GDI发动机的发展趋势

GDI发动机的发展趋势
GDI发动机的发展趋势

缸内直喷汽油机技术发展趋势分析

前言

近几十年来,受能源日益枯竭、油价不断上涨、全球变暖等问题的困扰,在满足发动机排放要求的前提下改善发动机燃油经济性显得格外迫切。由于汽油机的燃油经济性比柴油机差,所以。降低汽油机的能耗已经成为汽车界当前必须要解决的问题。开发具有汽油机优点同时又具备柴油机部分负荷高燃油经济性优点的车用发动机是主要的研究目标。汽油缸内直(GDI)是提高汽油机燃油经济性的重要手段,近些年来,以缸内直喷为代表的新型混合气形成模式的研究与应用极大地提高了汽油机的燃油经济性。

1.GDI发动机技术发展现状

对于汽油机缸内直喷的工作方式,20世纪50年代德国的Benz300SL车型和60年代MAN—FM系统,70年代美国Texaco的TCCS系统和Ford的PROCO系统就曾经采用过o“。这些早期技术大多基于每缸2气门和碗形活塞燃烧室,利用柴油机的机械泵和喷油器实现后喷。这些早期的GDI发动机在大部分负荷范围实现了无节气门控制并且燃油经济性接近非直喷柴油机。其主要缺点是由于采用机械式供油系统,各负荷甚至全负荷时后喷时刻

是固定的,燃烧烟度限制了空燃比不能超过20:l口采用柴油机供油系统并利用涡轮增压技术来增加功率输出,使得汽油机性能与柴油机相似,且在部分负荷时有更差的HC排放。空气利用效率低,机械供油系统受到转速范围的限制,使得发动机的输出功率非常低。因此,

受当时内燃机制造技术水平的限制,加之尚无电控喷射手段,开发出的GDI发动机性能和排放并不理想,没有得到实际应用。

20世纪90年代以后,由于发动机制造技术的提高,制造精密、性能优良的内燃机部件的应用和精度高、响应快的电控汽油直喷系统的应用使得GDI发动机的研究与应用得到快速发展。GDI发动机瞬态响应好,可以实现精确的空燃比控制,具有快速冷起动和减速断油能力及潜在的系统优化能力,这些都显示了它比进气道喷射汽油机更优越。采用先进的电子控制技术,解决了早期直喷发动机的控制和排放等方面的许多问题。新技术和电子控制策略的发展使得许多发动机制造企业重新考虑GDI发动机的潜在优点。1996年日本三菱汽车公司率先推出1.8L顶置双凸轮轴16气门4G93壁面引导型直喷发动机;丰田公司开发出了同时采用GDI和PFI两套供油系统的2GR--FSEV6发动机;通用公司2004年开发出了采用可变气门定时(VVT)技术的分层稀燃直喷发动机}宝马公司在低压均质混合气直喷GDIV12发动机的基础上,2006年又开发出了可以实现分层稀燃的R6直喷发动机;德国大众公司2000年底利用电子控制系统把与TDI 柴油机相似的原理用在汽油机上,开发了壁面引导型燃油分层直喷FSI发动机,并用于Lupo车上,其i00km的平均油耗只有4.9 L,成为世界上第一辆5L汽油机汽车;2004年奥迪公司开始将其2.OT—FsI燃油分层直接喷射增压汽油机推向市场。

目前,引进的大众FSI发动机是我国唯一量产的GDI发动机。缸内直喷技术对汽油的油品质量是个严格考验,正是基于这个原因,

大众在中国的FSI发动机上取消了分层燃烧技术,只保留了均匀燃烧模式。

由于排放、燃烧稳定性、燃油品质、性能及可靠性等方面的问题限制了GDI发动机普遍应用,GDI技术完全替代PFI技术目前仍然存在一些技术难题。国内外的公司和研究机构也都在积极地开发设计新型直喷发动机,如A VL公司正在开发基于喷射引导和激光点火系统的新一代分层稀燃直喷发动机技术。目前,国内一汽集团、华晨、奇瑞、长安和吉利等汽车企业联合高校正在开发理论空燃比混合气或多种燃烧模式相结合的GDI发动机。

2.GDI技术与PFI气门口喷射技术的比较

混合气形成策略不同是PFI发动机与GDI发动机的主要区别。PFI发动机产品中,20%喷嘴装在气缸盖上进气门的背面,80%安装在进气歧管上靠近气缸盖位置,在发动机起动时,会在进气门附近形成瞬时的液态油膜,这些燃油会在每次进气过程逐渐蒸发进入气缸燃烧。因此,进气口处的油膜如同电容.具有积分的作用,发动机瞬时的供油量不能通过喷油器实现精确控制。由于部分蒸发现象导致油量控制延迟和计量偏差,冷机起动时由于燃油蒸发困难,使得实际供油量远大于需求空燃比的供油量,这样会导致冷起动时发动机有4个~10个循环的不稳定燃烧,显著加大发动机未燃HC排放。GDI技术可以避免气门口燃油湿壁现象,实现燃烧各阶段准确供油,能够实现更稀薄燃烧并且降低缸与缸之间、循环与循环之间的变动,冷起动首循环不需加浓控制,降低瞬态工况HC的排放o]。然而GDI发动机

对燃油蒸发和混合物形成有更严格的要求,需要通过更高的喷油压力提高燃油的雾化率。

PFI发动机的另一限制是中、小负荷时采用节气门来控制负荷,存在节流损失,GDI发动机在中、小负荷时采用分层充气工作模式,通过控制喷人气缸的油量来控制发动机的负荷,不采用节气门可以降低泵气损失和热损失。

GDI发动机理论上不存在上述两方面的限制。除了具有消除油膜湿壁现象和无节气门节流损失的优点外,GDI发动机具有优于PFI 发动机的热力学特性。GDI共轨供油系统可以显著提高供油压力,提高雾化质量和雾化率,这使发动机起动时前两个循环无需额外供油就能实现稳定燃烧,这样GDI发动机冷起动时的HC排放具有降低到稳态工况的潜力。另外,潜在的优点是可以实现减速断油,提高燃油经济性和降低HC排放,对PFI发动机而言,减速断油不是可行的选择,因为这样会减少或消除气门口附近的油膜,而在气门口附近建立稳定的油膜是一个需要几个循环的瞬态过程,这个过程能够使燃烧室内形成很稀的混合气,导致失火或回火。另一个潜在的优点是,缸内直喷能够降低进气温度,提高充气效率,燃油的蒸发能够冷却进气,汽化潜热主要来自新鲜充气,而不是燃烧室壁面,在燃油早喷和后喷阶段均能冷却进气,故在进气过程喷油能够提高充气效率。GDI发动机燃油经济性能够得到显著改善,对于不同的测试循环,最大可以提高20%~30%。

PFI系统相比GDI系统也仍具有一定的优点,如PFI发动机的进

气管相当于预蒸发室,能够增加燃油蒸发的时间,而GDI发动机燃油直接喷人气缸,混合气形成的时间少,燃油喷雾微粒必须足够小以保证燃油在喷油与点火之间的有限时间内能够蒸发,如果燃油液滴没能蒸发就会形成微粒和未燃的HC排放。此外,燃油直接喷到缸内,可能导致燃油冲击到活塞顶部和缸壁表面,这些因素可能导致微粒和Hc排放的增加,并加大了发动机的磨损。PFI发动机的其他优点,如低压喷射系统、可以采用三效催化器、更高的排温提高三效催化器的效率,这些都对GDI发动机的发展提出了挑战。

3.GDI发动机应用中存在的问题

GDI发动机具有柴油机的经济性并保持了汽油机的特点,相对于技术成熟的PFI发动机具有显著优点,但是排放、燃烧稳定性等方面的问题限制了其普遍应用,目前,GDI技术完全替代PFI技术仍然存在一些技术挑战。

a)排放控制

分层混合气浓度非均匀分布,存在较浓的混合气,在这些区域中局部燃烧温度仍然较高,导致Nq排放较多,然而总体混合气较稀不能有效利用三效催化器;分层混合气外边界较稀的部分易发生火焰熄灭现象,同时缸内喷油湿壁现象会使活塞顶部和气缸壁混合气过浓的区域燃烧不好,使得小负荷时HC排放相对较高;分层燃烧工况由于混合气浓度分布不均匀,GDI发动机增加了微粒排放;

b)稳定燃烧控制

GDI发动机分层充气稀燃区域的稳定燃烧控制难度较大。部分

负荷分层稀燃和太负荷均质燃烧模式转变时的控制也非常复杂;为了降低Nq排放GDI发动机采用较高的EGR率,且喷油嘴沉积物增加,都增加了稳定燃烧控制的难度。

c)燃油经济性

燃油缸内直喷需要较高的供油压力,提高喷油压力和油泵回流增加了发动机机械损失,喷嘴、油泵驱动额外增加了电能消耗,催化器快速起燃和再生补偿也增加了燃油消耗;

d)性能和可靠性

相对PFI发动机,GDI发动机喷嘴沉积物和积炭增多,并且由于提高了系统压力,降低了燃油的润滑性,增加了供油系统的磨损;由于使用较稀的混合气,缸套的磨损增加,进气门和燃烧室的沉积物也增加。

e)控制复杂性

GDI发动机从冷起动到全负荷各种工况需要复杂的供油和燃烧

控制,并需要复杂的排放控制系统和控制策略,同时也增加了系统优化的标定参数。

GDI发动机要求复杂的供油系统硬件,需要高压油泵和更复杂的控制系统,由于三效催化器在GDI发动机上不能有效地使用,目前,GDI发动机面临的重要问题是NO。排放控制。虽然GDI发动机稀燃能够降低Nq的排放,但是达不到三效催化器降低Nq排放90%的水平。世界范围内正在开发稀燃催化器,但目前在整个发动机工作区域的N吐转化效率仍低于三效催化器,小负荷时HC排放增加仍待解决。

4.GDI发动机燃烧系统分析

燃烧系统设计是GDI发动机开发的关键技术之一,由于要兼顾大负荷均质预混和中小负荷分层稀薄的不同要求,增加了设计难度。GDI发动机的燃烧系统设计,需要进行燃油喷柬、气流运动和燃烧室形状等的优化合理配合,这其中还涉及到喷油器和火花塞的相对位置和方位的选取、进气道的设计与布置、喷油定时和点火时间的优化等细节的问题。

按照层流充气方式,GDI发动机燃烧系统可以分为3种:喷束引导型,即分层混合气形成主要依赖于喷束动态特性;壁面引导型,即分层混合气的形成主要依赖于油束和活塞表面形状及相互作用;气流引导型,依赖于缸内的流场形成分层混合气。

按照喷油嘴和火花塞之间的距离,GDI发动机燃烧系统可以分为窄间距和宽间距两种。

壁面引导型和气流引导型燃烧系统属于宽间距设计,其优点为可降低燃烧室几何尺寸和热力学的设计约束,增加燃油由喷嘴到火花塞的传输时问,增强混合气的形成,其缺点是混合气形成时问相对窄间距系统长且循环波动使形成的滚流不稳定,不容实现更稀薄的燃烧,故不适合更稀薄的燃烧系统。喷束引导型燃烧系统属于窄间距设计;其优点为具有实现超稀薄燃烧、扩大稀燃区域的潜力,其缺点为混合气的形成时间短,增加了火花塞积炭的倾向,并且对喷束的几何参数、喷嘴的安装误差以及雾化程度等非常敏感。

基于窄间距设计的喷束引导燃烧系统由于具有实现更稀薄燃烧

并扩大稀燃区域的潜力,因此,成为目前发动机生产厂和科研机构开发的下一代燃烧系统。

5.GDI发动机燃烧技术发展趋势

由上述分析可知,GDI发动机的发展面临排放、稳定燃烧控制、燃油经济性提高、性能可靠性以及控制复杂性等方面的挑战。GDI

发动机的燃烧技术搀按照图1所示的方向发展。

5.1 采用均质混台燃烧方式

采用虫=1的均质混合燃烧方式的主要优点是能够采用目前PFI 发动机上广泛使用的三效催化器,可以避免采用稀燃Nq催化转化器,使其排放能够达到越来越严格的排放法规。同PFI发动机和分层稀燃GDI发动机相比,屯一1的均质混合燃烧发动机具有较多优点。

a)发动机起动过程

具有更快速的起动,较少的起动加浓和降低起动HC排放的潜

力;

b)瞬变工况

能够提高瞬态响应,减少加速加浓,实现更精确的空燃比控制,并能够最大限度地实现减速断油f

c)燃烧过程

不需要分层充气和均质充气的模式转换;缸内燃油蒸发冷却充气,压缩行程可以减少热损失,有利于提高燃烧稳定性和EGR率,并能够提高受爆震限制的压缩比;若改为稀燃均质充气模式工作时系统不需要修改;

d)燃油经济性

燃油经济性能够提高5%,客积效率也能够提高5%i能够最大限度地实现减速断油,并能应用直接起一停技术,取消息速,实现进一步节油;

e)动力性能

由于容积效率提高5%,能够提高峰值扭矩和功率7%左右,可以在保持发动机扭矩和功率不变的前提下减小发动机的尺寸;

f)系统的灵活性和复杂性

控制系统比分层稀燃简化,增加了系统优化的灵活性;

g)与其他技术的匹配

更容易实现其他技术,如增压、取消发动机怠速、采用直接起一停技术、采用无级变速器(CVT)和采用混合动力技术。

h)排放

不需要稀燃Nq后处理系统,可以使用三效催化器,同分层稀燃GDI发动机相比具有更低的排放,并能够降低瞬态工况的排放。

因此,均质理论空燃比GDl发动机具有达到未来超低排放法规的潜力,是GDI发动机的一个重要发展方向。

5.2 采用分层充气或均质充气涡轮增压技术

通过提高迸气压力、提高空气利用效率来减小发动机的尺寸是提高发动机经济性的有效途径,传统的PFI发动机由于受到爆震限制和涡轮增压器响应滞后等因素的影响,使得汽油机涡轮增压技术未能迅速发展。GDI发动机由于缸内形成混合气,燃料蒸发能够降低混合气温度,同时混合气在缸内停留的时间相对较短,相同压缩比条件下,GDI发动机要比PF发动机爆震倾向小,对燃料辛烷值的要求低。GDI 发动机小负荷时不使用节气门,进气量相对较大,涡轮增压器转速高,使得GDI发动机在瞬态工况能够实现快速响应随负荷变化引起的涡轮增压变化。GDI发动机应用涡轮增压技术具有下面优势。

a)缸内充气冷却

由于燃油在气缸内蒸发能够显著冷却缸内充气,结合多阶段喷油可以有效地降低爆震倾向,因此,可以实现比常规PFI更高的压缩比;

b)分层充气

由于增加了发动机的充气量,所以,可以扩大发动机稀燃区域的转速和负荷范围;

c)提高涡轮增压发动机瞬态响应

小负荷时不采用节气门,发动机的进气量大,涡轮增压器转速高,因此,即使在部分负荷稀燃区域时涡轮增压的响应延迟也较小。

5.3 优化燃烧系统扩大分层稀燃区域

燃油经济性的提高是影响未来GDI发动机和小型高压共轨柴油机在市场所占比率的重要因素。GDI发动机在分层稀燃区域可以实现节油20%~25%,可以优化GDI发动机燃烧技术,采用新一代喷射引导型燃烧系统,扩大分层稀燃范围,进一步提高GDI发动机经济性“”。表1列出GDI发动机各部分的效率提高与屯之间的关系,由表可看出,提高屯能够大幅提高发动机的热效率,扩大直喷发动机分层充气稀燃区域是新一代直喷供油系统的发展趋势。因此,基于窄间距设计的喷束引导燃烧系统具有实现更稀薄燃烧并扩大稀燃区域的

潜力,将成为下一代GDI发动机的首选燃烧系统。

5.4 实现GDI发动机的HCCI燃烧

分层稀燃GDI发动机的混合气不均匀,NOx会在燃科较稀的高温区产生,而在混合气较浓的区域易产生碳烟。在HCCI的燃烧过程中,理论上是均匀混合气完全压燃、自燃,无火焰传播过程,这样可以阻

止NOx和微粒的生成,同时能够实现较高的燃油经济性。若实现HCCI燃烧可以不需要任何后处理装置即可达到欧Ⅵ或更加严格的排放法规,但是,HCCI燃烧的实现需要解央两个问题,即点火时刻的控制和发动机整个工况内的燃烧速率的控制。

HCCI燃烧需要通过控制气缸内温度、压力和混合气的浓度来控制整个气缸内混合气的燃烧时刻,没有明确的触发手段来控制燃烧,局部的温度变化或空燃比变化都是控制HCCI燃烧起始时刻的关键变量,使燃烧控制变得十分困难。采用GDI技术燃油直接喷人气缸内,能够更加灵活地控制喷油时刻和精确控制喷油量,为HCCI燃烧模式的实现提供了可能。应用GDI技术实现HCCI燃烧具有以下优点:

a)缸内直喷可以通过改变喷油时刻来改变局部混合气浓度;

b)缸内燃油蒸发可以改变缸内局部温度;

c)燃油早喷能够为燃油蒸发和形成均质混合气提供足够的时闫i压缩行程的后喷能够控制气缸内局部区域混合气浓度,从而控制HCCI

燃烧,应用GDI的多阶段喷射可实现这两种喷射;

d)缸内直喷技术在瞬态工况能够实现精确的喷油量控制,有效避免瞬态工况HCCI燃烧爆震或失火。因此,实现HCCl燃烧是GDI技术发展的一个重要方向。

6.结束语

GDI发动机采用屯一1的均质混合气燃烧方式,利用三效催化器,即可达到目前的排放法规,并且燃油经济性能够提高5%;采用分层充气或均质充气时结合涡轮增压技术,通过提高空气利用效率减小发

动机的尺寸,可以进一步提高发动机经济性;GDI发动机分层稀燃区域可以实现节油20%~25%,优化GDI发动机燃烧技术采用新一代燃烧系统,扩大分层稀燃范围,可进一步提高GDI发动机的经济性;HCCI是可实现高效低污染的内燃机燃烧技术,缸内直喷多段喷射是HCCI燃烧在车用发动机上应用更有前途并更具可行性的方式。通过上述技术途径,GDI发动机在满足排放要求的前提下,能够极大地提高燃油经济性,因此,随着燃油价格不断上涨和CO。排放限值日益严格,GDI发动机将会取代PFI发动机成为车辆的标准配置。

制动系统发展历史与趋势

现代汽车制动系统的发展历史与趋势 从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。 一.制动控制系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装臵向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装臵对机械制动器来说已显得十分必要。这时,开始出现真空助力装臵。1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装臵。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器。克

莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装臵一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装臵,控制装臵进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装臵专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的ABS 制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装臵。这些早期的ABS装臵性能有限,可靠性不够理想,且成本高。 1979年,默〃本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的ABS制动装臵。1985年美国开发出带有数字显示微处理器、复合主缸、液压制动助力器、电磁阀及执行器“一体化”的ABS防抱装臵。随着大规模集成电路和超大规模集成电路技

汽车发动机电子控制单元(ECU)

汽车发动机电子控制单元(ECU) 功能说明书 佛山菱电变频实业有限公司王与平 2004年3月 一、概述 汽车发动机控制系统一般有进气系统、燃油供给系统、点火系统、电脑控制系统四大部分组成.进气系统由空气滤清器、空气流量计、节气门、进气总管、进气歧管等组成,它为发动机可燃混合气提供所需空气;燃油供给系统由燃油泵、燃油滤清器、燃油压力调节器、喷油器与供油管等组成,它为发动机可燃混合气提供所需燃油;点火系统为发动机提供电火花,它由点火电子组件、点火线圈、火花塞、高压导线等组成;电脑控制系统由电子控制单元(ECU)与各种传感器组成,它控制燃油喷射时间与喷射量以及点火时刻. 汽车发动机电子控制单元(ECU)就是汽车发动机控制系统得核心,它可以根据发动机得不同工况,向发动机提供最佳空燃比得混合气与最佳点火时间,使发动机始终处在最佳工作状态,发动机得性能(动力性、经济型、排放性)达到最佳。 汽车发动机机电子控制单元(ECU)得主要功能: 1、燃油喷射(EFI)控制 ⑴、喷油量控制 发动机控制器(ECU)将进气量与发动机负荷作为主要控制信号,以确定喷油脉冲宽度(即基本喷油量),并根据循环水温度、进气温度、进气压力、尾气氧含量等信号修正喷油量,最后确定总喷油量。 ⑵、喷油正时控制 采用多点顺序燃油喷射系统得发动机,ECU除了控制喷油量外,还要根据发动机各缸得点火顺序,将喷油时间控制在最佳时刻,以使燃油充分燃烧。 ⑶、断油控制 减速断油控制:汽车在正常行驶中,驾驶员突然松开油门踏板时,ECU自动中断燃油喷射,直至发动机转速下降到设定得低转速时再恢复喷油。 超速断油控制:当发动机转速超过安全转速或汽车车速超过设定得最高车速时,ECU 自动中断喷油,直至发动机转速低于安全转速一定值且车速低于最高车速一定值时恢复喷油。 ⑷、燃油泵控制 当打开点火开关后,ECU控制燃油泵工作3秒钟,用于建立必要得油压。若此时发动机不起动,ECU控制燃油泵停止工作。在发动机起动与运转过程中,ECU控制燃油泵正常运转。 2、点火(ESA)控制 ⑴、点火提前角控制

车用发动机的技术与发展趋势

国内外汽车发动机的现状和发展趋势 内燃机的发展带动汽车的发展,伴随汽车产销量快速增长而来的是大气污染和石油消耗。无疑,先进的发动机技术将在汽车节能、环保技术开发中起着关键的决定性的作用。 近 20 年来, 面对世界石油资源日趋枯竭给社会发展带来的压力, 面对汽车保有量急剧增长对环境的影响, 世界汽车界不停地在寻找实现汽车工业可持续发展的解决方法。 一. 车用柴油机发展及现状 1.1 车用柴油机的性能特点 (1)有能量密度高(大型低速增压柴油机的有效热效率已超过50%),燃油消耗率低,这对节约能源和提高经济效益都很重要。 (2)好的燃油经济性; (3)温室效应气体排放少,其二氧化碳的排放量比汽油机大约低30-35%,但废气中含有害成分(NO,颗粒物等)较多,噪声较大,在环境环抱方面已引起重视。 (4)功率和转速范围很大(功率1—65580KW,转速54—5000r/min),因此应用领域宽 (5)结构较复杂,零部件材料和工艺要求较高,制造成本较高,与汽油机相比质量较大。主要有三大优点: (1) 经济。首先, 每单位柴油的能量含量比汽油高;其次,柴油机的压燃特性, 使其热效率比汽油机高。一般柴油机的油耗要比汽油机的低 30%~40%。 (2) 环保。一般来说, 机动车的主要排放物有一氧化碳、碳氢化合物、二氧化碳、颗粒物和氮氧化物。相对而言, 柴油机的一氧化碳、碳氢化合物和二氧化碳排放量极低, 但在颗粒物和氮氧化物的排放控制上要比汽油机更难处理。这是柴油机本身的特性造成的, 可通过现代技术处治。 (3) 柴油机低速大扭矩的特性, 为汽车提供了更好的使用性能。通过采用先进的燃油喷射技术和电控技术, 现代柴油机在动力性、加速性、舒适性指标上已经无异于汽油机。 1.2 国内柴油机的现状 自2003年以来,国内柴油机行业出现了结构调整:潍坊柴油机厂在2002年的基础上继续保持快速增长势头,功率水平也有了明显提高;上海柴油机厂在商用车柴油机领域初露锋芒,主要得益于北汽福田欧曼重卡市场份额的迅速提高;广西玉柴机器股份有限公司作为行业的领先者,进行了新一轮的产品结构优化,产品顺利实现从欧Ⅰ向欧Ⅱ的过渡,完善了产品系列(从4缸机到6缸机)平台,进一步拓展了功率覆盖范围,柴油机最大功率水平可以达到257 kW(350 ps)。总体水平有了显著提高。无论是从经济性还是从环保角度讲,国内的车用柴油机技术已经接近世界平均水平了。自产发动机已经完全能够满足国内重卡及低端乘用车对发动机的需求,无需外购。

发动机的几个发展方向

(汽车) 时代在进步,当代汽车发动机也在飞速发展,各种新技术推陈出新,带动汽车性能得到了极大的改善。而随着我国成为全球最大的汽车销售市场,中国汽车业也进入发展新阶段。汽车业“十二五”规划正在制订中,未来五年,中国汽车业将从过去的做大规模转向做强实力。具体来看,一方面提倡发展包括新能源汽车在内的节能汽车;另一方面,提倡通过兼并重组、淘汰落后产能来解决结构性产能过剩问题。当然,其中最重要的环节就是着实做好先进发动机的发展。未来发动机的发展方向为: 一、废气涡轮增压技术 废气涡轮增压工作原理: 增压器与发动机无任何机械联系,实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。当发动机转速增快,废气排出速度与祸轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量就可以增加发动机的输出功率。 该系统前途乐观,可加大进气和排气系统的流通面积、简化了配气机构;降低了压缩比和对燃油标号的要求;开辟了提高功率、降低油耗几排放污染的新途径。发动机在采用废气涡轮增压技术后,工作中产生的最高爆发压力和平均温度也将大幅度提高,从而使发动机的机械性能、润滑性能都会受到影响。即废弃涡轮增压技术具有如下几个主要优点:1)、废弃涡轮和压气机,转速达到1000r/min,使高密度的油气压入气缸。2)、点火燃烧后,扭矩和功率提高30%以上;油耗降低6%;排放污染降低3%~14%。3)、适用于高原地区运行,能恢复功率和减少油耗及排放污染。 像帕萨特1.8T、奥迪A6的1.8T、斯巴鲁水平对置涡轮增压发动机等等都有应用到废弃涡轮增压技术。 二、DOHC发动机技术与SOHC发动机技术

汽车发动机电子控制系统开发现状及趋势

汽车发动机电子控制系统开发现状及趋势 丁志盛叶挺宁 摘要:介绍了汽车发动机电子控制系统相关技术背景、开发现状及发展趋势。 关键词:EECS,ECU汽车发动机电喷 一、汽车发动机电子控制系统概述 汽车发动机电子控制系统(Engine Electronic Control System,简称EECS)通过电子控制手段对发动机点火、喷油、空气与燃油的比率、排放废气等进行优化控制,使发动机工作在最佳工况,达到提高性能、安全、节能、降低废气排放的目的。汽车发动机电子控制系统主要包括: - 燃油喷射控制; - 点火系统控制; - 怠速控制; - 尾气排放控制; - 进气控制; - 增压控制; - 失效保护; - 后备系统; - 诊断系统等功能。 另外,随着网络、集成控制技术的广泛应用,作为汽车控制主要单元的EMS系统通过 CAN(Controllers Area Network)总线与其他控制系统,例如:安全系统(如ABS、牵引力电子稳定装置ESP (Electronic Stability Program))、底盘系统(如主动悬挂ABC(Active Body Control))、巡航控制系统(Speed Control System或Cruse Control System)以及空调、防盗、音响等系统实现网络互联,实现信息共享并实施集成优化统一控制。在不久的将来,车载通讯平台将利用现有无线通讯网络为汽车驾驶提供更广泛的咨询、娱乐等增值服务(如GPS全球定位系统的应用)。 汽车发动机电子控制系统的开发主要涉及以下技术容: - 传感器 主要包括空气流量传感器、空气温度传感器、节气门位置传感器、冷却液温度传感器、转速传感

汽车的发展史

汽车的发展史 摘要: 汽车自上个世纪末诞生以来,已经走过了风风雨雨的一百多年。 从卡尔.本茨造出的第一辆三轮汽车以每小时18公里的速度,跑到现在,竟然诞生了从速度为零到加速到100公里/小时只需要三秒钟多一点的超级跑车。这一百年,汽车发展的速度是如此惊人!同时,汽车工业也造就了多位巨人,他们一手创建了通用、福特、丰田、本田这样一些在各国经济中举足轻重的著名公司。本文回望这段历史,回顾了汽车的起源,论述了汽车的功用、分类及性能要求,对国内外汽车的发展历史及各时期主要车型作了系统介绍,对军用汽车发展趋势作了简要分析,叙述汽车给我们的生活带来的翻天覆地的变化。 关键词军用汽车车辆分类车辆性能 引言 汽车同其它现代高级复杂工具如电子计算机等一样,并非是哪一个人坐在那里发明了的。发明之初的汽车也不是现在之个式样,如果你能见到当时的汽车,你也可能认为这不是汽车呢。汽车的发展也有一个漫长的历程,总的说来,汽车发展史可能分为蒸汽机发明前、蒸汽汽车的问世、大量流水生产汽车开始等三个阶段。人类最初的工作劳动完全是由本身来完成,根本没有什么汽车和发动机,如果说有的话,在未使用牛和马之前使用的是人体的股份这台发动机。奴隶就是一种“生物发动机”。随着人类的进步与发展,人们对自然界的认识越来越深,利用自然、改造自然的能力日益加强,人们不仅使用人力、畜力、而且知道使用水力、风力。 1.汽车的起源 马车和蒸汽机车以及19世纪的三轮汽车都可算作现代汽车的始祖。在铁路诞生以前,陆上道路通常是未铺路面的,因此,中世纪欧洲的骡马商队很普遍。后来,随着道路的改善,出现了宽轮子的四轮货车和公共马车。那时候的陆上运输成本高,而且客货运输安全系数低,陆上交通除受气候条件限制之外,还受水陆交叉、盗劫和战争等问题的影响。到17世纪,这种格局随着公路的改进而开始被打破。

汽车制造业发展历程及趋势

汽车制造业发展历程及 趋势 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

汽车制造业发展历程及趋势汽车是最重要的现代化交通工具。汽车也是数量最多、最普及、活动范围最广泛、运输量最大的交通工具。在现代社会中,没有哪种交通工具可与汽车的作用相媲美,因为汽车是在“面”上发挥作用,并且可以实现“门对门”的便利。正因为如此,汽车在过去数十年中已迅速发展成为最主要、最受青睐的交通工具。本文旨在通过汽车制造业的发展历程以及现状得出其发展趋势,不足之处还请见谅。 世界以及我国汽车制造业的发展历程 一、世界汽车制造业发展历程。 从19世纪末卡尔·奔驰发明汽车至今,汽车制造业发展历程按生产方式可分为三个大的发展阶段: 1、手工生产方式。19世纪末,法国巴黎P&L机床公司开始制造汽车,当时是实行手工单件生产。其生产效率极低,制作成本高,质量保证全凭技术工人高超的技艺和丰富的经验。 2、大批量生产方式。它是由美国企业,主要是福特汽车公司为代表的企业所创造的一种生产方式,它为世界汽车,不仅仅是汽车业,而且是为工业做出了巨大的贡献,影响十分深刻和深远。到20世纪后半期这一生产组织方式的缺点越来越突出。主要原因来自于市场的变化。20世纪后半期时不仅在美国,不只在整个汽车市场,顾客需求越来越多样化,而且对质量的要求也越来越高。这种状况给制造业提出的新课题是,一方面必须找出办法来使产品的开发设计周期和生产周期显着缩短,另一方面还必须使企业的生产经营方式能够快速响应市场的需求变化。这两方面的课题促使汽车制造企业改变原有的大规模的经营方式、管理方式和工作方式,探索新的模式。日本丰田汽车公司就比较早地进行了探索和转变。

GDI发动机的发展趋势.

缸内直喷汽油机技术发展趋势分析 前言 近几十年来,受能源日益枯竭、油价不断上涨、全球变暖等问题的困扰,在满足发动机排放要求的前提下改善发动机燃油经济性显得格外迫切。由于汽油机的燃油经济性比柴油机差,所以。降低汽油机的能耗已经成为汽车界当前必须要解决的问题。开发具有汽油机优点同时又具备柴油机部分负荷高燃油经济性优点的车用发动机是主要的研究目标。汽油缸内直(GDI)是提高汽油机燃油经济性的重要手段,近些年来,以缸内直喷为代表的新型混合气形成模式的研究与应用极大地提高了汽油机的燃油经济性。 1.GDI发动机技术发展现状 对于汽油机缸内直喷的工作方式,20世纪50年代德国的Benz300SL车型和60年代MAN—FM系统,70年代美国Texaco的TCCS系统和Ford的PROCO系统就曾经采用过o“。这些早期技术大多基于每缸2气门和碗形活塞燃烧室,利用柴油机的机械泵和喷油器实现后喷。这些早期的GDI发动机在大部分负荷范围实现了无节气门控制并且燃油经济性接近非直喷柴油机。其主要缺点是由于采用机械式供油系统,各负荷甚至全负荷时后喷时刻 是固定的,燃烧烟度限制了空燃比不能超过20:l口采用柴油机供油系统并利用涡轮增压技术来增加功率输出,使得汽油机性能与柴油机相似,且在部分负荷时有更差的HC排放。空气利用效率低,机械供油系统受到转速范围的限制,使得发动机的输出功率非常低。因此,

受当时内燃机制造技术水平的限制,加之尚无电控喷射手段,开发出的GDI发动机性能和排放并不理想,没有得到实际应用。 20世纪90年代以后,由于发动机制造技术的提高,制造精密、性能优良的内燃机部件的应用和精度高、响应快的电控汽油直喷系统的应用使得GDI发动机的研究与应用得到快速发展。GDI发动机瞬态响应好,可以实现精确的空燃比控制,具有快速冷起动和减速断油能力及潜在的系统优化能力,这些都显示了它比进气道喷射汽油机更优越。采用先进的电子控制技术,解决了早期直喷发动机的控制和排放等方面的许多问题。新技术和电子控制策略的发展使得许多发动机制造企业重新考虑GDI发动机的潜在优点。1996年日本三菱汽车公司率先推出1.8L顶置双凸轮轴16气门4G93壁面引导型直喷发动机;丰田公司开发出了同时采用GDI和PFI两套供油系统的2GR--FSEV6发动机;通用公司2004年开发出了采用可变气门定时(VVT)技术的分层稀燃直喷发动机}宝马公司在低压均质混合气直喷GDIV12发动机的基础上,2006年又开发出了可以实现分层稀燃的R6直喷发动机;德国大众公司2000年底利用电子控制系统把与TDI 柴油机相似的原理用在汽油机上,开发了壁面引导型燃油分层直喷FSI发动机,并用于Lupo车上,其i00km的平均油耗只有4.9 L,成为世界上第一辆5L汽油机汽车;2004年奥迪公司开始将其2.OT—FsI燃油分层直接喷射增压汽油机推向市场。 目前,引进的大众FSI发动机是我国唯一量产的GDI发动机。缸内直喷技术对汽油的油品质量是个严格考验,正是基于这个原因,

车用发动机电控技术发展方向

车用发动机电控技术发展方向 【摘要】随着技术的不断进步,.发动机的电控技术手段不断精确,发动机若要进一步发展,其燃油消耗率则要进一步降低,其原先的震动以及噪音等等缺陷就应该要被减小,控制精度要进一步提高。本文主要针对这几方面来概括发动机电控技术未来的发展现状和趋势,以及针对现代柴油发动机现有的特点提出一些自己对柴油机未来电控技术发展的见解和趋势。 一·汽车发动机的电控技术整合了机械、电子以及计算机信息控制技术的综合应用,每个环节都有着不可或缺的作用,缺少任何一个步骤都可能导致全部系统的混乱甚至瘫痪。就我国目前的汽车行业发展而言,解决发动机电控技术的缺陷是关键,只有能更好的运用发电机电控技术才能更好的去完善汽车装置,降低汽车中有害物质尾气的排放量、完善发动机的运行程序、提升发动机的运转性能,将汽车行业推向一个全新的领域。对于传统的发动机主要从以下五个方面入手来解决现在所面临的问题,同时也是未来发动机的发展趋势。 (1)驱动能力 汽车上所使用的发动机驱动执行器一般有电磁式、电动式和气动或液动式。电磁和电动式的执行器是以电做为主要能源驱使操作机构工作,其空间占位小、质量低、处理速率块、节能减排是其主要的设计核心,若是与气动/液动式执行器相对比,输出驱动能力就相对较弱,在电控系统中进行大驱动输出时,不能完全满足其运行的需求。然而,伴随着新能源工艺(新材料)新材质设计的制作,使得电磁和电动式这两种执行器的驱动能力大大提升,从而逐渐代替了液动/气动执行器,尤其在新汽车能源工艺中将42V新电源系统运用其中后,输出的驱动能力将会再进一步的提升,其反映速率也会随之相应增加。随着汽车电控技术的飞速发展,智能电子自动化逐步加快,智能传感器在汽车发动机上使用的类型和数量的增加,使其向着多元化、复合化、自动化和微型化方向发展。它能够使自动化集成传感器不仅能用于模拟和处理相互关联以及外界传输进来的信息,还能指定性进行信号发射和信号搜寻等的处理;与此同时,它能自行进行时漂、温漂和非线性的自我修正,拥有很强的抵御外界电磁干扰的性能,为智能传感器信号的运行营造一个良好的环境,即便在非常严酷的使用条件下

简析汽车发动机发展现状及未来发展趋势

简析汽车发动机发展现状及未来发展趋势 摘要:由于石油短缺和环保的双重压力,整车及发动机生产企业纷纷投入巨资进行各种高燃效、低能耗、低排放发动机的研发,因此,节能环保型的发动机将成为未来大发展趋势。 关键词:发动机发展现状未来发展 中国的汽车制造业发展迅猛,并且仍具有强大的发展空间,在汽车市场快速增长的拉动下,国内发动机市场近几年也呈现出蓬勃发展之势。近年来,面对世界石油资源日趋枯竭以及对环保要求的不断提高,人们十分重视发动机代用燃料的研究,如天然气、二甲醇以及混合动力等新产品在发动机上得到逐步的研发及应用。国内无论是整车企业还是专业的发动机制造企业都在加大研发力度,以求在激烈的市场上占据一席之地。外资企业也蜂拥而至,试图在前景光明的中国发动机市场分一杯羹。 性能先进优良、稳定性能好的发动机技术将在汽车节能、环保技术开发中起着关键性的决定作用。因此打造优良的汽车发动机成为提升汽车质量品牌的关键之举。由于石油短缺和环保的双重压力,整车及发动机生产企业纷纷投入巨资进行各种高燃效、低能耗、低排放发动机的研发,因此,节能环保型的发动机将成为未来大发展趋势。 1.目前我国发动机的发展现状体现在: 1.1.我国的汽车发动机以外资、合资品牌为主,自主品牌发展缓慢因历史原因,我国的汽车发动机生产起步晚,技术力量薄弱。虽然自主品牌乘用车发动机,尤其是轿车、微型车和商用车的发动机产销量出现了明显增长,市场份额不断扩大,但发动机的核心技术,如涡轮增压技术、燃油电喷技术、高压共轨技术等核心仍掌握在外资手中。我国的轿车发动机大多是改革开放后从引进、合资开始起步的。例如一汽与德国大众、上汽与美国通用、一汽与日本丰田、北京与现代以及北京与奔驰等。而自主品牌,如奇瑞、吉利、华晨等企业,基本都是2000年以后发展起来的,特别在最近的5年之中,才进入迅速发展时期,但与合资进入中国市场的跨国汽车巨头相比,明显起步晚了。因此,不论从技术还是产量上,与外资、合资品牌相比,国产自主品牌都存在着明显的差距。目前,轿车发动机,外资、合资品牌约占70%的市场份额,而自主品牌轿车发动机只占30%的市场份额。 1.2.发动机产销逐年增长,生产集中度明显提高 中汽协的有关数据显示,2011年全年,我国累计产销汽车发动机1671.91万台和1697.14万台,2011年发动机生产企业销售累计增长最快的是上汽通用五菱,增幅为59.30%;最小的是北京现代,增幅为11.09%。在汽车行业迅猛发展的今天,发动机的产销发展前景更为广阔。但发动机的产销量仍然集中在各大合

发动机电子控制系统

摘要:介绍了汽车发动机电子控制系统相关技术背景、开发现状及发展趋势。关键词: EECS,ECU汽车发动机电喷一、汽车发动机电子控制系统概述 汽车发动机电子控制系统(Engine Electronic Control System,简称EECS)通过电子控制手段对发动机点火、喷油、空气与燃油的比率、排放废气等进行优化控制,使发动机工作在最佳工况,达到提高性能、安全、节能、降低废气排放的目的。汽车发动机电子控制系统主要包括:中国发动机论坛(XHEPPo!G - 燃油喷射控制; |柴油机|柴油机配件|内燃机原理|内燃机构造|发动机测试| - 点火系统控制; - 怠速控制; - 尾气排放控制; - 进气控制; - 增压控制; - 失效保护; e - 后备系统; - 诊断系统等功能。 |柴油机|柴油机配件|内燃机原理|内燃机构造|发动机测试另外,随着网络、集成控制技术的广泛应用,作为汽车控制主要单元的EMS系统通过 CAN(Controllers Area Network)总线与其他控制系统,例如:安全系统(如ABS、牵引力电子稳定装置ESP (Electronic Stability Program))、底盘系统(如主动悬挂ABC(Active Body Control))、巡航控制系统(Speed Control System或Cruse Control System)以及空调、防盗、音响等系统实现网络互联,实现信息共享并实施集成优化统一控制。在不久的将来,车载通讯平台将利用现有无线通讯网络为汽车驾驶提供更广泛的咨询、娱乐等增值服务(如GPS全球定位系统的应用)。 汽车发动机电子控制系统的开发主要涉及以下技术内容: - 传感器 主要包括空气流量传感器、空气温度传感器、节气门位置传感器、冷却液温度传感器、转速传感器、曲轴位置传感器、凸轮轴位置传感器、爆燃传感器、车速传感器、氧传感器等。- 执行器 主要包括喷油器、点火控制模块、怠速空气控制阀以及各种电磁阀等。 - 电控单元ECU(Electronic Control Unit) 和控制算法程序软件 其作用是通过采集各种传感器输入信号并将信号进行调理,根据发动机管理控制算法进行运算,然后输出控制信号并进行功率放大给执行器。同时检测传感器信号正常状态,出现故障时报警。 另外,为了应对汽车产业产品作为多种产品链状集成开发的特点以及快速更新的市场需求,高性能的发动机试验台架、集成开发环境工具以及测试产品耐环境性能的设备为快速开发高质量面向不同汽车发动机的管理系统产品提供保障: - 发动机试验台架 主要包括不同种类的发动机以及工况装置、测功仪、废气测量仪以及各种传感器和测量装置。 - 集成开发环境IDE(Integrated Development Environment)系统 主要包括用于开发电控单元ECU 和控制算法程序软件的集成开发环境。目前,基于模型设计(Model Based Design)、快速原型(Rapid Prototyping)技术以及符合OSEK标准的实时操作系统得到了越来越广泛的应用。 - 耐环境实验设备 用于元器件、产品的耐温、振动、抗干扰、防漏水、耐久性等环境试验设备。上述设施的联合使用,为开发汽车发动机电子控制系统提供必要的联调、参数标定、性能试验、环境试验等必要条件。另外,为了适应不同区域的气候条件,在不同海拔地区、不同季节的车载试验需要脱离发动机试验台架并借助车载标定系统在特定环境及试验地完成,以确定相对不同区域和气候的控制参数。 二、汽车发动机电子控制系统应用市场现状 汽车发动机电子控制系统技术属于汽车电子领域的关键技术并占据汽车电子市场的主要份

汽车发动机电子控制单元(ECU)

汽车发动机电子控制单元(ECU) 功能说明书

佛山菱电变频实业有限公司王和平 2004年3月 一、概述 汽车发动机控制系统一般有进气系统、燃油供给系统、点火系统、电脑控制系统四大部分组成。进气系统由空气滤清器、空气流量计、节气门、进气总管、进气歧管等组成,它为发动机可燃混合气提供所需空气;燃油供给系统由燃油泵、燃油滤清器、燃油压力调节器、喷油器和供油管等组成,它为发动机可燃混合气提供所需燃油;点火系统为发动机提供电火花,它由点火电子组件、点火线圈、火花塞、高压导线等组成;电脑控制系统由电子控制单元(ECU)和各种传感器组成,它控制燃油喷射时间和喷射量以及点火时刻。 汽车发动机电子控制单元(ECU)是汽车发动机控制系统的核心,它可以根据发动机的不同工况,向发动机提供最佳空燃比的混合气和最佳点火时间,使发动机始终处在最佳工作状态,发动机的性能(动力性、经济型、排放性)达到最佳。 汽车发动机机电子控制单元(ECU)的主要功能: 1、燃油喷射(EFI)控制 ⑴、喷油量控制

发动机控制器(ECU)将进气量和发动机负荷作为主要控制信号,以确定喷油脉冲宽度(即基本喷油量),并根据循环水温度、进气温度、进气压力、尾气氧含量等信号修正喷油量,最后确定总喷油量。 ⑵、喷油正时控制 采用多点顺序燃油喷射系统的发动机,ECU除了控制喷油量外,还要根据发动机各 缸的点火顺序,将喷油时间控制在最佳时刻,以使燃油充分燃烧。 ⑶、断油控制 减速断油控制:汽车在正常行驶中,驾驶员突然松开油门踏板时,ECU自动中断燃油喷射,直至发动机转速下降到设定的低转速时再恢复喷油。 超速断油控制:当发动机转速超过安全转速或汽车车速超过设定的最高车速时,ECU自动中断喷油,直至发动机转速低于安全转速一定值且车速低于最高车速一定值时恢复喷油。 ⑷、燃油泵控制 当打开点火开关后,ECU控制燃油泵工作3秒钟,用于建立必要的油压。若此时发动机不起动,ECU控制燃油泵停止工作。在发动机起动和运转过程中,ECU控制燃油泵正常运转。 2、点火(ESA)控制 ⑴、点火提前角控制 发动机运转时,ECU根据发动机的转速和负荷信号,计算相应工况下的点火提前角,并根据发动机的水温、进气温度、节气门位置、爆震信号等修正点火提前角,最

汽车发动机国内外技术现状与发展趋势综述

汽车发动机国内外技术现状与发展趋势综述xx (山东科技大学交通学院,车辆工程2011-1) 摘要: 内燃机是用途最广的动力机械,并且作为汽车动力,在材料与制造技术、电子控制与智能技术、节能与环保技术、燃料与燃烧技术等方面不断发展进步,各种新技术互相交叉、互相渗透,性能指标不断优化和提升。 关键词: 新材料;缸内直喷;分层燃烧;代用燃料;高压共轨 The Status and Development Trend of Domestic and Foreign Automobile Engines Ma Chao (Vehicle Engineering 2011-1, College of Transportation, Shandong University of Science and Technology) Abstract: Key words: 1汽车发动机技术现状 进入21世纪,汽车内燃机并未因其他车用动力的竞争(如电力)而成为“夕阳工业”,相反,技术进步使得车用四行程内燃机仍保持主体地位。 1.1新材料的使用

高强度、低密度材料的使用,如铝与加强纤维、陶瓷材料、塑料、碳素纤维等,使内燃机不断轻量化。 与传统铸铁缸体相比,采用铝合金材料铸造的气缸体,在保证强度的前提下,质量显著减轻,导热性能有所提高,满足了现代汽车发动机的性能要求。但由于铝合金的耐磨性不好,使用时必须镶嵌缸套。有的汽油机汽缸盖用铝合金铸造,因铝的导热性比铸铁好,有利于提高压缩比。铝合金缸盖的缺点是刚度低,使用中容易变形。由于生产成本较高等原因,铝合金发动机并未完全取代传统的铸铁发动机,常见的铝合金发动机有上汽通用别克君越(LaCrosse)所搭载的2.4L直列4缸发动机、一汽-大众奥迪A6L上的2.5LV型6缸发动机、东风日产骐达(TIIDA)上的1.6L发动机等。 1998年,巴斯夫公司与丰田的工程师们合作首次开发成功用聚酰胺6制造的进气歧管,从而取代了铸铁、铸铝等金属材料。这一组件由巴斯夫的Ultramid?制造,Ultramid?是一种经玻璃纤维强化的聚酰胺,已成为众多车型的“首选材料”。当时是采用“去芯成型法”生产这一结构复杂的部件,并进一步开发“振动焊接”工艺将三个部件连接为一体。此项应用中该材料所经受的最大考验是对热空气的耐受能力和抗热老化的能力: 这种聚合物必须能经受住与120℃热空气的长时间接触及最高温度达150℃的耐热测试。在将其投入生产线之前,丰田对该部件进行了严格的实验室测试与广泛的道路测试。 使用聚酰胺(塑料)而非常规铝金属制造进气歧管为丰田带来了众多突破性优势: 塑料取代金属后减轻了该部件约40%的重量,从而提高了燃料效率并减少了排放。使用Ultramid?制造的进气歧管还加强了发动机空气补给,从而提高发动机的性能。比起铝制产品,聚酰胺进气歧管的光滑内壁阻力更低,同时,由于塑料的成型更为容易,这种材料更有利于最佳空气流动设计的实现。 通过优化制造流程,使用Ultramid?制造的组件有助于节省生产成本。设计师能够将其它的功能整合于Ultramid?进气模块中,同时又保证相同水平的质量

浅谈国内外车用发动机技术现状及发展趋势

浅谈国内外车用发动机技术现状及发展趋势 摘要:当今在世界上车用发动机的生产技术水平是一个国家工业发达程度的标志之一。随着各国高速公路的增多, 随着人类对环保要求的日益严格以及汽车上附件的不断增多, 对车用内燃机的技术要求也不断提高 关键词:车用内燃机发展现状建议 The Status and Development Trend of Domestic and Foreign Automobile Engines Vehicle Engineering 09 Class 2 WangYang 0901040421 Abstract:In today's world, the technology of engines used on vehicles is a symbol that reflects how national industry develops. As the increase of the number of highway, with human to the requirements of environmental protection and car accessories increasingly strict increased continuously for the technical requirements of the internal combustion engine to improve continuously. Keywords: Internal combustion engine Development Advance 引言:内燃机的发展带动汽车的发展,伴随汽车产销量快速增长而来的是大气污染和石油消耗。无疑,先进的发动机技术将在汽车节能、环保技术开发中起着关键的决定性的作用。 近 20 年来, 面对世界石油资源日趋枯竭给社会发展带来的压力, 面对汽车保有量急剧增长对环境的影响, 世界汽车界不停地在寻找实现汽车工业可持续发展的解决方法。 (一)车用汽油机发展及现状 一、世界汽油机技术发展现状 为了适应汽车对节油、环保、安全的需要,车用汽油机主要;朝着更节油、更环保的方向发展,因此欧洲己执行欧Ⅳ标准。以下为国外在汽油机方面主要先进技术。 1、多气门技术:每缸3-5个气门(大多为4气门),可提高功率,改善燃烧质量,如捷达王5气门、丰田8A4气门等。 2、双顶置凸轮轴(D.HC)可提高转速、提升可靠性。 3、可变气门正时(VVT):根据不同转速调节气门时,可节省燃油,改善排放,如本田VTEC、丰田VVT-i等。 4、汽油机增压:可提高升功率,在排量不变的情况下,可提高功率,如帕萨特1.8T轿车。 5、可变进气道长度(VIM):在不同转速下使用不同进气道长度,保证在任何工况下都有较好的充气效率,如奥迪A6。 6、停缸技术:在输出功率减小时,使一部分气缸停止工作,可节省燃油,如通用开拓者EXT 2005款有8个气缸,需要时可使4个气缸一停止工作。 7、全铝发动机:使用铝缸体、缸盖、活塞等,可减小质量,节省燃油,如日本铃木1.3L、1.4L汽油机。 8、智能驱动气门(SVA):取代传统凸轮轴,每一个气门挺杆上有一个独立的驱动器,可以减少20%油耗及污染物,如:法国法雷奥公司已设计出样机,2009

汽车发动机行业4大发展趋势预测

汽车发动机行业4大发展趋势预测 汽车发动机决定了汽车的质量,是汽车的核心。打造优良的汽车发动机成了提升汽车质量品牌的关键。国内无论是整车企业还是专业的发动机制造企业都在加大研发力度,以求在激烈的市场上占据一席之地。外资企业也蜂拥而至,试图在前景光明的中国发动机市场分杯羹。由于石油短缺和环保的双重压力,企业纷纷投入绿色柴油机、替代燃料发动机、小型汽油机等产品的研发。高燃效、低能耗、低排放发动机的发展形成了不可阻挡的趋势。中投顾问在《2016-2020年中国发动机行业投资分析及前景预测报告》指出未来发动机具有以下基本发展趋势: 趋势一:传统发动机向更节能、清洁方向发展 现代绿色柴油发动机已经成为目前实现节能环保最现实的途径之一,和主流的汽油发动机相比,它拥有出色的节能性和动力性。柴油机的燃烧效率可达45%,而汽油机的燃烧效率仅为35%左右。同排量绿色柴油机比汽油机节油30%-35%;而与传统的柴油发动机相比,又有着出色的舒适性和环保性,成为时尚汽车的潮流之选,截至2011年绿色柴油机在欧洲的市场占有率已达到50%以上,且排放水平已达到欧V标准。 事实上,现代绿色柴油机比主流汽油机节油30%的主要奥秘在于,它采用的是高压共轨缸内直喷技术。该技术将高压燃油直接喷射到燃烧室内形成雾化均匀的混合气,以此提升喷油的雾化效果,使其能够在短时间内完成更充分的燃烧。国内最先进的欧意德绿色柴油机搭载的博世第二代高压共轨喷射系统,已经将喷射压力从传统柴油机的60-80MPa,提高到了160MPa的水平,而通常缸内直喷汽油机的燃油喷射压力仅为12MPa左右。这不仅仅是数据上的变化,更给柴油机动力带来了全面的提升。 在高压共轨技术产生之前,柴油机一直采用机械增压的方式,燃油压力会随着发动机的转速变化而变化,极难控制。特别是在怠速状态下,燃油压力更是不稳定,所以人们会看到一些老式的柴油车在怠速状态下冒黑烟。现代绿色柴油机先进的高压共轨技术采用的是独立的高压泵技术,使得压力产生不再受转速影响,时刻都能获得理想的燃油压力,与传统柴油机相比,现代绿色柴油机有了一个实质性的飞跃。 此外,现代绿色柴油机技术通过ECU控制还可以实现对燃油压力的柔性调节,使得发动机在不同工况下给出最适合的燃油压力,取得最佳的燃烧效果。 玉柴集团和天津大学联合开发了两款低碳节能高效发动机,2010年已实现批量生产。该技术成果包含三项技术优势:首先是低碳排放。这两款机型升功率分别达到40kW/L和45.3kW/L,意味着玉柴6.5L柴油机排量达到了普通8.4L柴油机的动力水平,而玉柴3L排量的柴油机达到了普通4.5L柴油机的动力水平。如投入实际公路运输,每车每年至少减少CO2排放5t,按1000台车计算,则每年至少减少CO2排放5000t。其次是节能。两款机型的油耗与装备大排量发动机同型号的车相比降低5%;排放水平达到国Ⅳ、国Ⅴ的排放标准要求;增压比达到3,即进气压力提高到相当于三个大气压水平(普通柴油机仅相当于两个大气压水平),使发动机中、低速扭矩增加了30%,提高了整车动力性。三是实现发动机应用小型化,使整车重量更轻。如玉柴4FA185-40的整机要比相同功率的普通4.5L柴油机重量减轻100kg,使运动部件消耗的摩擦力更小,机械效率更高,便于整车更加高效运行。 长期以来,柴油车给中国人留下冒黑烟的印象,导致在欧洲占50%以上的柴油机乘用车在中国的占有

电控发动机的发展和趋势

浅谈电控发动机的发展和趋势 摘要:随着化油器的发展达到极限,尤其是发动机排放量限制浓度值日趋严格,不能满足发动机各种工作下混合器质量要求,影响了发动机动力性和经济性。电子控制(下面简称电控)燃油喷射发展初期,可追溯到四冲程柴油机上所取的良好的经验,即成功地装备燃油喷射系统。 abstract: along with the development of the carburetor, especially the engine emission density limit is strict; it can’t meet the quality requirements of mixer quality at all kinds of work condition, which impacts the engine performance and fuel economy. at the electronic control (hereinafter referred to as the electric control) fuel injection development initial period, we can back to the good experience of four stroke diesel engine, which successfully equipment fuel injection system. 关键词:电控发动机;发展;趋势 key words: electronic-controlled engine;development;trend 1 电控发动机的发展背景 在40年代,德国戴姆勒-奔驰公司、拜耳发动机制造厂首次将燃油喷射系统装备汽车发动机上,但由于各种原因,只是在德军飞机上采用机械式燃油喷射系统。

汽车发动机电子控制单元ECU精编

汽车发动机电子控制单 元E C U精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

汽车发动机电子控制单元(ECU) 功能说明书 佛山菱电变频实业有限公司王和平

2004年3月 一、概述 汽车发动机控制系统一般有进气系统、燃油供给系统、点火系统、电脑控制系统四大部分组成。进气系统由空气滤清器、空气流量计、节气门、进气总管、进气歧管等组成,它为发动机可燃混合气提供所需空气;燃油供给系统由燃油泵、燃油滤清器、燃油压力调节器、喷油器和供油管等组成,它为发动机可燃混合气提供所需燃油;点火系统为发动机提供电火花,它由点火电子组件、点火线圈、火花塞、高压导线等组成;电脑控制系统由电子控制单元(ECU)和各种传感器组成,它控制燃油喷射时间和喷射量以及点火时刻。 汽车发动机电子控制单元(ECU)是汽车发动机控制系统的核心,它可以根据发动机的不同工况,向发动机提供最佳空燃比的混合气和最佳点火时间,使发动机始终处在最佳工作状态,发动机的性能(动力性、经济型、排放性)达到最佳。 汽车发动机机电子控制单元(ECU)的主要功能: 1、燃油喷射(EFI)控制 ⑴、喷油量控制 发动机控制器(ECU)将进气量和发动机负荷作为主要控制信号,以确定喷油脉冲宽度(即基本喷油量),并根据循环水温度、进气温度、进气压力、尾气氧含量等信号修正喷油量,最后确定总喷油量。 ⑵、喷油正时控制 采用多点顺序燃油喷射系统的发动机,ECU除了控制喷油量外,还要根据发动机各

缸的点火顺序,将喷油时间控制在最佳时刻,以使燃油充分燃烧。 ⑶、断油控制 减速断油控制:汽车在正常行驶中,驾驶员突然松开油门踏板时,ECU自动中断燃油喷射,直至发动机转速下降到设定的低转速时再恢复喷油。 超速断油控制:当发动机转速超过安全转速或汽车车速超过设定的最高车速时,ECU自动中断喷油,直至发动机转速低于安全转速一定值且车速低于最高车速一定值时恢复喷油。 ⑷、燃油泵控制 当打开点火开关后,ECU控制燃油泵工作3秒钟,用于建立必要的油压。若此时发动机不起动,ECU控制燃油泵停止工作。在发动机起动和运转过程中,ECU控制燃油泵正常运转。 2、点火(ESA)控制 ⑴、点火提前角控制 发动机运转时,ECU根据发动机的转速和负荷信号,计算相应工况下的点火提前 角,并根据发动机的水温、进气温度、节气门位置、爆震信号等修正点火提前角,最后得到一个最佳的点火正时。在点火正时前的某一预定角,ECU控制点火线圈的初级通电,在到达点火正时角时,ECU切断点火线圈初级电流并在次级线圈中感应出高压电使相应气缸的火花塞跳火,点燃混合气。 ⑵、通电时间(闭合角)控制 点火线圈初级电路在断开时需要保证足够大的电流,以使次级线圈产生足够高的电压。与此同时,为防止通电时间过长而使

国内外汽车发动机的技术现状及发展趋势

国内外汽车发动机的技术现状及发展趋势 摘要:发动机是汽车的心脏,发动机的发展在很大程度上决定着汽车产业的发展。随着电子技术的发展也不断推动着发动机新技术的开发。无疑,先进的发动机技术将在汽车节能、环保技术开发中起着关键的决定性的作用。 Abstract: the engine is the heart of the car, the engine development in a great extent the development of the car industry. With the development of electronic technology is also constantly push engine the development of new technology. No doubt, the advanced engine technology will in car the energy conservation, the environmental protection technology development plays a key of the decisive role. 关键词:车用汽油机柴油机发动机技术发展趋势 汽油机所采用的新技术及发展趋势 由于汽油机的燃油经济性比柴油机差,所以降低汽油机的能耗已经成为汽车界当前必须要解决的一个问题。具有理论空燃比的均质混合气的燃烧理论在火花点火发动机上被广泛使用,它的最大优点是可以实用三效催化器来降低CO、HC和NOx等废气的排放。不足之处是不能获得较高的燃油经济性,为了提高发动机的热效率和降低废气排放,燃烧技术在不断地发展。汽油机经历了由完全机械控制的化油器供油为主到采用电控喷射、缸内直喷、电辅助增压和电动气门、可变压缩比、停缸等技术的变化,汽油机发展的最终方案将采用综合汽油机和柴油机优点的燃烧控制技术。 汽油机所采用的技术: 1、燃油电子喷射技术。相比于过去采用的化油器,燃油电子喷射系统可以的燃油计量精确度上有较大幅度的提高。因此,采用电子控制燃油喷射的汽油机,其经济性和动力性有很大的提高,使对混合气浓度要求的三效催化转化器降低排放成为可能。 2、电子控制燃油喷射从单点式发展到多点式。这使汽油机不仅在动力性上仍旧能保持其密度的特点,而且其燃油性几乎可以和柴油机相媲美。有人甚至称汽油直接喷射是汽油机的一次革命。汽油直接喷射技术已经在日本三菱、丰田和日产的一些发动机上应用。欧洲的一些汽车公司如德国大众、法国雷诺等也在发展之中。 3.点火和管理系统汽油机是电火花点燃混合气的点燃式发动机。火花的发生过去是依靠点火系统内的机械式白金断电器来完成的。断电器在高速运转下很容易磨损并烧蚀,从而使发动机出现失火,造成动力性下降和有害排放物激增的后果。 4.采用电磁式或霍尔式无触点的断电器便彻底解决汽油机运转过程中动力下降的排放增加的难题,也大大地减少了发动机的维修和保养工作。现代的高性能汽油机已经毫无例外地采用了电子控制的无触点点火系统。

相关文档
最新文档