液晶常用接口“LVDS、TTL、RSDS、TMDS”技术原理介绍

液晶常用接口“LVDS、TTL、RSDS、TMDS”技术原理介绍
液晶常用接口“LVDS、TTL、RSDS、TMDS”技术原理介绍

液晶常用接口“L VDS、TTL、RSDS、TMDS”技术原理介绍

1;Lvds

Low-Voltage Differential Signaling 低压差分信号

1994年由美国国家半导体公司提出之一种信号传输模式,它是一种标准

它在提供高数据传输率之同时会有很低之功耗,另外它还有许多其他之优势:

1、低电压电源之兼容性

2、低噪声

3、高噪声抑制能力

4、可靠之信号传输

5、能够集成到系统级IC内

使用LVDS技术之之产品数据速率可以从几百Mbps到2Gbps。

它是电流驱动之,通过在接收端放置一个负载而得到电压,当电流正向流动,接收端输出为1,反之为0他之摆幅为250mv-450mv

LVDS即低压差分信号传输,是一种满足当今高性能数据传输应用之新型技术。由于其可使系统供电电压低至2V,因此它还能满足未来应用之需要。此技术基于ANSI/TIA/EIA-644LVDS接口标准。 LVDS技术拥有330mV 之低压差分信号(250mVMINand450mVMAX)和快速过渡时间。这可以让产品达到自100Mbps至超过1Gbps之高数据速率。此外,这种低压摆幅可以降低功耗消散,同时具备差分传输之优点。 LVDS技术用于简单之线路驱动器和接收器物理层器件以及比较复杂之接口通信芯片组。通道链路芯片组多路复用和解多路复用慢速TTL信号线路以提供窄式高速低功耗LVDS接口。这些芯片组可以大幅节省系统之电缆和连接器成本,并且可以减少连接器所占面积所需之物理空间。 LVDS解决方案为设计人员解决高速I/O接口问题提供了新选择。LVDS为当今和未来之高带宽数据传输应用提供毫瓦每千兆位之方案。更先进之总线LVDS(BLVDS)是在LVDS基础上面发展起来之,总线LVDS(BLVDS)是基于LVDS技术之总线接口电路之一个新系列,专门用于实现多点电缆或背板应用。它不同于标准之LVDS,提供增强之驱动电流,以处理多点应用中所需之双重传输。 BLVDS具备大约250mV之低压差分信号以及快速之过渡时间。这可以让产品达到自100Mbps至超过1Gbps之高数据传输速率。此外,低电压摆幅可以降低功耗和噪声至最小化。差分数据传输配置提供有源总线之+/-1V共模范围和热插拔器件。 BLVDS 产品有两种类型,可以为所有总线配置提供最优化之接口器件。两个系列分别是:线路驱动器和接收器和串行器/解串器芯片组。总线LVDS可以解决高速总线设计中面临之许多挑战。BLVDS没有需特殊之终端上拉轨。它没有需有源终端器件,利用常见之供电轨(3.3V或5V),采用简单之终端配置,使接口器件之功耗最小化,产生很少之噪声,支持业务卡热插拔和以100Mbps之速率驱动重载多点总线。总线LVDS产品为设计人员解决高速多点总线接口问题提供了一个新选择。

2;TTL

TTL(逻辑门电路) 全称Transistor-Transistor Logic,即BJT-BJT逻辑门电路,是数字电子技术中常用之一种逻辑门电路,应用较早,技术已比较成熟。TTL主要有BJT(Bipolar Junction Transistor 即双极结型晶体管,晶体三极管)和电阻构成,具有速度快之特点。最早之TTL门电路是74系列,后来出现了74H系列,7 4L系列,74LS,74AS,74ALS等系列。但是由于TTL功耗大等缺点,正逐渐被CMOS电路取代。

TTL门电路有74(商用)和54(军用)两个系列,每个系列又有若干个子系列。

TTL电平信号:

TTL电平信号被利用之最多是因为通常数据表示采用二进制规定,+5V等价于逻辑“1”,0V等价于逻辑“0”,这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制之设备内部各部分之间通信之标准技术。

TTL电平信号对于计算机处理器控制之设备内部之数据传输是很理想之,首先计算机处理器控制之设备内部之数据传输对于电源之要求不高以及热损耗也较低,另外TTL电平信号直接与集成电路连接而不需要价格昂贵之线路驱动器以及接收器电路;再者,计算机处理器控制之设备内部之数据传输是在高速下进行之,而TTL 接口之操作恰能满足这个要求。TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺之距离就不适合了。这是由于可靠性和成本两面之原因。因为在并行接口中存在着偏相和不对称之问题,这些问题对可靠性均有影响。

TTL输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

TTL电路是电流控制器件,TTL电路之速度快,传输延迟时间短(5-10ns),但是功耗大。

3;RSDS

RSDS reduced swing differential signal 低摆幅差分信号

这种 RSDS 技术适用于薄膜晶

体管 (TFT) 液晶显示器,可支持更大之画面、更高之分辨率,而且更可大幅减低所需元件

数目,但又不会增加功率消耗、总线互连或整体成本。

由于平板显示器之画面越来越大,因此更简单之设计及更低之功耗显得更为重要,对于

笔记本型计算机及其他便携式设备来说,其重要性尤其不能忽视,因为这些产品必须外型轻

巧幼薄,不能为了提高清晰度及降低元件数目而牺牲这两方面之优势。

采用 RSDS 技术亦可为新一代之显示器产品添加更多重要之功能特色及优点。例如,可

大幅节省用电量而没有损其性能及分辨率。对于以电池供电及便携式之系统来说,这个优点显

得尤为重要。由电磁干扰引起之噪音也因此而可以大幅减少,使生产成本得以降低,而产品

亦可以更快推出市场。

4;TMDS——最小化传输差分信号

在上世纪九十年代晚期,Silicon Image公司开始采用面板连接、数字可视接口(DVI)和高清多媒体接口(HDMI)之形式向显示行业推广其所有权标准——最小化传输差分信号(TMDS)。在该情况下,发射端混合了具有在铜导线上降低EMI特性之更高级编码算法,从而使得接收端具有健壮之时钟恢复性能。

8位/10位编码是一个二阶处理,它是将一个8位之输入信号转换成10位之编码。和LVDS相似之是,它采用了差分信号来降低EMI及提高精确之信号传输速率。还和LVDS相似之是,它是一个串行之传输设计。

DVI技术已成功之应用于PC领域,HDMI技术也成功之推向了消费电子市场。但是,TMDS并没有因此成为广泛使用之面板接口标准。相反,没有专利费之LVDS已被普遍使用。此外,当前之DVI版本并不能更新,而且具有物理上、功能上及成本上之局限。

5;LVDS低压差分信号和RSDS微幅差分信号之区别

虽然两种solution不同,但实质大同小异,目之就是为了降低EMI(电磁干扰),具体来说LVDS用于显卡和液晶显示器驱动板上T-con之间之通信,RSDS用于T-con和源驱动芯片之通信。目前之T-con都已集成了LVDS

之接受端和RSDS之发射端。以笔记本电脑为例,显卡信号首先送入LVDS发射端芯片,经处理后,原来之18位RGB信号,3位控制信号和一位时钟信号共22位信号就变成了8位信号,而且这8条线分成4对,每对互相缠绕后送入T-con芯片(为什么要互相缠绕呢?学过物理之人应该知道这样能使每条线产生之磁场互相抵消,注:每对线中之电流形成回路)。同时将电压幅度降为几百毫付。

要知道液晶显示器和主机间之通讯量是巨大之,频率非常高,如果不采用LVDS和 RSDS,产生之EMI足以使显示不好,要是在笔记本电脑,还会干扰其他部件工作。

采用Lvds和rsds后,好处有:1。减少EMI. 2.减少接口连线3降低电压4。工作频率可以达到455Mbps(XGA),

5 减少PCB空间

备注:LVDS和 RSDS其实就是两个IC,如果T-con不集成,它们就是一对一对使用,如果集成,就先搞清楚T -con型号,然后选择合适之LVDS发射芯片和RSDS接受芯片。

T-con就是Timing Control,液晶之时序控制器,也是液晶驱动板上最重要之部件。

一般20,30针之是LVDS ,30+45 ,30+50是TTL,40+40,35+35是RSDS,TMDS之好像比其它主板多了一个信号转换芯片

20pin单6定义:

3.3v 3.3v

1:电源2:电源3:地 4:地 5:r0- 6:r0+ 7:地 8:r1- 9:r1+ 10:地 11:r2- 12:r2+ 13:地 14:clk- 15:clk+ 16空 17空 18空 19 空 20空

每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值)

20pin双6定义:

1:电源2:电源3:地 4:地 5:r0- 6:r0+ 7:r1- 8:r1+ 9:r2- 10:r2+ 11:clk- 12:clk+ 13:ro 1- 14:ro1+ 15:ro2- 16:ro2+ 17:ro3- 18:ro3+

19:clk1- 20:clk1+

每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(8组相同阻值)

20pin单8定义:

1:电源2:电源3:地 4:地 5:r0- 6:r0+ 7:地 8:r1- 9:r1+ 10:地 11:r2- 12:r2+ 13:地 14:clk- 15:clk+ 16:r3- 17:r3+

每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(5组相同阻值)

30pin单6定义:

1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:r0- 9:r0+ 10:地 11:r1- 12:r1+ 13:地 14:r 2- 15:r2+ 16:地 17:clk- 18:clk+ 19:地 20:空- 21:空 22:空 23:空 24:空 25:空 26:空27:空 28空 29空 30空

每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值)

30pin单8定义:

1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:r0- 9:r0+ 10:地 11:r1- 12:r1+ 13:地 14:r 2- 15:r2+ 16:地 17:clk- 18:clk+ 19:地 20:r3- 21:r3+ 22:地 23:空 24:空 25:空 26:空 27:空 28空 29空 30空

每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(5组相同阻值)

30pin双6定义:

1:电源2:电源3:地 4:地 5:r0- 6:r0+ 7:地 8:r1- 9:r1+ 10:地 11:r2- 12:r2+ 13:地 14:clk- 15:clk+ 16:地 17:rs0- 18:rs0+ 19:地 20:rs1- 21:rs1+ 22:地 23:rs2- 24:rs2+ 25:地 26:clk2- 27:clk2+

30pin双8定义:

1:电源2:电源3:电源 4:空 5:空 6:空 7:地 8:r0- 9:r0+ 10:r1- 11:r1+ 12:r2- 13:r2+ 1 4:地 15:clk- 16:clk+ 17:地 18:r3- 19:r3+ 20:rb0- 21:rb0+ 22:rb1- 23:rb1+ 24:地 25:rb2- 26:rb2+ 27:clk2-

28:clk2+ 29:rb3- 30:rb3+

每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(10组相同阻值)

一般14pin、20pin、30pin为lvds接口,

25、31、40、41、60、70、75、80、100pin接口为ttl接口,其中41pin以下为单6位,60pin以上为双六位屏

50、80(50+30)pin接口之为rsds接口。单排白色线。

14+20in接口为tmds接口,少得很

一、所有TFT-LCD之数据接口种类:

单TTL6位(8位) ,双TTL6位(8位) ,单LVDS6位(8位) ,双LVDS6位(8位) ,单TMDS6位(8位) ,双TMDS6位(8位) ,还有最新出来之标准RSDS

6位和8位是用来表示屏能显示颜色多少,6位屏可以显示颜色为 2之6次方X2之6次方X2之6次方分别代表R G B 三基色,算下来6位屏最多可以显示之颜色为262144种颜色,8位屏为16777216种颜色。屏显示颜色之多少只和屏之位数有关。我们本本用之屏一般都是6位之。

早期之本本都是用12寸以下之屏,该种屏分辩率一般为640X480(VGA) 800X600(SVGA),采用之接口为单T TL6位,屏上接针脚为41针和31针,12寸以41针居多(800X600),10寸以31针居多(640X480)。TTL信号是TFT-LCD能识别之标准信号,就算是以后用到之LVDS TMDS 都是在它之基础上编码得来之。TTL信号线一共有22根(最少之,没有算地和电源之)分另为R G B 三基色信号,两个HS VS 行场同步信号,一个数据使能信号DE 一个时钟信号CLK,其中R G G三基色中之每一基色又根据屏之位数不同,而有不同之数据线数(6位,和8位之分)6位屏和8位屏三基色分别有R0--R5(R7) G0--G5(G7) B0--B5(B7)三基色信号是颜色信号,接错会使屏显示之颜色错乱。另外之4根信号(HS VS DE CLK)是控制信号,接错会使屏点不亮,不能好显示。

由于TTL信号电平有3V左右,对于高速率之长距离传输影响很大,且抗干扰能力也比较差。所以之后又出现了LVDS接口之屏,只要是XGA以上分辩率之屏都是用LVDS方式。LVDS也分单通道,双通道,6位,8位,之分,原理和TTL分法是一样之。

LVDS(低压差分信号)之工作原理是用一颗专门之IC,把输入之TTL信编码成LVDS 信号,6位为4组差分,8位为5组差分,数据线名称为D0- D0+ D1- D1+ D2- D2+ CK- CK+ D3- D3+ 其中如果是6位屏就没有D3- D3+这一组信号,这个编码过程是在我们电脑主板上完成之。在屏之另一边,也有一颗相同功能之解码IC,把LVD S信号变成TTL信号,屏最终用之还是TTL信号,因为LVDS信号电平为1V左右,而且-线和+线之间之干扰还能相互抵消。所以抗干扰能力非常强。很适合用在高分辩率所带来高码率之屏上。

由于高分屏1400X1050(SXGA+) 1600X1200(UXGA)之分辩率实在太高,信号之码率也相应提高,单靠一路L VDS传输已不堪重负,所以都用之是双路之LVDS接口,以降低每一路LVDS之速率。保证信号之稳定度。

对于笔记本上用之XGA屏,一般都是20针扁平接口,对应之接口定义为

1 VCC,

2 VCC ,

3 GND,

4 GND,

5 D0- ,

6 D0+,

7 GND ,

8 D1- ,

9 D1+ ,10 GND ,11 D2- ,12 D2+ ,1 3 GND ,14 CK-,15 CK+ ,16 GND ,17 空,18 空,19 空,20 空。

高分屏用之是30针扁平接口,对应定义为:

1 GND ,

2 VCC ,

3 VCC ,

4 空,

5 空,

6 空,

7 空,

8 DA0-,

9 DA0+ ,10 GND ,11 DA1- ,12 DA1+ ,13 GND ,14 DA2- ,15 DA2+ ,16 GND ,17 CKA- ,18 CKA+ ,19 GND ,20 DB0- ,21 DB0+ ,22 GND ,23 DB1 - ,24 DB1+ ,25 GND ,26 DB2- ,27 DB2+ ,28 GND ,29 CKB- ,30 CKB+

液晶显示屏V-by-One与LVDS接口信号驱动原理

V-by-One接口信号驱动原理(3840*2160) 一、时钟与像素点关系 一场:60Hz-16.667ms,2250行(2160行有效) ——刷新像素点:3840*2160个/Vertical 一行:135KHz-7.407us,(=60Hz*2250),4400=550*8点(3840点=480*8点有效)——刷新像素点:3840个/ Horizontal Clock:74.25MHz-13.468ns,(=135KHz*550) ——刷新像素点:8个/Clock 以上,可参考《附录A:屏规格书信号时序特性》。 二、V-by-One信号传输规则 每个Clock(DCLK),V-by-O接口有8对差分对(lane0~lane7)同时传输,每对差分对负责一个Pixel;共8个Pixels一起传输数据。 以上,可参考《附录B:屏规格书每场画面时序》与《附录C:屏规格书单区与双区的驱动方式(每一行)》。 每对差分对同时串行传输4Bytes字节(共32bits,V-by-One传输协议有40bits);(每bit周期0.3367ns=13.468ns/40,2,97G带宽) 或按照公式计算:4(byte)×8×(10/8)×(594MHz/8lines)=2,97G 以上,可参考《附录D:屏规格书数据传输格式》与《附录E:V-by-O协议文件截图》。 信号最小单位为bit,1bit的数据长度合成眼图(1UI=0.3367ns=336.7ps),可通过眼图测试得具体信号特性; 以上,可参考《附录F:V-by-O接口输入端眼图》。

附录C:屏规格书单区与双区的驱动方式(每一行)

常用液晶屏接口定义(精)

常用液晶屏接口定义 20PIN单6定义: 3.3V 3.3V 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空17空18空19 空20空 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值) 20PIN双6定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(8组相同阻值) 20PIN单8定义: 1:电源2:电源3:地4:地5:R0- 6:R0+ 7:地8:R1- 9:R1+ 10:地11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(5组相同阻值) 30PIN单6定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:空- 21:空22:空23:空24:空25:空26:空27:空28空29空30空每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值) 30PIN单8定义: 1:空2:电源3:电源4:空5:空6:空7:空8:R0- 9:R0+ 10:地11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地17:CLK- 18:CLK+ 19:地20:R3- 21:R3+ 22:地23:空&nbs 20PIN单6定义: 3.3V 3.3V 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16空 17空 18空 19 空 20空每组信号线之间电阻为(数字表100欧左右)指针表20 -100欧左右(4组相同阻值) 20PIN双6定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+ 19:CLK1- 20:CLK1+

lvds液晶屏幕接口详细讲解

1.LVDS输出接口概述 液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。 那么,什么是LVDS输出接口呢?LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。 LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。目前,LVDS输出接口在17in及以上液晶显示器中得到了广泛的应用。 2.LVDS接口电路的组成 在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。图1所示为LVDS接口电路的组成示意图。

如何准确快速判断液晶电视LVDS接口故障

如何准确快速判断液晶电视LVDS接口故障 2009年01月23日星期五 21:29 在维修中会碰到一些灰屏的机器(这里的"灰屏"是指有声音,操作功能正常,背光也亮,不是白屏,没有图像,没有字符,从屏幕侧面看能看到微亮的光线),像这种机器主要原因是主板LVDS或者屏逻辑板出了故障(供电正常),那么如何判断是主板问题还是屏逻辑板问题呢? 众所周知,LVDS信号在主板上有一个发送器通过上屏线送到逻辑板后有一个解调器,两个电路出现问题表现的现象是一致的,对于判断就产生了一定的难度。因为LVDS输出的信号是5对(标清屏)或者10对(高清屏)差分信号,即同一对数据线输出的是相位相反、幅度相同的信号,电压大约是1-1.5V,所以可以通过示波器测量波形来进行判断。 如果灰屏现象,首先检查一下上屏线供电是否正常(一般有5V和12V两种居多,3.3V屏很少),再用示波器测量一下差分信号是否对称,操作电视机相应功能菜单时差分信号电压是否变化等。如果电压正常、差分信号对称、信号电压变化,就可以判定逻辑板不良。 下面是几种常见LVDS接口定义 20PIN单8定义: 1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CL K+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表120欧左右) 30PIN单6定义: 1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 1 6:地 17:CLK- 18:CLK+ 19:地 20:空- 21:空 22:空 23:空 24:空 25:空 26:空 27:空 28空 29空 30空 每组信号线之间电阻为(数字表120欧左右) 30PIN单8定义: 1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 1 6:地 17:CLK- 18:CLK+ 19:地 20:R3- 21:R3+ 22:地 23:空 24:空 25:空 26:空 27:空 28空 29空 30空每组信号线之间电阻为(数字表120欧左右) 30PIN双6定义:1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 1 4:CLK- 15:CLK+ 16:地 17:RS0- 18:RS0+ 19:地 20:RS1- 21:RS1+ 22:地 23:RS2- 24:RS2+ 25:地 26:CLK2- 27:CLK2+ 每组信号线之间电阻为(数字表120欧左右) 30PIN双8定义: 1:电源2:电源3:电源 4:空 5:空 6:空 7:地 8:R0- 9:R0+ 10:R1- 11:R1+ 12:R2- 13:R2+ 14:地 15:CLK - 16:CLK+ 17:地 18:R3- 19:R3+ 20:RB0-21:RB0+ 22:RB1- 23:RB1+ 24:地 25:RB2- 26:RB2+ 27:CLK 2- 28:CLK2+ 29:RB3- 30:RB3+ 每组信号线之间电阻为(数字表120欧左右) 一般14PIN、20PIN、30PIN为LVDS接口。

常见LVDS屏接口定义

2 常见屏的接口 LVDS接口: 比较常见的接口,有14针插接口,20P针插、30针插和片插等多为LVDS接口LVDS常用的驱动板: 2023(支持17寸以下含17寸的所有LVDS屏VGA烧录模式) 2025(支持19寸以下含19寸以下的所有LVDS屏VGA烧录模式) NTA91B(支持22寸或1680*1050以下的所有LVDS屏VGA烧录模式) 2621免程序驱动板(直接跳线就可支持14-19等LVDS屏免烧录) TTL接口:(与LVDS的屏线区别TTL的屏线相对较多) TTL屏要求驱动板输入单或双6位/8位的三基色的TTL电平,所以连接线用得比较多,一般有31扣41扣30软排线+40软排线60扣70扣80扣等,特点线比较多 驱动板: RTMC7B(新款TTL驱动板支持所有TTL接口协议还可支持TMDS TCON接口屏代替2013 2533 2033等驱动板) 鼎科2033V免程序驱动板 RSDS接口: 单50软排线、双40软排线(50+30)软排线一般为RSDS接口。 驱动板: MA4B:支持双40 30+50 单50软排线RSDS专用驱动板 TCON接口:Timing Controller(不常用) 现在很多的型号的液晶屏接受的是LVDS信号,而Driver IC收到的是RSDS信号,这中间就是由TCON实现的转换,不少屏是RSDS接口的,是PANEL厂家为了减少PANEL成本,省掉了TCON芯片,因为目前的很多驱动板IC都可以直接处理RSDS 信号了。 TMDS接口(不常用) 是一种类似于LVDS的接口。该接口在液晶发展中属于昙花一现。典型的有三星公司出的 LT181E2-131、LT170E2-131、日立的TX38D21V、LG的LP141X1等。 最新到货!!超小体积四灯小口高压板特价销售,联想方正系列超小体积电源高压一体板疯狂特价销 ? 上面我们知道了屏的型号和接口了,但是我们还不知道这个是多少位的屏和多少 的供电,为了让大家轻松搞会这一步,我们拿一个单6位LVDS的屏来解析一下,

教你区分LVDS屏线及屏接口定义(精)

教你区分 LVDS 屏线及屏接口定义 现在碰到液晶屏大多是 LVDS 屏线 , 经常碰到什么单 6, 双 6 单 8双 8. 如何区分呢 ? 我以前也不知道 , 后在网上收集学习后才弄明白 方法 1 数带“ +-”的这种信号线一共有几对,有 10对的减 2对就是双 8, 有 8对的减 2对就是双 6。有 5对的减掉 1对是单 8, 有 4对的减掉 1对是单 6,数 +/-线一共有多少对。说通俗点就是 4对————单 6 5对————单 8 8对————双 6 10对————双 8 方法 2 拧开螺丝看看主板里面的电路,一般每对数据线之间都有一个 100欧姆的电阻,看到 4个的话就是单 6位的屏,看到 8个的话就是双六位, 5个的话一般是单 8位, 有10个一般就是双 8位,当然有资料的话就不用这么麻烦, 也有 TMDS 也用这种 20PIN 的连接头的,比如 LG 的 LP141X1,不过基本上很少 lvds 的接口的定义 20PIN 单 6定义: 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16空 17空 18空 19 空 20空

每组信号线之间电阻为(数字表 120欧左右 ,20PIN 双 6定义 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15: RO2- 16:RO2+ 17:RO3- 18:RO3+; 19:CLK1- 20:CLK1+ 每组信号线之间电阻为(数字表 120欧左右 20PIN 单 8定义: 1:电源 2:电源 3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地14:CLK- 15:CLK+ 16:R3- 17:R3+ 每组信号线之间电阻为(数字表 120欧左右 30PIN 单 6定义: 1:空 2:电源 3:电源 4:空 5:空 6:空 7:空 8:R0- 9: R0+ 10:地 11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:空 - 21:空 22:空 23:空 24:空 25:空26:空 27:空 28空 29空 30空 每组信号线之间电阻为(数字表 120欧左右 30PIN 单 8定义: 1:空 2:电源 3:电源 4:空 5:空 6:空 7:空 8:R0- 9: R0+ 10:地 11:R1- 12:R1+ 13:地14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:R3- 21:R3+ 22:地 23:空 24:空 25:空26:空 27:空 28空 29空 30空 每组信号线之间电阻为(数字表 120欧左右

lvds液晶屏幕接口详解(完整资料).doc

【最新整理,下载后即可编辑】 1.LVDS输出接口概述 液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。 那么,什么是LVDS输出接口呢?LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。 LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB 走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。目前,LVDS输出接口在17in及以上液晶显示

器中得到了广泛的应用。 2.LVDS接口电路的组成 在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS 输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。图1所示为LVDS接口电路的组成示意图。 图1 LVDS接口电路的组成示意图 在数据传输过程中,还必须有时钟信号的参与,LVDS接口无论传输数据还是传输时钟,都采用差分信号对的形式进行传输。所谓

液晶屏线接口分类

液晶屏线接口类型 2013 0305 春雨整理 1, TTL接口 这种屏要求AD驱动板输入单口或双口6位/8位的三基色TTL电平,所以用线比较多,一般用FX8系列连接头,有60PIN/70PIN/80PIN,早期的有DF9B-31P和DF9B-41P。还有MITSUBISHI和ACER公司很多屏是用两根45PIN和35PIN扁平电缆IL-FHR-45S-HF(JAE)/扁平电缆IL-FHR-30S-HF(JAE)连接,早期的IBM也有单用一根50PIN扁平电缆的。 注意,TTL接口的针脚一般在41PIN以上,多的可达120PIN。 常见TTL屏线: D6T(单6位TTL):31扣针,41扣针。对应屏的尺寸主要为笔记本液晶屏(8寸,10寸,11寸,12寸),还有部分台式机屏15寸为41扣针接口。 S6T(双6位TTL):30+45针软排线,60扣针,70扣针,80扣针。主要为台式机的14寸,15寸液晶屏。 S8T(双8位TTL):有,很少见80扣针(14寸,15寸)

2,TMDS接口 TMDS接口应用比较少,是一种类似LVDS的接口,在大尺寸屏中有一部分使用该接口,典型的有三星的LT181E2-131和LT170E2-131等。 3, L VDS接口(低压差分信号接口) 常见的有20PIN/30PIN的,早期10-12寸屏也有14PIN的。根据信号线口数一般分为:单通道6位,单通道8位,双通道6位,双通道8位,共4种。(“单通道”,“双通道” 又称为“单口”,“双口”)。 要区分通道数和位数就要看电路了,一般每对数据线之间接有一个100欧电阻,其中一对是时钟线,所以,看到4个电阻就是单口6位,8个电阻就是双口6位,5个电阻就是单口8位,10个电阻就是双口8位。 注意,也有TMDS接口用这种20PIN接头的,如LG的LP141X1。 下图是典型的单口6位LVDS接口电路:

2021年lvds液晶屏幕接口详解之令狐采学创编

1.LVDS输出接口概述 欧阳光明(2021.03.07) 液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB数据造成一定的影响;另外,TTL多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。 那么,什么是LVDS输出接口呢?LVDS,即Low V oltage Differential Signaling,是一种低压差分信号技术接口。它是美国NS 公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。 LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。目前,LVDS输出接口在 17in及以上液晶显示器中得到了广泛的应用。

2.LVDS接口电路的组成 在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS 信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的LVDS接收器,LVDS接收器再将串行信号转换为TTL电平的并行信号,送往液晶屏时序控制与行列驱动电路。图1所示为LVDS接口电路的组成示意图。 图1 LVDS接口电路的组成示意图 在数据传输过程中,还必须有时钟信号的参与,LVDS接口无论传输数据还是传输时钟,都采用差分信号对的形式进行传输。所谓信号对,是指LVDS接口电路中,每一个数据传输通道或时钟传输通道的输出都为两个信号(正输出端和负输出端)。 需要说明的是,不同的液晶显示器,其驱动板上的LVDS 发送器不尽相同,有些LVDS发送器为一片或两片独立的芯片(如DS90C383),有些则集成在主控芯片中(如主控芯片gm5221内部就集成了LVDS发送器)。 3.LVDS输出接口电路类型 与TTL输出接口相同,LVDS输出接口也分为以下四种类型:

lvds液晶屏逻辑板接口引脚功能详解

lvds 液晶屏逻辑板接口引脚功能详解 lvds 液晶屏逻辑板接口引脚功能详解先讲一个案例,前几天修了一台杂牌37E9BD 的机器,MS68B 机芯,配AU 标清屏!用的主芯片是台湾晨星的MST6M68FQ-LF 。机器的故障现象也挺怪,开机之后机器背光正常点亮,而且能正常的听到开机音乐,遥控也能关机!但是屏幕上却显示的是红,绿,白,蓝等交替变化的光栅!光栅交替变化一段时间后图像就能一直正常显示了,而且当机器正常时马上关机,紧接着再开机的话机器也是正常的!如果关机时间稍长,再开机的话,机器就会重复上述故障了!由上述故障分析,由于机器能够正常开机,且能听见开机音乐,遥控也基本正常初步判断机器主芯片工作的核心条件是满足的,之所以液晶屏显示,红,绿,白,蓝等单色光栅是因为液晶屏处在自检状态下。说到屏自检,简单的说一下,LG 屏,AU 屏有时当逻辑板没有识别到正常的CLK 信号时,逻辑板会向液晶屏输出自检信号,即上述红,绿,蓝,白等单色光栅。要注意的是有时逻辑板不正常,屏也会自检的!出故障时,测量屏线LVDS 信号线上电压均在1V 左右,基本正常,屏供电12V 也很正常,为了区分一下是否是逻辑板不良,找来一块其他机芯的主板调整好屏线在该屏上试机,发现机器始终是正常的,看来故障确定在主板上了,从故障现象上看,故障一定在主芯片MST6M68FQ 附近,或是软件不良。由于热机故障消失,软件可能性偏小!首先在出故障时逐脚

测量了主芯片的供电,发现全部正常!由于控制等都是正常的,所以总线,复位应该是没事的!在代换晶振,发现故障依旧后,尝试在线用MST 升级小板升级了一遍FLASH ,由于没有相同版本的,找了一个同机芯的软件换上,开机机器依然自检!(该机芯配有多种屏,其主程序中已对不同屏所对应的屏参打包,所以即使抄了不同版本的软件出现花屏,进总线调整一下屏参就OK 了),修到这里我于是判断,看来系主芯片MST6M68FQ 损坏无疑了!于 是将主芯片更换!开机之后我却傻眼了,机器依然自检!!!并且更糟糕的是,以前自检5 分钟左右机器就正常了,可现在却是始终在自检了,一直也好不了!!!狂晕啊!!!这还能有哪的事情呢?由于主芯片的工作条件一切正常,主芯片也换过了,软件也没问题,那唯一的可能性就是LVDS 输出电路了,于是将LVDS 输 出电路上的信号耦合电感逐个测量,发全部正常!无意中看到图纸上屏线接口附近除了耦合电感外,还标有VBR, ,DCR,LVDS SEL 几个功能控制脚!下面介绍一下这几个功能脚的作用。VBR: 逻辑板送入主板的动态功率优化控制信号,是用来动态控制背光亮度的,这个信号和一个叫ODSEL 的信号相关联,ODSEL 是一个由主板送入逻辑板的亮度脉宽控制信号,逻辑板识别到这个信号后,就会输出VBR 到主板上来动态控 制背光亮度,从而实现节能。DCR 动态对比度控制,有的地方也叫功率优化控制使能信号。有时也标注为DCR-EN. , 对应不同的屏,这个脚不是高电平,就是低电平。LVDS-SEL 这

lvds液晶屏幕接口详解完整版

l v d s液晶屏幕接口详解标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

1.LVDS输出接口概述 液晶显示器驱动板输出的数字信号中,除了包括RGB数据信号外,还包括行同步、场同步、像素时钟等信号,其中像素时钟信号的最高频率可超过28MHz。采用TTL接口,数据传输速率不高,传输距离较短,且抗电磁干扰(EMI)能力也比较差,会对RGB 数据造成一定的影响;另外,TTL多路数据信号采用排线的方式来传送,整个排线数量达几十路,不但连接不便,而且不适合超薄化的趋势。采用LVDS输出接口传输数据,可以使这些问题迎刃而解,实现数据的高速率、低噪声、远距离、高准确度的传输。 那么,什么是LVDS输出接口呢LVDS,即Low Voltage Differential Signaling,是一种低压差分信号技术接口。它是美国NS公司(美国国家半导体公司)为克服以TTL电平方式传输宽带高码率数据时功耗大、EMI电磁干扰大等缺点而研制的一种数字视频信号传输方式。 LVDS输出接口利用非常低的电压摆幅(约350mV)在两条PCB走线或一对平衡电缆上通过差分进行数据的传输,即低压差分信号传输。采用LVDS输出接口,可以使得信号在差分PCB线或平衡电缆上以几百Mbit/s的速率传输,由于采用低压和低电流驱动方式,因此,实现了低噪声和低功耗。目前,LVDS输出接口在17in及以上液晶显示器中得到了广泛的应用。 2.LVDS接口电路的组成 在液晶显示器中,LVDS接口电路包括两部分,即驱动板侧的LVDS输出接口电路(LVDS发送器)和液晶面板侧的LVDS输入接口电路(LVDS接收器)。LVDS发送器将驱动板主控芯片输出的17L电平并行RGB数据信号和控制信号转换成低电压串行LVDS信号,然后通过驱动板与液晶面板之间的柔性电缆(排线)将信号传送到液晶面板侧的

相关文档
最新文档