箝位型三电平变流器多载波PWM技术研究[1]

箝位型三电平变流器多载波PWM技术研究[1]
箝位型三电平变流器多载波PWM技术研究[1]

二极管箝位型三电平变流器多载波PWM技术研究作者:许鸿飞

作者单位:山西省水利水电勘测设计院,太原,山西,034100本文链接:https://www.360docs.net/doc/9b4746310.html,/Conference_6447217.aspx

三相电压型PWM整流器及仿真

三相电压型PWM整流器及仿真

————————————————————————————————作者:————————————————————————————————日期:

电力电子课程设计课程设计报告 题目:三相电压型PWM整流器与仿真 专业、班级: 学生姓名: 学号: 指导教师: 2015年 1 月 6 日 内容得分 1、三相桥式电路的基本原理(10分) 2、整流电路基本原理(10分) 3、pwm控制的基本原理(10分 4、三相电压型pwm整流电路仿真模型(30分) 5、结果分析(30分) 6、程序文件(10分) 总分

摘要:叙述了建立三相电压型PWM整流器的数学模型。在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。 关键词:整流器;PWM;simulink

目录 一任务书 (1) 1.1 题目 (1) 1.2 设计内容及要求 (1) 1.3 报告要求 (1) 二基础资料 (2) 2.1 三相桥式电路的基本原理 (2) 2.2 整流电路基本原理 (4) 2.3 pwm控制的基本原理 (6) 2.4 PWM整流器的发展现状 (6) 三设计内容 (8) 3.1 仿真模型 (8) 3.2 各个元件参数 (11) 3.3 仿真结果 (13) 3.4 结果分析 (15) 四总结 (15) 五参考文献 (15)

一任务书 1.1 题目 三相电压型PWM整流器仿真 1.2 设计内容及要求 设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB软件搭建其仿真模型并验证。 设计要求(pwm整流器仿真模型参数): (1)交流电源电压600V,60HZ (2)短路电容30MVA (3)外接负载500kVar,1MW (4)变压器变比 600/240V (5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。 1.3 报告要求 (1)叙述三相桥式电路的基本原理 (2)叙述整流电路基本原理 (3)叙述pwm控制的基本原理 (4)记录参数(截图) (5)记录仿真结果,分析滤波结果 (6)撰写设计报告 (7)提交程序源文件

PWM电流源型变流器

电力电子学大作业 题目:PWM流源型变流器学院:电气与电子工程学院专业:电力电子与电力传动学生姓名: 授课教师: 2011年6 月7日

PWM电流源型变流器 摘要:本文对PWM电流源型逆变器(CSI)和PWM电流源型整流器(CSR)进行了深入研究。根据两者的谐波特性,都采用用了特定谐波消除(SHE)这中调制方法。通过Matlab/Simulink仿真得到相关波形,并由此结果可知特定谐波消除法对PWM电流源型变流器而言是一种非常有效的调制方法。 关键词:SHE、电流源型、逆变、整流 随着门极换相晶闸管(GCT)器件的出现,中压传动系统中越来越多的使用PWM电流源型变流器。PWM电流源型变流器分为PWM电流源型逆变器和PWM电流源型整流器。前者具有拓扑结构简单、输出波形好、短路保护可靠等优点,在中压传动系统中使用得非常广泛;后者具有功率因数高、进线电流畸变程度低、动态响应性能好等特点。 本文分别对PWM电流源型逆变器和PWM电流源型整流器进行了介绍,两者都采用了SHE调制法。本文还将对这个调制方法进行详细介绍,并分析采用该调制法的两种变流器的谐波特性。 1.PWM电流源型逆变器 1.1 逆变器结构 图1 理想的PWM电流源型逆变器 如图1所示为理想化的PWM电流源型逆变器,它由6个GCT器件构成逆变器,且此GCT是具有反阻断能力的对称型结构。在中压传动系统中,这6个GCT器件还可以由两个或更多个器件串联代替。直流输入侧是一个理想的电流源。在实际应用中,电流源可以用电流源型整流器实现。 输入端引入的三相电容是用来帮助开关器件换相的。当开关关断的瞬间,逆变器输出的电流必须在很短的时间内减小到零,电容则为储存在负载电感中的能量提供电流通路,否则可能产生很高的电压尖峰,并导致功率开关器件损坏。同时,此电容还可以起滤波的作用,以改善输出电流、电压波形。且电容值可以随

关于电流源型高压变频器

关于CSI型高压变频器的认识 异步电动机变频调速已得到广泛的应用。变频器的花样种类繁多,变频器的供应商们为了推销自己的产品,都进行商业炒作,大力宣传自己的优点和他人产品的缺点,使人眼花缭乱。而各种产品,只要它们在市场上站得住脚,就必然有它们各自的优点和缺点。市场是无情的,如果都是缺点,该产品必然被淘汰,若都是优点它必然淘汰别人。 一、高压变频器的分类 1、按技术方案分类 A、电压源型(VSI) B、电流源型(CSI) 2、按主电路结构分类 A、交—交调速方式 B、交—直—交调速方式 3、按电压变换方式分类 A、高—低—高 B、高—高 4、按电路拓朴结构分类 A、单元串联多电平 B、三电平 C、电容箝位四电平 D、功率器件直接串联 二、国内外高压变频器研究开发现状 1、国外最具代表性的生产厂家及结构有:

各自的产品推出。 2、国内高压变频产品情况 南中科、广州智光、广东明阳、哈尔滨九州、合康亿盛、北京康沃、东方日立、上海科达、湖北三环、安邦信、山东点石、国电南自、安徽颐和、天津先导倍尔等生产厂家以单元串联多电平方式为主,清华大学及一些单位则在研究开发三电平方式的高压变频产品。 三、VSI型与CSI型高压变频器的比较 1、VSI型单元串联多电平高压变频器 1994年,美国罗宾康公司推出了全球第一台单元串联式多电平高压变频器,并取名为“完美无谐波变频器”,1998年5月,罗宾康公司又提出了中心点偏移式功率单元旁路的方法,在故障功率单元被旁路后,通过

调节三相输出电压的之间的相位,保证输出线电压仍保持三相对称,电机能正常运行,该技术使单元串联多电平变频器的可靠性得到很大提高。单元串联式多电平高压变频方案在我国获得了大面积推广,北京利得华福公司HARSVERT-A系列,北京先行公司HVF系列,上海科达公司MAXF系列,东方凯奇公司等高压变频调速器制造厂等均采用这种结构。为了减少串联功率单元数,简化系统以及进一步降低输出谐波含量,日本富士电机Fuji公司的FRENIC4600FM4系列,采用12脉冲不可控整流和三电平单相PWM逆变,达到功率单元数减少一半的目的。单元串联多电平变频器的输出电压可达到10kV。 2、飞跨电容箝位型三电平高压变频器 1992年,T.A.Maynard和H.Foch提出用飞跨电容取代箝位二极管,构 建飞跨电容箝位型多电平主电路。电容箝位型多电平变流器的电平合成自由度和灵活性高于二极管箝位型多电平变流器,但控制方法非常复杂,而且开关频率增高,开关损耗增大,效率随之降低。法国阿尔斯通公司的alspa cdm6000系列高压变频器,是采用IGBT器件的飞跨电容四电平变频器,可四象限运行,输出波形较好,谐波含量和dv/dt较小(dv/dt<500dv/dt)。但是,从元件不串联的原则出发,目前三电平方式还不能直接输出6000V电压,以高压IGBT 或IGCT 为例,目前实用的电压等级最 高为6500V,输出交流电压最高为4.6KV。若要求更高的输出电压,只能采用器件直接串联或采用输出侧升压变压器,而器件直接串联时就带来稳态和动态均压问题,这样就失去了三电平变频器本身不存在动态均压问题的优点,降低了系统的可靠性;输出采用升压变压器则无疑增加了装置成本,系统效率和功率因素降低。 3、CSI型高压变频器 电流源型(CSI)高压变频器代表厂商是AB公司。上世纪末,高压

一种电流型PWM控制芯片的设计

2007年第 24卷第 8期微电子学与计算机 1引言 目前 , 国内 DC-DC 电源需求量日益增大。 DC-DC 转换器分为线性电源和开关型电源。开关型电源的调整管工作在开关状态 , 功耗小 , 效率高 , 因此在计算机、通信、雷达、电子仪器以及家用电器等电子领域有着广泛的应用前景。文中设计并实现了一种高性能的 PWM 控制芯片 , 主要用于开关型 DC-DC 电源的功率控制。该芯片采用可调整的带隙基准源 , 具有基准电压精度高、温漂低的优点。电流型反馈模式的采用使其与传统电压模式的 PWM 控制器相比 , 具有系统动态响应快的明显优点。芯片结构设计合理 , 控制功能齐全 , 为 DC-DC 电源系统提供了高性能的关键芯片。 2电路工作原理及其电流型反馈模式 如图 1所示 , 虚线框内为本电路的设计内容 , 框外是其典型应用的简化电路。本电路的主要模块包括电压基准、振荡器、误差放大器、电流检测比较器、PWM 锁存器、欠压锁定电路、输出级电路和过压保护电路等。 电路工作原理如下 :系统的输出电压 V O U T 经过分压处理作为误差放大器的输入 , 与内部电压基准模块提供的 2.5V 基准电压比较后产生误差电压 , 而变压器初级线圈 (电感的电流在采样电阻上产生 的电压降 V IO U T 作为电流检测比较器的输入 , 与误差放大器产生的误差电压进行比较 , 经过PWM 锁存器和输出级的功率放大 , 输出 PWM 控制信号 Out- 一种电流型 PWM 控制芯片的设计

师娅 , 唐威 (西安微电子技术研究所 , 陕西西安 710054 摘要 :设计并实现了一种高性能的功能齐全的电流型 PWM 控制芯片。电路采用可调整的带隙基准源和电流型反馈模式 , 具有基准精度高、温漂低、系统动态响应快等优点。电路的输出级驱动电流可达 1A , 开关频率可达 500kHz , 具有过压、过流保护和欠压锁定的功能。 关键词 :PWM 控制器 ; 带隙基准 ; 电流型 中图分类号 :TN4文献标识码 :A 文章编号 :1000-7180(2007 08-0145-04 Design of Current-Mode PWM Controller SHI Ya , TANG Wei (Xi ′ an Microelectronic Technology Institute, Xi ′ an 710054, China Abstract :A high performance current mode PWM controller chip is implemented in this paper. High precision, low temperature coefficent and fast dynamic response is achieved by using adjustable bandgap reference and current mode of control in this chip. In addition, The PWM controller can reach up to output current of 1A and switching frequency of 500kHz, and has function such as UVLO, over-voltage and over-current protecting. Key words :PWM controller ; bandgap reference ; current mode 收稿日期 :2006-11-23 145 微电子学与计算机 2007年第 24卷第 8期

电流型PWM IC

UC3844是美国Unitrode公司(已被TI公司收购)生产的高性能电流型脉宽调制器(PWM)控制器。早期的PWM控制器是电压控制型的,常用的电压型PWM控制器有TL494、TL495、SG3524、SG3525等。电压型PWM是指控制器按反馈电压来调节输出脉宽,电流型PWM是指控制器按反馈电流来调节输出脉宽。 电流型PWM是在脉宽比较器的输入端,直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比,使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型PWM控制器。 电流型PWM 电流型PWM正是针对电压PWM型的缺点发展起来的。它在原有的电压环上增加了电流反馈环节,构成电压电流双闭环控制。内环为电流控制环,外环为电压控制环。无论电流的变化,还是电压的变化,都会使PWM 输出脉冲占空比发生变化。这种控制方式可改善系统的电压调整率,提高系统的瞬态响应速度,增加系统的稳定性。其控制系统框图如图2所示。

电流型PWM控制的优点如下: a)电压调整率好。输入电压的变化立即引起电感电流的变化,电感电流的变化立即反映到电流控制回路而被抑制。不像电压控制要经过输出电压反馈到误差放大器,然后再调节的复杂过程,所以响应快。如果输入电压的变化是持续的,电压反馈环也起作用,因而可以达到较高的线形调整率。 b)负载调整率好。由于电压误差放大器可专门用于控制占空比,以适应负载变化造成的输出电压的变化,因而可大大改善负载调整率。 c)系统稳定性好。从控制理论的角度讲,电压控制单闭环系统是一个无条件的二阶稳定系统。而电流控制双闭环系统是一个无条件的一阶稳定系统,系统稳定性好。 电流型PWM控制芯片UC3844的基本原理 UC3844是电流型单端输出式PWM,其最大占空比为50%,启动电压16V ,具有过压保护和欠压锁定功能。当工作电压大于34V时,稳压管稳压,使内部电路在小于34V电压下可靠工作;当输入电压低于10V时,芯片被锁定,控制器停止工作。其内部框图和引脚图如图3所示。

电流型PWM 控制器在电源中的应用

电流型PWM 控制器在电源中的应用 发布日期:2009-3-16 14:51:51文章来源:搜电浏览次数:51 1 双环电流型PWM控制器工作原理 双环电流型脉宽调制( PWM) 控制器是在普通电压反馈PWM 控制环内部增加了电流反馈的控制环节,因而除了包含电压型PWM 控制器的功能外,还能检测开关电流或电感电流,实现电压电流的双环控制。双环电流型PWM控制器电路原理如图1 所示。 从图1 可以看出,电流型控制器有两个控制闭合环路:一个是输出电压反馈误差放大器A ,用于与基准电压比较后产生误差电压;另一个是变压器初级(电感) 中电流在Rs 上产生的电压与误差电压进行比较,产生调制脉冲的脉宽,使得误差信号对峰值电感电流起着实际控制作用。 系统工作过程如下:假定输入电压下降,整流后的直流电压下降,经电感延迟使输出电压下降,经误差放大器延迟,Vea上升,占空比变化,从而维持输出电压不变,在电流环中电感的峰值电流也随输入电压下降,电感电流的斜率di/dt 下降, 导致斜坡电压推迟到达Vea ,使PWM 占空比加大,起到调整输出电压的作用。由于既对电压又对电流起控制作用,所以控制效果较好在实际中得到广泛应用。 2 双环电流型PWM控制器的特点 a) 由于输入电压Vi 的变化立即反映为电感电流的变化,不经过误差放大器就能在比较器中改变输出脉冲宽度(电流控制环) ,因而使得系统的电压调整率非常好,可达到0.01 %/V ,能够与线性移压器相比。 b) 由于双环控制系统内在的快速响应和高稳定性,反馈回路的增益较高,不会造成稳定性与增益的矛盾,使输出电压有很高的精度。 c) 由于Rs 上感应出峰值电感电流,只要Rs 上电平达到1 V ,PWM控制器就立即关闭,形成逐个脉冲限流电路,使得在任何输入电压和负载瞬态变化时,功率开关管的峰值电流被控制在一定范围内,在过载和短路时对主开关管起到有效保护。 d) 误差放大器用于控制,由于负载变化造成的输出电压变化,使得当负载减小时电压升高的幅度大大减小,明显改善了负载调整率。 e) 由于系统的内环是一个良好的受控电流放大器,所以把电流取样信号转变成的电压信号和一个公共电压误差放大器的输出信号相比较,就可以实现并联均流,因而系统并联较易实现。

第3讲 电压源型变流器的数学模型

第3讲电压源型变流器的数学模型 电力电子变换器是以电力电子器件为基础、采用一定的电路结构形式对电能进行变换的系统或装置,其显著特点是能够对电能进行灵活、准确、连续的控制。因此,现代大容量风电机组大多引入了电力电子变换器以改善机组的运行性能。目前,应用于风力发电中的电力电子变换器主要是基于全控型电力电子器件的交直交电压源型变流器,本节主要介绍电压源型变流器的数学模型。 3.1 三相电压源型变流器的工作原理 图1给出了三相电压源型变流器的原理结构:直流侧并联一个单极性的直流电压源或支撑电容,直流电源或支撑电容的容量足够大,能在持续充/放电和器件换相过程中保持电压不会发生很大的变化。为讨论方便,在本章中假定直流电容电压恒定,并且直流电流是双向流动的,从而实现电能的双向交换。交流侧通过一定的接口电感与交流系统(电网或负载)相连,串联电感的作用是在交流电压源内阻抗较小的情况下,防止直流侧电容发生短路而快速向容性负载放电,损坏器件和装置。接口电感可以是分立的电抗器,也可以是连接变压器的漏抗。 由于电压型变流器中电压的极性不变,而直流电流是双向的,因此所采用的可关断器件组(开关阀)只需阻断正向电压而无需阻断反向电压,同时应具备双向电流导通能力。图中可关断器件V1和一个等容量的二极管VD1反并联构成电压型变流器的开关阀,同理,V2、VD2,…,V6、VD6也分别构成了5个开关阀。 可关断器件V1~V6一般有三个端子:两个端子联结在主电路中流通主电路电流,而第三端为控制端。可关断器件V1~V6的导通或者关断是通过在其控制端和一个主电路端子之间施加一定的控制信号来控制的。为防止直流侧电压源短路,同一支路上的上、下桥臂不能同时导通。 可关断器件导通后,联结在主电路中的两个端子之间的阻抗非常小,相当于短路;可关断器件关断后,联结在主电路中的两个端子之间的阻抗非常大,相当于开路,即可关断器件相当于可控理想开关。 下面以A相输出控制为例,分析电压源型变流器的工作原理: 当可关断器件V1开通、V2处于关断状态时,正向直流端和交流侧A相连,相对于直流侧电源假想中点的交流输出电压跳变为Udc/2。当可关断器件V1关断、V2开通时,负向直流端和交流侧A相连,相对于直流侧电源假想中点的交流输出电压跳变为-Udc/2。即变流器交流侧输出电压完全受控于可关断器件的工作状态。

变流器的作用和原理2.14

变流器的作用和原理是什么? 一、变流器一般是电力电子元件实现的,作用是实现功率的传递,按照两端电压类型不同大概可分为以下几种: a) DC/DC变流器,两端都是直流,可以等效为直流变压器; b) AC/DC变流器,或者称为可控整流装置,实现交流到直流的功率 传输; c) DC/AC变流器,或者称为逆变器,实现直流到交流的功率传输; d) AC/AC变流器,就是变频器了,实现交流频率的变换 e) AC-DC-AC变流器,也是变频器,作用如上 原理一两句就很难说清了,需要很多专业知识。 二、变流器 变流器是使电源系统的电压、频率、相数和其他电量或特性发生变化的电器设备。 1.含义 包括整流器(交流变直流)、逆变器(直流变交流)、交流变流器(交流变频器)和直流变流器(直流斩波器)。 2.构成原理 变流器除主电路(分别为整流电路、逆变电路、交流变换电路和直流变换电路)外,还需有控制功率开关元件通断的触发电路(或称驱动电路)和实现对电能调节、控制的控制电路。变流器的触发电路包括脉冲发生器和脉冲输出器两部分。前者根据控制信号的要求产生一定频率、一定宽度

或一定相位的脉冲;后者将此脉冲的电平放大为适合变流器中功率开关元件需要的驱动信号。 触发电路按控制的功能可分为相控触发电路(用于可控整流器、交流调压器、直接降频器和有源逆变器)、斩控触发电路和频控触发电路。采用正弦波的频控电路不仅能控制逆变器的输出电压,还能改善输出电压的质量。 变流器的控制电路按控制方式分开环控制电路和闭环控制电路。前者主要用在要求不高的一些专用设备;后者具有自动控制和调节的作用,广泛应用在各种工作机械上。 按控制信号性质分模拟控制电路和数字控制电路。模拟信号最常采用的是直流电压和电流,便于用电的方法加以处理和变换;数字信号是一组信息参量具有离散值的不连续变化的信号。数字控制具有高精度,但电路较为复杂,价格昂贵。因此,实际上广泛应用的是数字模拟混合式控制电路。此外,采用微型计算机的控制电路也具有很多优点。 3.分类 一般用途变流器converter,general purpose 由一个或多个电子开关器件和相关的元器件,与变压器、滤波器、换相辅助器件、控制器、保护和辅 助部件(若有)组成的,用于改变一个或多个电气特性的电力变换用的工作单元。 整流rectifying-rectification

电流型PWM控制器功率因数校正方法。。。

电压型PWM是指控制器按反馈电压来调节输出脉宽,而电流型PWM是指控制器按反馈电流来调节输出脉宽。电流型PWM是在脉宽比较器的输入端,直接用流过输出电感线圈 电流的信号与误差放大器输出信号进行比较,从而调节占空比,使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压 调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型PWM控制器。 1 双环电流型PWM控制器工作原理 双环24V电源电流型脉宽调制(PWM)控制器是在普通电压反馈PWM控制环内部增加了电流反馈的控制环节,因而除了包含电压型PWM控制器的功能外,还能检测开关电流或电感电流,实现电压电流的双环控制。双环电流型PWM控制器电路原理如图1所示。 从图1可以看出,24V电源电流型控制器有两个控制闭合环路:一个是输出电压反馈误差放大器A,用于与基准电压比较后产生误差电压;另一个是变压器初级(电感)中电流在Rs上产生的电压与误差电压进行比较,产生调制脉冲的脉宽,使得误差信号对峰值电感电流起着实际控制作用。https://www.360docs.net/doc/9b4746310.html,/520010/星战风暴 系统工作过程如下:假定输入电压下降,整流后的直流电压下降,经电感延迟使输出电压下降,经误差放大器延迟,Vea上升,占空比变化,从而维持输出电压不变,在电流环中电感的峰值电流也随输入电压下降,电感电流的斜率di/dt下降,导致斜坡电压推迟到达Vea,使PWM占空比加大,起到调整输出电压的作用。由于既对电压又对电流起控制作用,所以

控制效果较好在实际中得到广泛应用。 2 双环电流型PWM控制器的特点 a)由于输入电压Vi的变化立即反映为电感电流的变化,不经过误差放大器就能在比较器中改变输出脉冲宽度(电流控制环),因而使得系统的电压调整率非常好,可达到0.01%/V,能够与线性移压器相比。 b)由于24V电源双环控制系统内在的快速响应和高稳定性,反馈回路的增益较高,不会造成稳定性与增益的矛盾,使输出电压有很高的精度。 c)由于Rs上感应出峰值电感电流,只要Rs上电平达到1V,PWM控制器就立即关闭, 形成逐个脉冲限流电路,使得在任何输入电压和负载瞬态变化时,功率开关管的峰值电流被控制在一定范围内,在过载和短路时对主开关管起到有效保护。 d)误差放大器用于控制,由于负载变化造成的输出电压变化,使得当负载减小时电压升高的幅度大大减小,明显改善了负载调整率。 e)由于系统的内环是一个良好的受控电流放大器,所以把电流取样信号转变成的电压 信号和一个公共电压误差放大器的输出信号相比较,就可以实现并联均流,因而系统并联较易实现。 3 双环电流型PWM控制器功率因数校正 正是基于以上特点,电流型PWM控制器在实际应用中被越来越广泛地采用。对它采用 功率因数校正技术,可以有效地减少高次谐波对电网的干扰,减小功耗,具有较大的实际意义。 3.1 功率因数校正方法 功率因数校正主要有两种方法:一种是将电网上公用负载端并接一个专用的功率变换器,对无功和谐波进行补偿;另一种是将负载的整流电路与滤波电容之间增加一个功率变换电路,将输入电流校正成与电网电压相近的正弦波。实现功率因数校正在CCM和DCM下

交互式有源箝位电流型PWM控制IC_LM5034

交互式有源箝位PWM控制IC--LM5034. 有源箝位正激式变换器有一系列的优点,然而要想获得更大的功率输出,只靠一只功率MOSFET就有些困难,那么如何利用原系统EMI以及输入电路的工作间隙进一步扩大输出功率呢?搞一个交互式有源箝位正激电路可能是最经济的方法。 一般有源箝位正激电路正常工作的占空比为40~50%,另外50~60%的时间为空档。我们将两个有源箝位正激电路放在一起,同频同步工作,但功率元件的导通信号差1800时将会非常优秀,此外两路工作既可以满足不同的多输出电压的需要,也可以做单输出的并联。 LM5034即是这样一款交互式控制方式有源箝位正激电路的控制IC。 LM5034中有一个100V高压以下的起动电路,然后由一个振荡器去控制两路正激拓扑,每路还都给出有源箝位驱动的重叠调节,两路各自的最大占空比控制。此外还给出欠压锁定,逐个周期式电流限制,打呃式的故障保护,可调整重新起动时间,电流型工作的斜率补偿,软起动及2MHz的最高振荡频率。每路栅驱动输出高达2.5A等,因此可以实现大功率仅次于全桥电路拓朴的功率输出。 内部等效电路如图1所示。 图1 LM5034控制器的内部等效电路

LM5034采用20Pin引脚的包封,下面先介绍各端子的功能。 1Pin OVLP.有源箝位的重迭时间设置。(间隔调整)在其外部接一支电阻到GND(10K~100K)设置此重迭时间,它用于调节功率开关的ZVS状态。 2Pin V1N.高压起动端子,输入电压可从13V~105V。 3Pin Comp1.PWM控制信号给1通道的PWM比较器的反相端子,OUT1的占空比随Comp1电压增加而增大,内部5KΩ电阻外接光耦。 4Pin CS1电流检测输入,1通道的电流取样及电流限制的检测,如果CS1超出0.5V,OUT1即被终止。其通过一外部电阻接出以调节PWM的斜率补偿,不得超过1.25V。 5Pin SS1第一通道的软起动端子,外接一电容设置软起动时间,充电电流为50uA,若故障后重新起动则电流仅为1uA。 6Pin UVLO输入欠压锁定,外部一个电阻分压器从输入到地,然后接于此端,UVLO参考电压为1.25V,内部开关给出25uA电流,可调节UVLO的窗口阈值,此外UVLO端的电压还控制着最大占空比。 7Pin VCC1起动调节器输出,给1通道提供一个7.7V的稳定电压,Vcc1及Vcc2两通道供电总合会超过19mA。 8Pin OUT1.第一通道栅驱动输出,频率为振荡器的1/2,电平为7.7V到GND。 9Pin AC1第一通道箝位MOSFET驱动输出,相位电平适合于P沟MOSFET。若驱动N沟MOSFET则需采用变压器隔离及倒相其与OUT1的交越(间隔)由OVLP端上的电阻调节。 10Pin GND1.第一通道的公共端。 11Pin GND2.第二通道的公共端。 12Pin. AC2.第二通道的箝位MOSFET驱动输出,它与OUT2的交越时间同样由OVLP调节。 13Pin OUT2第二通道主功率MOSFET输出驱动。同样,频率为振荡器的1/2,幅度为7.7V到GND。 14Pin VCC2起动调节器输出给二通道供电。 15Pin RES打呃保护及重新起动时间调节。 16Pin SS2软起动,控制器2通道软起动时间控制。 17Pin CS2 第二通道的电流检测输入。 18Pin COMP2.PWM控制信号给二通道PWM比较器,功能与COMP1相同。 19Pin DCL 最大占空比设置端。用一只外接电阻到地同时给OUT1和OUT2来设置。 20Pin RT/SYNC 振荡器定时电阻,调节振荡器频率,并用于外同步输入。 LM5034控制功能描述 LM5034 IC内包含了实现交互式有源箝位,正激电路控制的全部功能。两个独立通道,一个振荡频率,相差1800的工作相位差,这就大大减小了输入的滤波及纹波电流。每个通道都包含了完整的PWM控制器,电流检测端子,软起

电流控制型pwm控制芯片

摘要:介绍并比较了电压控制型和电流控制型DC/DC变换器的基本原理,设计出了基于电流控制型PWM 控制芯片UC3846的大功率DC/DC变换器的实用电路,提出了两种UC3846输出脉冲封锁方式,设计出一种新颖的IGBT驱动电路,实验结果证明,该电路具有较好的控制特性和稳定性。 关键词:DC/DC变换器;脉宽调制;电压控制型;电流控制型;IGBT驱动 0 引言 随着工业、航空、航天、军事等应用领域技术的不断发展,人们对开关稳压电源的要求也越来越高。某系统对大功率开关稳压电源提出的要求是:输入电压为AC220V,输出电压为DC38V,输出电流为100A。开关电源的结构一般为先进行AC/DC然后再DC/DC的形式,考虑到论文篇幅的限制,仅对DC/DC变换部分进行讨论。 大功率DC/DC变换器主电路拓扑有很多种,诸如双管正激式、推挽式、半桥式和全桥式等。控制芯片的种类也非常多,主要分为电流控制型与电压控制型两大类。电压控制型只对输出电压采样,作为反馈信号进行闭环控制,采用PWM技术调节输出电压,从控制理论的角度看,这是一种单环控制系统。电流控制型是在电压控制型的基础上,增加一个电流负反馈环节,使其成为双环控制系统,从而提高了电源的性能。 根据对各种拓扑和控制方式的技术成熟程度,工程化实现难度,电气性能以及成本等指标的比较,本文选用半桥式DC/DC变换器作为主电路,电流型PWM控制芯片UC3846作为该系统的控制单元。 1 电压控制型脉宽调制器和电流控制型脉宽调制器 图1为电压控制型变换器的原理框图。电源输出电压的采样反馈值V f与参考电压V r进行比较放大,得到误差信号V e,它与锯齿波信号比较后,PWM比较器输出PWM控制信号,经驱动电路驱动开关管通断,产生高频方波电压,由高频变压器传输至副方,经整流滤波得到所需要的电压。改变电压给定V r,即可改变输出电压V o。 图1 电压控制型的原理图 图2为电流控制型变换器的原理框图。恒频时钟脉冲置位R-S锁存器,输出高电平,开关管导通,变压器原边的电流线性增大,当电流在采样电阻R s上的压降V s达到V e时,PWM比较器翻转,输出高电平,

单相电压型PWM整流器波形分析

单相电压型PWM整流器波形分析对于单相VSR而言,其交流侧基波电压控制有两种PWM的调制方式,即双极性调制和单极性调制。以下将根据双极性PWM的调制方式,分析单相电压型PWM整流器(如图1所示)。 图1 单相电压型PWM整流器 基于matlab的波形分析及仿真结果 将图1的单相电压型PWM整流器在matlab中建立仿真模型如下图所示:

图2 单相电压型PWM整流电路仿真模型 系统仿真参数如下:交流侧电网电压220V,工频直流侧电 阻R L=10Ω。主电路储能元件参数为L=3 Mh,C=143μF。PI参数Ki=2.3,τi=128。 图3 控制信号的时序分布 (1)交流侧电压v(t) 若单相VSR直流侧电容足够大,则在PWM过程中可近似认为其直流侧电压为一定值,即v dc(t)=V dc。这样当采用双极性调制时,单相VSR交流侧电压v(t)波形为幅值在V dc、-V dc间切换的PWM波形。第k周期中v(t)波形如图4所示。

图4 交流测电压波形 (2)电感端电压v L(t) 单相vsr网侧电感端电压v L(t)等于电网电动势e(t)与其交流侧电压v(t)之差,即 v L(t)=e(t)-v(t)。若令e(t)=E m sinωt,且当开关频率远高于电网基波频率时,第k个开关周期中e(t)可近似为一常值,即 e(t) ≈ e(kT s)=E m sinωkTs。其中,kT s ≤ t ≤ (k+1)T s。如图5所示。 图5 电感电压波形 (3)网侧电流i(t) 若忽略单相VSR网侧电阻,则网侧电流i(t)为:i(t)=1/L∫v L(t)d t=1/L∫[e(t)-v(t)]d t 得第k个开关周期网侧电流表达式为:i(t′)=1/L(E m sinωkTs-V dc)t′+i(t′=0) (0≤t′E m) 由于采用双极性PWM控制,第k个开关周期中的PWM占空比D k=(2t on-T s )/ T s;得: Δi km=[T s (V dc-E m sinωkTs) (1+D k)] / 2L 网侧电流i(t)波形如图6所示。

三相电压型PWM变换器

第2章三相电压型PWM变换器 本章首先简要概述了三相电压型PWM变换器的原理,分析了PWM变换器具备四象限运行能力的原因,并介绍了电压型PWM变换器几种常见的拓扑结 α-构。然后给出了电压型PWM变换器分别在三相静止ABC坐标系、两相静止β 坐标系和两相旋转q d-坐标系下的数学模型。 2.1 PWM变换器的基本原理 整流器的发展经历了二极管不控整流、晶闸管相控整流器到可关断功率开关管的PWM整流器。二极管不控与晶闸管相控整流器均会在网侧电流中产生谐波,且功率因数不高,其中,二极管不控整流的直流侧母线电压不可控。PWM 整流器以其优良的性能成为发展的趋势。PWM整流器不但实现网侧电流正弦化,单位功率因数控制,电能的双向传输以及快速的动态控制响应。 PWM整流器不仅实现了传统的AC-DC整流功能,还由于其具备四象限运行能力,使得其可工作在逆变状态,实现电能从直流侧向电网侧传输。由于PW M整流器网侧呈现受控电流源特性,因此其网侧功率因数可控。当控制其网侧电流网测电压同相时,PWM整流器运行于单位功率因数整流状态;当控制器网侧电流与网侧电压反相时,PWM整流器运行于单位功率因数逆变状态。双PWM 交-直-交变频器正是采用了PWM整流和PWM逆变的两种特性。当电机运行于亚同步速发电时,能量从电网通过变频器流入电机,网侧变换器处于整流状态而电机侧变换器处于逆变状态;当电机运行于超同步速时,能量从电机通过变频器回馈到电网,此时网侧变换器处于逆变状态而电机侧变换器处于整流状态。两变换器的工作状态的转换完全由功率流向决定、自动完成。

PWM变换器电路可看作由交流回路、功率开关管桥路以及直流回路组成,如图2.1。其中,交流回路由电网电动势e和交流侧电感L组成;功率开关管桥路依据电压型或电流型PWM变换器有所不同;直流回路由负载电阻R L和负载电动势e L组成。当不考虑功率开关管的桥路损耗时,交流侧输入或回馈的功率和直流侧消耗或产生的功率相平衡,有: i?v=i dc?v dc (2.1)其中:v、i为交流侧电压、电流;v dc、i dc为直流侧电压、电流; 由式2.1可知,通过控制交流侧的电压、电流可实现对直流侧的控制;反过来,通过直流侧的控制可实现交流侧的控制。 图2.1 PWM变换器模型电路 2.1.1 PWM变换器的四象限运行 为便于理解PWM变换器的四象限运行能力,从变换器稳态条件下的交流侧矢量关系来阐述,如图2.2。当网侧电流矢量I幅值不变时,由|V L|=ωL|I|可知,电感电压矢量V L的幅值也不变,电网电压矢量也可看作不变,则可以得到交流侧电压矢量V的轨迹为一个以电感电压矢量V L的幅值为半径的圆。PWM整流器可运行圆上的任一点而呈现不同的特性。其中有4个运行点最为特殊,它们分

电流型PWM控制芯片UC3844引脚图及工作原理

电流型PWM控制芯片UC3844引脚图及工作原理 基本原理 UC3844 是电流型单端输出式PWM ,其最大占空比为50% ,启动电压16V ,具有过压保护和欠压锁定功能。当工作电压大于34V 时,稳压管稳压,使内部电路在小于34 电压下可靠工作;当输入电压低于10V 时,芯片被锁定,控制器停止工作。其内部框图和引脚图如图3 所示。 图3 UC3844 内部框图 UC3844 的工作原理是:反馈电压和2.5 V 基准电压之差,经误差放大器E/A 放大后作为门限电压,与反馈电流经采样后的电压,一起送到电流感应比较器。当电流取样电压超过门限电压后,比较器输出高电平触发RS 触发器,然后经或非门输出低电平,关断功率管,并保持 这种状态直至振荡器输出脉冲到触发器和或非门为止。这段时间的长短由振荡器输出脉冲宽度决定。PWM 信号的上升沿由振荡器决定,下降沿由功率开关管电流和输出电压共同决定。反转触发器限制PWM 的占空比调节范围在0~50 %之内。 UC3844 的振荡工作频率由引脚4 与引脚8 之间所接定时电阻RT、脚4 与地之间所接定时电容CT 设定。计算公式为: f = 1/T = RTCT/0.55 = 1.72RTCT。 引脚2 是电压反馈端,将取样电压加至E/A 误差放大器的反相输入端,与同向输入端的2.5 V 基准电压进行比较,产生误差电压。利用内部E/A 误差放大器可以构成电压环。引脚3 是电流反馈端,电流取样电压由引脚3 输入到电流比较器。当引脚3 电压大于1V 时,输出关闭。利用引脚3 和电流比较器可以构成电流环。引脚1 是补偿端,外接阻容元件以补偿误差放大器的频率特性。引脚8 为5V 基准电压,带载能力50mA。引脚6 为推挽输出端,有拉、灌电流的能力。引脚5 为公共端。引脚7 为集成块工作电源端,电压范围为8V~40V。 UC3844 的输出级为图腾柱式电路,与SG3525 的一端完全相同。输出平均电流值为±200mA ,最大峰值电流±1A ,可直接驱动功率管。由于峰值电流自限,可以不要串入限流电阻。 对于电流型控制芯片UC3844 ,使输出驱动信号关断的方法有两种:一种是将引脚1 电压降至1V 以下,另一种是将引脚3 电压升至1V 以上。这两种方法都是使电流比较器输出高电

双环电流型PWM控制器工作原理

1 双环电流型PWM控制器工作原理 双环电流型脉宽调制( PWM) 控制器是在普通电压反馈PWM 控制环内部 增加了电流反馈的控制环节,因而除了包含电压型PWM 控制器的功能外,还能检 测开关电流或电感电流,实现电压电流的双环控制。双环电流型PWM控制器电路原理如图1 所示。 从图1 可以看出,电流型控制器有两个控制闭合环路:一个是输出电压反馈 误差放大器A ,用于与基准电压比较后产生误差电压;另一个是变压器初级(电感) 中电流在Rs 上产生的电压与误差电压进行比较,产生调制脉冲的脉宽,使得误 差信号对峰值电感电流起着实际控制作用。 系统工作过程如下:假定输入电压下降,整流后的直流电压下降,经电感 延迟使输出电压下降,经误差放大器延迟,Vea上升,占空比变化,从而维持输出 电压不变,在电流环中电感的峰值电流也随输入电压下降,电感电流的斜率 di/dt 下降, 导致斜坡电压推迟到达Vea ,使PWM占空比加大,起到调整输出电 压的作用。由于既对电压又对电流起控制作用,所以控制效果较好在实际中得到广泛应用。 2 双环电流型PWM控制器的特点 a) 由于输入电压Vi 的变化立即反映为电感电流的变化,不经过误差 放大器就能在比较器中改变输出脉冲宽度(电流控制环) ,因而使得系统的电压 调整率非常好,可达到0.01 %/V ,能够与线性移压器相比。 b) 由于双环控制系统内在的快速响应和高稳定性,反馈回路的增益较高,不会造成稳定性与增益的矛盾,使输出电压有很高的精度。 c) 由于Rs 上感应出峰值电感电流,只要Rs 上电平达到1 V ,PWM控制器就立即关闭,形成逐个脉冲限流电路,使得在任何输入电压和负载瞬态变化时,功率开关管的峰值电流被控制在一定范围内,在过载和短路时对主开关管起到有效保护。 d) 误差放大器用于控制,由于负载变化造成的输出电压变化,使得当负载减小时电压升高的幅度大大减小,明显改善了负载调整率。 e) 由于系统的内环是一个良好的受控电流放大器,所以把电流取样信号转 变成的电压信号和一个公共电压误差放大器的输出信号相比较,就可以实现并联均流,因而系统并联较易实现。

相关文档
最新文档