高中物理之平抛运动和斜面组合模型及其应用

高中物理之平抛运动和斜面组合模型及其应用
高中物理之平抛运动和斜面组合模型及其应用

平抛运动和斜面组合模型及其应用

平抛运动可以分解为水平方向的匀速直

线运动和竖直方向的自由落体运动,其运动轨

迹和规律如图1所示,会应用速度和位移两个

矢量三角形反映的规律灵活的处理问题。设速

度方向与初速度方向的夹角为速度偏向角φ,

位移方向与初速度方向的夹角为位移偏向角θ,若过P点做与初速度平行的直线,则该直线与位移方向的夹角可以看作是构造的虚斜面的倾角,这样平抛运动模型和斜面模型就组合在一起了。在中学物理中有大量的模型,平抛运动和斜面模型是重要的模型,这两个模型组合起来进行考查,是近几年高考的一大亮点。为此,笔者就该组合模型的特点和应用,归纳如下。

一.斜面上的平抛运动问题

例1.(2006·上海)如图2所示,一足够长的固定斜面与水平面的夹角为370,物体A以初速度v1从斜面顶端水平抛出,物体B在

斜面上距顶端L=15m处同时以速度v2沿斜面向下匀速运

动,经历时间t物体A和物体B在斜面上相遇,则下列各

组速度和时间中满足条件的是(sin37O=0.6,cos370=0.8,

g=10 m/s2)

A.v1=16 m/s,v2=15 m/s,t=3s

B.v1=16 m/s,v2=16 m/s,t=2s

C .v 1=20 m/s ,v 2=20 m/s ,t =3s

D .v 1=20m/s ,v 2=16 m/s ,t =2s

解析:设物体A 平抛落到斜面上的时间为t ,

由平抛运动规律得 t v x 0=,221gt y =

由位移矢量三角形关系得 x

y

=θtan

由以上三式解得g

v t θ

tan 20=

在时间t 内的水平位移g v x θtan 220=;竖直位移g

v y θ

220tan 2=

将题干数据代入得到3v 1=20t ,对照选项,只有C 正确。 将v 1=20 m/s ,t =3s 代入平抛公式,求出x ,y

A s =75m ,

B s =v 2t =60m ,

15A B s s L m -==,满足题目所给已知条件。

结论1:物体自倾角为θ的固定斜面抛出,若落在斜面上,飞行时间为

g v t θ

tan 20=

,水平位移为g v x θtan 220=,竖直位移g

v y θ22

0tan 2=,均与初速度和斜面的倾角有关且分位移与初速度的平方成正比。

跟踪训练:

1.在例1中,题干条件不变,改变设问角度和题型。则v 1、 v 2应满足的关系式为 。

温馨提示:由结论1得飞行时间为g

v t θ

tan 20=

,由几何关系得L t v v +=21

cos θ

。联立以上两式化简得v 1、 v 2应满足的关系式为

gL v v v 812152121+=。

2.如图3所示,AB 为斜面,BC 为水平面,从A 点以水平初速度v 向右抛出一小球,其落点与A 的水平距离为1x ,从A 点以水平初速度v 3向右抛出一小球,其落点与A 的水平距离为2x ,不计空气阻力,则

2

1

x x 可能为( ) A. 31 B.51 C.91 D. 11

1

温馨提示:若两物体都落在斜平面上,由水平位移g

v x θ

tan 22

0=得,

9

1

2022

0121==v v x x ,即选项C 正确。若两物体都落在水平面上,由水平位移g

y

v x 20

=得,31020121==v v x x ,即选项A 正确。若第一

球落在斜面上,第二球落在水平面上(如图4所示),

2

1x x 不会小于91

,但一定小

于3

1

,故选项B 对D 错。所以本题正确选项为ABC 。 3.(2003·上海)如图5所示,一高度为h =0.2m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5m/s 的速度在平面上向右运动。求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10m/s 2)。某同学对此题的解法为:小球沿斜面运动,则

20sin 2

1

sin t g t v h ?+=θθ,由此可求得落地的时间t 。问:你同意上述解法吗?若同意,求出所需的时间;若不同意,

则说明理由并求出你认为正

确的结果。

温馨提示:不同意。小球离开平面后,其重力与初速度垂直,故小球做平抛运动而不是沿斜面运动。

物体能否落到斜面上,用假设法计算判断。假设物体平抛能落在斜面上,利

用其竖直分运动特点,由竖直位移g

v y θ220tan 2=得,35

=y m>h =0.2m 。故小球不

会落在斜面上。所以小球下落时间为t=

g

h

2=0.2s 。 4.将一质量为m 的小球以初速度v 0从倾角为θ的斜坡顶向外水平抛出,并落在斜坡上,那么当小球击中斜坡时重力做功的功率是( )

A .θcot 0mgv

B .θtan 0mgv

C .θcot 20mgv

D .θtan 20mgv 温馨提示:由结论1中的飞行时间为g

v t θ

tan 20=

和功率的计算式gt mg v mg p y ?=?=,得=p θtan 20mgv 。故正确的选项为C 。

拓展创新:如图6中的a 是研究小球在斜面上平抛运动的实验装置,每次将小球从弧型轨道同一位置静止释放,并逐渐改变斜面与水平地面之间的夹角θ,获得不同的射程x ,最后作出了如图6中的b 所示的x -tan θ图象,2/10s m g =。则:

(1)由图b 可知,小球在斜面顶端水平抛出时的初速度v 0= 。实验中发现θ超过60°后,小球将不会掉落在斜面上,则斜面的长度l

m 。

(2)若最后得到的图象如图6中的c 所示,则可能的原因是(写出一个)

温馨提示:(1)由结论1物体的水平位移为g v x θ

tan 220=知,图象b 中直线

的斜率g

v k 202=,解得v 0=1m/s 。由几何关系得斜面的长度θθ

θcos tan cos k x l ===0.7m

m ) (2)图象b 中直线的斜率g

v k 20

2=可知,平抛运动的初速度变大,即释放位

置变高或释放时有初速度。

例2.(2008·全国)如图7所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角φ满足( )

A.tan φ=sin θ

B. tan φ=cos θ

C. tan φ=tan θ

D. tan φ=2tan θ

解析:设平抛运动的初速度为0v ,如图所示,由速度矢量三角形关系得

tan v gt v v y =

=

φ 由位移矢量三角形关系得0

2tan v gt

x y =

=θ,由以上两关系式得θφtan 2tan =。故选项D 正确。

结论2:物体自倾角为θ的固定斜面抛出,若落在斜面上,末速度与初速度

的夹角φ满足tan 2tan ?θ=。

跟踪训练:

5.如图8所示从倾角为θ的足够长的斜面上的A 点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为1v ,球

落到斜面上前一瞬间的速度方向与斜面的夹角为1α,第二次初速度为2v ,球落在斜面上前一瞬间的速度方向与斜面间的夹角为

2α,若12v v >,则1α、2α的大小关系是 。

温馨提示:如图9所示,由结论2可知,θθαtan 2)tan(

=+, 解得θθα-=)tan 2arctan(

即α仅与θ有关,故有21αα=

点评:由此可以得出,物体自倾角为θ的固定斜面抛出,以不同初速度平抛的物体落在斜面上各点的速度是互相平行的推论。

6.如图10所示,AB 为足够长斜面,BC 为水平面,从A

点以3m/s 的初速度水平向右抛出一小球,落在斜面上的动能为1E ,再从A 点以5m/s 的初速度水平向右抛出该小球,落在斜面上的动能为2E 。不计空气阻力,则

2

1

E E 为( ) A.

259 B.51 C.53 D. 3

5

温馨提示:小球落在斜面上时的动能为)(2

1212

202y k v v m mv E +==

设斜面倾角为θ,由图1知φtan 0v v y =,由结论2得tan 2tan ?θ= 联立解得)tan 41(2122

0θ+=mv E k 。即5

3020121==k k E E E E ,所示本题正确的选项为C 。

点评:由此可以得出,物体自倾角为θ的固定斜面抛出,以不同初速度平抛的物体落在斜面上时的动能与初动能的关系式为)tan 41(2

1220θ+=

mv E k 。可见,以不同初速度平抛的物体落在斜面上各点的动能与初速度的平方成正比或与初动能成正比。

二.物体做平抛遇到斜面时的最值问题

例3.如图11所示,小球以v 0正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t 为(重力加速度为g )( )

A .g v t θtan 0=

B .g

v t θtan 20=

C .g v t θcot 0=

D .g

v t θ

cot 20= 解析:如图所示,要小球到达斜面的位移最小,则要求落点与抛出点的连线与斜面垂直,所以有

y

x

=

θt a n ,而t v x 0=,221gt y =,

解得g

v t θ

cot 20=

所以正确的选项为D 。 点评:注意本题中物体做平抛运动的位移偏向角与斜面的倾角互余。要深刻理解处理平抛运动的方法,学会灵活的迁移和应用。

例 4.在倾角为θ的斜面上以初速度0v 平抛一物体,则物体离斜面的最大距离是多少?

解析:方法一:

如图13所示,速度方向平行于斜面时,离斜面最远,由速度矢量三角形关系得0

tan v gt v v y =

=

φ, 此时横坐标为g

v t v x θ

tan 200==

平抛运动任意时刻的瞬时速度方向的反向延长线,一定通过此时水平位移x 的中点(见图13所示)即/2x x '=。由几何关系得:

g

v x H 2sin tan sin 2

12

θθ=

=

方法二:建立如图14所示坐标系,正交分解得

θcos 00v v x = ;θsin 00v v y = θsin g a x = ;θcos g a y -=

把运动看成是沿x 方向初速度为θcos 0v ,加速度为θsin g 的匀加速运动和沿y 方向的初速度为θsin 0v ,加速度为θcos g -的匀减速运动的合运动。

最远处0=y v ,由运动学公式得

g

v g v H 2sin tan cos 2)sin (02

020θ

θθθ=

--= 点评:本题考查了处理曲线运动的方法—“化曲为直”,考查了平抛运动分解的非惟一性,即平抛运动可以分解为水平方向和竖直方向,也可以分解为沿斜面方向和垂直于斜面方向,考查学生的灵活处理物理问题的能力。

跟踪训练:

7.如图15所示,从倾角θ的斜面上的M 点水平抛出一个小球,小球的初速

度为v 0,最后小球落在斜面上的N 点,在已知θ和v 0的条件下(重力加速度g 已知),空气阻力不计,则( )

A.可求出M 、N 之间的距离

B.可求出小球落到N 点时的动能

C.可求出小球落到N 点时的速度的大小和方向

D.可求出小球从M 点到达N 点的过程中离斜面的距离最大时的时间 温馨提示:由结论1可知选项AC 正确,由于不知道小球的质量或初动能,所以选项B 错误。由速度矢量三角形关系得0

tan v gt

v v y =

=

θ,可求出小球从M 点

到达N 点的过程中离斜面的距离最大时的时间g

v t θ

tan 0=。所以本题正确的选项为ACD 。

三.平抛运动与斜面上做匀变速直线运动的组合

例5.(2007·宁夏)倾斜雪道的长为25 m ,顶端高为15 m ,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图16所示。一

滑雪运动员在倾斜雪道的顶端以水平速度v 0=8 m/s 飞出。在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己

只保留沿斜面的分速度而不弹起。除缓冲外运动员可视为质点,过渡轨道光滑,其长度可忽略。设滑雪板与雪道的动摩擦因数μ=0.2,求运动员在水平雪道上滑行的距离(取g =10 m/s 2)

解析:建立如图17所示坐标系,斜面的方程为:

3

tan 4

y x x θ==

① 运动员飞出后做平抛运动

0x v t = ②

2

12

y gt =

③ 联立①②③式,得飞行时间:2.1tan 20==

g

v t θ

s 落点的x 坐标:6.9tan 220==g

v x θ

m

落点离斜面顶端的距离:112 m cos x

s θ

=

= 落点距地面的高度:11()sin 7.8 m h L s θ=-=

接触斜面前的x 分速度:8 m/s x v =;y 分速度:12 m/s y v gt ==

沿斜面的速度大小为:cos sin 13.6 m/s B x y v v v θθ=+= 设运动员在水平雪道上运动的距离为s 2,由功能关系得:

2

121cos ()2

B mgh mv mg L s mgs μθμ+=-+

解得:s 2=74.8 m

点评:此类问题以平抛运动和斜面模型为载体,考查运动的合成与分解和功能关系。要求考生灵活的建立坐标系并根据实际情况进行速度的分解;应用功能关系时要选择恰当的物理过程,明确各个力做的功和能量的转化。

跟踪训练:

8.如图18所示,一小球以初速度30=v m/s 从高为H=21.6m 的平台上水平抛出,恰好落在临近平台的一倾角为α=530的光滑斜面顶端,并刚好沿斜面下滑,g=10m/s 2,sin530=0.8,cos530=0.6,则

(1)斜面顶端与平台边缘的水平距离x 是多大? (2)小球离开平台后经多长时间t 到达斜面底端?

温馨提示: (1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,由平抛运动规律有

v y = v 0tan53° v y = gt 1 代入数据得t 1 = 0.4s 由x =v 0t 1 = 3×0.4m=1.2m (2)由2

112

1gt h =

,得h 1=0.8m 由几何关系得斜面的高度为8.2012=-=h H h m

小球在斜面上做匀加速直线运动的初速度为5220

1=+=y v v v m/s 设小球在斜面运动的时间为t 2,到达斜面底端时的速度大小为v 2

由机械能守恒得 2

2202

121mv mgH mv =+ 由运动学公式得

22

10

2253sin t v v h +=

代入数据解得v 2=21m/s ,t 2=2s 所以4.221=+=t t t s

四.物体在斜面上做类平抛运动

例6.如图19所示,将质量为m 的小球从倾角为θ的光滑斜面上A 点以速度v 0水平抛出(即v 0∥CD ),小球运动

到B 点,已知A 点的高度h ,则小球在斜面上运动的时间______,小球到达B 点时的速度大小为______.

解析:小球在光滑斜面上做类平抛运动,由A 运动至B 的时间为t ,沿斜面向下的加速度a =g si n θ

沿斜面向下的位移为θsin h =2

1

at 2 解得:t =

θsin 2a h =g

h 2sin 1

θ 沿斜面向下的速度为v y =at =g si n θ·

g

h

2sin 1θ

=gh 2 故小球在B 点的速度为v =2

2

0y v v +=gh v 22

0+

点评:本题求小球在B 点的速度,利用了运动的合成与分解的方法,目的是

学会方法的迁移和应用。也可以由机械能守恒定律220

2

1

21mv mgh mv =+求小球在

B点的速度。

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 专题辅导

高中物理模型组合讲解 水平方向上的碰撞+弹簧模型 车晓红 [模型概述] 在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 [模型讲解] 一、光滑水平面上的碰撞问题 例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出 mv mv 20=,由能量守恒定律得220)2(2121v m E mv P +=,联立解得m E v P 20=,所以正确选项为C 。 二、光滑水平面上有阻挡板参与的碰撞问题 例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。 图1 (1)求弹簧长度刚被锁定后A 球的速度。 (2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。 解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得1 0)(v m m mv +=

高一物理 平抛运动研究 典型例题精析

平抛运动研究典型例题精析 [例题1] 如图5-6(A)所示,MN为一竖直墙面,图中x轴与MN垂直.距墙面L的A点固定一点光源.现从A点把一小球以水平速度向墙面抛出,则小球在墙面上的影子运动应是 [] A.自由落体运动 B.变加速直线运动 C.匀速直线运动 D.无法判定

[思路点拨] 小球抛出后为平抛运动,在图中x方向上为匀速直线运动,在y方向上为自由落体运动.故不少同学选择(A)项,而实际上该答案是错误的.问题在于我们研究的并不是小球在竖直方向上的运动,而是在点光源照射下小球在墙上影子的运动. [解题过程] 设小球从A点抛出后经过时间t,其位置B坐标为(x,y),连接AB并延长交墙面于C(x′,y′).显然C点就是此时刻小球影子的位置(如图5-6(B)所示). 令AB与x轴夹角为α,则 依几何关系,影子位置y′=L·tanα.故 令 gL/2v0=k,则y′=k·t. 即影子纵坐标y′与时间t是正比例关系,所以该运动为匀速直线运动,应选(C)项.

[小结] (1)要认真审清题意:本题所研究的是“点光源照射下小球影子的运动”,否则会差之毫厘,谬之千里. (2)对选择题的分析判断,切莫主观猜测,要做到弃之有理,选之有据.对于需做出定量研究的问题,最好的方法就是将物理图景利用数学语言表达出来,例如在本题中就是写出位移随时间的函数关系. [例题2] 如图5-7所示,M和N是两块相互平行的光滑竖直弹性板.两板之间的距离为L,高度为H.现从M板的顶端O以垂直板面的水平速度v0抛出一个小球.小球在飞行中与M板和N板,分别在A点和B点相碰,并最终在两板间的中点C处落地.求: (1)小球抛出的速度v0与L和H之间满足的关系; (2)OA、AB、BC在竖直方向上距离之比. [思路点拨] 根据平抛运动规律,建立小球在MN之间的运动图景是本题关键之一.小球被水平抛出后,如果没有板面N的作用,其运动轨迹应如

高中物理 平抛运动实验

平抛运动实验 【实验目的】 (1)用实验的方法描出平抛运动的轨迹. (2)根据平抛运动的轨迹求初速度. 【实验原理】 (1)用描迹法画出小球平抛运动的轨迹. (2)建立坐标系,测出轨迹上某点的坐标x 、y ,根据x =v 0t 、y =12gt 2得初速度v 0=x g 2y . 【实验器材】 斜槽、小球、方木板、铁架台、白纸、图钉、铅垂线、三角板、铅笔及刻度尺 【实验步骤】 (1) 安装器材与调平:将斜槽放在水平桌面上,其末端伸出桌面外,调节末端使其切线水平后固定. 检查斜槽末端是否水平的方法:将小球放在斜槽末端水平轨道的任意位置,小球都不滚动,则可认为斜槽末端水平.精细的检查方法是用水平仪调整. (2)用图钉把坐标纸钉在木板上,让木板竖直固定,其左上方靠近槽口,用铅垂线检查坐标纸上的竖线是否竖直,整个实验装置如图所示.用铅垂线把木板校准到竖直方向,使小球平抛的轨道平面与板面平行,保证在重复实验的过程中,木板与斜槽的相对位置保持不变. (3)建立直角坐标系xOy :以小球做平抛运动的起点O 为坐标原点,从坐标原点O 画出竖直向下的y 轴和水平向右的x 轴.确定坐标原点O 的方法是:把小球放在槽口末端处,用铅笔记下这时小球的球心在坐标纸上的水平投影点O ,即为坐标原点(不是槽口端点). (4)确定小球位置:让小球由斜槽的某一固定位置自由滚下,从O 点开始做平抛运动.先用眼睛粗略估计小球在某一x 值处(如x =1 cm 或2 cm 等)的y 值,然后用铅笔尖指着这个位置,让小球从原释放处开始滚下,看是否与铅笔尖相碰,如此重复数次,较准确地确定小球通过的这个位置,并在坐标纸上记下这一点. (5)依次改变x 值,用与(4)同样的方法确定小球通过其他各点的位置. (6)描点画轨迹:取下坐标纸,将(4)(5)中所描出的各点用平滑曲线连接起来,这就画出了小球做平抛运动的轨迹曲线(所画曲线可不通过个别偏差较大的点,但必须保持曲线平滑,不允许出现凹陷处). 【注意事项】 (1)固定斜槽时,必须注意使通过斜槽末端点的切线保持水平,以使小球离开斜槽后做平抛运动. (2)木板必须处在竖直平面内,与小球运动轨迹所在的竖直平面平行,使小球的运动靠近图纸但不接触. (3)在斜槽上设定位卡板,使小球每次都从定位卡板所确定的同一位置由静止开始滚下,以保证重复实验时,

高中物理模型及方法

◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒)

F 2=0 122F=(m +m )a N=m a N= 2 12 m F m m + ② F 1≠0;F 2≠0N= 2112 12 m F m m m F ++ (2 F =就是上 面的情况) F=2 1 1221m m g)(m m g)(m m ++ F=122112 m (m )m (m gsin )m m g θ++ F= A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

②汽车过拱桥、凹桥3 ③飞机做俯冲运动时,飞行员对座位的压力。 ④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。 ⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的) (1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合 提供向心力。 为转弯时规定速度)(得由合002 0sin tan v L Rgh v R v m L h mg mg mg F ===≈=θθR g v ?=θtan 0 (是内外轨对火车都无摩擦力的临界条件) ①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合F 向,内轨道对轮缘有侧压力,F 合

高中物理平抛运动试题整理

平抛运动 ⑴平抛定义:抛出的物体只受力作用下的运动。 ⑵平抛运动性质:是加速度恒为的曲线运动。 ⑶平抛运动公式: 水平方向运动V x= X= t= 竖直方向运动V y= y= t= V合= S合= 1.决定一个平抛运动的总时间的因素() A 抛出时的初速度 B 抛出时的竖直高度 C 抛出时的竖直高度和初速度 D 与做平抛运动物体的质量有关 2、一个物体以初速度V0水平抛出,经时间t,其竖直方向速度大小与V0大小相等,那么t 为() A V0/g B 2V0/g C V0/2g D 2V0/g 3、关于平抛运动,下列说法正确的是() A 是匀变速运动 B 是变加速运动 C 任意两段时间的速度变化量的方向相同 D 任意相等时间内的速度变化量相等 4、物体以初速度V0水平抛出,当抛出后竖直位移是水平位移的2倍时,则物体抛出的时间是( ) A 1∶1 B 2 ∶1 C 3∶1D4∶1 5、做平抛运动的物体:() A、速度保持不变 B、加速度保持不变 C、水平方向的速度逐渐增大 D、竖直方向的速度保持不变 6、关于物体的运动,下列说法中正确的是() A、当加速度恒定不变时,物体做直线运动 B、当初速度为零时,物体一定做直线运动 C、当初速度和加速度不在同一直线上时,物体一定做曲线运动 D、当加速度的方向与初速度方向垂直时,物体一定做圆周运动 7、下面说法中正确的是() A、曲线运动一定是变速运动 B、平抛运动是匀速运动 C、匀速圆周运动是匀速运动 D、只有变力才能使物体做曲线运动 8、做平抛运动的物体,在水平方向通过的最大距离取决于() A、物体的高度和所受重力 B、物体的高度和初速度 C、物体所受的重力和初速度 D、物体所受的重力、高度和初速度 1.关于平抛运动,下列说法中正确的是 A.平抛运动是匀变速运动 B.做平抛运动的物体在任何相等时间内的速度的变化量都相等 C.可以分解为水平方向上的匀速直线运动和竖直方向的自由落体运动 D.落地的时间和速度只与抛出点的高度有关 2.飞机以150m/s的水平速度匀速飞行,某时刻让A球落下,相隔1s又让B球落下,不计空气阻力,在以后的运动中,关于A球与B 球的相对位置关系,正确的是 A.A 球在B球的前下方,两球间的距离保持不变 B.A 球在B球的后下方,两球间的距离逐渐增大 C.A 球在B球的正下方,两球间的距离保持不变 D.A 球在B球的正下方,两球间的距离逐渐增大

(完整)高中物理平抛运动经典例题

1. 利用平抛运动的推论求解 推论1:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 证明:设平抛运动的初速度为,经时间后的水平位移为,如图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛运动规律有 水平方向位移 竖直方向和 由图可知,与相似,则 联立以上各式可得 该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 图10 [例1] 如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。 图11 解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成角。如图12所示,图中A为末速度的反向延长线与水平位移的交点,AB即为所求的最远距离。根据平抛运动规律有 ,和 由上述推论3知 据图9中几何关系得 由以上各式解得 即质点距斜面的最远距离为

图12 推论2:平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有 证明:如图13,设平抛运动的初速度为,经时间后到达A点的水平位移为、速度为,如图所示,根据平抛运动规律和几何关系: 在速度三角形中 在位移三角形中 由上面两式可得 图13 [例2] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

高中物理模型汇总

学习资料收集于网络,仅供参考 高中物理模型汇总大全 模型组合讲解一一爆炸反冲模型 [模型概述] “爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。 [模型讲解] 例?如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M,每颗炮弹质量为m, 当炮身固定时,炮弹水平射程为s,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少? 解析:两次发射转化为动能的化学能E是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系 2 式E k二丄知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能 2m E, =-mv1 = E,E2 =1mvf M一E,由于平抛的射高相等,两次射程的比等于抛出时初 2 2 M +m 速度之比,即:处亠=.M,所以S2 M。 sv.YM+m *M+m 思考:有一辆炮车总质量为M,静止在水平光滑地面上,当把质量为平面成B角 发射出去,炮弹对地速度为v0,求炮车后退的速度。 提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为 V o COSV,设炮车后退方向为正方向,则(M -m)v-mv o COSV - 0,v = mV ° C ° S M —m 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。 [模型要点] 内力远大于外力,故系统动量守恒P i二p2,有其他形式的能单向转化为动能。所以“爆 m的炮弹沿着与水

(完整版)平抛运动的典型例题

平抛运动典型例题 专题一:平抛运动轨迹问题——认准参考系 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是( C )A.从飞机上看,物体静止 B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动 D.从地面上看,物体做自由落体运动 专题二:平抛运动运动性质的理解——匀变速曲线运动(a→) 2、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内( BD ) A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 专题三:平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须( C ) A.甲先抛出球B.先抛出球 C.同时抛出两球D.使两球质量相等 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方 向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A.同时抛出,且v1< v2B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2D.甲先抛出,且v1< v2

专题四:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系 ①基本公式、结论的掌握 5、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( D ) A . B . C . D . 6、作平抛运动的物体,在水平方向通过的最大距离取决于( C ) A.物体所受的重力和抛出点的高度 B.物体所受的重力和初速度 C.物体的初速度和抛出点的高度 D.物体所受的重力、高度和初速度 7、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角 满足 ( D ) A.tan φ=sin θ B. tan φ=cos θ C. tan φ=tan θ D. tan φ=2tan θ 8、将物体在h =20m 高处以初速度v 0=10m/s 水平抛出,不计空气阻力(g 取10m/s 2 ),求: (1)物体的水平射程——————————————————20m (2)物体落地时速度大小————————————————m 510 ②建立等量关系解题

(完整)高中物理平抛运动实验.doc

平抛运动实验【实验目的】 (1) 用实验的方法描出平抛运动的轨迹. (2) 根据平抛运动的轨迹求初速度. 【实验原理】 (1) 用描迹法画出小球平抛运动的轨迹. (2)建立坐标系,测出轨迹上某点的坐标x、 y,根据 = 0 = 1 2得初速度 v 0= x g x v t、 y 2gt 2y . 【实验器材】 斜槽、小球、方木板、铁架台、白纸、图钉、铅垂线、三角板、铅笔及刻度尺 【实验步骤】 (1)安装器材与调平:将斜槽放在水平桌面上,其末端伸出桌面外,调节末端使其切线水平后固定. 检查斜槽末端是否水平的方法:将小球放在斜槽末端水平轨道的任意位置,小球都不滚动,则可认为 斜槽末端水平.精细的检查方法是用水平仪调整. (2)用图钉把坐标纸钉在木板上,让木板竖直固定,其左上方靠近槽口,用铅垂线检查坐标纸上的竖线是否 竖直,整个实验装置如图所示.用铅垂线把木板校准到竖直方向,使小球平抛的轨道平面与板面平行,保证在重复实验的过程中,木板与斜槽的相对位置保持不变. (3) 建立直角坐标系xOy:以小球做平抛运动的起点O 为坐标原点,从坐标原点 O 画出竖直向下的y 轴 和水平向右的x 轴.确定坐标原点O 的方法是:把小球放在槽口末端处,用铅笔记下这时小球的球心在坐标纸上的水平投影点O,即为坐标原点 (不是槽口端点 ). (4) 确定小球位置:让小球由斜槽的某一固定位置自由滚下,从O 点开始做平抛运动.先用眼睛粗略估计 小球在某一 x 值处 (如 x= 1 cm 或 2 cm 等 )的 y 值,然后用铅笔尖指着这个位置,让小球从原释放处开始滚下,看是否与铅笔尖相碰,如此重复数次,较准确地确定小球通过的这个位置,并在坐标纸上 记下这一点. (5)依次改变 x 值,用与 (4)同样的方法确定小球通过其他各点的位置. (6)描点画轨迹:取下坐标纸,将(4)(5) 中所描出的各点用平滑曲线连接起来,这就画出了小球做平抛运动 的轨迹曲线 (所画曲线可不通过个别偏差较大的点,但必须保持曲线平滑,不允许出现凹陷处).【注意事项】 (1)固定斜槽时,必须注意使通过斜槽末端点的切线保持水平,以使小球离开斜槽后做平抛运动. (2)木板必须处在竖直平面内,与小球运动轨迹所在的竖直平面平行,使小球的运动靠近图纸但不接触. (3) 在斜槽上设定位卡板,使小球每次都从定位卡板所确定的同一位置由静止开始滚下,以保证重复实验时,

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 , 所以Q点的速度 ?[例2] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A 和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有 同理 则 ? [例3] 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少? 图6 解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。 取沿斜面向下为轴的正方向,垂直斜面向上为轴的正方向,如图6所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有 ?① ?② 当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。 由①式可得小球离开斜面的最大距离 当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。由②式可得小球运动的时间为

例4:在平直轨道上以20.5/m s 的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m .间隔时间为1s .两物体落地点的间隔是2.6m ,则当第一个物体下落时火车的速度是多大?(g 取210/m s ) 分析:如图所示.第一个物体下落以0v 的速度作平抛运动,水平位移0s ,火车加速到下落第二个物体时,已行驶距离1s .第二个物体以1v 的速度作平抛运动水平位移2s .两物体落地点的间隔是2.6m . 解:由位置关系得 1202.6s s s =+- 物体平抛运动的时间 0.7t s '= 由以上三式可得 例5:光滑斜面倾角为θ,长为L ,上端一小球沿斜面水平方向以速度0v 抛出(如图所示),小球滑到底端时,水平方向位移多大? 解:小球运动是合运动,小球在水平方向作匀速直线运动,有 0s v t = ① 沿斜面向下是做初速度为零的匀加速直线运动,有 2 12 L at = ② 根据牛顿第二定律列方程 sin mg ma θ= ③ 由①,②,③式解得s v v == 例6:某一物体以一定的初速度水平抛出,在某1s 内其速度方向与水平方向成37?变成53?,则此物体初速度大小是________/m s ,此物体在1s 内下落的高度是________m (g 取210/m s ) 选题目的:考查平抛物体的运动知识的灵活运用. 解析:作出速度矢量图如图所示,其中1v .2v 分别是ts 及(1)t s +时刻的瞬时速度.在这两个时刻,物体在竖直方向的速度大小分别为gt 及(1)g t +,由矢量图可知: 由以上两式解得017.1/v m s = 9 7 t s = 物体在这1s 内下落的高度 例7如图,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg .不计空气阻力.(取sin37°=0.60,cos37°=0.80;g 取10m/s 2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;

高一物理 平抛运动及实验测试题

河北省邯郸市临漳县第一中学高一物理测试题:平抛运动及实验 【知识整合】 一、实验目的 “研究平抛物体运动”实验的实验目的是, 二、实验原理 平抛物体的运动,可以看做水平方向的运动和坚直方向的运动的合运动,因而物体在任意时刻t的坐标x和y可以用下列公式求出: x=v0t (1) y=1/2gt2 ( 2) 从(1)和(2)消去t,得因此,平抛物体的运动轨迹为一抛物线。根据抛物线上任一点的坐标(x,y),由(2)式可以求出运动的时间;代入(1)式即可求得v0,这就是做平抛运动的物体的初速度。 三、实验器材有孔的硬纸片、白纸、图钉、斜槽、方木板、重锤、 四、实验步骤 ①安装调整斜槽:用图钉把白纸钉在竖直板上,在木板的左上角固定斜槽,可用平衡法调整斜槽,即就表明水平已调好。 ②调整木板:用悬挂在槽口的重锤线把木板调整到竖直方向,并使木板平面与小球下落的竖直面。然后把重锤线方向记录到钉在木板的白纸上,固定木板,使在重复实验的过程中,木板与斜槽的相对位置保持不变。 ③确定坐标原点O:把小球放在槽口处,用铅笔记下球在槽口时球心在图板上的水平投影点O,O点即为坐标原点。用铅笔记录在白纸上描绘运动轨迹:在木板的平面上用手按住卡片,使卡片上有孔的一面保持水平,调整卡片的位置,使从槽上滚下的小球正好穿过卡片的孔,而不擦碰孔的边缘,然后用铅笔在卡片的缺口上点个黑点,这就在白纸上记下了小球穿过孔时球心所对应的位置。保证小球每次从槽上开始滚下的位置相同,用同样的方法,可找出小球平抛轨迹上的一系列位置。取下白纸用平滑的曲线把这些位置连接起来即得小球做平抛运动的轨迹, ④计算初速度,以O点为原点先根据画出轴,再画出 轴,并在曲线上选取A、B、C、D、E、F六个不同的点,用刻度尺和三角板测出它们的坐标x和y,代入上面的公式即可求出初速度。 【重难点阐释】 1、实验中必需保证斜槽末端的切线水平,木板竖直。将小球放在斜槽末端的平直部分,如果小球在几个位置上都能保持静止,则说明该部分已基本水平.由于抛出去的小球是在一个竖直面内运动,所以木板也必须在竖直面内,且木板所在平面必须与小球运动平面平行,否则小球可能与木板发生碰撞导致失败, 2、本实验中,小球做平抛运动的起点不是槽口的端点,而是球在槽口时,球的球心在木板上的水平投影点,该投影点的位置要比槽口的端点位置高一些. 3、小球每次从斜槽上同一位置滚下,否则初速度就没有定值。 【典型例题】 例1.在研究平抛物体的运动实验中,某同学在建立直角坐标系时,有一处失误,假设他 在安装实验装置和进行其他操作时准确无误

高中物理模型组合27讲(Word下载)人船模型

高中物理模型组合27讲(Word 下载)人船模型 [模型概述] 〝人船〞模型极其应用如一人〔物〕在船〔木板〕上,或两人〔物〕在船〔木板〕上等,在近几年的高考中极为常见,分值高,区分度大,假如我们在解题中按照模型观点处理,以每题分布给分的情形来看依旧能够得到相当的分数。 [模型讲解] 例. 如图1所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人对地面的位移各为多少? 图1 解析:以人和船组成的系统为研究对象,在人由船头走到船尾的过程中,系统在水平方向不受外力作用,因此整个系统在水平方向动量守恒。当人起步加速前进时,船同时向后做加速运动;人匀速运动,那么船匀速运动;当人停下来时,船也停下来。设某时刻人对地的速度为v ,船对地的速度为v',取人行进的方向为正方向,依照动量守恒定律有:0'=-Mv mv ,即M m v v =' 因为人由船头走到船尾的过程中,每一时刻都满足动量守恒定律,因此每一时刻人的速度与船的速度之比,都与它们的质量之比成反比。因此人由船头走到船尾的过程中,人的平 均速度v 与船的平均速度v 也与它们的质量成反比,即 M m v v =,而人的位移t v s =人,船的位移t v s =船,因此船的位移与人的位移也与它们的质量成反比,即><=1M m s s 人船 <1>式是〝人船模型〞的位移与质量的关系,此式的适用条件:原先处于静止状态的系统,在系统发生相对运动的过程中,某一个方向的动量守恒。由图1能够看出:><=+2L s s 人船 由<1><2>两式解得L m M m s L m M M s +=+= 船人, [模型要点] 动力学规律:由于组成系统的两物体受到大小相同、方向相反的一对力,故两物体速度大小与质量成反比,方向相反。这类咨询题的特点:两物体同时运动,同时停止。 动量与能量规律:由于系统不受外力作用,故而遵从动量守恒定律,又由于相互作用力

高中物理平抛运动试题

高中物理平抛运动试题集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

平抛运动 ⑴平抛定义:抛出的物体只受力作用下的运动。 ⑵平抛运动性质:是加速度恒为的曲线运动。 ⑶平抛运动公式: 水平方向运动 V x = X= t= 竖直方向运动 V y = y= t= V 合= S 合 = 1.决定一个平抛运动的总时间的因素() A 抛出时的初速度 B 抛出时的竖直高度 C 抛出时的竖直高度和初速度 D 与做平抛运动物体的质量有关 2、一个物体以初速度V 0水平抛出,经时间t,其竖直方向速度大小与V 大小相等,那么t 为() A V 0/g B 2V /g C V /2g D 2 V0/g 3、关于平抛运动,下列说法正确的是() A 是匀变速运动 B 是变加速运动 C 任意两段时间的速度变化量的方向相同 D 任意相等时间内的速度变化量相等 4、物体以初速度V 水平抛出,当抛出后竖直位移是水平位移的2倍时,则物体抛出的时间是 ( ) A 1∶1 B 2 ∶1 C 3∶1 D4∶1

5、做平抛运动的物体:() A、速度保持不变 B、加速度保持不变 C、水平方向的速度逐渐增大 D、竖直方向的速度保持不变 6、关于物体的运动,下列说法中正确的是() A、当加速度恒定不变时,物体做直线运动 B、当初速度为零时,物体一定做直线运动 C、当初速度和加速度不在同一直线上时,物体一定做曲线运动 D、当加速度的方向与初速度方向垂直时,物体一定做圆周运动 7、下面说法中正确的是() A、曲线运动一定是变速运动 B、平抛运动是匀速运动 C、匀速圆周运动是匀速运动 D、只有变力才能使物体做曲线运动 8、做平抛运动的物体,在水平方向通过的最大距离取决于() A、物体的高度和所受重力 B、物体的高度和初速度 C、物体所受的重力和初速度 D、物体所受的重力、高度和初速度 1.关于平抛运动,下列说法中正确的是 A.平抛运动是匀变速运动 B.做平抛运动的物体在任何相等时间内的速度的变化量都相等 C.可以分解为水平方向上的匀速直线运动和竖直方向的自由落体运动D.落地的时间和速度只与抛出点的高度有关 2.飞机以150m/s的水平速度匀速飞行,某时刻让A球落下,相隔1s 又让B球落下,不计空气阻力,在以后的运动中,关于A球与B 球的相对位置关系,正确的是 A.A 球在B球的前下方,两球间的距离保持不变 B.A 球在B球的后下方,两球间的距离逐渐增大 C.A 球在B球的正下方,两球间的距离保持不变 D.A 球在B球的正下方,两球间的距离逐渐增大

平抛运动的典型例题分类汇编

平抛运动典型例题 一:平抛运动“撞球”问题——判断两球运动的时间是否相同(h 是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 1、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在 空中相遇,则必须 ( ) A .甲先抛出球 B .先抛出球 C .同时抛出两球 D .使两球质量相等 2、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h ,将甲乙两球分别以v 1.v 2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( ) A .同时抛出,且v 1< v 2 B .甲后抛出,且v 1> v 2 C .甲先抛出,且v 1> v 2 D .甲先抛出,且v 1< v 2 二:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系 ①基本公式、结论的掌握 3、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( ) A . B . C . D . 4、作平抛运动的物体,在水平方向通过的最大距离取决于( ) A.物体所受的重力和抛出点的高度 B.物体所受的重力和初速度 C.物体的初速度和抛出点的高度 D.物体所受的重力、高度和初速度 5、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角满足 ( )

A.tanφ=sinθ B. tanφ=cosθ

C. tan φ=tan θ D. tan φ=2tan θ 6、将物体在h =20m 高处以初速度v 0=10m/s 水平抛出,不计空气阻力(g 取10m/s 2),求: (1)物体的水平射程 (2)物体落地时速度大小 ②建立等量关系解题 7、如图所示,一条小河两岸的高度差是h ,河宽是高度差的4倍,一辆摩托车(可看作质点)以v 0=20m/s 的水平速度向河对岸飞出,恰好越过小河。若g=10m/s 2,求: (1)摩托车在空中的飞行时间 (2)小河的宽度 8、如图所示,一小球从距水平地面h 高处,以初速度v 0水平抛出。 (1)求小球落地点距抛出点的水平位移 (2)若其他条件不变,只用增大抛出点高度的方法使小球落地点到抛出点的水平位移增大到原来的2培,求抛出点距地面的高度。(不计空气阻力) 9、子弹从枪口射出,在子弹的飞行途中,有两块相互平行的竖直挡板A 、B (如图所示),A 板距枪口的水平距离为s 1,两板相距s 2,子弹穿过两板先后留下弹孔C 和D ,C 、D 两点之间的高度差为h ,不计挡板和空气阻力,求子弹的初速度v 0. 10、从高为h 的平台上,分两次沿同一方向水平抛出一个小球。如右图第一次小球落地在a 点。第二次小球落地在b 点,ab 相距为d 。已知第一次抛球的初速度为 ,求第二次抛球的初速度是多少? 三:平抛运动位移相等问题——建立位移等量关系,进而导出运动时间(t )

高中物理模型组合27讲Word水平方向的圆盘模型

模型组合讲解——水平方向的圆盘模型 [模型概述] 水平方向上的“圆盘”模型大多围绕着物体与圆盘间的最大静摩擦力为中心展开的,因此最大静摩擦力的判断对物体临界状态起着关键性的作用。 [模型讲解] 例1. 如图1所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求: 图1 (1)当转盘的角速度ωμ12= g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0= g r 。 (1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得 F mg T 22= μ。 例2. 如图2所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=, A 、 B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求

图2 (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102 /) 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得: ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运动了,A 、B 就在圆盘上滑动起来。设此时角速度为ω1,绳中张力为F T ,对A 、B 受力分析: 对A 有F F m r fm T 1112 1+=ω 对B 有F F m r T fm -=22122ω 联立解得: ω112112252707= +-==F F m r m r rad s rad s fm fm /./ [模型要点] 水平方向上的圆盘转动时,物体与圆盘间分为有绳与无绳两种,对无绳情况向心力是由“圆盘”对物体的静摩擦力提供,对有绳情况考虑向心力时要注意临界问题。若F F m 需摩≤,物体做圆周运动,有绳与无绳一样;若F F m 需摩>,无绳物体将向远离圆心的方向运动;有绳拉力将起作用。 [模型演练] 如图3所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上。若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离

高一物理平抛运动经典练习 题

高一物理平抛运动经典练习题 1、如图所示,在第一象限内有垂直纸面向里的 匀强磁场,一对正、负电子分别以相同速度沿与x轴 成30°角从原点射入磁场,则正、负电子在磁场中运 动时间之比为。 2、如图所示为实验用磁流体发电机原理图,两板间距d=20cm,磁场的磁感应强度B=5T,若接入额定功率P=100W的灯,正好正常发光,且

灯泡正常发光时电阻R=100,不计发电机内阻,求: (1)等离子体的流速是多大? (2)若等离子体均为一价离子,每秒钟有多少个 什么性质的离子打在下极板上? 3、如图所示为质谱仪的示意图。速度选择器部分的匀强电场场强 E=1.2×105V/m,匀强磁场的磁感强度为B1=0.6T。偏转分离器的磁感强度为B2=0.8T。求:

(1)能通过速度选择器的粒子速度多大? (2)质子和氘核进入偏转分离器后打在照相底片上的条纹之间的距离d 为多少? 4、用一根长L=0.8m的轻绳,吊一质量为m=1.0g的带电小球,放在磁感应强度B=0.1T,方向如图所示的匀强磁场中,把小球拉到悬点的右端,轻绳刚好水平拉直,将小球由静止释放,小球便在垂直于磁场的竖直平面内摆动,当小球第一次摆到低点时,悬线的拉力恰好为零(重力加速度g取10m/s2).试问:

(1)小球带何种电荷?电量为多少? (2)当小球第二次经过最低点时,悬线对小球拉力多大? 58、M、N两极板相距为d,板长均为5d,两板未带电,板间有垂直纸面的匀强磁场,如图所示,一大群电子沿平行于板的方向从各处位置以速度v射入板间,为了使电子都不从板间穿出,求磁感应强度B的范围。

6、如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xOy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xOy平面内,与x轴正向的夹角为。若粒子射出磁场的位置与O点的距离为l,求该粒子的电荷量和质量之比。 x y O θ ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· B 7.如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外.一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率 为v0,方向沿x轴正方向;然后经过x轴上x=2h处的P2点进入磁场,并经过y轴上y=-2h处的P3点.不计重力,求:

平抛运动典型例题 (2)

平抛运动典型例题 1、平抛运动中,(除时间以外)所有物理量均由高度与初速度两方面决定。 v水平抛出,抛出点离地面的高度为h,阻力不计,求:(1)小球在例1、一小球以初速度 o 空中飞行的时间;(2)落地时速度;(3)水平射程;(4)小球的位移。 2、从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。 例2、如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过x=5m 的壕沟,沟面对面比A处低h=1.25m,摩托车的速度至少要有多大? 3、平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 例3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其 运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须 A.甲先抛出球 B.先抛出球 C.同时抛出两球 D.使两球质量相等 例4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙 高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不 计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A.同时抛出,且v1< v2 B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2 D.甲先抛出,且v1< v2 4、平抛运动轨迹问题——认准参考系 例5、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动5、平抛运动运动性质的理解——匀变速曲线运动(a→) 例6、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内() A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 6、平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系

高中物理模型组合讲解 等效场模型 专题辅导

高中物理模型组合讲解 等效场模型 蔡才福 [模型概述] 复合场是高中物理中的热点问题,常见的有重力场与电场、重力场与磁场、重力场与电磁场等等,对复合场问题的处理过程其实就是一种物理思维方法。所以在复习时我们也将此作为一种模型讲解。 [模型讲解] 例1. 粗细均匀的U 形管内装有某种液体,开始静止在水平面上,如图1所示,已知: L=10cm ,当此U 形管以4m/s 2的加速度水平向右运动时,求两竖直管内液面的高度差。 (2/10s m g =) 图1 解析:当U 形管向右加速运动时,可把液体当做放在等效重力场中,'g 的方向是等效重力场的竖直方向,这时两边的液面应与等效重力场的水平方向平行,即与'g 方向垂直。 设'g 的方向与g 的方向之间夹角为α,则4.0tan == g a α 由图可知液面与水平方向的夹角为α,所以, m cm cm L h 04.044.010tan ==?=?=?α 例2. 如图2所示,一条长为L 的细线上端固定,下端拴一个质量为m 的带电小球,将它置于一方向水平向右,场强为正的匀强电场中,已知当细线离开竖直位置偏角α时,小球处于平衡状态。 图2 (1)若使细线的偏角由α增大到?,然后将小球由静止释放。则?应为多大,才能使细线到达竖直位置时小球的速度刚好为零? (2)若α角很小,那么(1)问中带电小球由静止释放在到达竖直位置需多少时间?

解析:带电小球在空间同时受到重力和电场力的作用,这两个力都是恒力,故不妨将两个力合成,并称合力为“等效重力”,“等效重力”的大小为: αcos )()(22mg Eq mg = +,令'cos mg mg =α 这里的α cos 'g g =可称为“等效重力加速度”,方向与竖直方向成α角,如图3所示。这样一个“等效重力场”可代替原来的重力场和静电场。 图3 (1)在“等效重力场”中,观察者认为从A 点由静止开始摆至B 点的速度为零。根据重力场中单摆摆动的特点,可知α?2=。 (2)若α角很小,则在等效重力场中,单摆的摆动周期为g L g L T αππ cos 2'2==,从A →B 的时间为单摆做简谐运动的半周期。 即g L T t απcos 2==。 思考:若将小球向左上方提起,使摆线呈水平状态,然后由静止释放,则小球下摆过程中在哪一点的速率最大?最大速率为多大?它摆向右侧时最大偏角为多大? 点评:本题由于引入了“等效重力场”的概念,就把重力场和电场两个场相复合的问题简化为只有一个场的问题。从而将重力场中的相关规律有效地迁移过来。值得指出的是,由于重力场和电场都是匀强场,即电荷在空间各处受到的重力及电场力都是恒力,所以,上述等效是允许且具有意义的,如果电场不是匀强电场或换成匀强磁场,则不能进行如上的等效变换,这也是应该引起注意的。 巩固小结:通过以上例题的分析,带电粒子在电场中的运动问题,实质是力学问题,其解题的一般步骤仍然为:确定研究对象;进行受力分析(注意重力是否能忽略);根据粒子的运动情况,运用牛顿运动定律、动能定理或能量关系、动量定理与动量守恒定律列出方程式求解。 [模型要点] 物体仅在重力场中运动是最简单,也是学生最为熟悉的运动类型,但是物体在复合场中的运动又是我们在综合性试题中经常遇到的问题,如果我们能化“复合场”为“重力场”,不仅能起到“柳暗花明”的效果,同时也是一种思想的体现。如何实现这一思想方法呢?

相关文档
最新文档