Friend or Frenemy Predicting Signed Ties in Social Networks

Friend or Frenemy Predicting Signed Ties in Social Networks
Friend or Frenemy Predicting Signed Ties in Social Networks

Friend or Frenemy? Predicting Signed Ties in Social Networks
Shuang Hong Yang
College of Computing Georgia Tech shy@https://www.360docs.net/doc/996273390.html,
Alex Smola
Yahoo! Research smola@https://www.360docs.net/doc/996273390.html,
Bo Long
Yahoo! Labs bolong@https://www.360docs.net/doc/996273390.html,
Hongyuan Zha
College of Computing Georgia Tech zha@https://www.360docs.net/doc/996273390.html,
Yi Chang
Yahoo! Labs yichang@https://www.360docs.net/doc/996273390.html,
ABSTRACT
We study the problem of labeling the edges of a social network graph (e.g., acquaintance connections in Facebook) as either positive (i.e., trust, true friendship) or negative (i.e., distrust, possible frenemy) relations. Such signed relations provide much stronger signal in tying the behavior of online users than the unipolar Homophily e?ect, yet are largely unavailable as most social graphs only contain unsigned edges. We show the surprising fact that it is possible to infer signed social ties with good accuracy solely based on users’ behavior of decision making (or using only a small fraction of supervision information) via unsupervised and semisupervised algorithms. This work hereby makes it possible to turn an unsigned acquaintance network (e.g. Facebook, Myspace) into a signed trust-distrust network (e.g. Epinion, Slashdot). Our results are based on a mixed e?ects framework that simultaneously captures users’ behavior, social interactions as well as the interplay between the two. The framework includes a series of latent factor models and it accommodates the principles of balance and status from Social psychology. Experiments on Epinion and Yahoo! Pulse networks illustrate that (1) signed social ties can be predicted with high-accuracy even in fully unsupervised settings, and (2) the predicted signed ties are signi?cantly more useful for social behavior prediction than simple Homophily. Categories and Subject Descriptors H.5.3 [Information Systems]: Web-based Interaction; H.3.3 [Information Search and Retrieval]: Information ?ltering H.2.8 [Database Management]: Data Mining General Terms: Algorithms, Performance Keywords: Social ties, edge labeling, signed network, social behavior prediction, Homophily, sociological principles
Not only are most emerging online services providing functionality to facilitate social interactions in their systems (e.g. last.fm, slashdot, Flikr, Yelp), but even many traditional internet systems are actively exploiting social networks to enhance their services, marketing and revenue, e.g., search engines (e.g., Bing), online retailers (e.g., Amazon), Web portals (e.g., Yahoo!). This is partly due to the widespread faith in the social e?ect of Homophily [20] that people socially acquainted tend to behave similarly. However, the extent to which this belief holds true is debatable — after all, it is unreasonable to expect two users who know each other (e.g., who are connected in Facebook) to behave alike in every aspect of their online decision making (e.g., purchase, ad click, movie rental, search intent, political view, sentimental moods). Instead, a much stronger signal of social ties is the network of trust relationships, since in many decisions we make, the opinions from the people we trust are what we really care about and what our decisions usually get in?uenced by. Unfortunately, this information is largely unavailable given the fact that the vast majority of social networks only contain acquaintance relationships, without distinguishing whom you trust from whom you don’t. Quite surprisingly, we show it is possible to infer a signed label for an acquaintance relationship — positive as trust (true friendship), negative as distrust (possible frenemy). In this way we make possible to turn an unsigned acquaintance network (e.g. Facebook, Myspace) to a signed trust-distrust network (e.g. Slashdot, Epinion). Moreover, by allowing us to tie the behavior of an online user to whom he trusts rather than whom he knows, the predicted signed relations are signi?cantly more informative than Homophily for the purpose of behavior prediction.
1.1 Signed Social Ties
The main focus of this paper is (i) to predict the signed social ties (i.e., trust/distrust) out of the unsigned (i.e., acquaintance) relationships in social networks; and (ii) to examine how the predicted signed ties help behavior prediction. In particular, given that two users are socially connected (i.e., know each other), we would like to infer whether the connection is positive (e.g., trust, true friendship) or negative (e.g., distrust, possible frenemy); Furthermore, by tying the behavioral activities of online users with the inferred signed relationships, we examine how social targeting can be improved to promote online services, for example, to
1.
INTRODUCTION
Social networks are playing an increasingly important role in shaping the business models of today’s internet industry.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro?t or commercial advantage and that copies bear this notice and the full citation on the ?rst page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior speci?c permission and/or a fee. SIGIR’12, August 12–16, 2012, Portland, Oregon, USA. Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$10.00.

provide better matched search results, News articles, games, advertisements, or products [21, 18, 17, 26]. By predicting signed social ties, we enable the social connections in a traditional social network to capture much richer relationships re?ecting either positive (e.g. trust, approval, true friendship) or negative (e.g. distrust, opposition, frenemy) interactions. This will substantially extend the acquaintance relationship in standard social networks (e.g. Facebook), and also the unipolar tie-strength analysis of traditional link prediction [19, 22, 5], to a meaningful new dimension — we are able to en-sign 1 an unsigned network by turning it to a signed network. Moreover, models designed for signed social ties also have the potential to improve our understanding of social relations and the structure of our society, shedding light to sociological principles in general [6, 22, 5, 15].
1.2 Behavior-Relation Interplay
The interplay between social relations and user’s behavior of decision making is a key driving force underlying social activities [21, 18, 17]. On the one hand, social interactions can in?uence individual’s behavior of decision making [10, 1] — for instance, users can learn from each other, following their trusted friends’ good decisions and avoiding their mistakes. On the other hand, a user’s behavior could in turn impact his relationships with others — for instance, a user with malicious behavior turns to get bad reputations from others. In this paper, we present a framework for predicting the signed social ties by capturing such interplay. Speci?cally, we explore the following “mixture of e?ects” assumptions about social relations and users’ behavior of decision making: 1. The decision of a user is not decided solely by his own taste but also in?uenced by the opinions of other people whom he trusts. 2. The social relationship between two users depends not only on their intrinsic kinship but is also evolving according to the agreement between their opinions. It is desirable to distinguish these two groups of factors when modeling behavior and social relationships. We present the Behavior Relation Interplay (BRI) model, a latent factor model that leverages behavioral evidence to infer social interactions and at the same time exploits the learned relations to tie users’ behavior. The key idea in BRI is to associate latent factors with both users and items and to de?ne coupled models to simultaneously characterize both the social interactions and behavioral evidences. A key question is whether it is possible at all to infer signed ties in the absence of any labels. One of the more surprising results of our work is that it is, indeed, possible. To achieve this we design both unsupervised and semisupervised algorithms for signed social tie prediction. In the unsupervised setting, we only observe the acquaintance connections but none of the sign labels, as is the typical case in the vast majority of the acquaintance social network sites such as Facebook. We show that BRI achieves fairly accurate predictions. The key idea is a mechanism called “automatic sign determination ” that discovers the signs of social ties automatically from user activity data. We also examine semi-supervised prediction, where a small fraction of the sign
1 With slight abuse of expression, here by “en-sign” we mean “to assign a sign to” something that is unsigned.
labels are given. We show that BRI model provides comparable performance to the leave-one-out prediction results (i.e. all but one sign are observable) of the topology-based algorithm [14]. To further improve the prediction accuracy and deepen our understanding of signed social ties, we extend the BRI model to encode general sociological principles, particularly the theories of status and structure balance [6, 15]. One nice property of our model is that it naturally provides a mapping from a user to his social status and an interesting visualization of the network. We show the sociological principles are useful for signed social tie prediction. Finally, we show that by predicting signed social ties, BRI models achieve signi?cantly better performance in behavior prediction than models equipped with Homophily. In particular, BRI gains 5.8% improvement of RMSE in rating prediction on Epinion data, and 6.9% improvement of nDCG in top-k ranking on Yahoo! Pulse data. As the paper consists of a series of progressive models, experimental results are presented right after each model is developed so as to motivate further enhancements. The paper is structured as follows: we ?rst de?ne the task and brie?y reviews existing works in §2; the plain BRI model and learning algorithms are presented in §3; then §4 extends the model to encode sociological principles; §5 tests the proposed models in behavior prediction and §6 concludes.
2. BACKGROUND 2.1 Problem De?nition
We consider a typical scenario in social networks where users routinely make decisions while actively interacting with one another. This motivates us to analyze the interplay between an individual user’s behavior of decision making and the tie between users. Suppose we are given a set of users U = {1, 2, . . . , N } and a set of items (e.g., News articles, advertisement, retailing products, movies) I = {1, 2, . . . , M }. The users are connected by a social network represented by the graph G (U , C ). Here C = {cuv } denotes the set of edges, i.e., cuv ∈ {1, missing} de?nes the acquaintance connection between a pair of users (u, v ) ∈ U 2 . In the network, users actively make decisions, for example, by clicking links, purchasing products, rating movies. Formally, a decision is a mapping y : U × I → Y. That is: user u makes a decision regarding item i with a response yui ∈ Y (e.g. u rates movie i with a score of yui ). For convenience, hereafter we use u and v to index users, and i and j for items unless stated otherwise. We are motivated by the following two tasks: En-signing social relations. A signed social tie is a mapping s : C ? U 2 → {±1} which characterizes the overall impression (trust/distrust) of user u to user v . In essence, our aim is to label the edges of the graph G (i.e. the acquaintance relationships in a standard social network) with signed labels +1 or ?1.

u
s
e
r
i
t
e
m
d
e
c
i
s
i
o
n
p
o
s
i
t
i
v
e
t
i
e
e
g
a
t
i
v
e
t
i
e
n
know each other) is binary suv ∈ {1, missing }. Many existing methods employ random walk or spectral algorithms. A random walk on the graph G is a reversible Markov chain on the vertices U . Vertices are considered close whenever the hitting time is small or whenever the di?usion probability is large. In some cases spectral smoothness is used to obtain similarity via the associated graph Laplacian [24]. This yields the intrinsic kinship de?ned by the dominant eigenvectors of the graph [16]. Signed Relation Analysis. Social relations are complex and subtle [15, 6], re?ecting interactions that could be either positive (e.g. trust, agreement, approval) or negative (e.g. distrust, disagreement, opposition). Yet until recently a number of authors began to investigate signed relations by examining the links in emerging signed social networks (e.g., Slashdot, Epinion). [6] applied random walk algorithms to propagate both positive and negative links on Epinion network. [13] conducted similar experiments on Slashdot data. [15] examined the applicability of social psychology theories at multiple signed networks. [14] further applied classi?cation approaches to predict the sign of social relationships. While the goal of [14] is seemingly similar to the sign-labeling task we explore here, this work is still within the scope of link analysis since the focus there is solely on the network topology. Furthermore, they adopted a leave-one-out setting — a rather optimistic scenario where the sign labels for all but one edge are observable. Instead, our focus is not on network topology, but rather on discovering the interplay between relations and behavior. Also, we require no or fewer labels to obtain comparable prediction as [14].
Figure 1: An illustration of decision making in social networks: users make decisions with respect to items (e.g. by rating movies); simultaneously users also interact with one another exerting positive or negative social ties. Behavior prediction. We are also interested in predicting the users’ behavior of decision making. In particular, given a user-item pair (u, i), we want to predict the response yui with high precision. We focus on the more challenging task of sign labeling in §3 and §4, and defer the second goal to §5.
2.2 Related Work
To provide a context of our work, we brie?y review existing research on behavior prediction and relation analysis. Behavior Prediction. Behavior prediction aims at predicting future (unseen) decision responses yui of a user u w.r.t an item i. We consider collaborative ?ltering (CF) approaches [12, 27], which tackle the problem by learning from past behavior. A widely used approach to CF learns informative compact latent factors to uncover the dyadic interactions. The basic idea is to associate latent factors with each user and each item, and let the decision be explained by the interactions (e.g., multiplication) of these terms. While CF approaches gain a lot success in recommender systems, they may be insu?cient in the context of social networks where user interactions in?uence decision making dramatically [10]. For example, instead of making decisions purely by following his own taste as in recommender systems, in a social network, a user can achieve more productive decisions by learning from his friend’s experiences. This aspect has been rapidly increasing in importance as many online services are starting to add a social network aspect to their system (e.g. last.fm, Yelp, Flikr) or directly rent existing social networks (e.g. Amazon, Net?ix, Bing). Our recent work [26] exploited Homophily for behavior prediction, where the behavior of two socially-connected users is tied and reinforced by each other. This work further investigates a more realistic case where acquainted users are not necessarily reinforcing each other in decision making. We do so by modeling the signed social ties, a much stronger signal that allows us to tie the behavior of a user to whom he trusts rather than whom he knows. Unsigned Relation Analysis. Traditional relation analysis [16, 23, 19, 5] focuses on unsigned relations and estimates the tie strength between two users by propagating the observed links through the network topology. For a pair of users (u, v ) the observation whether they are connected (i.e.,
2.3 Data
Before providing a formal description of our approaches let us brie?y discuss the data, which we will use to draw intuitions for model development, test proposed models and motivate further enhancements. Epinion We use data from https://www.360docs.net/doc/996273390.html, for our analysis as it is the only publicly available dataset we are aware of that contains both signed social relationship and user behavioral data. Epinion is a well-known knowledge and opinion sharing web site, where users post reviews and assign ratings (on a scale from 1 to 5) to various of items such as retailing products, companies, or movies. More interestingly, the site maintains a signed social network that allows each user to indicate explicitly other users that he is connected to as either positive (trust) or negative (distrust). We apply our models to predict the trust/distrust relationships. The data set contains 132 thousand users, 1560 thousand items, 13.6 million ratings and 850 thousand signed relationships. Both the user-item matrix and the user-user network are very sparse, with densities of only 0.014% and 0.0048% respectively. Yahoo! Pulse https://www.360docs.net/doc/996273390.html, is an unsigned social network that allows users to communicate with friends and also express their preference for items with explicit indications of “like”. We examine data collected over one year, involving 108 users and a large collection of items, such as games, sports, News feeds, ?nance, travel, shopping, and local information services. Our evaluation focuses on a random subset consisting of about 400 items, 1.2 million users and 29 million “like” indications. Due to the unsigned characteristic of this network, we are not able to use this data set to evaluate

0.6 0.5 0.4 density 0.3 0.2 0.1 0 ?1 positive (trust) negative (distrust)
...
...
?0.5
0 0.5 behavioral correlation (γ )
uv
1
Figure 2: Histograms of behavioral correlations for positively and negatively connected users on https://www.360docs.net/doc/996273390.html,. edge-sign prediction. Instead, we will use this data set for behavior prediction evaluation (Section 5).
Figure 3: Illustration of behavior-relation interplay. (Left): user u makes a decision w.r.t. item i by either following his own interest in i or taking a friend v ’s opinion to i; (Right): social relation between u and v is a mixture of their prior impressions to each other and the calibration based on their behavioral agreement w.r.t. decision items.
3.1 The BRI Model
Similar to the latent factor CF models for behavior prediction, we devise a latent factor model for user behavior data {yui }. We associate latent factors φu with user u and ψi with item i. For notation convenience we require that each latent factor contains a constant component so as to absorb user/item-speci?c o?set into latent factors. In particular, we assume the following model for behavior (The gist of our approach is captured by Figure 3): Intrinsic taste We assume user u’s interest in item i is quanti?ed by φ? u ψi . Trust credit Similarly, we assume user u trusts an acquainted user v with a credit φ? u φv . Social decision making Furthermore, we assume that user u makes decision w.r.t. item i by taking a random walk, that is: with probability p he follows his own taste φ? u ψi , or with probability (1 ? p) he asks one of his friends, say v (with transition probability φ? u φv ) for advice, where v ’s opinion is captured by φ? v ψi . As a results, aspects that are favored/disliked by his friends should impact an individual user’s own choices. The decision yui therefore depends on pφ? u ψi + (1 ? p ) v (φ ? u φv )φv ψi , which is achieved equivalently by “coloring” the inner product between users by a normalized variant of the correlation My := (tr Cy )?1 Cy where Cy =
v
2.4 Motivating Observations
This paper attempts to predict signed social ties by capturing the interplay between behavioral and social interactions. A key insight is that we consider the behavioral data (e.g. the ratings) to be useful for predicting signed social interactions. This is reasonable as in reality we are often willing to follow the opinions from a trusted friend and ?ght against those from a foe. As a result, decisions of positively-connected (i.e., trust) friends are more likely to agree, whereas for frenemies the chance of disagreement would be considerably higher. Here we empirically validate this intuition on the Epinion data, as can be seen in Figure 2. In particular, we quantify behavioral agreement using the Pearson correlation score between the ratings of two users, and we compare this between users with positive and negative links. The Pearson score is de?ned as follows: i∈O [uv ] yui yvi γuv := , (1) 2 2 i∈O [uv ] yui i∈O [uv ] yvi where O[uv ] denote the set of items that both u and v rate. Figure 2 plots the distribution of γuv for positiverelationships (u trusts v ) and negative-relationships (u distrusts v ). We can see that the behavioral correlation is highly predictive for signed relations. Speci?cally, the majority (almost 90%) of the positive links indeed show positive behavioral correlations. The case for negative links is a bit more complicated — the distribution peaks at both -1 and +1, indicating that users with distrust relationships could agree or disagree with each other. But even in this case, we can still observe that for almost 40% of the negative edges, the signs of relations are consistent with the signs of behavioral correlations.
φv φ? v
(2) (3)
fui = φ? u [pI + (1 ? p)My ] ψi
Here p ∈ [0, 1] encodes the the probability with which a user’s behavior is decided by his own taste. The same model can be applied to incorporate social relations among users. We assume a user u is fully characterized by its latent factor φu and devise the following model to characterize the relationships of user u to user v : Prior impression We assume user u trusts an acquainted user v a priori (i.e., prior to any decision making behavior) with credit φ? u φv . Behavior agreement User u calibrates his impression regarding v based on the agreement2 between his own and v ’s decisions, e.g., according to the correlation ? ? i (φu ψi )(φv ψi ).
2 Note that a dynamic model, i.e., huv (t) over time t, is possible if we have access to the time stamp of each activity.
3.
BEHAVIOR RELATION INTERPLAY
The nontrivial relationship between behavioral correlation and the sign of social relations motivates us to leverage both social and behavioral evidences when predicting signed social ties (and/or behavior vice versa). In this section, we present models to capture the interplay between users’ behavior of decision making and social interaction in the context of social networks.

Social tie We assume the social interaction is a mixture of both prior impression and behavior agreement with mixture parameter q , i.e.: the social tie depends on ? ? qφ? u φv + (1 ? q ) i (φu ψi )(φv ψi ), or equivalently: Ms := (tr Cs )?1 Cs where Cs =
i ? ψi ψi
tions (u, v ) ∈ Oc , we have the following optimization: minimize λy
φ,ψ
(yui ? fui )2 + λc ||φu || + λI
u∈U i∈I 2
(cuv ? |huv |)2 ||ψi ||2 (6)
(u,i)∈Oy
(u,v )∈Oc
(4) (5)
+ λU
huv =
φ? u
[qI + (1 ? q )Ms ] φv
Here q ∈ [0, 1] de?nes the mixture probability of prior impression. Unlike in random walk models where proximity in a graph is simply used to smooth secondary estimators of parameters (e.g. reachability, hitting times), we make direct use of it to model the latent variables φs. Based on the above descriptions, we specify the probabilities with spherical Gaussian distributions (extensions to other distributions are straightforward) and we summarize the overall model in the table below.
The Behavior Relation Interplay (BRI) model.
where λU , λI , λc , λy are trade-o? parameters, fui and huv are de?ned according to Eq(3) and Eq(5). Prediction. Given an incoming pair of users, (u, v ), we predict the sign of the social tie (i.e., trust or distrust) as follows: s ?uv = sign(huv ? h0 ) (7)
?u∈U ?i∈I ? u ∈ U, i ∈ I ? u, v ∈ U
2 φu ~ N (φu |0, σU I) 2 ψi ~ N (ψi |0, σI I) 2 I) yui ~ N (yui |fui , σY 2 suv ~ N (suv |huv , σS I)
Here σI , σU , σS , σY are scalars specifying the variance. We develop inference algorithms for the proposed model, relying on three types of dyadic evidences: 1. The user behavior trace {yui } in the form of user-item interactions such as a user’s rating for a movie. 2. The unsigned user-user social connections (e.g., the acquaintance relations at Facebook) {cuv }, where cuv = 1 when u and v know each other or missing otherwise. Or alternatively whenever available: 3. The signed connections {suv }, suv = ±1 or missing, e.g., the trust/distrust or friend/foe relations at Epinion and Slashdot. We refer to cuv as unlabeled tie and to suv as labeled tie. Our goal is to infer the labels of social ties using none (i.e. unsupervised) or only a fraction (i.e. semi-supervised) of the label observations by ?tting the latent factor model BRI on the above three sources of evidences.
Here h0 is a threshold which suitably determines the fraction of positive and negative ties. Whenever we have access to some labels on a validation set, it is straightforward to determine h0 via line search: simply sort huv by magnitude and compute the balanced error for each distinct value of huv . This is in complete analogy to the line search procedure of [8] for Fβ scores. Optimization. Eq(6) is minimized by stochastic gradient descent. Strictly speaking the objective does not decouple entirely in terms of φ and ψ due to the matrices My and Ms . Nonetheless we found that an approximation which performs stochastic gradient descent on φ and ψ while keeping My , Ms ?xed produces good results. Also, it can be decomposed into sessions and parallelized using the MapReduce framework. The stochastic gradient descent procedure is entirely standard: the algorithm processes all observations and updates the parameters in the direction of the negative gradient. For instance, for Oy the updates are as follows: ˉ U )φu ? η (fui ? yui )(pψi + (1 ? p)My ψi ) (8) φu ← (1 ? η λ ˉ I )ψi ? η (fui ? yui )(pφu + (1 ? p)My φu ) (9) ψi ← (1 ? η λ ˉ U and λ ˉ I are regularization constants suitably adHere λ justed with respect to the prediction accuracy (they are obtained by normalizing Eq(6) in terms of size). The learning rate η is annealed with a discount factor after each iteration, as suggested by [12]. Algorithm 1 Stochastic gradient descent learning initialize My = Ms = I , random φu and ψi for t = 1 to T do Stochastic gradient descent w.r.t. φu with Ms ?xed. Update Ms Stochastic gradient descent w.r.t. ψi with My ?xed. Update My end for The absolute-value link function |ξ | is approximated by a smooth variant (α?1 log 2 cosh αξ ) with α = 100. This approximation avoids non-di?erentiability in the objective function and aids convergence of the optimization.
3.2 Unsupervised BRI
We ?rst consider the case where no label is observed. This is a typical setting for the majority of social network sites such as Facebook. Our key idea is to use an absolute-value link function |ξ |, which bridges the hidden signed-ties we aim to infer, huv , to the unsigned acquaintance connections we actually observed, cuv . In this way, we enable the mechanism of automatic sign determination in the same spirit as the maximum margin clustering of [25] — we assume the objective function achieves optimality at either huv = +1 or huv = ?1; through optimization, the model will automatically determine the optimal sign for huv because di?erent signs correspond to di?erent objective values. Formulation. Given the observations of user-item behavioral interactions (u, i) ∈ Oy and unsigned user-user connec-
3.3 Empirical Results for Unsupervised BRI
We conducted experiments on the Epinion data set. The social relationships in Epinion are dominated by positive ones (over 85% of the edges are positive). Following the settings of [14, 6], we derive a balanced dataset containing equal numbers of positive and negative relations by randomly down-sampling the positive edges. Moreover, because

0.75 0.7 0.65 0.6 0.55 k=5 k=10 k=50
0.72 0.7 accuracy 0.68 0.66
accuracy
0.5 random correlation FIP BRI
0.64
0
0.2
0.4 p or q
0.6
0.8
1
accuracy
Figure 4: Unsupervised sign prediction performance on Epinion. From left to right: random guess, behavioral correlation based method, the FriendshipInterest Propagation (FIP) model [26], and the proposed BRI model. Results are reported with latent dimensionality k = 5, 10 and 50 respectively. the behavioral data in this dataset is extremely skewed (the mean value of the ratings is around 4.6), we standardize all the ratings to the range [?1, 1] by applying a transformation: (y ? 3.0)+ ? 1.0. We evaluate the BRI model in terms of its unsupervised sign prediction accuracy. For this purpose, we hide the signs of all the relationships in the training set, i.e., all the edges are treated as “acquaintance” regardless whether they were originally trust or distrust. For comparison, we also evaluate the following three unsupervised methods: ? Random. A random guessing predictor yields 50% accuracy because the dataset is balanced. ? Correlation. The 1-dimensional classi?er: s ?uv = sign(γuv ? γ0 ) based on the behavioral correlations γ , where γ0 is the optimal threshold found by line-search. ? Fip. The Friendship-Interest Propagation model [26] has been proved e?ective for link (tie-strength) prediction using both social and behavior data. FIP can be viewed as a special case of BRI with (1) both p = 1 and q = 1; and (2) no automatic sign determination. Throughout this paper, all the models are evaluated by using the 1-dimensional prediction scheme Eq(7). In particular, for the output score ρuv of a model, we predict the sign as s ?uv = sign(ρuv ? ρ0 ), where ρ0 is an optimal threshold scalar found by line search on validation data. The prediction accuracy is depicted in Figure 4, where the results of BRI and FIP are reported at latent dimensionality k = 5, 10 and 50 respectively. As can be seen from the ?gure, BRI achieves up to 71% accuracy in this unsupervised setting and it signi?cantly outperform all the three baselines. In particular, BRI gains 42% improvement over Random, 21% over Fip and 11% over Correlation. The result is quite promising especially considering that all the signs are hidden in training. It also proves the BRI model is potentially usable in practice for en-signing unsigned social networks, given that we can predict trust/distrust from acquaintance relationships with over 70% accuracy. One key notion that motivates our work is that we assume the behavioral data should be useful for tie-sign prediction.
0.75 0.7 0.65 0.6 0.55 0.5 ?2 10
?1 0 1 2
10
10 λy
10
10
Figure 5: Top: Unsupervised sign prediction accuracy as a function of the coloring proportion p = q ; Bottom: the same statistic for the weight for behavioral data, λY .
As can be seen from Figure 4, using the behavioral data alone, the simple correlation-based predictor achieves the second best performance among all the four models. This observation validates our hypothesis and indicates that behavioral information is indeed highly predictive for signed social ties. In Figure 5 (b), we further report the accuracy of BRI as a function of the weight for behavioral data, i.e., λy in Eq(6). As we can see, while the best result is achieved at a moderate value of λy , interestingly, the performance does not degrade badly if we further increase λy . In contrast, if λy is decreasing toward 0, the performance degrades quickly towards that of random prediction — in an extreme, BRI trained on unsigned social data alone does not perform substantially better than Random. These observations reveal that, in the unsupervised setting, the behavioral information is even more predictive than the topology of the acquaintance graph. Note that although the Fip model also leverages the behavioral data, it is ine?ective in sign prediction. Fip estimates the unipolar (i.e., in the interval [0, 1]) tie-strength indicating whether two users know each other. Nonetheless, it is incapable to predict whether they trust or distrust each other, i.e. Fip cannot discern the sign of a connection. From another prespective, this comparison between Fip and Bri con?rms that the proposed mechanism of automatic sign determination is e?ective for sign prediction. The performance of the BRI model is a?ected by the parameters of mixture probabilities, i.e., p and q in Eq(3-5).

Table 1: Semi-supervised sign prediction performance on Epinion data. We compare ?ve methods: random guess (Rand), Friendship-Interest propagation (Fip) [26], behavioral correlation based classi?er with optimal threshold (Corr), Leave-one-out Logistic Regression based on local topology features [14] (Loo-LR), and the proposed Bri model trained with di?erent percentages of supervision information (i.e., tie labels). Model Labels Accuracy Rand 0 0.500 Fip 0 0.591 Corr 0 0.644 Loo-LR All - 1 0.934 0 0.709 100 0.709 1% 0.731 5% 0.747 Bri 10% 20% 0.776 0.818 30% 0.836 50% 0.869 70% 0.894 90% 0.912
In Figure 5, we illustrate how the prediction accuracy of BRI changes with these two parameters, where for simplicity p and q are set to the same values. As can be seen from the ?gure, the accuracy curve is typically in a inverted U-shape with the optimal performance achieved at around 0.2. This observation suggests that both the two groups of factors (i.e. intrinsic taste vs in?uence, prior impression vs behavior agreement) are important and should be taken into account simultaneously as what we do in the BRI model.
3.4 Semisupervised BRI
We now consider semi-supervised formulation, where part of the labels for social ties are observed — in practice, these labels could be obtained directly from users through an online survey or simply by manual annotations. In particular, assume that in addition to the behavioral observations Oy and the acquaintance relations Oc , we also have access to a small set of labeled relations (i.e., trust-distrust) on pairs (u, v ) ∈ Os . In this case we add λs
(u,v )∈Os
formance as the leave-one-out prediction of [14] but using far less supervision information compared to the latter. Interestingly, it seems that the labeled data are not always helpful for BRI. For example, the model trained using 100 (i.e. less than 0.05%) labeled edges does not perform signi?cantly better (in some cases, even slightly worse) than the unsupervised model. This observation suggests that the amount of the labeled data should exceed a minimum threshold in order for it to take e?ect. This is quite di?erent from the traditional semi-supervised learning in which labeled data, whenever available, seems to always help prediction. Nonetheless, it is reasonable in our context because we are learning a latent factor model over extremely large user/item spaces — the model is almost inevitably overparameterized and with a lot of local optima due to the nonconvexity; the labeled data cannot guarantee to drive the model toward a right direction if there is too little of it.
4. ENCODING SOCIAL PSYCHOLOGY
Theories from social psychology [6] provide profound perspectives for understanding the formation of signed relations in social networks. According to [15, 14], satisfactory sign prediction accuracy could be obtained by applying social psychology principles. For example, [14] constructed local topology-based features according to status and balance theories and employed a logistic regression classi?er based on these features to predict the signed relationships. In a leaveone-out setting, their model achieves up to 93% sign prediction accuracy on Epinion data. In this section, we extend the basic Bri models to encode social psychological principles, especially the theories of status and structural balance.
(suv ? huv )
2
(10)
to the objective function of Eq(6). This formulation has a close connection with the semi-supervised classi?cation model of [2]. It maximizes the ?delity to the target output (e.g. suv ) of the labeled data, while approximating the target output for unlabeled data up to an arbitrary sign. A notable distinction is that we are learning latent factor models (e.g., the BRI model) rather than a global feature mapping (i.e., the classi?er of the form w? x + b in [2]). The learning algorithm and prediction formula are similar to the unsupervised case and therefore are omitted.
4.1 Encoding Structural Balance Theory
The ?rst theory we try to encode is that of structural balance [7, 15]. Roughly speaking it implies the intuition that “a friend’s friend is a friend” and that “an enemy’s enemy is a friend”. Basically, it considers the balance of signs on a triad involving three users. It states that a triad is balanced if and only if it contains an odd number of positive edges. Balance theory [7, 15]: A triad (u,v,w) is balanced in either of the two cases: (1) if suv = 1 and suw = 1, then svw = 1; (2) if suv = ?1 and suw = ?1, then svw = 1. To encode the balance theory, we introduce an additional (1-dimensional) latent factor βu for each user u. Unlike the latent pro?les φ, β is only used to capture the structural balance of the network topology. In particular, we assume an additional component: guv = βu βv , (11)
3.5 Empirical Results for Semisupervised BRI
Table 1 gives the overall results of semi-supervised sign prediction on Epinion data, where we report the performance of the BRI model that are trained using progressive proportions (1% to 90%) of the labeled data. As a reference, we also report the results obtained by Random guessing, Correlation-based 1-dimensional classi?er, the Friendship-Interest Propagation (Fip) model of [26] and the leave-one-out logistic regression model (denoted Loo-LR) of [14]. Our ?rst observation from the table is that the performance of the BRI model is approaching that of Loo-LR. As we increase the labeled data used for training, we see that the prediction accuracy of the BRI model is steadily improving, indicating that the labeled data can indeed be used to improve the prediction ability of BRI, somewhat as we expected. In particular, with 1% of labeled data, we gain over 3% improvement of accuracy; and if we use over 90% of the labeled data, BRI can achieve comparable per-
The social tie is modeled using the following mixture-of-

e?ect model:
? huv = q1 φ? u φv + q2 φu Ms φv + q3 βu βv ,
(12)
where q1 , q2 , q3 ∈ [0, 1] and q1 + q2 + q3 = 1. The new mixture component encodes the status theory because it implies: if guv > 0 and guw > 0, then gvw > 0 (i.e. a friend’s friend is a friend); if guv < 0 and guw < 0, then gvw > 0 (i.e. an enemy’s enemy is a friend). This rank-1 parametrization of structural balance matches the models used in collaborative ?ltering, albeit with reduced dimensionality. E?ectively we are setting aside a subspace of the latent factors exclusively for social interactions.
Table 2: Semi-supervised sign prediction performance on Epinion. We compare the following models: Structural balance (Bal), Status (Sta), basic Bri model and combinations of these models, denoted by Bri+Sta and Bri+Bal respectively. %Labels Bal Sta Bri Bri+Bal Bri+Sta 0% 0.539 0.617 0.709 0.711 0.714 1% 0.557 0.719 0.731 0.734 0.739 5% 0.582 0.757 0.747 0.751 0.763 20% 0.601 0.799 0.818 0.821 0.833 50% 0.662 0.824 0.869 0.870 0.884 90% 0.735 0.843 0.912 0.912 0.925
4.2 Encoding Status Theory
In the previous sections we implicitly viewed the social network as an undirected graph. Here, we extend the Bri model to encode status theory [6, 15], which was developed for directed networks. That is, from now on, the social ties are viewed as asymmetric relationships. Basically, status theory assumes that there exists a partial order over the user space such that positive edges only goes from low-status nodes to nodes with higher status; therefore, the relationships are transitive, i.e., if suv = +1 and svw = +1 then suw = +1, and vice versa. Status theory[6, 15]: A positive directed link suv = +1 indicates that the head node u has a higher status than the tail node v ; a negative link suv = ?1 indicates that u has a lower status than v . To encode status theory we introduce a global user-independent parameter θ to capture the partial ordering of users. θ maps the latent user pro?le φu to a scalar quantity ?u = θ? φu , which re?ects the corresponding user u’s social status. According to status theory, we characterize social ties from u to v by modeling the relative status di?erence between user u and user v : ?uv = θ? (φu ? φv ) = θ? φu ? θ? φv .
=:?u =:?v
(13)
Note that status theory implies that the social tie is typically an antisymmetric relationship, i.e. if suv = +1, then svu = ?1. This implication is, however, too strong. For example, in the Epinion case, only 2% of the bi-directional relationships are truly antisymmetric. To relax this assumption, we therefore use a mixture of e?ects model as in the previous section. This yields:
? huv = q1 φ? u φv + q2 φu Ms φv + q3 (?u ? ?v ).
(14)
Since ?u , ?v induce a total order on users it satis?es the requirements of social status theory: by transitivity ?uv > 0 and ?vw > 0 imply ?uw > 0.
4.3 Empirical Results
We evaluate the two extended Bri models in the semisupervised setting and report the results in Tabel 2. As a reference, we also report the performance of the balance model and the status model on its own. As can be seen from the table, by encoding the status theory, we achieve results that are comparable with the leave-one-out prediction of [14], but we use far less supervision, i.e. observed tie labels. Also note that encoding the balance theory only leads to very marginal improvements. The latter is to be
expected since adding a small subspace to an already existing multiplicative latent factor model will not change the expressive richness of the model signi?cantly. Among all the methods, the rank-1 balance model performs the worst, e.g., in the unsupervised case, it performs even much worse than Fip and the correlation-based approach. Somewhat surprisingly, the plain status model perform quite satisfactorily. In most cases, the accuracy scores achieved by the status model are very close to those obtained by the basic Bri model. This observation is consistent with the empirical insight reported in [15] that status theory turns to explain the signed relationship better. However, these results do not entirely invalidate the balance theory because we use a rank-1 model that could be too simplistic for any practical network topology. It is worth noting that the status model provides a status mapping ?u = θ? φu that embeds the users into a 1dimensional space with the coordinates corresponding to users’ social status. In Figure 6, we visualize the Epinion network by randomly sampling 0.1% edges as a bipartite graph based on this embedding. In particular, the upper and lower horizontal lines denote the embedding spaces for head nodes and tail nodes respectively; edges that match the status theory (i.e., suv = +1 while ?u > ?v or suv = ?1 while ?u < ?v ) are plotted as green lines; in contrast, edges mismatch the theory are depicted as red lines; to give a clear illustration, negative edges are inverted, i.e., suv = ?1 are replaced by svu = +1. This ?gure shows a clear picture about social status and signed relations. Over 84% of signed relations, i.e., trust/distrust, are indeed consistent with the theory, going from higher-status head nodes to lower-status tails. Noticeably, while there are confusions, they are mainly in the middle area between users with relatively small difference of social status. Also note that the confusions are becoming increasingly sparse for high-status head users, indicating that these users are more likely to be trusted by most other users, which is intuitively reasonable. An interesting investigation would be to examine how the social status discovered by this work relates to the well-known concept of authority [11] in social networks. We would like to leave such investigation for future research.
5. BEHAVIOR PREDICTION
A direct motivation of this work was to take advantage of signed relationships, when available, for behavior prediction purposes. The reasonable expectation in this context was that a stronger social signal would allow us to obtain better behavior prediction than what can be achieved via

match theory head
mismatch theory
tail ?1 ?0.8 ?0.6 ?0.4 ?0.2 0 social status 0.2 0.4 0.6 0.8 1
Figure 6: A visualization of social status and signed social ties for https://www.360docs.net/doc/996273390.html,. Users are embedded into a 1-dimensional space using the status scores ?u as coordinates. Relationships that are consistent with the status theory are denoted as green lines, or otherwise as red lines. In all three metrics we use k = 5 since most social networks use a similar number of items for service recommendation. For the Pulse data, we also implement the bias correction procedure suggested by [26]. The overall results are reported in Table 3. For both data sets we see that the Bri model consistently outperform the two baselines in all the measures. In particular, it improves the RMSE by 5.8% on Epinion, and the nDCG@5 score by 6.9% on Yahoo! Pulse. Note that Bri also signi?cantly outperforms the Fip model. In terms of methodology, both Fip and Bri exploit social relations to improve behavior prediction; the di?erence, however, lies in how they leverage the social relations: Fip models the unsigned tie-strength between users which is then used to reinforce the decision making behavior of connected users; in contrast, Bri models the signed ties, distinguishing those whom we truly trust from those we do not. In this way, although behavior of two connected users is tied to each other, but not necessarily reinforcing. Bri therefore provides a mechanism that allows social users to follow the opinions from people they trust while at the same time ?ghting against the viewpoints of their foes. Our results suggest that signed social ties, such as trust-distrust relations, are a substantially more predictive signal in tying and regularizing social behavior than Homophily.
Table 3: Behavior prediction performance on Epinion and Yahoo! Pulse: comparison among collaborative ?ltering (Svd), the Fip model [26] and our Bri model. Performance is evaluated in terms of rating prediction on Epinion, and top-k ranking on Pulse. Model Svd Fip Bri Epinion RMSE MAE 0.556 0.387 0.553 0.386 0.524 0.350 AP@5 0.726 0.761 0.778 Yahoo! Pulse AR@5 nDCG@5 0.208 0.734 0.225 0.767 0.232 0.785
unipolar Homophily. In this section, we test whether, even in the absence of explicitly available signed social ties, we are able to improve behavior prediction estimates. For this purpose, we compare three models: a plain collaborative ?ltering approach (Svd), the Homophily-based model (Fip) [26] and the proposed Bri model. We evaluate these models on both Epinion and Yahoo! Pulse data. For Epinion, we evaluate the rating prediction performance in terms of root mean square error (RMSE) and mean absolute error (MAE). For Pulse, because the behavior data is binary (either 1 or missing), we evaluate the top-k ranking performance, i.e. we compare the top suggestions of the model with the true actions taken by a user (i.e. whether he liked the item). We use the following three metrics commonly used in the IR community: AP is the average precision. AP@k averages the precision of the top-k ranked list of each query (e.g. user). AR or average recall of the top-k rank list of each query. nDCG or normalized Discounted Cumulative Gain is the normalized position-discounted precision score.
6. SUMMARY
We examined the problem of predicting signed social ties, such as trust and distrust, based on the acquaintance relationships in social networks. This allows us to determine, with surprising accuracy, whether a link corresponds to a trustworthy friend or rather a frenemy. We present models that infer signed ties by capturing the interplay between

social relations and users’ behavior of decision making, and extend the models to encode general principles from social psychology. We investigate sign prediction in both unsupervised and semi-supervised settings, conduct experiments in a variety of perspectives and report promising results. We demonstrate that the predicted signed ties are much stronger signals for relating social behavior than traditional Homophily.
Acknowledgements
We thank Su-Lin Wu for helpful discussions. Part of this work was supported by NSF Grants IIS-1049694 and IIS1116886, and NSFC 61129001/F010403.
7.
REFERENCES
[1] B. Awerbuch and R. Kleinberg. Competitive collaborative learning. Journal of Computer and System Sciences, 74(8):1271–1288, 2008. [2] K. Bennet and A. Demiriz. Semi-supervised support vector machines. In Advances in Neural Information Processing Systems 11, pages 368–374, 1998. [3] M. J. Brzozowski, T. Hogg, and G. Szabo. Friends and foes: ideological social networking. In Proceeding of the 26th ACM CHI Conference on Human Factors in Computing Systems, pages 817–820, 2008. ACM. [4] Y. Chen, D. Pavlov, and J. Canny. Large-scale behavioral targeting. In Proceedings of the 15th ACM Conference on Knowledge Discovery and Data Mining, pages 209–218. ACM, 2009. [5] E. Gilbert and K. Karahalios. Predicting tie strength with social media. In Conference on Human factors in computing systems CHI, pages 211–220, 2009. ACM. [6] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust. In World Wide Web WWW, pages 403–412, 2004. ACM. [7] F. Heider. Attitudes of cognitive organization. Journal of Psychology, 21:107–112, 1946. [8] T. Joachims. A support vector method for multivariate performance measures. In Proceedings of the 22nd international conference on Machine learning (ICML ’05), pages 377–384, 2005. ACM. [9] O. Kallenberg. Probabilistic symmetries and invariance principles. Springer, 2005. [10] T. Kameda, Y. Ohtsubo, and M. Takezawa. Centrality in sociocognitive networks and social in?uence: An illustration in a group decision-making context. Journal of Personality and Social Psychology, 73(2):296–309, August 1997. [11] J. M. Kleinberg. Hubs, authorities, and communities. ACM Computing Surveys, 31, December 1999. [12] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30–37, 2009. [13] J. Kunegis, A. Lommatzsch, and C. Bauckhage. The slashdot zoo: mining a social network with negative edges. In World Wide Web 2009, pages 741–750. ACM.
[14] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative links in online social networks. In Conference on World Wide Web WWW, pages 641–650, New York, NY, USA, 2010. ACM. [15] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. In Human factors in computing systems CHI, pages 1361–1370, New York, NY, USA, 2010. ACM. [16] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In Conference on Knowledge and Information Management CKIM, pages 556–559, New York, NY, USA, 2003. ACM. [17] H. Ma, M. Lyu, and I. King. Learning to recommend with trust and distrust relationships. In ACM conference on Recommender Systems RecSys, pages 189–196, 2009. ACM. [18] P. Massa and P. Avesani. Trust-aware recommender systems. In ACM conference on Recommender Systems RecSys, pages 17–24, 2007. ACM. [19] M. Newman. Detecting community structure in networks. The European Physical Journal B Condensed Matter and Complex Systems, 38(2):321–330, 2004. [20] M. McPherson, L. S. Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1):415–444, 2001. [21] J. O’Donovan and B. Smyth. Trust in recommender systems. In Intelligent User Interfaces IUI, pages 167–174, 2005. ACM. [22] J. P. Onnela, J. Saram¨ aki, J. Hyv¨ onen, G. Szab′ o, D. Lazer, K. Kaski, J. Kert′ esz, and A. L. Barab′ asi. Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences, 104(18):7332–7336, 2007. [23] M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4):1118–1123, 2008. [24] A. J. Smola and R. Kondor. Kernels and regularization on graphs. In Proceeding of Annual Conference on Computational Learning Theory, pages 144–158, 2003. [25] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. In Advances in Neural Information Processing Systems 17. MIT Press, 2005. [26] S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha. Like like alike – joint friendship and interest propagation in social networks. In WWW ’11: Proceedings of the 20th international conference on World wide web, 2011. ACM. [27] S.-H. Yang, B. Long, A. Smola, H. Zha, and Z. Zheng. Collaborative-competitive ?ltering: learning recommender using context of user choice In SIGIR ’11: Proceedings of the 34th ACM conference on Research and development in Information Retrieval, 2011. ACM.

论美国政府二十世纪三十年代的反经济危机措施

收稿日期:2002-08-29 作者简介:杜明才(1963-),男,湖北天门人,襄樊学院管理学系副教授。 论美国政府二十世纪三十年代的反经济危机措施 杜明才 (襄樊学院 管理学系,湖北 襄樊 441053) 摘要:1929年10月以纽约股票市场的崩溃为开端,美国出现了严重的经济危机。这场经济 危机给美国造成了十分严重的灾难。胡佛总统采取传统的自由主义措施挽救危机,不仅没有拯救经济,反而使危机进一步加深。罗斯福总统推行新政,新政缓和了经济危机对美国经济的破 坏,把美国资本主义推进到了一个新的阶段———国家垄断资本主义阶段,从而延长了美国资本主 义的寿命。 关键词:大萧条;胡佛;志愿联合;罗斯福;新政 中图分类号:K712152 文献标识码:A 文章编号:1009-2854(2002)06-0081-05 1929年10月,美国爆发了经济危机,这次经济危机到三十年代逐渐加深,给美国经济造成了深重灾难。胡佛总统和罗斯福总统先后采取了反危机措施,但胡佛失败了,罗斯福成功了。为什么会出现不同的结局呢?这很值得我们探讨。 一 在探讨胡佛总统和罗斯福总统先后采取的反危机措施之前,我们首先要搞清楚这次经济危机对美国的危害。经济危机造成的危害简单地说就是银行倒闭,工厂停工,工人失业,经济倒退。举几个材料就能说明问题。危机对金融业的影响,25种有代表性的工业股票价格,从1929年平均最后成交价格每股366.29美元,降为1932年的96.63美元。1929年破产银行为659家,其储蓄额近2.5亿美元;1930年为1352家,其储蓄额为8.53亿美元;1931年破产银行为2294家,其储蓄额近17亿美元;1932年破产银行为 1456家,其储蓄额近7.5亿美元。1929-1933年共有10500家银行破产,占全国的49%。[1]危机使企业 破产,从1929年到1932年末,商号破产达17万家,其负债额近30亿美元。经济危机也使大量的工人失业,1930年10月,失业人数为400万,1931年为700万,1932年为1100万,1933年达到了1400万。美国经济也因危机而出现大倒退,国民收入从1929年的878亿美元降到1933年的402亿美元。美国对外贸易和资本输出急剧下降。进口由1929年的43.99亿美元下降到1932年的13.22亿美元。同期出口由52.41亿美元下降到16.11亿美元,进出口都下降了70%。在国外的投资几乎完全停止,1930年为10.1亿美元,1933年只有10万美元。 [1](P.126)经济危机也使美国的社会生活发生了很大的变化。教育事业受到很大影响,1930年到1934年教育事业费从18余亿美元降为15余亿美元,降幅为18%,而在密执安州和密西西比州则分别下降了41%和52%。1934年全国高等学校总入学人数比1931年减少了85%。经济危机还对家庭、婚姻、生育等产生了一定的影响。1929年结婚的有123.3万对,到1932年减为98.02万对。而生育率则从1930年的21.3‰ 降到1933年的18.4‰。 [2]1933年3月4日,罗斯福在总统就职演说中谈到这次经济危机时说:“我们纳税的能力已降低;各级政府都遇到严重的收入减少;工业企业成枯枝残叶;贸易冰封;农产品找不到市场,千家多年积蓄毁于一 旦。” [3]总之,这场经济危机给美国经济和社会生活造成了深刻的影响。 2002年11月第23卷第6期 襄樊学院学报Journal of Xiangfan University Nov.,2002Vo1.23No.6

大学一年级新生自我介绍范文

大学一年级新生自我介绍范文 大家好,我叫xxx,毕业于XX高中。我从小便喜好文学,对我而言,相比理科中奇妙的符号数字和多变的几何图形,我更喜爱文学中的那一片人文气息。无人时,我喜欢静静的看书,沉浸甚至沉醉于那一部部文学名著中。书中那片浓郁的人文气息,沁人心脾,让我不由的深陷其中,无法自拔。 不过由于过于以书为友,反而让我忽略了现实中的人际交流,在面对陌生的环境和陌生的人时,我会由于茫然不知所措而显得过于沉默乃至沉闷,这也算是我最大的一个缺点吧,所以我希望在大学里多和同学们交流,努力改掉这个缺点。 在今后的四年里,我希望在收获好成绩的同时,也能收获到数份珍贵的友谊! 在此先谢谢大家了! 各位好,我叫***,**。 孔子和孟子都出生在我们家乡。(掌声……)所以,我们那里又被称为孔孟之乡,礼仪之邦。

我这个人小毛病很多,想必大家有所听说。有做的不对的地方,还请大家告诉我一声,我会改正。 在大学里,第一要学会做人,我要改变自己。 在座的都是青年才俊,有句话是这样说,我要向大家学习。 前面同学有人谈到专科和本科的关系,并引经据典,阐述观点。这令我想起清人龚定庵的一句话,是“科以人重科亦重,人以科传人可知”。科,就是科举,高考前身。举个例子,我刘长清是广科的轮机专科,以后我厉害了,广科的名气也高了。(笑……鼓掌……)一个人什么没有,只好对别人说,自己是广科的本科生。这样的人我们都知道他是什么样的人。 来到广科,我很喜欢这个校园。轮机,好。我在浏览信息时看到这个专业,觉得很好,很适合自己。我农村,虽然很胖,家里也不富裕,所以应该能吃苦。 我来此求学,希望能得到师长和同学的教诲。我要让自己的大学生活很充实,不要空虚和无聊;我要时刻保持一种“饥渴感”,对知识的饥渴,对生活的饥渴。

如何和外国人聊天

如何与外国人聊天 一、常用软件 (1)ICQ 聊天软件,名称来自I seek you (我找你) 它是目前互联网上最流行的即时信息传递软件。提示你何时朋友和同事连接到互联网上,并可以通过这个软件相互交流。它支持在Internet上聊天、发送消息和文件等。使用新版本ICQ,你可以查看、查找和打印消息历史,设置随机聊天,使用多种方式查找并添加别的用户,获得更详细的用户信息,接收你朋友的生日并把你自己的生日提前通知大家,创建你自己的ICQ主页,当你在线的时候别人就可以访问你的主页,利用贺卡、语音邮件等ICQ插件发送贺卡和语音邮件,利用ICQ Email发送、转寄和复制电子邮件,使用你喜欢的字体、字号和颜色发送消息,为不同的事件选择声音以及配置打字的声音效果,把你的名单分成不同的组,让ICQ提醒你将来的事件和活动,利用记事功能把你的备忘录或记事贴到屏幕上,通过ICQ进行网页搜索,进行实时聊天并且可以回放保存的聊天内容,可以在聊天中插入动作和表情,等等。最新版本已经达到了7MB之巨,不过变化较以前版本比较大,首先它增加了一个频道按钮,包括有十几个网友关心的内容,比如:技术与网络、体育、游戏、生活等,按下其中一个会弹出一个窗口显示相关信息,不过目前它还没有正式投入使用。从这点看,我们可以了解到ICQ的发展目标:通过广大的用户群作网友的门户。从实际效果看,非常不错,确实令人佩服。在界面上这个最新版也有了不少变化,感觉更漂亮了,而且用户如果不喜欢高级界面中繁多的选项,完全可以使用简单界面,这样会清爽许多。新版增强:1.扩展了搜索功能、加强了关键字搜索引擎2.全新的Email签名档3.加强了用户属性设置4.改进了防火墙支持与检测5.增强了与WinXP的集成。 (2)MSN 和ICQ、QQ等一样,MSN Messenger的最主要功能就是进行网上聊天了。启动MSN Messenger后,在主窗口上部“我的状态”窗格中显示了用户自己的状态,可以点击登录名左边的倒三角形或任务栏上的MSN Messenger图标菜单中的“我的状态”来更改自己的使用状态,状态包括联机、忙碌、马上回来等7种(下图)。 如果用户想与联系人进行聊天,可以双击联系人头像,也可以在主窗口的功能栏中选择发送即时信息,在弹出的对话框中选择要交谈的对象即可。在确定了交谈对象后,会弹出对话窗口(图10),与QQ等聊天工具不同的是,MSN Messenger中与联系人的对话是连续的,而不是分时传递的。你只要将聊天内容填写到窗口下端的对话框中,然后单击“发送”按钮或回车就可在对方和自己的对话窗口中显示交谈内容。 如果是对方联系人与用户主动聊天时,在任务栏的MSN Messenger图标上方会弹出信息窗口(下图),同时系统会自动生成一个聊天对话框,供双方进行交谈。 利用MSN Messenger进行聊天,并不限于用户和联系人两个人进行,用户或对方联系人都可以邀请其他好友加入到正在进行的话题中来。用户只要点击对话窗口右侧的邀请某人加入对话,

一辈子的朋友_感悟人生

《一辈子的朋友》 感悟精选(1): 一辈子的朋友 有一种朋友,期望能够相知,就算人在天涯也能在心底珍藏; 有一种朋友,期望做到拥有,就算青丝白头也能在心底保留; 有一种朋友,期望能够永久,就算事过境迁,也会在心里默默关怀。 有一种朋友,期望彼此珍惜,就算时光流逝,也会在心里深深想念; 有一种朋友,在你疲惫的时候,总是借你坚强的肩,给你深深依靠; 有一种朋友,在你无助的时候,总是伸出温暖的手,与你紧紧相握; 有一种朋友,在你心痛的时候,总是为你擦干眼泪,跟你一醉方休。 有一种朋友,付出了不需要回报,给予了不需要得到; 有一种朋友,在你忧伤的时候,总是陪你默默无语,让你倾心诉说; 有一种朋友,平凡却又伟大,平淡却又真诚; 有一种朋友,总能产生共鸣,总是拥有默契; 有一种朋友,在你开心的时候能够忘记,在你孤独的时候总是想起。 淡淡烟雨,淡淡愁。片片雪飘,片片情。 也许忙碌让我们彼此疏远,也许快乐让你我淡薄,但知心朋友一生难忘,我总是在寂寞的时候想你,你总是在我忧愁的时刻出现,没有动人的话语,一个牵手就已满足,没有秀丽的诺言,一个拥抱就已足够,一个柔柔的眼神就让我有了安慰,一个甜甜的微笑就让我感觉温暖。 这是世上最纯洁、最真挚的一种友谊,这是人间最秀丽、最珍贵的一种感情。 这种纯纯的、真真的友谊,与天同长,与地同久; 这种沉沉的、暖暖的感情,情比山重,意比海长。我常常感慨,得一知己此生足亦!我 常常庆幸,有一知己此生幸福! 你是我一生的朋友,也许一路上会有风有雨,我愿与你风雨同行,也许一生中会有苦有难,我愿与你患难与共。伸出你的手,伸出我的手,让我们携手相牵,再多的风雨也不怕,再多的苦难也无畏,让我们的感情永久都是温暖灿烂的朝阳美!

我的朋友写人作文500字4篇

我的朋友写人作文500字4篇 我的朋友是这学期刚转走的谭熙,她有一双月亮似的眉毛,黑黑的眼睛,她还有一颗善良的心。 在二年级下学期的秋天,树上的树叶纷纷落下,给我们学校铺上了一层金黄色的地毯。虽然这样会让学校看起来很漂亮,但是,这个时候清洁工却会十分忙碌。谭熙把这些都看在眼里,她马上拿起班里的扫把,正要走,却被我拦住了,我奇怪地问:“你要去哪?”她的手指了指操场,原来她是要去帮清洁工的忙,我笑眯眯地对她说:“你等等我,我一会就来。”不久,我站在了她的面前,手里也拿着扫把。我们走到操场,就开始扫落叶了。我们仔仔细细地扫,就连灰尘也不放过。那些美丽的黄叶在脚下发出“沙沙”的响声,好像在给我们唱赞歌。谭熙扫得特别起劲,她两手紧紧地抓住扫把柄,用力地挥舞着手臂,额头慢慢地渗出汗珠。旁边的清洁工向她竖起了大拇指。我们的行为引来了许多同学,他们也来帮忙。一时间,金黄的地毯上充满了笑声。 这就是我乐于助人的朋友——谭熙。虽然她已经转学走了,但她嘴角微笑时浅浅的酒窝,她扫落叶的样子至今还留在我的脑海里。 我有一个助人为乐的朋友。她的个子不高,眼睛水汪汪的,一张樱桃小嘴,头发很像樱桃小丸子,她今年10岁叫张乐乐,她是一个很热心的人。 有一次,妈妈再三叮嘱我,今天要下大暴雨,必须带伞,可我还是忘带了,放学了我沿着石子路走在回家的路上。突然,“哗哗哗”

雨水劈头盖脸地打在我的身上,好像在惩罚我这个粗心的小女孩,我用手遮着头加快了步子,这时,“潘旭!潘旭!”一阵熟悉的喊声,在我耳边响起,回头一看,原来是我的朋友张乐乐,她正撑着一把雨伞,冒着大雨追赶我。“你没带伞吧!来,我送你到家。”她十分热情地说,顿时,我不知怎么感谢她才好,连声说:“谢谢你!谢谢你!”她笑着把伞撑到了我的头上,我顿时感觉好温暖,就这样她送我到了家,啊!有这个朋友真好! 还有一次,我和她一起去植物园烧烤,在坐公共汽车的时候,没坐几站就上来一个白发苍苍的老爷爷,手上还提着一篮的菜。她立马从座椅上下来说:“老爷爷我让你坐。”老爷爷说:“不,你坐。”她马上就把老爷爷扶到了座位上,老爷爷露出了一丝笑脸。 看!这就是我的朋友,她身上还有许多助人为乐的事,说也说不完。我真为自己有这样一个好朋友感到高兴,她就是我的榜样,我也要向她学习! 我有一个朋友,他是一个像灯一样的人,当别人伤心的时候,能给予安慰和温暖。 有一次,我和他在小区的公园里玩,远远听到有小孩的哭声,顺着声音看见一个小男孩坐在石凳上哭。我正在犹豫发生什么事情的时候,我的朋友已经朝那个男孩跑过去了,我也跟着跑过来。 “小弟弟,你怎么了,有事你告诉我,我会帮你的。” “我一直在这里玩,可是妈妈不见了。”小男孩哭着说。

大学一年级新生教师工作计划精选(通用版)

大学一年级新生教师工作计划 精选(通用版) Frequent work plans can improve personal work ability, management level, find problems, analyze problems and solve problems more quickly. ( 工作计划 ) 部门:______________________ 姓名:______________________ 日期:______________________ 编号:YB-JH-0985

大学一年级新生教师工作计划精选(通用 版) 对学生来说,又是学生智力的开发者和个性的塑造者。为大家准备的《大学一年级新生教师工作计划》,供您借鉴学习。 大学一年级新生教师工作计划 一、班级学生情况 我们信息科学学院20xx年招收本科生新生近200名,这些学生在第一学年不分专业,到第二学年再根据自己的兴趣以及第一学年的学习进展情况来进行专业的选择。因此,200名学生在第一学年被平均划分为6个小班级,我作为班主任主要负责编号为1、2的两个班级的学生工作。这两个班级中原先共有68名学生,其中有2位朝鲜国家留学生,还有3位是从20xx级转学过来。后来有1位同学转学到数学系,还有1位同学因甲肝休学,所以最后在校班级人数共

有66位学生。 二、班主任常规工作 班主任常规性的工作是跟学校学生管理结合在一起的,或者说是学校学生管理工作的具体实施,另一方面作为大一学生工作来说,有别于大二、大三的学生工作,大一学生有一个学习和生活的适应过渡问题,因此班主任要紧密配合学校学生工作的部署,对学生的学习态度学习方法予以引导、对生活自理独立能力予以引导、对寝室集体生活行为予以引导、对人身财产安全的防护予以引导、对生活或学习有困难的同学予以帮助、落实常规的学生学籍评选管理执行工作、落实国家贫困生资助工作等等。 这些工作的落实,充盈着班主任工作全部,体现在开班会、宿舍走访、跟同学的聊天的这些日常工作行为当中。 三、我的班主任工作 我对班主任工作的认识,是在工作的过程中逐步形成的。刚刚开始的时候作为新手教师,我对自己能否胜任班主任工作的那种心情是十分的忐忑不安,不知道作为班主任究竟要承担哪些责任和义

人生路上一定要有8个朋友陪伴

人生路上一定要有8个朋友陪伴 在个人生命与工作中,八种不可或缺的朋友角色包括:推手(Builder)、支柱(Champion)、同好(Collaborator)、伙伴(Companion)、中介(Connector)、开心果(Energizer)、开路者(MindOpener)、导师(Navigator)。 1.推手:推手擅长鼓励,总是会把你推向终点。他们会持续投资在你身上,好让你有所发展,同时真心希望你能成功,即使必须为你承担风险。推手会慷慨地贡献自己的时间,协助你找到自己的优点,同时有效利用这些优点;从不嫉妒你或成为你的竞争对手,总是站在终点鼓舞你、为你欢呼。 2.支柱:总是和你站在同一阵线、支持你的信念。他们是会赞美你的朋友。这会让你的生活每天都变得不同。他们不只在你面前称赞你,也会在你背后撑腰,就算你不在场,也会挺身而出为你仗义执言。支柱是你的最佳拥护者,当你成功时,他们会为你感到骄傲,而且会与其他人分享。 3.同好:是与你兴趣相近的朋友,也是众多亲密友谊的基础。你们可能对运动、嗜好、信仰、工作、政治、食物、电影、音乐或书籍有相同喜好。这样的特殊情谊让你们成为一辈子的朋友,你会非常喜欢和他们一起消磨时光。 4.伙伴:无论情况如何,当你有需要的时候,他们总是会站在你身边。你们之间的情感联系牢不可破。当你生命中发生重大事件时,他们都会是你第一个想联络的人。伙伴会把你们之间的关系引以为傲,而且愿意牺牲自己来帮助你。他们几乎是可以让你以性命相托的朋友。 5.中介:你想要的东西,他们就是有办法帮你搭起桥梁。这样的朋友一旦知道你要什么,总能马上张开联络网,找到一些和你有相同兴趣或目标的人;他们能快速地扩大你的人际网络,让你直接通往取得新资源的管道。如果你需要工作、医生、朋友或约会对象,打电话给这样的朋友就对了。 6.开心果:他们总是有办法让你精神大振、心情大好。和他们相处时,你的生活会充满了积极感。当你心情跌至谷底时,开心果可以很快地让你恢复正常,有本事让你有好心情或锦上添花。当你需要一个笑容、想要大笑时或放松一下时,千万记得找他们。 7.开路者:可以拓展你的视野,鼓励你接受新观念、想法、机会、文化与人们。帮助你拓展个人眼界,创造无数正面的变化。他们是一群挑战传统智慧的朋友,面对难题时,为你提供具创意的解决方案;同时,不断地刺激、激励你,大胆表达一些你从不敢在别人面前说出的想法与意见。 8.导师:他们可以给你建议并指引方向。当你需要指引或咨询时,就会去找他们。他们擅于聆听、整理、分析你心理所想的。他们会让你了解自己拥有或缺少什么能力。你可以和他们分享目标和梦想,并一针见血地帮你点出达成梦想与目标的方法与途径。 延伸阅读: 成功女性处世10大秘诀平凡生活的100句经典激励语句人生道路上的100个真相人性的经典总结54句 睿智生活的100条建议值得用一生品味的100句话处理人际关系的55个绝招男女必看的酒场全攻略 值得珍惜的81句话凡人凡语30条“完美处世”的13般武艺生活的十大经典领悟经典情感语句 时间管理101招尼采精彩名言杰出人士的20个好习惯八种没有结果的爱情智慧人生格言孤独

我的朋友写人的作文400字

我的朋友写人的作文400字 导读:【范文一】 瞧,她来了,一个可爱的“蘑菇头”,一双炯炯有神的眼睛,一个小巧的鼻子和一张能说会道樱桃似的小嘴巴,她是谁?她是我的好朋友——林依林! 林依林有许许多多的闪光点∶乐于助人、好劳动、学习成绩好、不嘲笑残疾人…… 有一次,我和林依林去买书,半路遇见了一个乞丐,许多人围在他那里对他指指点点,我说∶“你看那个乞丐好恐怖,断了脚。”林依林不以为然的说∶“他好可怜,我去把我买书的钱捐给他。”林依林疾步走过去把钱捐给他。此时周围的人脸都红的像煮熟后的虾似乎恨不得找个地逢钻进去,因为他们连一个小女孩比不了。 还有一次,我和林依林一起做作业,我遇见了拦路虎——一道不会做的数学练习题,依林见我不做作业,断定我有不会做的题目,便说∶“双双,你哪题不会做我来教你。”我说∶“知我者还是林依林。”随后林依林认真、细心的教我,直到我知道了这一题会做了,林依林才去做她的作业。 这就是我的好朋友——林依林。 【范文二】 友谊如一盏灯,照亮你的心灵;友谊如指路人,在你茫然的时候,指引着你前进;友谊如一朵鲜花,芳香我们的心灵;友谊如……人的一

生,不能没有朋友,朋友,他能赶走了我心中的寂寞和痛苦,给我带来欢乐。朋友,他使我远离冷漠、虚假。朋友他给我无数的信心和快乐。 他,浓浓的'眉毛下衬托着一双炯炯有神的眼睛,高高的鼻子,一身白净的皮肤,他就是我的好朋友——业发,我和业发认识已经有一年多了,他给我带来欢乐,带来…… 业发,他是我学习上最大的对手。他勤学好问、尊敬师长、待人友好,是学生们的榜样。因为他,我得更努力的学习,因为我们的目标相同,都是夺取全年级第一。每次大考,要不是我第一,就是他第一(目前来说,我夺取的第一比他多点)。如果他没考好,他肯定会总结经验,努力学习,改进自己的不足之处,使自己更优秀。他从来不会因为的一次失败而放弃,相反,他会找出原因,更加努力的学习,我不得不也加把劲,努力学习。记得有一次,我和他说:“业发,我们要考同一所高中,到高中的学校我们继续竞争,好吗?”他说:“好啊!”看样子,我们的战争是很难停止的,相反战争会越来越激烈。但我们不象其他人那样,反目成仇,相反我们还是很好的朋友呢,在学习上,我有不懂的地方,我会去问他,他也很乐意,他会详细的和我讲解,他有不懂的题,我也会讲给他听。因为有和业发竞争的压力,我越来越坚强,我要把压力变为动力,越来越努力的学习,努力的去和业发争第一。有时我没有考好,他会鼓励我,要我努力,和他继续竞争。有了业发的鼓励,加上我自己的不服输的性格,我又和业发开

密西西比大学与田纳西州立大学哪个好

密西西比大学与田纳西州立大学哪个好?每个学校都有自己的优势专业,具体请咨询留学360专业顾问团队 密西西比大学 密西西比大学成立于1848年,是一所男女共校的公立研究型大学。密西西比大学位于美国密西西比州的牛津,由牛津主校区和三个分校区组成。 密西西比大学的学位授予部门位于密西西比大学的主校区,该大学下设会计学学院、应用科学学院、工商管理学院、教育学院、工程学院、文科学院、护理学院、研究生院、法学院、药学院,另外,位于约翰逊校区的密西西比大学医疗中心还设有牙科学院、卫生相关专业学院、护理学院及医学院。 密西西比大学是美国对学生捐赠数额最大的前30所公立院校之一;该校的药学院闻名全国,是全美最好的药科学院之一,也是是国家投资数额第二大药学院,隶属于美国FDA(食品药品监督管理局)的唯一的国家级天然产物研究中心就坐落于此,使得该校药学研究大放异彩,每年吸引大批国内高端访问学者来此进修交流;会计学学院在美国排名第15位。2007年,密西西比大学入学新生的ACT平均成绩为22.9分。 密西西比大学是密西西比州最古老的大学,它是密西西比浸会的附属大学,也是最早提供化学课程的学校。密西西比大学以它的优良的管理,师资和学生闻名于教会大学。密西西比大学坐落于克林顿市,这个城市消费低,犯罪率低,是美国最适合居住和学习的城市之一,此外,这个城市的自然资源丰富,提供了丰富多彩的校外活动。 密西西比大学于1963年,在詹姆斯·哈迪博士的领导下,完成了世界上第一列肺移植手术,并与1964年,完成了世界上第一例将动物心脏移植到人体内的手术。

田纳西州立大学 田纳西州立大学(Tennessee State University)位于美国著名的乡村音乐城市——田纳西州首府纳什维尔(Nashville),创建于1912年,是该市唯一的一所国家公立大学,包含两个校区。纳什维尔是美国乡村音乐的发源地,曾被提名美国最佳居住地第一名(2006年)。 Tennessee State University是一所历史悠久的、受政府资助的全国性公立大学。在过去的三十年里,田纳西州立大学均被列入美国新闻与世界报道(U.S News & World Report)的“美国最佳学院指南”(Best Colleges),属二级(Tier 2)国家级大学。

大学一年级学生个人总结

大学一年级学生个人总结 目录 第一篇:一年级上个人工作总结 第二篇:研究生一年级个人总结 第三篇:个人总结(大学一年级) 第四篇:2020年度一年级班主任个人总结 第五篇:研究生一年级个人总结 更多相关范文 正文 第一篇:一年级上个人工作总结 个人工作总结 经过一学期的洗礼,让我深深感到当一名教师不简单,当一名班主任更是不简单。需要无限的爱心、耐心更要有如针般细的心才能创造出让孩子茁壮成长的良好教育环境。工作更要细致的落实到位,只有这样才能使学生在班上健康全面发展。作为一年级班主任,我针对我们班活泼好动的特点,做了如下的工作:

一、抓好学生的学习习惯: 作为刚刚进入一年级的小学生来说,如何能让他们在40 分钟的课堂上认真地听讲,是非常重要的。因此,培养学生良好的学习习惯是我教学工作开始的重点。刚开学的二个星期里,我采用多种形式,将学生学习习惯的培养融入情趣之中,让学生在情趣之中慢慢地养成良好的习惯。从坐直到站立,从写字到读书拿书,从保持正确的读写姿势到爱惜学习用品,都需要老师不厌其烦地讲讲讲、说说说,通过一学期来的培养,我班学生都能养成良好的学习习惯。 二、认真备课。 不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记。 三、做好后进生的转化工作 我们这个班后进生的人数也相对多。因此,转化后进生是班主任的一项必不可少的工作。我认为对后进生要给予特别的关爱。要做到思想上不歧视,感情上不厌倦,态度上不粗暴。要用自己对差生的一片真诚的爱心,去叩响他们的心灵之门。要善于发现他们的闪光点。比如:在课堂上不要紧紧盯着优等生,应多给后进生创造条件,鼓励他们举手发言,及时给予肯定、奖励,不要刻意的给他们布置过多的作业,给他们留出足够休息的时间,因为他们真的更需要休息。多与家长联系,让这些孩子多读点书,努力争取家校联合为学生创造一个良好的学习环境,同时也促进班级的整体发展。

人的一生必须拥有的几种朋友

人的一生,必须拥有的几种朋友 1、领导型 顾名思义,你的这个朋友一定是位领导。此种类型的朋友强势而坦率,她对自己的能力了如指掌,发起活动能一呼百应。因此,领导型朋友能成就我们的社交生活。这种朋友一生至少要有一位。 2、受气包型 这种朋友不是那种让别人了解其需求的人,很少发出疑问,几乎没有戒备心理。任何类型的朋友遭遇不顺心的时候,都会发现“受气包”真的非常“管用”,她们会心甘情愿地听你倒苦水。“受气包”特别向往团体归属感,为此,她绝不会让朋友难过。这种朋友能有最好,实在没有影响也不大。 3、牺牲品型 这种朋友非常可靠,能在困难时为朋友赴汤蹈火。她有能力应对朋友的期待。但是,当作为“牺牲品”的她发现朋友的献身精神远不如自己的时候,往往会大失所望,友谊也因此容易出现危机。如果你自己也是为朋友两肋插刀的性格,那很容易交到此类朋友。 4、同情苦难者型 这种朋友关心你的坏消息远远多于关心你的好消息。当你出现危机,比如发胖、失业、与家人吵架、准备离婚或者与孩子关系闹得很僵的时候,她一定会给你安慰,但也绝对会与你保持一定的距离。 5、利用者型 她所走的每一步都有明确的目的性。这种朋友知道如何利用各种手段“哄骗”朋友保护自己。她的内心常打小算盘,考虑各种对自己最有利的选择。她们往往看上去非常有亲和力,但交往时间长了难免露馅。 6、友敌型 是指伪装成朋友的敌人或者互相竞争的同伴。这种朋友表面看上去非常平静,实际上“暗流涌动”。不过,这类朋友的出现,能让自己进步得更快,利用好这种竞争关系,将得到双赢的结果。 7、战利品型 这种朋友自身拥有的朋友很多,而且你就是她朋友圈中的下一个“战利品”。(感恩)为了达到这一目的,她会给予你很多你没有的东西。一旦你成为了她的朋友,其热情就会锐减。 8、镜像型 这类朋友的性格特征与你的性格特征非常吻合,就是自己的一面镜子。因为“物以类聚、人以群分”的缘故,大家会很容易走到一起。这类朋友无论顺境逆境都始终和你在一起,同甘苦共患难,她们能给你巨大的安慰。 9、分享型 众所周之,女人更善于以信任换取信任。分享型朋友对朋友无话不谈,而且会全身心投入友谊之中。分享型朋友富有激情、友好而专注,她希望你能成为她最好的朋友。

美国电子与电气工程专业排名

电子与电气工程(EE)专业 1 Massachusetts Institute of Technology麻省理工学院 2 Stanford University斯坦福大学 University of California Berkeley加州大学伯克利分校 4 University of Illinois Urbana Champaign伊利诺伊大学厄本那—香槟分校 5 California Institute of Technology加州理工学院 6 Georgia Institute of Technology佐治亚理工学院 7 Carnegie Mellon University卡内基美隆大学 University of Michigan Ann Arbor密西根大学-安娜堡分校 9 Cornell University康乃尔大学 The University of Texas at Austin德克萨斯大学奥斯汀分校 11 Princeton University普林斯顿大学 Purdue University,West Lafayette普渡大学西拉法叶校区 13 University of California Los Angeles加州大学洛杉机分校 14 University of Maryland College Park马里兰大学帕克分校 University of Southern California南加州大学 University of Wisconsin Madison威斯康星大学麦迪逊分校 17 Rensselaer Polytechnic Institute伦斯勒理工学院 University of California San Diego加利福尼亚大学圣地亚哥分校 University of California Santa Barbara加州大学圣塔芭芭拉分校 University of Washington华盛顿大学 Virginia Polytechnic Institute and State University弗吉尼亚理工大学 22 Columbia University in the City of New York Columbia College哥伦比亚大学纽约哥伦比亚学院 The Ohio State University,Columbus俄亥俄州立大学哥伦布分校 Texas A&M University德州A&M大学 25 Johns Hopkins University约翰霍普金斯大学 Penn State University Park宾州州立大学-University Park Campus Rice University莱斯大学 University of Minnesota Twin Cities明尼苏达大学Twin Cities分校 University of Pennsylvania宾夕法尼亚大学 30 Harvard University哈佛大学 31 Arizona State University亚利桑那州立大学 Duke University杜克大学 North Carolina State University,Raleigh北卡罗来纳州立大学 Northwestern University西北大学 35 The University of Arizona亚利桑那大学 University of Colorado Boulder科罗拉多大学波尔得分校 University of Florida佛罗里达大学 38 Iowa State University爱荷华州立大学 University of California Davis加州大学戴维斯分校 University of California Irvine加州大学欧文分校 University of Notre Dame圣母大学

大学一年级新生学期总结归纳

大学一年级新生学期总结归纳 大学的第一个学期已然结束,回想这三个半月,有收获、有遗憾也有感慨。 学期伊始,告别父母来到长春这个生疏的地方。这是我第一次远离家乡单独生活。第一次离开家,有喜悦也有悲伤、有兴奋也有抑郁、有欣慰也有苦涩。喜悦的是终于终于来到期盼已久的大学,终于可以有好多新的开始:可以开始学会单独生活,可以开始锻炼自己的各种能力,可以开始学会约束自己,也可以开始一段轰轰烈烈的爱情;悲伤的是离开了生我养我的父母,离开了日日陪我玩耍的朋友,离开了养育我19年的家乡;兴奋的是我终于能够自由支配自己的生活费,能够认识好多新的朋友,能够学着适应新的环境;抑郁的是总是觉得孤单,总是觉得生活费似乎不够用还得向家里要,总是觉得无论怎样努力还是难以适应新的环境;欣慰的是发现舍友们对我很好,其实不像别人口中的外地人那样不堪,发现我还是可以把自己照顾的不错,我的自理能力不像自己想象的那么差,发现我的办事能力还不错,可以将我该做到的一些事做的差不多让自己满意;苦涩的是感觉学校似乎不像我想象的那么好,感觉很多事不像自己想象的那样顺利,感觉学校里总有好多事让我不顺心。 现实无情的打击了我。开学半个月后,没有了刚上大学的喜悦,没有了开始闯荡的兴奋,也没有了开学伊始的欣慰,但那份悲伤、抑郁以及苦涩却感觉的越来越深,心中对这个生疏的地方的厌恶越来越

深。频繁的给原来的朋友打电话诉苦,对什么都是去了兴趣,对什么都感到失望,对什么都没有好感。在那段时间渐渐地失去了原来的那份天真与活力,失去了拼搏的动力与激情,失去了适应新环境的想法与热情。无限地放大了痛苦,也无限地缩小了喜悦。那段时间里,我颓废而抑郁,没有动力,就像是被世界无情地抛弃了一样,像饱经沧桑的老人,什么都不关心,什么都不想过问,只想浑浑噩噩的过完这个学期,离开这个让我失望的地方。 一个半月的日子很快过去了,各个学校的事情也开始多了起来。看到别的同学都竞选学生会锻炼自己,我也渐渐静下心来,觉得反正已经来了,让自己忙一点也许就不是那么的抑郁了吧。于是我也积极的参加起种种活动来,竞选学院社团联合会、参加辩论赛、竞选播音站编辑、参加学校学生会的竞选、报了吉林大学法学二学历的班。突然发现繁忙真好,不但能缓解寂寞,还能让人忘却烦恼。于是,我开始疯狂地让自己忙起来。在繁忙中,我发现原来我的能力也不是很差,我进入了学院的社团联合会,成为了秘书处唯一的男性秘书;我精心准备过的辩论赛虽有坎坷,但也赢了对手;我还成了唯一一个进入播音站复试的经济学院学生,虽然后来播音站成立的事耽搁下来,但也算是经历过了!在繁忙中我也算是重拾了信心,找回了自己。 学期最后的几天总是参杂了喜悦与痛苦,喜悦的是总算快到回家的日子了,痛苦的是期末考试也要来了。这一学期,我过的繁忙,但很少是在忙于学习,到最后才发现原来我学到的知识原来少得可怜,以致于有挂科的危险。在还有不到半个月的时间里,要复习的东西确

2020我的朋友初中写人作文范文精选

篇一: 在这个世界里,有很多帮你的人,当然也有害你的人,我的朋友两样都兼备,他有一个圆脸,大眼睛,大鼻子,还有一个大嘴巴,他的头发不是很长,也不是很短,我这个朋友学习可是“前三名”大家都知道了吧,说起他我会生气,也很会嫌他傻。 他很自大也很骄傲,虽然他学习“很好”但是他下课以后常常去找比他弱小的人而去欺负他,我很看不惯他这样我每次去说他不要在欺负别人的时候,而他却说,他没有欺负我,我当时很生气,很愤怒很想打他一顿,后来我想想如果我这样做的话就会变的像他一样,目中无人。 他以前不会这样,他以前很和蔼,但是再看看现在的他根本是天壤之别,就好像一个是天使,一个是魔鬼。他上课的时候不认真听,老师打他的时候,他的表情很愤怒,好像他要打老师一样,想到这我回想到小学的时候,那是一个星期五放学的最后一节课他不认真听,于是老师就打他,说了他几句,放学的时候他却跟我说要不是他再忍老师,要不早就把老师给打了,我听了以后心情很愤怒,但不久又平静了下来。 哎!我多么期望我这个朋友可以变回以前那样但是看来是不可能得了,在这里我要想我的朋友说:我多么期望你能变回以前那样,说实话现在的你很让人讨厌,我最后再跟你说几句话,如果你再欺负人的话,以后你会遭到报应即使你姐会帮你,但是也解决不了你放的错误据我所知你姐会帮你是应为怕别人会欺负你,但是现在是你欺负别人,你以为你姐会帮你吗?最后说一句话:你好自为之吧! 篇二: 最使我难忘的,是我的朋友-----小芳。小芳一头乌黑的头发,一双大眼睛,一张樱桃小嘴巴。每次来到教室,都会露出甜蜜的微笑。我们都叫她:微笑天使,看,她又笑了。她助人为乐.拾金不昧的人。 记得有一次,天气突然下了大雨。刚才还是晴空万里转眼间就变成倾盆大雨。我在教室里扫地,就突然打了一声隆隆的雷声,那时候我被吓得惊心胆寒,一望窗外有许多人都走向学校大门。我心想;快扫,扫完了就可以回家了。还好我带了雨伞。我幸灾乐祸地看了带子,我一看;我忘记带雨伞了。扫完。雨下得更大了。我跑下楼。跑到校门一望还有一些家长在外面等后自己的女儿,我向四周一望,没有我的家长。我跑走了。在别人的屋檐下躲雨,突然背后有人拍我一下,我马上把头一转。是小芳。我说;你怎么没走啊?小芳说;我在等你啊。随后,我和小芳撑着她的雨伞。走路上,我们有说有笑,而且小芳总是把雨伞挪到我站的地方来,让她自己淋湿。她把我送到家时,她的衣服己

美国大学列表

华盛顿州 | Washington ·华盛顿州立大学|Washington State University * ·华盛顿大学|University of Washington * 亚拉巴马州 | Alabama ·山佛大学|Samford University ·奥本大学|Auburn University * ·阿拉巴马大学|The University of Alabama * 亚利桑那州 | Arizona ·亚利桑那州立大学|Arizona State University * ·亚利桑那大学|The University of Arizona * 纽约州 | New york ·克拉克森大学|Clarkson University ·纽约州立大学石溪分校|Stony Brook University SUNY * ·福德汉姆大学|Fordham University ·纽约州立大学环境科学与林业科学学院|SUNY College of Environmental Sci. ·纽约州立大学宾汉姆顿分校|SUNY-Binghamton * ·耶什华大学|Yeshiva University ·雪城大学|Syracuse University ·伦斯勒理工学院|Rensselaer Polytechnic Institute ·罗彻斯特大学|University of Rochester ·纽约大学|New York University ·康乃尔大学|Cornell University ·芝加哥大学|University of Chicago ·哥伦比亚大学|Columbia University 北卡罗来纳州 | North carolina ·北卡罗来纳州立大学|North Carolina State University * ·威克森林大学|Wake Forest University ·北卡罗来纳大学教堂山分校|University of North Carolina, Chapel Hill * ·杜克大学|Duke University 俄亥俄州 | Ohio ·俄亥俄大学|Ohio University * ·戴顿大学|University of Dayton ·迈阿密大学|Miami University-Oxford * ·俄亥俄州立大学|The Ohio State University-Columbus *

2021年大学一年级新生学期总结

大学的第一个学期已然结束,回想这三个半月,有收获、有遗憾也有感慨。 学期伊始,告别父母来到长春这个陌生的地方。这是我第一次远离家乡独自生活。第一次离开家,有喜悦也有悲伤、有兴奋也有抑郁、有欣慰也有苦涩。喜悦的是终于终于来到期盼已久的大学,终于可以有好多新的开始可以开始学会独自生活,可以开始锻炼自己的各种能力,可以开始学会约束自己,也可以开始一段轰轰烈烈的爱情;悲伤的是离开了生我养我的父母,离开了日日陪我玩耍的朋友,离开了养育我19年的家乡;兴奋的是我终于能够自由支配自己的生活费,能够认识好多新的朋友,能够学着适应新的环境;抑郁的是总是觉得孤单,总是觉得生活费似乎不够用还得向家里要,总是觉得无论怎样努力还是难以适应新的环境;欣慰的是发现舍友们对我很好,并不像别人口中的外地人那样不堪,发现我还是可以把自己照顾的不错,我的自理能力不像自己想象的那么差,发现我的办事能力还不错,可以将我该做到的一些事做的差不多让自己满意;苦涩的是感觉学校似乎不像我想象的那么好,感觉很多事不像自己想象的那样顺利,感觉学校里总有好多事让我不顺心。 现实无情的打击了我。开学半个月后,没有了刚上大学的喜悦,没有了开始闯荡的兴奋,也没有了开学伊始的欣慰,但那份悲伤、抑郁以及苦涩却感觉的越来越深,心中对这个陌生的地方的厌恶越来越深。频繁的给原来的朋友打电话诉苦,对什么都是去了兴趣,对什么都感到失望,对什么都没有好感。在那段时间慢慢地失去了原来的那份天真与活力,失去了拼搏的动力与激情,失去了适应新环境的想法与热情。无限地放大了痛苦,也无限地缩小了喜悦。那段时间里,我颓废而抑郁,没有动力,就像是被世界无情地抛弃了一样,像饱经沧桑的老人,什么都不关心,什么都不想过问,只想浑浑噩噩的过完这个学期,离开这个让我失望的地方。 一个半月的日子很快过去了,各个学校的事情也开始多了起来。看到别的同学都竞选学生会锻炼自己,我也慢慢静下心来,觉得反正已经来了,让自己忙一点也许就不是那么的抑郁了吧。于是我也积极的参加起种种活动来,竞选学院社团联合会、参加辩论赛、竞选播音站编辑、参加学校学生会的竞选、报了吉林大学法学二学历的班。突然发现忙碌真好,不但能缓解寂寞,还能让人忘却烦恼。于是,我开始疯狂地让自己忙起来。在繁忙中,我发现原来我的能力也不是很差,我进入了学院的社团联合会,成为了秘书处唯一的男性秘书;我精心准备过的辩论赛虽有坎坷,但也赢了对手;我还成了唯一一个进入播音站复试的经济学院学生,虽然后来播音站成立的事耽误下来,但也算是经历过了!在繁忙中我也算是重拾了信心,找回了自己。 转眼已到11月初,再一次的闲了下来,没事可做,相比开学不久那次无聊,这次多了一些沉稳,多了一些淡然,也多了一些活力。我对很多事请看得很开是啊,也许我们学校不大,但我可以多在宿舍呆一会儿也不怕迟到,我活得很休闲;也许我的同学们不像985、211学校的同学们那么优秀,但至少我的同学们没有什么心机与坏心眼,他们十分的友善和宽容,和他们交往起来很轻松、很快乐,不用字斟句酌地想说话是否得体,如果我做了什么错事他们也会大度的原谅我,我活得很轻松;也许我所在的学校不是那么出名,但在这样恬静的氛围里我不用那

与老外交流无敌口语精华版!

如何与外国人聊天 和老外交流必须会用的口语 1、I won’t let her go without a fight! 我不会轻易放过她的 2、It could happen to anyone./ It happens to anybody./ That happe ns. 谁都可能会遇到这种情况 3、I’m a laundry virgin.(注意virgin的用法,体会老美说话之鲜活) 4、I hear you. 我知道你要说什么。/ 我懂你的意思了 5、Nothing to see here!这里没什么好看的/看什么看! 6、Hello? Were we at the same table? 有没有搞错?(注意hello的用法,用疑问语气表示“有没有搞错?”) 7、You are so sweet/ that’s so sweet. 你真好。 8、I think it works for me. (work为口语中极其重要的小词) 9、Rachel, you are out of my league(等级,范畴). 你跟我不是同一类人 10、Y ou are so cute. 你真好/真可爱 11、Given your situation, the options with the greatest chances for success would be surrogacy. (given表示考虑到的意思;非常简洁好用) 12、Let’s get the exam rolling. 现在开始考试了( get……rolling的用法)

13、Why don’t we give this a try?我们为何不试一下呢 14、Bravo on the hot nanny!为那个性感的保姆喝彩!/赞一下那个性感的保姆!(重点是brave on sth/sb这个句型,表示为……喝彩/赞叹的意思) 15、My way or the highway.不听我的就滚蛋!(很漂亮的习语,压后韵) 16、I planed to go there but something just came up.我本想去那的,但突然有点事情(注意something just came up这个搭配) 17、That’s not the point.这不是关键/问题所在 18、(If) he shows up, we stick with him. 他一出现,我们就跟着他走(着重比较书面英语和标准的口语,表条件的if可以省略) 19、My life flashes before my eyes. 我的过往在我眼前浮现。 20、I have no idea what you have said不知道你在说什么(I don’t have the slightest idea……)“我不知道”不要总说I don’t know,太土了,可以说I have no idea或者I don’t have a clue…… 21、Just follow my lead. 听我指挥好了。 22、Good for you!你真不错/好!(老友记中极其常见的赞扬、表扬句型) 23、Let me put it this way, we’re having sex whether you’re here or not. (主要是前半句中put的用法,这里put等于say;极其标准的口语说法) 24、The more I worried about it, the more I couldn’t sleep.(the more……the more……越什么……就什么……;多学点这样的句型举一反三不论对口语还是写作都有帮助)

相关文档
最新文档