的特点。 (3)理解数学建模的基本方法和步骤、通过实例初步了解数学建模的思想和方法。 第二章简单的优化模型 1、考核知识点: 存储模型、生猪的出售时机、森林救火、冰山运输等。

2、考核要求: (1)掌握应用微积分理论建立存储问题模型。 (2)理解应用微积分理论建立生猪的出售时机模型和森林灭火模型。 (3)理解应用微积分理论建立冰山运输问题模型。 第三章数学规划模型 1、考核知识点: 数学规划问题的基本概念、数学规划问题图解法步骤、生产安排问题、奶制品的生产与销售等。 2、考核要求: (1)掌握数学规划问题的基本概念、数学规划问题图解法步骤。 (2)掌握生产安排问题的模型及图解法。 (3)理解奶制品的生产与销售的模型及求解。 第四章微分方程模型 1、考核知识点: 传染病模型、正规战与游击战、药物在体内的分布与排除、香烟过滤嘴的作用等。 2、考核要求: (1)理解传染病问题的建模及讨论。 (2)理解战争问题、房室问题的建模及讨论。 (3)了解香烟过滤嘴作用问题的建模及讨论。 第五章代数方程与差分方程模型 1、考核知识点: 量纲、量纲齐次原理、量纲分析法、差分方程的基本概念、市场经济中蛛网模型、节食与运动问题等。 2、考核要求: (1)掌握量纲、量纲齐次原理、量纲分析法建模及解法步骤。 (2)掌握市场经济中蛛网模型及解法步骤。 (3)理解理解差分方程的基本概念、减肥问题的建模思想。 第六章稳定性模型

数学模型与数学建模实验五

实验报告五 学院名称:理学院 专业年级: 姓 名: 学 号: 课 程:数学模型与数学建模 报告日期:2015年12月8日 一、实验题目 例2.2.1 水库库容量与高程 设一水库将河道分为上、下游两个河段,降雨的开始时刻为8时,这是水位的高程为 168m ,水库容量为38109.21m ?,预测上游的流量()()s m t Q /3,d 取值如表2.2.1所示。 表2.2.1 上有流量()t Q 的预测 已知水库中水的容量( )3 810m V 与水位高程H (m )的数值关系为表2.2.2 表2.2.2 水库库容量与水位高程的关系 如果当日从8时开始,水一直保持s m /10003 的泄流量,根据所给数据,预报从降雨时刻到56h 以内每小时整点时刻水库中水的库容量与水位高程。 例2.2.2 地下含沙量 某地区有优质细沙埋在地下,某公司拟在此处采沙,已得到该地区钻探资料图的一角如 下表,在每个格点上有三个数字列,都是相对于选定基点的高度(m ),最上面的数字是覆盖表面的标高,中间的数字是沙层顶部的标高最下面的数字是沙层底部的标高,每个格子都是正方形,边长50m 。画星号处,即沼泽表层地带,没有钻探数据。试估计整个矩形区域内的含沙量。

二、实验目的 插值模型是数据挖掘的另一类模型,插值(Interpolation )的目的是根据能够获得的观测数据推测缺损的数据,此时观测数据(){}n i i i y x 1,=被视为精确的基准数据,寻找一个至少 满足条件的函数()x y y =,使得()n i x y y i i ,,2,1,Λ==,在本节我们强调的是插值模型的应用,而不是插值方法的构造。 三、问题陈述 2.2.1 一维插值 例2.2.1 水库库容量与高程 2.2.2 二维插值 例2.2.2 地下含沙量 2.2.3 泛克里金插值 四、模型及求解结果 2.2.1 一维插值 一元函数差值公式为 ()() ∑==n i i i x y x y 1 λ 其中 () x i λ是满足条件 ()ij i x δ=λ的函数,依据插值的公式,如最近邻差值,线性插值、分

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学建模典型例题

一、人体重变化 某人得食量就是10467焦/天,最基本新陈代谢要自动消耗其中得5038焦/天。每天得体育运动消耗热量大约就是69焦/(千克?天)乘以她得体重(千克)。假设以脂肪形式贮存得热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化得规律. 一、问题分析 人体重W(t)随时间t变化就是由于消耗量与吸收量得差值所引起得,假设人体重随时间得变化就是连续变化过程,因此可以通过研究在△t时间内体重W得变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存得热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重得变化就是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重得变化量为W(t+△t)—W(t); 身体一天内得热量得剩余为(10467—5038-69*W(t)) 将其乘以△t即为一小段时间内剩下得热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467—5038-69*W(t))dt; 四、模型求解 d(5429—69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即:

W(t)=5429/69—(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间得最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i得开始买进汽车并在年j得开始卖出汽车,将有净成本aij(购入价减去折旧加上运营与维修成本).以千元计数aij得由下面得表给出: 请寻找什么时间买进与卖出汽车得最便宜得策略。 二、问题分析 本问题就是寻找成本最低得投资策略,可视为寻找最短路径问题.因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本得投资策略。 三、条件假设 除购入价折旧以及运营与维护成本外无其她费用; 四、模型建立 二 5 11 7 三6 4

数学建模实验答案初等模型

实验02 初等模型(4学时) (第2章初等模型) 1.(编程)光盘的数据容量p23~27 表1 3种光盘的基本数据 CAV光盘:恒定角速度的光盘。 CLV光盘:恒定线速度的光盘。 R2=58 mm, R1=22.5 mm,d, ρ见表1。

CLV光盘的信息总长度(mm) L CLV 22 21 () R R d π- ≈ CLV光盘的信息容量(MB) C CLV = ρL CLV / (10^6) CLV光盘的影像时间(min) T CLV = C CLV / (0.62×60) CAV光盘的信息总长度(mm) L CAV 2 2 2 R d π≈ CAV光盘的信息容量(MB) C CAV = ρL CAV / (10^6) CAV光盘的影像时间(min ) T CAV = C CAV / (0.62×60) 1.1(验证、编程)模型求解 要求: ①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。 程序如下:

②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。 ★要求①的程序的运行结果: ★要求②的程序及其运行结果:

1.2(编程)结果分析 信道长度LCLV 的精确计算:21 2R CLV R L d π=? 模型给出的是近似值:2221() CLV R R L L d π-= ≈ 相对误差为:CLV L L L δ-= 要求:

①取R2=58 mm, R1=22.5 mm,d, ρ见表1(题1)。 分别计算出LCLV, L和delta三个3行1列的列向量,仍后将它组合起来输出一个3行3列的结果。 ②结果与P26的表2和P27(教材)的结果比较。 [提示] 定积分计算用quad、quadl或trapz函数,注意要分别取d的元素来计算。要用数组d参与计算,可用quadv(用help查看其用法)。 ★编写的程序和运行结果: 程序:

数学模型与实验报告习题

数学模型与实验报告 姓名:王珂 班级:121111 学号:442 指导老师:沈远彤

数学模型与实验 一、数学规划模型 某企业将铝加工成A,B两种铝型材,每5吨铝原料就能在甲设备上用12小时加工成3吨A型材,每吨A获利2400元,或者在乙设备上用8小时加工成4吨B型材,每吨B获利1600元。现在加工厂每天最多能得到250吨铝原料,每天工人的总工作时间不能超过为480小时,并且甲种设备每天至多能加工100吨A,乙设备的加工能力没有限制。 (1)请为该企业制定一个生产计划,使每天获利最大。 (2)若用1000元可买到1吨铝原料,是否应该做这项投资若投资,每天最多购买多少吨铝原料 (3)如果可以聘用临时工人以增加劳动时间,付给工人的工资最多是每小时几元 (4)如果每吨A型材的获利增加到3000元,应否改变生产计划 题目分析: 每5吨原料可以有如下两种选择: 1、在甲机器上用12小时加工成3吨A每吨盈利2400元 2、在乙机器上用8小时加工成4吨B每吨盈利1600元 限制条件: 原料最多不可超过250吨,产品A不可超过100吨。工作时间不可超过480小时线性规划模型: 设在甲设备上加工的材料为x1吨,在乙设备上加工的原材料为x2吨,获利为z,由题意易得约束条件有: Max z = 7200x1/5 +6400x2/5 x1 + x2 ≦ 250

12x1/5 + 8x2/5 ≦ 480 0≦3x1/5 ≦ 100, x2 ≧ 0 用LINGO求解得: VARIABLE VALUE REDUCED COST X1 X2 ROW SLACK OR SURPLUS DUAI PRICE 1 2 3 4 做敏感性分析为: VARIABLE CURRENT ALLOWABLE ALLOWABLE COFF INCREASE DECREASE X1 X2 ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 2 3 4 INFINITY 1、可见最优解为x1=100,x2=150,MAXz=336000。因此最优解为在甲设备上用100吨原料生产A产品,在乙设备上用150吨原料生产B产品。最大盈利为336000. 2、由运算结果看约束条件1(原料)的影子价格是960,即每增加1吨原料可收入960,小于1000元,因此不购入。 3、同理可得,每小时的影子价格是40元,因此聘用员工的工资不可超过每小时40元。

数学建模实验答案_概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =0.75, a =1, c =0.6,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少? [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 ()()()n n p r dr p r dr p r dr -∞ -∞ =-?? ? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

mu=500;sigma=50; a=1; b=0.75; c=0.6; r=n+1; while (a-b)*n*normpdf(r,mu,sigma)>1e-6 r=r+1; end r=n+1:r; G=sum((a-b)*n*normpdf(r,mu,sigma)); r=0:n; G=G+sum(((a-b)*r-(b-c)*(n-r)).*normpdf(r,mu,sigma)) ☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l =2.0m的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差σ=0.2m,问这时钢材长度的均值m应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 () () m J m P m = 其中, 2 2 () 2 ()(), () 2 x m l P m p x dx p xσ πσ - - ∞ == ? 求m使J(m)达到最小。 等价于求方程 () () z z z λ ? Φ =- 的根z*。 其中:

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

数学建模与实验

? 1.1.3 初识MATLAB 例1-1 绘制正弦曲线和余弦曲线。 x=[0:0.5:360]*pi/180; plot(x,sin(x),x,cos(x)); ?例1-2 求方程 3x4+7x3 +9x2-23=0的全部根。 p=[3,7,9,0,-23]; %建立多项式系数向量 x=roots(p) %求根 ?例1-3 求积分 quad('x.*log(1+x)',0,1) ?例1-4 求解线性方程组。 a=[2,-3,1;8,3,2;45,1,-9]; b=[4;2;17]; x=inv(a)*b ? 1.2.1 MATLAB的运行环境 硬件环境: (1) CPU (2) 内存 (3) 硬盘 (4) CD-ROM驱动器和鼠标。 软件环境: (1) Windows 98/NT/2000 或Windows XP (2) 其他软件根据需要选用 ? 1.3.1 启动与退出MATLAB集成环境 1.MATLAB系统的启动 与一般的Windows程序一样,启动MATLAB系统有3种常见方法: (1)使用Windows“开始”菜单。 (2)运行MATLAB系统启动程序matlab.exe。 (3) 利用快捷方式。 ?启动MATLAB后,将进入MATLAB 6.5集成环境。MATLAB 6.5集成环境包括MATLAB 主窗口、命令窗口(Command Window)、工作空间窗口(Workspace)、命令历史窗口(Command History)、当前目录窗口(Current Directory)和启动平台窗口(Launch Pad)。 ?2.MATLAB系统的退出 要退出MATLAB系统,也有3种常见方法: (1) 在MATLAB主窗口File菜单中选择Exit MATLAB命令。 (2) 在MATLAB命令窗口输入Exit或Quit命令。 (3) 单击MATLAB主窗口的“关闭”按钮。 ? 1.3.2 主窗口 MATLAB主窗口是MATLAB的主要工作界面。主窗口除了嵌入一些子窗口外,还主要包括菜单栏和工具栏。 1.菜单栏 在MATLAB 6.5主窗口的菜单栏,共包含File、Edit、View、Web、Window和Help 6个菜单项。

概率论与数学建模

概率论与数学建模

概率论与数学建模 基础知识部分 一、概率论: 1、概率:刻化某一事件在一次试验中发生的可能性大小的数。 注:事件指随机事件(可重复、可预测、结果明确) 例如抛骰子,抛一枚硬币。 2、常见的随机变量:X (1)离散型: 泊松分布:k e P X k k k λ λ-(=)= ,=0、1、2、、、! 实际应用:时间t 内到达的次数; (小概率事件)一本书中一页中的印刷错误数; 某地区在一天内邮件遗失的信件数; 某一天内医院的急症病人数; 某一地区一个时间间隔内发生交通事故的次数; 一个时间间隔内某种放射性物质发出的经过计数器的α粒子数等等…… (2)连续型: 指数分布:x e x>0 f X λλ???-,()=0,其它 其中>0λ为常数 ,记为)(~λExp X 特点:无记忆性。即是P(/)()X s t X s P X t >+>=>

一个元件已经使用了s 小时,在此情形下,它总共能使用至少s+t 小时的概率,与开始使用时算起它至少能使用t 小时的概率相等,即元件对已使用过s 小时无记忆。 实际应用:(可靠性理论、排队论)许多“等待时间”都服从指数分布;一些没有明显“衰老”迹象的机械元器件(如半导体元件)的寿命也可也用指数分布来描述…… 正态分布:x e f X

“3σ“原则: “3σ“原则被实际工作者发现,工业生产上用的控制图和一 些产品质量指数都是根据3σ原则制定。 3、随机变量的特征数(数字特征): 均值(期望):k k k x p E X xf x dx ∞ ∞ ∞ ???????∑?=1 +-,(离散型)()=(),(连续型) 方差:22 D X = E X E X ()(())E X E X =-2()(-()) 中心极限定理:n X X ,,1 是独立同分布的随机变量序列,且 22(),(),0i i E X D X μσσ==> 则有:)(}{lim 1t t n n X X P n n Φ=≤-+∞ →σμ 模型一、轧钢中的浪费模型: 问题:将粗大的钢坯制成合格的钢材需要两道工序:粗轧(热轧),形成刚才的雏形;精轧(冷轧),得到规定长度的成品材料。由于受到环境、技术等因素的影响,得到钢材的长度是随机的,大体上呈正态分布,其均值可以通过调整轧机设定,而均方差是由设备的精度决定,不能随意改变。如果粗轧后的钢材长度大于规定长度,精轧时要把多余的部分切除,造成浪费; 而如果粗轧后的钢材长度小于规定长 2σ x 99.7% 6σ 4σ (1) (2) (3) μ

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模题目及其答案(疾病诊断)

数学建模疾病的诊断 现要你给出疾病诊断的一种方法。 胃癌患者容易被误诊为萎缩性胃炎患者或非胃病者。从胃癌患者中抽 取5人(编号为1-5),从萎缩性胃炎患者中抽取5人(编号为6-10),以及非胃病者 中抽取5人(编号为11-15),每人化验4项生化指标:血清铜蓝蛋白( X)、 1 蓝色反应( X)、尿吲哚乙酸(3X)、中性硫化物(4X)、测得数据如表1 2 所示: 表1. 从人体中化验出的生化指标 根据数据,试给出鉴别胃病的方法。

论文题目:胃病的诊断 摘要 在临床医学中,诊断试验是一种诊断疾病的重要方法。好的诊断试验方法将对临床诊断的正确性和疾病的治疗效果起重要影响。因此,对于不同疾病不断发现新的诊断试验方法是医学进步的重要标志。传统的诊断试验方法有生化检测、DNA检测和影像检测等方法。而本文则通过利用多元统计分析中的判别分析及SPSS软件的辅助较好地解决了临床医学中胃病鉴别的问题。在临床医学上,既提高了临床诊断的正确性,又对疾病的治疗效果起了重要效果,同时也减轻了病人的负担。 判别分析是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。 其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。 首先,由判别分析定义可知,只有当多个总体的特征具有显著的差异时,进行判别分析才有意义,且总体间差异越大,才会使误判率越小。因此在进行判别分析时,有必要对总体多元变量的均值进行是否不等的显著性检验。 其次,利用判别分析中的费歇判别和贝叶斯判别进行判别函数的建立。 最后,利用所建立的判别函数进行回判并测得其误判率,以及对其修正。 本文利用SPSS软件实现了对总体间给类变量的均值是否不等的显著性检验并根据样本建立了相应的费歇判别函数和贝叶斯判别函数,最后进行了回判并测得了误判率,从而获得了在临床诊断中模型,给临床上的诊断试验提供了新方法和新建议。 关键词:判别分析;判别函数;Fisher判别;Bayes判别 一问题的提出 在传统的胃病诊断中,胃癌患者容易被误诊为萎缩性胃炎患者或非胃病患者,为了提高医学上诊断的准确性,也为了减少因误诊而造成的病人死亡率,必须要找出一种最准确最有效的诊断方法。为诊断疾病,必须从人体中提取4项生化指标进行化验,即血

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

焦梦数学模型与实验试卷

西南大学 数学与统计学院 《数学模型与实验》课程试题 命题人:焦梦 222009314011261 一、选择题:本大题共8小题,每小题5分,共40分。 1. 是指为了某个特定目的将原型的某一部分信息简缩、提炼而构造的原型替代物。 ( ) A .对象 B .模型 C .参照物 D. 公式 2.当模型假设改变时,可以导出模型结构的相应变化;当观测数据有微小改变时,模型参数也只有相应的微小变化。说明模型的 好。 ( ) A .逼真性 B .可行性 C .渐进性 D. 强健性 3.经济订货批量公式(EOQ 公式)是 。 ( ) A .r c c T 212= ,222c r c Q = B .r c c T 21=,2 22c r c Q = C .r c c T 212= ,22c r c Q = D. r c c T 21 2=,2 22c r c Q = 4. 是参数估计的常用方法。 ( ) A .微分法 B .差分法 C .数值法 D.最小二乘法 5.人口的指数增长模型和阻滞增长模型都属于 。 ( ) A .优化模型 B .概率模型 C .微分方程模型 D. 统计回归模型 6.在生猪的出售时机一文中,令Q ’(t)=0,得p ’(t)w(t)+p(t)w ’(t)=4,则等式左边所表示的含义是 。 ( ) A .每天的收入 B .每天收入的增值 C .每天投入的资金 D.每天利润的增值 7.在数学建模的过程中,常用的数学软件不包括 。 ( ) A .PHOTOSHOP B .LINGO C .SPSS D. MAPLE 8.在MATLAB 中输入3x ,应键入字符 。 ( ) A .x.^3 B .x.^1/3 C .x.^(1/3) D. x.*(1/3) 二、填空题:本大题共4小题,每小题4分,共16分。 9. 模型假设的作用是 。

数学建模实验答案微分方程模型

实验07 微分方程模型(2学时) (第5章 微分方程模型) 1.(验证)传染病模型2(模型)p136~138 传染病模型2(模型): 0(1),(0)di k i i i i dt =-= 其中, i (t )是第t 天病人在总人数中所占的比例。 k 是每个病人每天有效接触的平均人数(日接触率)。 i 0是初始时刻(0)病人的比例。 1.1 画~di i dt 曲线图p136~138 取0.1,画出i dt di ~的曲线图,求i 为何值时dt di 达到最大值,并在曲线图上 标注。 参考程序:

提示:, , , , , 1)画曲线图 用函数,调用格式如下: () 必须为一个M文件的函数名或对变量x的可执行字符串。 若取[ ],则x轴被限制在此区间上。 若取[ ],则y轴也被限制。 本题可用 ('0.1*x*(1)',[0 1.1 0 0.03]); 2)求最大值 用求解边界约束条件下的非线性最小化函数,调用格式如下:(''12) 必须为一个M文件的函数名或对变量x的可执行字符串。 返回自变量x在区间x1

; %在上面的同一张图上画线(同坐标系) ([0],[],':',[],[0],':'); 4)图形的标注 使用文本标注函数,调用格式如下: 格式1 (,文本标识内容, '', '字符串1') 给定标注文本在图中添加的位置。 ''为水平控制属性,控制文本标识起点位于点()同一水平线上。'字符串1'为水平控制属性值,取三个值之一: '',点()位于文本标识的左边。 '',点()位于文本标识的中心点。 '',点()位于文本标识的右边。 格式2 (, 文本标识内容, '', '字符串2') 给定标注文本在图中添加的位置。 ''为垂直控制属性,控制文本标识起点位于点()同一垂直线上。'字符串1'为垂直控制属性值,取四个值之一: '','','','',''。(对应位置可在命令窗口应用确定) 本题可用 (0,'()m','',''); (0.0012(x),'',''); 5)坐标轴标注 调用函数,和

相关文档
最新文档