A Boosting Approach to Improving Pseudo-Relevance Feedback

A Boosting Approach to Improving Pseudo-Relevance Feedback
A Boosting Approach to Improving Pseudo-Relevance Feedback

A Boosting Approach to Improving Pseudo-Relevance

Feedback

Yuanhua Lv

Dept of Computer Science University of Illinois at

Urbana-Champaign

ylv2@https://www.360docs.net/doc/9e6331937.html,

ChengXiang Zhai

Dept of Computer Science

University of Illinois at

Urbana-Champaign

czhai@https://www.360docs.net/doc/9e6331937.html,

Wan Chen

?

Wolfram Research,Inc.

100Trade Center Drive

Champaign,IL

wanc@https://www.360docs.net/doc/9e6331937.html,

ABSTRACT

Pseudo-relevance feedback has proven e?ective for improv-ing the average retrieval performance.Unfortunately,many experiments have shown that although pseudo-relevance feed-back helps many queries,it also often hurts many other queries,limiting its usefulness in real retrieval applications. Thus an important,yet di?cult challenge is to improve the overall e?ectiveness of pseudo-relevance feedback with-out sacri?cing the performance of individual queries too much.In this paper,we propose a novel learning algo-rithm,FeedbackBoost,based on the boosting framework to improve pseudo-relevance feedback through optimizing the combination of a set of basis feedback algorithms us-ing a loss function de?ned to directly measure both robust-ness and e?ectiveness.FeedbackBoost can potentially ac-commodate many basis feedback methods as features in the model,making the proposed method a general optimization framework for pseudo-relevance feedback.As an applica-tion,we apply FeedbackBoost to improve pseudo feedback based on language models through combining di?erent doc-ument weighting strategies.The experiment results demon-strate that FeedbackBoost can achieve better average pre-cision and meanwhile dramatically reduce the number and magnitude of feedback failures as compared to three repre-sentative pseudo feedback methods and a standard learning to rank approach for pseudo feedback.

Categories and Subject Descriptors

H.3.3[Information Search and Retrieval]:Retrieval models,query formulation,relevance feedback

General Terms

Algorithms

Keywords

Pseudo-relevance feedback,FeedbackBoost,loss function, robustness,learning,optimization,boosting

?This work was done when Wan Chen was with University of Illinois at Urbana-Champaign.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro?t or commercial advantage and that copies bear this notice and the full citation on the?rst page.To copy otherwise,to republish,to post on servers or to redistribute to lists,requires prior speci?c permission and/or a fee.

SIGIR’11,July24–28,2011,Beijing,China.

Copyright2011ACM978-1-4503-0757-4/11/07...$10.00.1.INTRODUCTION

Pseudo-relevance feedback has proven e?ective for auto-matically improving the overall retrieval accuracy and aver-age precision for informational queries in many experiments [24,22,25,3,23,15,31,18].The basic idea of pseudo feed-back is to assume a certain number of top-ranked documents from an initial retrieval run to be relevant and extract useful information from these feedback documents to improve the original query.

However,although traditional pseudo feedback techniques generally improve retrieval performance(e.g.,AP)on aver-age,they are not robust in the sense that they tend to help some queries,but hurt other queries[10,7],limiting its use-fulness in real retrieval applications.Thus an important, yet di?cult challenge is to improve the overall e?ectiveness of pseudo-relevance feedback without sacri?cing the perfor-mance of individual queries too much.Although there has been a lot of work on pseudo feedback,little work has been devoted to address this issue,with only a few exceptions, e.g.,[7].In[7],the authors tried to reduce feedback failures in a constrained optimization approach.However their work was only able to optimize an objective function loosely re-lated to the e?ectiveness and robustness of pseudo feedback. In this paper,we propose a novel learning algorithm,Feed-backBoost,based on the boosting framework to improve pseudo-relevance feedback through combining a set of basis feedback algorithms optimally using a loss function de?ned to directly measure both robustness and e?ectiveness,which has not been achieved in any previous work on pseudo feed-back.Speci?cally,like all other boosting algorithms[9,26, 8,30],FeedbackBoost iteratively selects and combines ba-sis feedback methods.In each iteration,a basis feedback method is selected to improve those queries on which the already selected basis feedback methods perform poorly in terms of both e?ectiveness and robustness.At last,Feed-backBoost uses a linear combination of these basis feedback methods as its?nal feedback model.

There are several important di?erences between our work and previous work on improving pseudo feedback:(1)we cast the pseudo feedback problem as an optimization prob-lem that can be solved in a supervised way;(2)we propose a novel objective function that directly measures the e?ective-ness and the number of failure cases of pseudo feedback;(3) FeedbackBoost can incorporate potentially many di?erent basis feedback methods as features in the model,making it a general optimization framework for pseudo feedback;(4) FeedbackBoost does not introduce any extra parameter that needs to be manually tuned.

As an application,we apply FeedbackBoost to improve pseudo feedback based on language models through com-bining di?erent document weighting strategies.One cause of the low robustness and e?ectiveness in pseudo feedback is that the feedback documents are simply assumed to be rel-evant whereas in reality,not all of them are relevant.Thus one way to improve pseudo feedback would be to assign ap-propriate weights to these documents.Indeed,our previous work[18]has already shown that with relevance-based doc-ument weighting,the relevance model[15]tends to be more robust and e?ective than alternative models for feedback with language models.In the existing work,however,such weighting is generally based on one heuristic or another,and is not optimized directly to improve feedback.Our main idea is to combine a variety of feedback methods each with a dif-ferent strategy for document weighting under the framework of FeedbackBoost.Although we only try to leverage feed-back methods with di?erent document weighting methods in this work,the proposed boosting framework can potentially accommodate many other basis feedback methods.

We evaluate our method using two representative large test sets and compare FeedbackBoost with multiple baseline methods.The experiment results demonstrate that the pro-posed FeedbackBoost algorithm can improve average pre-cision signi?cantly and meanwhile reduce the number and magnitude of feedback failures dramatically as compared to two representative pseudo feedback methods based on lan-guage models,the mixture model and the relevance model. We also compare our algorithm with a recently proposed constrained optimization approach to robust feedback,and the results show that our method is more robust.In addi-tion,we compare FeedbackBoost with a traditional learning to rank approach applied for pseudo feedback and observe that FeedbackBoost works clearly better.

2.RELATED WORK

Pseudo-relevance feedback has been shown to be e?ective for various retrieval models[24,22,25,3,23,15,31,18].In the vector space model,feedback is usually done by using the Rocchio algorithm[24].The feedback method in classical probabilistic models is to select expansion terms primarily based on the Robertson/Sparck-Jones weight[22].A num-ber of model-based pseudo feedback techniques have been developed for the language modeling framework,including the relevance model[15]and the mixture-model feedback [31],which will be reviewed in Section5.1.1and5.1.2re-spectively.Most existing pseudo feedback algorithms aim at improving average precision alone but rarely address the robustness issue.In contrast,our work attempts to improve both average precision and robustness at the same time.

A few previous studies also attempted to improve the ro-bustness of pseudo feedback[28,27,7].Tao and Zhai[28] used a regularized EM algorithm to reduce the parameter sensitivity of the mixture-model feedback but did not mini-mize the feedback failures.Soskin et al.[27]leveraged mul-tiple relevance models[15]in a heuristic unsupervised way to improve feedback performance.However,their method is not guaranteed to optimize the combination of feedback algorithms.Collins-Thompson[7]also tried to reduce feed-back failures in an optimization framework.However this work was only able to optimize an objective function loosely related to the robustness of pseudo feedback.In contrast, we propose a general machine learning framework to directly optimize both the robustness and e?ectiveness of pseudo feedback,which can incorporate existing methods,such as

[28],[27],and[7],as features.In this sense,our work o?ers

a uni?ed framework that can be used to potentially combine

all the existing pseudo feedback methods.

Selective feedback[2]and adaptive feedback[17]are an-

other stream of work to improve the robustness of pseudo feedback,where the idea is to disable query expansion if

query expansion is predicted to be detrimental to retrieval[2]

or to adaptively set the amount of query expansion in a per-

query way[17].However,these methods are not as general

as our proposed framework.Besides,our work and the se-

lective/adaptive feedback method are complementary in the following sense:our work can construct a strong ensemble

feedback method,which can be used by selective/adaptive

feedback to further improve its performance,while selec-

tive/adaptive feedback methods can be incorporated into

our framework as features for boosting.

Recently,learning to rank[13,8,4,30,6,33,16]has attracted much attention in IR.Our work can also be re-

garded a novel use of machine learning to leverage multiple

feedback-related features to improve ranking.However,a

main di?erence of our work from traditional work on learn-

ing to rank is that we design a novel learning algorithm to di-

rectly optimize both robustness and e?ectiveness of pseudo feedback(novel objective function).Another di?erence is

that most learning to rank work learns optimal ways to

combine retrieval functions but fails to improve the query

representation.Our work,however,uses machine learning

to improve a content-based query representation.Therefore, our study is orthogonal to the existing learning to rank work,

and existing learning to rank algorithms can be used to learn

a retrieval function on the basis of our improved query rep-

resentation to further improve retrieval performance.

Machine learning was also introduced to improve pseudo

feedback through selecting good expansion terms[5]or good feedback documents[12].However,neither work attempted

to directly optimize robustness of pseudo feedback.

Boosting is a general method for improving the accuracy

of supervised learning.The basic idea of boosting is to re-

peatedly construct“weak learners”by re-weighting training

data and form an ensemble of weak learners so that the to-tal performance of the ensemble is“boosted”.Freund and

Schapire have proposed the?rst and most popular boosting

algorithm called AdaBoost for binary classi?cation[9].Ex-

tensions of boosting have been made to deal with the prob-

lems of multi-class classi?cation[26],ranking[8,30,33],etc.

Our work can be viewed as a novel extension of the boosting framework to improve pseudo-relevance feedback.

3.PROBLEM FORMULATION

Given a query q i and a document collection C,a re-

trieval function F returns a ranked list of m documents

d={d1,···,d m},where d j denotes the j-th ranked doc-ument in the ranked list.In pseudo feedback,we assume

the top-n documents are“relevant”,and construct a feed-back modelφt(q i,d,n,C),orφt(q i)for short,for query q i by exploiting those assumed“relevant”documents.Hereφt can be any pseudo feedback method that is able to output an improved query representation,and we call it a weak or basis feedback method;φt(q i)is essentially an expanded rep-resentation of the original query q i,and we call it a weak or basis feedback model for q i.In general,the format ofφt(q i)

010203040

700710720730740

75

Feature ID

T e r a b y t e 04 q u e r y t o p i c

Figure 1:Plot of each query w.r.t.di?erent weak feedback methods,where ‘?’indicates that the cor-responding weak feedback improves performance.would depend on the retrieval function F ;for example,in the vector space model,φt (q i )is represented as a vector of weighted terms,while in language modeling approaches,it is represented as a word distribution.We can use φt (q i )as the new query and apply F to retrieve another ranked list of documents d .

Given a performance measure E and the relevance judg-ments set J (q i )for query q i ,we can compute the perfor-mance scores for the original query q i and for the expanded query φt (q i ),which will be denoted as E (F (q i ),J (q i ))and E (F (φt (q i )),J (q i )),respectively,and will be represented as E (q i )and E (φt (q i ))in the rest of the paper for conciseness.We choose the widely accepted average precision (AP)as the performance measure E in this paper,though the proposed algorithm can in principle also work with other measures.Although many pseudo feedback methods have been shown to improve the performance of a retrieval system on average,they all share a common de?ciency,i.e.,the average perfor-mance gain always comes inevitably at the cost of (some-times signi?cantly)degraded performance of some queries.

That is,while on average,1|Q |

|Q |i =1E (φ(q i ))>1

|Q | |Q |i =1E (q i ),it is almost always the case that for some queries,E (φ(q j ))

In this paper,we propose to use a learning method to ad-dress this problem.Speci?cally,given a query q i ,we assume there are a variety of basis feedback models φk (q i )based on di?erent feedback methods Φ={φ1,···,φm },and our main idea is to combine a set of such basis feedback models φk (q i )into a single feedback model H (q i )called the ?nal or combined feedback model to reduce feedback failures:

H (q i )=

t k =1

αk φk (q i )

(1)

A linear combination is chosen because the ?nal feedback model H (q i )should be in the same format as that of each basis model φk (q i );that is,if φk (q i )is a vector of weighted terms,so is H (q i ),while if φk (q i )is a language model,H (q i )should also be a language model by normalizing the learned αk (k =1,···,t )to make them sum to 1.

Our main motivation of combining multiple feedback meth-ods is that di?erent basis feedback methods often have rela-tive strengths for di?erent query topics and thus are comple-mentary to each other.To illustrate it,we examine 46ba-

sis feedback methods constructed using methods described

in Section 5.The results are presented in Figure 1.We can see that many feedback methods indeed have relative strengths on di?erent queries (e.g.,topic 708and 709).It seems there are only 3very hard queries that no feedback method can help,while for other queries,there are always some successful feedback methods.Thus,constructing an ensemble feedback method H would be an e?ective strat-egy to reduce feedback loss.For example,suppose we have two weak feedback methods φ1and φ2;φ1improves 0.2and ?0.1(i.e.,decreases by 0.1)on q 1and q 2respectively,while φ2improves ?0.1and 0.2on q 1and q 2respectively.So the fbloss scores are 0.5for both φ1and φ2on these two queries.However,an ensemble method α1φ1+α2φ2would probably have 0fbloss while still achieving better or comparable av-erage improvement if the combination coe?cients α1and α2are chosen appropriately.

Our goal is to minimize the number of query instances for which the retrieval performance is decreased by the ?nal feedback model H (q i )as compared to the original query q i .The learning algorithm that we study attempts to ?nd an H with a small number of query failures,a quality called the feedback loss and denoted by fbloss D (H ).Formally,

fbloss D (H )=

|Q | i =1

D (q i )·I {

E (H (q i ))

(2)

Here and throughout this paper,the indicator function I {π}is de?ned to be 1if the predicate πholds and 0otherwise.D (q i )is the weight of q i ,and we set it initially to uniform,i.e.,D (q i )=1/|Q |so that all queries are equally important;later the query weights would be updated iteratively in a boosting framework [9]so that queries that do not perform well would contribute more to the loss function more.We will also show later in Section 4.1that the feedback loss can be bounded by the degradation of retrieval precision,which means that the feedback loss can actually measure both feed-back failures and retrieval e?ectiveness,which is necessary in order to ensure both robustness and e?ectiveness.

In the following section,we will discuss how to optimize the combination of weak feedback methods so as to minimize fbloss on some training data,formally,

arg min

{α1:t }|Q |

i =1

D (q i )·I

E (

t

k =1

αk ·φk (q i ))

(3)

4.A BOOSTING APPROACH TO IMPROV-ING PSEUDO FEEDBACK

With only a few basis feedback methods,it is possible

to optimize their combination through manual parameter tuning.However,manual tuning is infeasible if there are many basis feedback methods as is often the case.Inspired by the AdaBoost [9],we devise a boosting approach,referred to as “FeedbackBoost”,to solve this problem.

4.1Minimizing Feedback Loss via Forward

Stagewise Additive Modeling

Ideally we want to minimize the feedback loss on the train-ing data as shown in Equation 3.However,it is di?cult to solve this optimization problem because the combination is inside a retrieval function and not di?erentiable.To simplify this problem,we make an assumption that the feedback loss

of the combined feedback H is less than or equal to that of a linear performance combination of the corresponding basis feedback methods.Formally,

|Q | i =1

D (q i )·I

E (

t k =1

αk ·φk (q i ))

|Q | i =1

D (q i )·I

t

k =1αk

t

j =1

αj

E (φk (q i ))

(4)

Although we have not found a theoretical proof for the

above inequality,we can empirically guarantee this assump-tion to be true in our algorithms since we can automatically adjust the algorithms to make sure this assumption holds (as shown in the step 5of the pseudo code of the algorithm).In practice,this assumption turns out to work well.One possible explanation is that di?erent feedback models often complement to each other,so the performance of a mixture model with reasonable coe?cients is often better than the performance of any single model and thus also better than the weighted average performance of these single models.An example is that an appropriate interpolation of a pseudo feedback model and the original query model usually works better than either single model [31,1,18].Thus we will minimize the following upper bound of the feedback loss.

arg min

{α1:t }|Q |

i =1

D (q i )I

t k =1

αk E (φk (q i ))<

t k =1

αk E (q i )

(5)

However the above optimization problem is still hard to han-dle,because the indicator function I is non-continuous.For-tunately,we know that I {x

y ,so,instead of solving Equation 5directly,we can alterna-tively minimize its upper bound below,which is essentially a measure of retrieval performance degradation.

arg min

{α1:t }|Q |

i =1

D (q i )exp

t

k =1

αk E (q i )?

t k =1

αk E (φk (q i ))

(6)

Now we can address this problem using forward stage-wise additive modeling,which is an e?ective strategy to

?nd an approximate solution to an optimization problem through sequentially adding new basis method without ad-justing those already selected methods [11].By forward stagewise additive modeling,the above formula can be ex-pressed as follows where we would iteratively choose αt and φt ,as well as adjust D t (q i ):

arg min

{αt ,φt }|Q |

i =1

D t (q i )·exp (αt ·[

E (q i )?E (φt (q i ))])

(7)

where

D t (q i )∝

D t ?1(q i )·exp (αt ?1·[

E (q i )?E (φt ?1(q i ))])

Z t

(8)

Here,Z t is a normalization factor to make D t a distribution;

such a normalization operation does not a?ect the choosing of αt and φt ,since D t depends neither on αt nor φt in the forward stagewise additive modeling [11].D t is de?ned in a recursive way,where D 1(q i )=D (q i )=1/|Q |is the initial weight for query q i .After T iterations,we can obtain the

desired combined feedback model as H (q i )=

T t =1αt φt .

Algorithm 1The FeedbackBoost algorithm

Input:

Query set {q i ,J (q i )}|Q |

i =1,retrieval model F ,retrieval perfor-mance measure E ,and the number of iterations T ;A set of basis feedback methods Φ={φ1,···,φm };

Initial distribution D 1over training queries:D 1(i )=1/|Q |;Output:

1:for t =1,2,···,T do 2:Select basis feedback method φt with weighted distribution

D t on training queries using Formula 14;if there is no φt selected,break;3:Compute Eloss t (φt )using Formula 9.4:Choose αt based on Formula 12and Eloss t (φt ).5:While the inequality in Formula 4does not hold,goto step

2and choose the next optimal basis feedback as φt ;if there is no φt that satis?es the inequality,break;6:Update D t +1using Formula 8;7:end for 8:Output the ?nal feedback:H = T t =1αt φt ;

4.2FeedbackBoost

FeedbackBoost is designed to ?nd a solution to the opti-mization problem in Formula 7using a boosting approach.Speci?cally,like all other boosting algorithms,Feedback-Boost operates in rounds.At each round,we calculate a distribution of weights over training queries.In fact,D t can be regarded as a weight that is applied to each query after t ?1iterations.From Equation 8,we can see that D t will put more weights on queries that are hurt more by previously selected basis feedback methods.

We next select a basis feedback method φt that works well on those highly-weighted queries,and the selection of this basis feedback method is to optimize an objective function that is de?ned to directly measure the feedback loss.Specif-ically,we de?ne the weighted performance degradation of φat iteration t as

Eloss t (φ)=

|Q | i =1

D t (q i )·(

E (q i )?E (φ(q i )))

(9)

And the feedback method φt with the minimum Eloss t will be selected.Theoretical analysis is provided as follows:The performance measure E ,e.g.,AP in this paper,is usually within range [0,1].Even a measure is beyond this range,we can still normalize it to [0,1].Therefore,for any basis feedback method φt ,we have the performance degra-dation E (q i )?E (φt (q i ))∈[?1,1].By the convexity of e αx as a function of x when x ∈[?1,1][8],we thus have

exp (αt [E (q i )?E (φt (q i ))])≤

1+E (q i )?E (φt (q i ))

2

exp(αt )+

1?E (q i )+E (φt (q i ))

2

exp(?αt )

(10)

So Equation 7can be approximated by

arg min

{αt ,φt }

1+Eloss t (φt )

2exp(αt )+1?Eloss t (φt )2

exp(?αt )(11)

We can easily minimize this equation by setting

α?t =

1

2log 1?Eloss t (φt )1+Eloss t (φt )

(12)

which indeed makes sense since it suggests that a φt with

less performance degradation will receive a larger weight αt .

Then,by plugging Equation 12into 11,we obtain the fol-lowing optimal basis feedback.

φ?t =arg min

{φt }

(1?Eloss t (φt ))(1+Eloss t (φt ))

(13)

We can see that Equation 13is minimized when Eloss t (φt )is close to 1or ?1.With respect to the former case,we would choose a φt with the largest weighted performance degradation,and αt will be negative,which,however,does not make sense:if a pseudo feedback φt leads to large per-formance degradation,a negative αt may not make φt work well.Therefore,Eloss t (φt )should be negative to keep the coe?cient αt positive.So we choose a basis pseudo feedback φt with the smallest negative Eloss t so far.

φ?t

=arg min {φt }

{Eloss t (φt )}

subject to Eloss t (φt )<0

(14)

4.3Algorithm Summary

To summarize,FeedbackBoost works as follows.The in-put to the algorithm includes a set of queries and relevance

judgments {q i ,J (q i )}|Q |

i =1,a set of basis feedback methods Φ={φ1,···,φm },a document collection C ,a retrieval func-tion F ,a retrieval performance measure E ,and the iteration number T .FeedbackBoost works in an iterative way:dur-ing each iteration t ,a basis feedback method φt is chosen based on its performance on training data with weight dis-tribution D t ,i.e.,Eloss t (φt ).Also the coe?cient αt of φt is calculated based on Eloss t (φt ).After that,the query weight distribution D t is updated by increasing weights on queries for which φt performs poorly,leading to a new distribution D t +1;D t +1will be used in the next iteration to select φt +1and αt +1.At last,the ?nal feedback model H is created by linearly combining all the selected basis feedback methods.A sketch of the algorithm ?ow is shown in Algorithm 1.

5.

APPLICATION OF FEEDBACKBOOST TO LANGUAGE MODELS

In order to apply FeedbackBoost,the main task is to de-sign appropriate basis feedback methods {φ}.A basis feed-back method φk generally consists of three components:a

weighting function h k to assign weights to feedback docu-ments,a weighting function g k to calculate the importance of di?erent expansion terms,and the retrieval model F to decide the representation format of the feedback model.For-mally,φk =f (h k ,g k ,F ).Given a retrieval model F ,one feed-back method di?ers from others often because it uses di?er-ent document and/or term weighting functions [18].We can thus naturally construct many basis feedback methods by varying the document and/or term weighting functions.

5.1Basis Pseudo Feedback Methods based on

Language Models

As a speci?c application,here we discuss how we can apply FeedbackBoost to improve pseudo feedback under the lan-guage modeling framework through combining di?erent doc-ument weighting strategies.This application is especially interesting because (1)language models deliver state of the art retrieval performance [21,14];(2)feedback document weighting has been shown to be a critical factor a?ecting ro-bustness and e?ectiveness of pseudo feedback methods [18].However,our methodology could be applicable to other re-trieval models and to optimizing term weighting methods as well,which we leave as future work.

We use the KL-divergence retrieval method [14]as our retrieval model (i.e.,F ),which scores a document d with re-spect to a query q by computing the negative KL divergence between the query and the document language model:

S (q,d )=?

w ∈q

P (w |q )log

P (w |q )

P (w |d )

(15)

Two important instantiations of basis pseudo feedback meth-ods in language models are the relevance model [15]and the mixture model [31],which are among the most e?ective and robust feedback techniques based on language models [18].

5.1.1Relevance Model

The relevance model φr essentially uses the query likeli-hood as the weight for document d and takes an average of the probability of word w given by each document lan-guage model.Formally,let Θrepresent the set of smoothed document models in the pseudo feedback collection Ω={d 1,···,d n }.The formula of the relevance model is:

P (w |φr (q ))∝

θd ∈Θ

P (w |θd )

w ∈q

P (w |θd )

(16)

Let’s denote the original query model as P (w |q ).The relevance model P (w |φr (q ))can be interpolated with the original query model P (w |q )to improve performance using a interpolation coe?cient α.In this paper,we will use the fol-lowing interpolated model P (w |θq )as the new query model,which is often called RM3[1]:

P (w |θq )=(1?α)P (w |q )+αP (w |φr (q ))

(17)

In Equation 16,h r (d )=

w ∈q P (w |θd )is the query likeli-hood score of document d ,serving for document weighting,and g r (w,d )=P (w |θd )works for term weighting.If we in-stantiate the document weighting strategy in a di?erent way,e.g.,h r ,whereas the term weighting strategy is ?xed to g r ,it will lead to a di?erent “relevance model”φ r .Formally

P (w |φ r (q ))∝

θd ∈Θ

P (w |θd )·h r (d )

(18)

which can also be used for feedback after a similar interpola-tion.Following this way,we can construct a set of relevance-model style basis feedback methods by varying their docu-ment weighting strategies.

5.1.2Mixture Model

In the simple two-component mixture model (SMM)φm ,the words in Ωare assumed to be drawn from two mod-els:(1)background model P (w |C )and (2)topic model P (w |φm (q )).Thus the log-likelihood for the entire set of feedback documents is:

log P (Ω|φm (q ))=

w ∈V

c (w,Ω)log((1?λ)P (w |φm (q ))+λP (w |C ))

(19)

where V is the word vocabulary,c (w,Ω)is the count of word w in feedback document set Ω,and λ∈[0,1]is the mixture parameter.The estimate of φm (q )can be computed using the EM algorithm to maximize the log-likelihood.Finally,φm (q )is also interpolated with the original query model P (w |q )to update the query model with a coe?cient α.We notice in Formula 19that

c (w,Ω)=

d ∈Ω

|d |·P (w |d )

(20)

It means that the document length |d |is used as a weight of document d (i.e.,h m (d )=|d |)to sum over the term

evidence from each feedback document.As in the case of the relevance model,we can also use any other document weighting method h m to replace h m while keeping g m the same,which will lead to a new family of mixture-model style basis feedback method φ m .

5.2Document Weighting Strategies

We next introduce a set of document weighting strategies {h t }.As we have discussed,each of them can be plugged into the relevance model (Section 5.1.1)or the mixture model (Section 5.1.2),leading to a new basis feedback method φt .Relevance Score:Relevance score is shown to be a criti-cal factor for feedback document weighting in a recent work [18].We explore the use of query likelihood [21]h 1and BM25score [23]h 2for document weighting:w.r.t.the for-mer,the Dirichlet smoothing method [32]with μ=1,000is used to smooth the document language model;w.r.t.the latter,we ?x k 1=1.2,b =0.5,and k 3=1,000.

Document Novelty:We estimate a novelty score for each document to reward novel information.Three di?erent methods are proposed:(1)The distance between the cen-troid of all feedback documents h 3(d i )=1?cosim( d i ,1k

k j =1 d j ),where ‘cosim’stands for cosine similarity;(2)The distance between the centroid of all feedback documents ranked be-fore the document h 4(d i )=1?cosim( d i ,1i ?1

i ?1j =1 d j ).(3)The distance between the most similar document ranked before

the document:h 5(d i )=1?max i ?1j =1{cosim( d i , d j )}.

Query Term Proximity:Query term proximity has been largely ignored in traditional retrieval models [23,21].We use the recently proposed positional language model [19]and the minimum pair distance [29]to capture term proxim-ity for improving document weighting:(1)we compute a po-sitional query likelihood score based on the “best-matching”

position [19],i.e.,h 6(d )=max |d i |j =1

w ∈q P (w |d,j )c (w,q )

,where c (w,q )is the count of w in q ,and we follow work [17]to estimate the positional language model P (w |d,j );(2)we use the normalized minimum pair-wise distance proposed in [29]by setting α=1which prevents negative document weights,i.e.,h 7(d )=log(α+exp(?δ(q,d ))).

Document Length:Though the heuristic of document length normalization has been incorporated into the rele-vance scores [23,32],we still list it here because it was explicitly used in some existing pseudo feedback methods [18]:(1)raw document length:h 8(d )=|d |;(2)reciprocal of the raw document length:h 9(d )=1/h 8(d );(3)Dirich-let document length:h 10(d )=|d |/(|d |+μ),where we set μ=1,000;(4)reciprocal of the Dirichlet document length:h 11(d )=1/h 10(d ).

Besides the above basic document weighting methods,for each h t ,we also introduce some of their variations as our document weighting,including exp(h t ),(h t )2

,and √h t .Also we include log(h 2)and log(h 8),since the values of h 2and h 8are usually larger than 1.0for top-ranked documents.Over-all,there are 46methods in total,all of which are normalized to sum to 1.0for each query.

5.3Implementation Details

We next apply the FeedbackBoost algorithm to learn an ensemble feedback method.We denote E d (φ(q ))as the score of document d with respect to a basis feedback method φon query q .In fact,with the KL-divergence retrieval method (Equation 15),we only need to retrieve and score documents once for each basis feedback method.Then during the train-

ing process,if we need to score a document d using any

combined feedback H =

t k =1αk φk ,we can do it e?ciently by linearly combining the scores of the corresponding basis feedback methods.

E d (H

(q ))∝

w ∈q

P

w |

t k

αk

t

j αj φk (q )

log P (w |d )=

w ∈q

t

k =1

αk

t

j =1

αj

P (w |φk (q ))

log P (w |d )

t k =1

αk E d (φk (q ))

(21)

So training FeedbackBoost would be as e?cient as training

general AdaBoost algorithm [9].

Besides,during the testing phase,H (q )can also be esti-mated e?ciently.For example,for the relevance model,we can plug the ensemble document weighting method used in H (q )into Formula 18to replace h r (d )and estimate H (q )directly;for the mixture model style H (q ),we can also re-place |d |with the combined document weighting methods in Formula 20,which does not a?ect feedback performance in the experiments.Hence,the e?ciency of H (q )for pseudo feedback would be comparable to that of basis feedback al-gorithms,which is also con?rmed empirically.

6.EXPERIMENTAL SETUP

We evaluate our method using the Terabyte Web dataset and a large news dataset Robust04.Only title portions of the topics are taken as queries.For each dataset,we split the available topics into training,validate and test sets,where the training set is used solely for training the algorithms,the validate set is used for tuning the number of iterations T ,and the test set is used for evaluation purposes.Table 1shows some document set statistics.The preprocessing of the collections includes stemming using the Porter algorithm and stopword removal using a standard InQuery stoplist.We train two FeedbackBoost models:in the ?rst one,each basis feedback method implements a di?erent docu-ment weighting strategy proposed in Section 5.2,while all of them use the same mixture-model style term weighting,and thus we refer to it as BoostMM ;in the second one,each basis feedback method also implements a di?erent docu-ment weighting strategy but all of them share the relevance-model style term weighting,thus the name BoostRM .That is,we parameterize Φin di?erent ways for BoostRM and BoostMM.This design allows us to meaningfully compare BoostMM and BoostRM with the corresponding two base-line feedback methods (i.e.,SMM and RM3)and the basic query language model without feedback (labeled as“NoFB”).This set of experiments are mainly to compare Feedback-Boost with traditional pseudo feedback methods.A main hypothesis we would like to test is whether BoostMM and BoostRM are indeed more robust than the corresponding baseline SMM and RM3.

Furthermore,we also compare FeedbackBoost with two other lines of baseline methods.In the ?rst line,we compare FeedbackBoost with another strong baseline representing a recent work on improving robustness of pseudo feedback,i.e.,the REXP-FB method [7].In the second line,we are in-terested in knowing if an existing learning to rank approach can also improve both robustness and e?ectiveness as much as FeedbackBoost does.So we introduce yet another base-line AdaRank [30],which performed well [16].AdaRank

Collection Description#Docs Training Topics Validate Topics Test Topics Robust04TREC disk4&5(minus CR)528,155301-450601-650651-700 Terabyte2004crawl https://www.360docs.net/doc/9e6331937.html, domain25,205,179701-750751-800801-850 Table1:Overview of TREC collections and topics

BoostMM Versus SMM

Collection Metric NoFB

fbDocCount=20fbDocCount=50 SMM BoostMM SMM BoostMM

Validate Robust04

MAP0.28500.3215?0.3447?+0.29730.3468?+

Pr@200.33100.36100.37900.38500.3850

RI n/a0.36000.6400(+77.8%)0.04000.6000(+1400%)

APloss n/a0.61910.2877(?53.5%) 1.37300.2815(?79.5%) Terabyte

MAP0.30760.3477?0.3701?+0.3445?0.3669?+

Pr@200.54100.55700.59700.55400.5820

RI n/a0.44000.7200(+63.6%)0.32000.6000(+87.5%)

APloss n/a0.60360.1667(?72.4%)0.69630.2433(?65.1%)

Test Robust04

MAP0.29300.3265?0.3511?+0.30670.3453?+

Pr@200.37960.40410.41430.38670.4082

RI n/a0.38780.5102(+31.6%)0.26530.4286(+61.6%)

APloss n/a0.71080.3493(?50.9%) 1.34290.4231(?68.5%) Terabyte

MAP0.30120.30610.3331?+0.30670.3298?+

Pr@200.48780.47650.52550.46630.5112

RI n/a0.14290.5102(+257%)0.14290.5102(+257%)

APloss n/a0.64380.1499(?76.7%)0.75460.2511(?66.7%)

BoostRM Versus RM3

Collection Metric NoFB

fbDocCount=20fbDocCount=50 RM3BoostRM RM3BoostRM

Validate Robust04

MAP0.28500.3431?0.3450?0.3430?0.3490?+

Pr@200.33100.38400.38000.38000.3880

RI n/a0.28000.4800(+71.4%)0.36000.5200(+44.4%)

APloss n/a0.70840.5056(?28.6%)0.64210.4155(?35.3%) Terabyte

MAP0.30760.3471?0.3661?+0.3466?0.3628?+

Pr@200.54100.58400.58900.57700.5740

RI n/a0.52000.6800(+30.8%)0.48000.5600(+16.7%)

APloss n/a0.90420.2946(?67.4%)0.94580.4247(?55.1%)

Test Robust04

MAP0.29300.3483?0.3537?+0.3462?0.3488?+

Pr@200.37960.40100.41220.40820.4082

RI n/a0.30610.4286(+40.0%)0.30610.4694(+53.3%)

APloss n/a0.57360.3662(?36.2%)0.51840.4261(?17.8%) Terabyte

MAP0.30120.31870.3287?0.31880.3311?+

Pr@200.48780.49390.50100.49800.5173

RI n/a0.22450.3469(+54.5%)0.18370.3469(+88.8%)

APloss n/a0.68470.2797(?59.1%)0.66080.2614(?60.4%)

Table2:Comparison of BoostMM and BoostRM with SMM and RM3respectively.Note that for APloss, lower is better(negative change is good),while for RI,higher is better.‘*’and‘+’mean the MAP improve-ment is statistically signi?cant over NoFB and the corresponding baseline feedback method respectively.The improvement of APloss and RI is shown for BoostMM/BoostRM relative to SMM/RM3.

attempts to learn a ranking function through directly opti-

mizing retrieval measures.One variation of AdaRank used

in our comparison is AdaRank.MAP,which tries to op-

timize MAP.Since it is non-trivial to directly optimize the

proposed fbloss using AdaRank,we further extend AdaRank

to optimize a loss function that is similar to fbloss:a novel

robustness-related measure E that measures the performance

degradation in feedback:E (q i)=E t

k=1αk·φk(q i)

?E(q i).

According to the Formula6in[30],AdaRank turns out

to minimize an exponential loss function |Q|

i=1exp

?E (q i)

,

leading to a new run AdaRank.FB.Note that AdaRank.FB is no longer the traditional AdaRank algorithm because the loss function is novel,thus it is a very strong baseline.

We use the Dirichlet smoothing method[32]for all docu-ment language models,where we set theμ=1,000.Besides, as suggested in our previous study[18],we set the mixture noise parameterλto0.9for SMM and all the mixture-model style basis feedback methods.We also set the number of ex-pansion terms to40.These parameter settings work well and are used in our experiments unless otherwise stated.

It does not make sense to talk about fbloss alone,since we can always get0loss for any feedback method by setting the feedback coe?cientαto0.In the traditional evaluation strategy[31,18],people often tuneαto optimize one re-trieval precision measure.We thus follow such a strategy to ?rst optimizeαin terms of MAP,on the basis of which we then try to reduce fbloss.Speci?cally,we give a priority to SMM and RM3to optimize their feedback coe?cientαon the training,validate and test sets respectively.However, for all the mixture-model style basis feedback methods,we simply set the feedback coe?cients to those optimized for SMM,while for all the relevance-model style basis feedback methods,we use RM3’s setting directly.

We are interested in both e?ectiveness and robustness of pseudo feedback methods,so besides MAP(on top-ranked 1,000documents)and Pr@20,we also compare all runs in

Metric

fbDocCount =20

fbDocCount =50

AdaRank.MAP AdaRank.FB FeedbackBoost

AdaRank.MAP AdaRank.FB FeedbackBoost

MAP 0.34510.35350.35370.34180.34850.3488RI 0.30610.38780.42860.30610.34690.4694APloss

0.97760.43330.3662 1.00330.63290.4261

Table 3:Comparison of FeedbackBoost,AdaRank.MAP,and AdaRank.FB on the test set of Robust04.

Note that AdaRank.FB is di?erent from the traditional AdaRank algorithm,since it is armed with a novel robustness-related loss function.

Collection

NoFB-1REXP-FB NoFB-2BoostRM BoostMM Robust04

MAP

0.21520.24510.25020.2617+0.2752+RI n/a 0.3773n/a 0.51000.5221Terabyte

MAP

0.27360.30040.29010.3086+0.3230+RI

n/a

0.2624

n/a

0.5135

0.5270

Table 4:Comparison of FeedbackBoost and REXP-FB on the same collections,where cross-validation is used for training.‘+’indicates that the improvement of MAP over NoFB-2is statistically signi?cant.terms of two robustness measures,the robustness index (RI)and the accumulative loss of retrieval performance (APloss).RI =1?2·fbloss ,is essentially a transformation of the fbloss proposed in our paper;we show RI instead of fbloss mainly because RI was often used in previous studies,e.g.,[7].APloss is to measure the feedback loss in a ?ner de-gree,which is the accumulative AP degradation in failure cases (since AP is used as E in our paper),de?ned as:

APloss =

|Q |

i =1

[E (q i )?E (H (q i ))]·I {E (H (q i ))

7.EXPERIMENT RESULTS

7.1Performance of FeedbackBoost

Table 2compares MAP,Pr@20,RI,and APloss for NoFB,SMM,RMM,BoostMM,and BoostRM on the validate and test sets.Note that each time all runs use the same set of feedback documents to make the comparison fair;that is,we ?x the base ranking for all runs.Besides,the itera-tion number T in FeedbackBoost is chosen to minimize the corresponding fbloss on the validate sets.We also vary the number of feedback documents from 20to 50.

For all cases,we can see that BoostMM and BoostRM signi?cantly improve the robustness over SMM and RM3respectively.For example,BoostMM reduces APloss as com-pared with SMM by amounts ranging from 50.9%to 77.8%when using 20feedback documents and from 65.1%to 79.5%when using 50feedback documents.Moreover,BoostMM and BoostRM also signi?cantly improve MAP over SMM and RM3in almost all cases.The results demonstrate that the FeedbackBoost algorithm does a good job to improve robustness while still achieving better e?ectiveness.More-over,FeedbackBoost works consistently well when we use di?erent number of feedback documents.The performance of FeedbackBoost shows that it is e?ective to combine mul-tiple feedback methods using our FeedbackBoost to improve both robustness and e?ectiveness of pseudo feedback.

We next compare FeedbackBoost with AdaRank.MAP and AdaRank.FB.These three algorithms are all trained on the same set of relevance-model style basis feedback methods.The iteration number for all the algorithms are chosen to minimize fbloss on the validate set.We present the experi-ment results in Table 3.One interesting observation is that AdaRank.FB is more e?ective than AdaRank.MAP,suggest-ing that the proposed robustness-related measure is better than MAP as an objective function to improve pseudo feed-

back:one possible explanation is that the average precision does not work well to indicate the room for improvement of a query,so focusing on queries with lower average precision may not be a good strategy to fully exploit the potential of di?erent queries;however,our new measure would be able to capture more precisely the potential room of a query through comparing its performance with the baseline perfor-mance.Moreover,we also see that FeedbackBoost is clearly better than AdaRank.FB,though they use similar objective functions,sugggesting that our optimization framework is more e?ective for pseudo feedback.

We ?nally compare FeedbackBoost with a state-of-the-art feedback method,REXP-FB [7],which attempted to reduce failures of pseudo feedback but was only able to optimize an indirect objective function.They also used Terabyte and Robust04as their test collections.So we used a 3-fold (701-750,751-800,and 801-850)and a 2-fold (301-450and 601-700)cross validation method to evaluate FeedbackBoost on the whole Terabyte and Robust04topics respectively in or-der to compare with their reported numbers.In this com-parison,we use the same collection and parameter settings as were used in [7].The comparison is reported in Table 4.There are clear performance improvements of our baseline runs (NoFB-2)over theirs (NoFB-1),probably because we use a latest version of Indri search engine (2.10)1.We still can see that,in terms of relative improvements,BoostMM performs similarly to REXP-FB,although REXP-FB used a lot of constraints to improve the selection of expansion terms while we only use the default term weighting.However,the most interesting observation is from the comparison of RI,which may be more comparable across systems.We can see that our algorithms achieve a signi?cantly higher RI in all cases,even though our baseline run is even harder to beat.This ?nding con?rms the conclusion in [18]that doc-ument weighting plays a key role in a?ecting the robustness of feedback.Furthermore,it suggests that our way of di-rectly optimizing robustness indeed works more e?ectively.

7.2Robustness Histograms

To examine in details how badly queries are hurt by a pseudo feedback algorithm,we show in Figure 2the robust-ness histograms by combining two test sets (query 651-701and query 801-850).The x-axis represents the individual APloss in percentage (i.e.,[E (q )?E (φ(q ))]/E (q ),where φis

1

https://www.360docs.net/doc/9e6331937.html,/

Figure 2:Histograms that compare robustness of SMM vs BoostMM (?rst and third)and RM3vs BoostRM (second and fourth)on the combination of two test sets.20(50)feedback documents are used in the left (right)two histograms respectively.

0.3

0.4 0.5 0.6 0.7 0.8 0

10

20

30

40 50 60 70 80

90 100

A P l o s s

number of rounds

BoostMM BoostRM

Figure 5:Sensitivity of BoostMM and BoostRM to the iteration number on Robust04validate set.the corresponding feedback method)for individual failure queries,and the y-axis stands for the number of queries with the corresponding percentage APloss.We can see that for the worst cases,where a query’s AP is decreased by more than 40%,both BoostMM and BoostRM perform much bet-ter than SMM and RM3respectively.It suggests that the proposed FeedbackBoost algorithm indeed concentrates more on di?cult queries that are hurt seriously by baseline feed-back methods,i.e.,SMM and RM3,and the signi?cant re-duction of APloss and improvement of RI shown in Table 2could be mainly due to the elimination of those worst cases.

7.3Parameter Sensitivity

Usually there is a tradeo?between robustness and e?ec-tiveness:if we use a smaller feedback coe?cient α,there would be fewer feedback failures,but we may not fully im-prove the e?ectiveness;if we increase this αto some ap-propriate value,the overall retrieval precision could be opti-mized,which,however,may lead to more feedback failures.Although we have shown that FeedbackBoost improves both robustness and e?ectiveness at the same time,we are still interested in how the performance of FeedbackBoost inter-acts with α(where αin FeedbackBoost is used to control the feedback interpolation of each basis feedback method in-volved.)We thus draw the sensitivity curves for Feedback-Boost in terms of the percentage MAP degradation and the

overall MAP improvement in Figure 3and 4respectively.The percentage MAP degradation is essentially the relative

APloss,i.e.,APloss /[ |Q |

i

E (q i )];the overall MAP improve-ment of φis de?ned as [ |Q |i E (φ(q i ))]/[ |Q |

i

E (q i )]?1.0.We use 50feedback documents in all curves.The curves clearly show that FeedbackBoost consistently improves the robust-ness and e?ectiveness over two baseline algorithms.Addi-tionally,our algorithm is also less sensitive to αin both curves,and setting αaround 0.8often leads to a large im-provement in precision with only a small amount of failures.Finally,we show in Figure 5the curves of performance changes as we increase the iteration number T .We see that the APloss decreases steadily and quickly as the training goes on,until it reaches its plateau.In our experiments,we can usually ?nd the best parameter T within 100rounds.

8.CONCLUSIONS

In this paper,we propose a novel learning algorithm,Feed-backBoost,based on the boosting framework to improve pseudo feedback.A major contribution of our work is to op-timize pseudo feedback based on a novel loss function that directly measures both robustness and e?ectiveness ,which has not been achieved in any previous work.

The experiment results show that the proposed Feedback-Boost algorithm can improve average precision e?ectively and meanwhile reduce the number and magnitude of feed-back failures dramatically as compared to two representa-tive pseudo feedback methods based on language models,the mixture model and the relevance model.We also com-pare our algorithm with a recently proposed robust feedback method,and the results show that our method is more ro-bust.In addition,we compare FeedbackBoost with a well-performing learning to rank approach applied for pseudo feedback and observe that FeedbackBoost works clearly bet-ter.These results show that the proposed FeedbackBoost is more e?ective and robust than any of the existing method for pseudo feedback,including both traditional pseudo feed-back methods and new learning-based approaches.

Our work can be extended in several ways.First,in our current work,we only use basis feedback methods with dif-ferent document weighting strategies,so a straightforward future work is to also introduce term weighting methods to construct a larger set of basis feedback methods.Second,we are also interested in combining even more recently proposed pseudo feedback algorithms,e.g.,[2,28,7,20],and other families of feedback methods,e.g.,[24,22],to diversify our basis feedback methods.Third,personalized search is an-other scenario which shares similar e?ectiveness-robustness tradeo?issues;thus it is also interesting to improve person-alized search by exploring the FeedbackBoost framework.

9.ACKNOWLEDGMENTS

We thank the anonymous reviewers for their useful com-ments.This material is based upon work supported by the National Science Foundation under Grant Numbers IIS-0713581and CNS-1028381.The ?rst author is also sup-ported by a Yahoo!Key Scienti?c Challenge Award.

10.REFERENCES

[1]N.Abdul-Jaleel,J.Allan,W.B.Croft,F.Diaz,https://www.360docs.net/doc/9e6331937.html,rkey,

X.Li,D.Metzler,M.D.Smucker,T.Strohman,H.Turtle,and C.Wade.Umass at trec 2004:Novelty and hard.In TREC ’04,2004.

0 5 10

15

20

0.2

0.4

0.6

0.8

1

P e r c e n t M A P l o s s

Feedback coefficient αBoostMM vs. SMM on Robust04

SMM BoostMM

0 0.5

1 1.5

2 2.5

3 3.5

4 0

0.2 0.4 0.6 0.8 1

P e r c e n t M A P l o s s

Feedback coefficient αBoostRM vs. RM3 on Robust04RM3BoostRM

5

10

15

20

0 0.2 0.4 0.6 0.8 1

P e r c e n t M A P l o s s

Feedback coefficient αBoostMM vs. SMM on Terabyte SMM BoostMM

0.5

1 1.5

2 2.5

3 3.5

4 0 0.2 0.4 0.6 0.8 1

P e r c e n t M A P l o s s

Feedback coefficient α

BoostRM vs. RM3 on Terabyte RM3BoostRM

Figure 3:Sensitivity of the percentage degradation of MAP in failure queries to the feedback coe?cient α.SMM versus BoostMM and RM3versus BoostRM are shown in the odd and even-number ?gures respectively.

0 5 10 15 20 0

0.2 0.4 0.6 0.8

1

O v e r a l l M A P i m p r o v e m e n t

Feedback coefficient α

BoostMM vs. SMM on Robust04

SMM BoostMM

0 5

10

15

20

0.2 0.4 0.6 0.8

1

O v e r a l l M A P i m p r o v e m e n t

Feedback coefficient α

BoostRM vs. RM3 on Robust04RM3BoostRM

-20

-15-10-5 0 5 10 15 0

0.2 0.4 0.6 0.8

1

O v e r a l l M A P i m p r o v e m e n t

Feedback coefficient α

BoostMM vs. SMM on Terabyte SMM BoostMM

-30

-25-20-15-10-5 0 5 10 0

0.2 0.4 0.6 0.8

1

O v e r a l l M A P i m p r o v e m e n t

Feedback coefficient α

BoostRM vs. RM3 on Terabyte RM3BoostRM

Figure 4:Sensitivity of the average improvement of MAP in all queries to the feedback coe?cient α.SMM versus BoostMM and RM3versus BoostRM are shown in the odd and even-number ?gures respectively.

[2]G.Amati,C.Carpineto,and G.Romano.Query di?culty,

robustness,and selective application of query expansion.In ECIR ’04,pages 127–137,2004.

[3] C.Buckley,G.Salton,J.Allan,and A.Singhal.Automatic

query expansion using smart:Trec 3.In TREC ’94,pages 69–80,1994.

[4] C.Burges,T.Shaked,E.Renshaw,https://www.360docs.net/doc/9e6331937.html,zier,M.Deeds,

N.Hamilton,and G.Hullender.Learning to rank using gradient descent.In ICML ’05,pages 89–96,2005.

[5]G.Cao,J.-Y.Nie,J.Gao,and S.Robertson.Selecting good

expansion terms for pseudo-relevance feedback.In SIGIR ,pages 243–250,2008.

[6]Z.Cao,T.Qin,T.-Y.Liu,M.-F.Tsai,and H.Li.Learning to

rank:from pairwise approach to listwise approach.In Proceedings of ICML ,pages 129–136,2007.

[7]K.Collins-Thompson.Reducing the risk of query expansion via

robust constrained optimization.In CIKM ’09,pages 837–846,2009.

[8]Y.Freund,R.Iyer,R.E.Schapire,and Y.Singer.An e?cient

boosting algorithm for combining preferences.J.Mach.Learn.Res.,4:933–969,2003.

[9]Y.Freund and R.E.Schapire.A decision-theoretic

generalization of on-line learning and an application to

boosting.In EuroCOLT ’95,pages 23–37,London,UK,1995.Springer-Verlag.

[10] D.Harman and C.Buckley.The nrrc reliable information

access (ria)workshop.In SIGIR ’04,pages 528–529,2004.[11]T.Hastie,R.Tibshirani,and J.Friedman.The Elements of

Statistical Learning .Springer,2009.

[12] B.He and I.Ounis.Finding good feedback documents.In

CIKM ’09,pages 2011–2014,2009.

[13]T.Joachims.Optimizing search engines using clickthrough

data.In Proceedings of the ACM KDD 2002,pages 133–142,2002.

[14]https://www.360docs.net/doc/9e6331937.html,?erty and C.Zhai.Document language models,query

models,and risk minimization for information retrieval.In SIGIR ’01,pages 111–119,2001.

[15]https://www.360docs.net/doc/9e6331937.html,vrenko and W.B.Croft.Relevance-based language

models.In SIGIR ’01,pages 120–127,2001.

[16]T.-Y.Liu.Learning to rank for information retrieval.

Foundations and Trends in Information Retrieval ,3(3):225–331,2009.

[17]Y.Lv and C.Zhai.Adaptive relevance feedback in information

retrieval.In CIKM ’09,2009.

[18]Y.Lv and C.Zhai.A comparative study of methods for

estimating query language models with pseudo feedback.In Proceedings of CIKM ’09,2009.

[19]Y.Lv and C.Zhai.Positional language models for information

retrieval.In SIGIR ’09,pages 299–306,2009.

[20]Y.Lv and C.Zhai.Positional relevance model for

pseudo-relevance feedback.In SIGIR ’10,pages 579–586,2010.[21]J.M.Ponte and W.B.Croft.A language modeling approach to

information retrieval.In SIGIR ’98,pages 275–281,1998.

[22]S.E.Robertson and K.S.Jones.Relevance weighting of search

terms.JASIS ,27(3):129–146,1976.

[23]S.E.Robertson,S.Walker,S.Jones,M.Hancock-Beaulieu,

and M.Gatford.Okapi at trec-3.In TREC ’94,pages 109–126,1994.

[24]J.J.Rocchio.Relevance feedback in information retrieval.In

In The SMART Retrieval System:Experiments in Automatic Document Processing ,pages 313–323.Prentice-Hall Inc.,1971.[25]G.Salton and C.Buckley.Improving retrieval performance by

relevance feedback.JASIS ,41(4):288–297,1990.

[26]R.E.Schapire and Y.Singer.Improved boosting algorithms

using con?dence-rated predictions.In COLT’98,pages 80–91,1998.

[27]N.Soskin,O.Kurland,and C.Domshlak.Navigating in the

dark:Modeling uncertainty in ad hoc retrieval using multiple relevance models.In ICTIR ’09,pages 79–91,2009.

[28]T.Tao and C.Zhai.Regularized estimation of mixture models

for robust pseudo-relevance feedback.In SIGIR ’06,pages 162–169,2006.

[29]T.Tao and C.Zhai.An exploration of proximity measures in

information retrieval.In SIGIR ’07,pages 295–302,2007.[30]J.Xu and H.Li.Adarank:a boosting algorithm for

information retrieval.In SIGIR ’07,pages 391–398,2007.[31] C.Zhai and https://www.360docs.net/doc/9e6331937.html,?erty.Model-based feedback in the

language modeling approach to information retrieval.In CIKM ’01,pages 403–410,2001.

[32] C.Zhai and https://www.360docs.net/doc/9e6331937.html,?erty.A study of smoothing methods for

language models applied to ad hoc information retrieval.In SIGIR ’01,pages 334–342,2001.

[33]Z.Zheng,K.Chen,G.Sun,and H.Zha.A regression

framework for learning ranking functions using relative relevance judgments.In SIGIR ’07,pages 287–294,2007.

photoshop基础教程(新手入门)(免费)

Photosop的基础知识 一、Photosop是ADOBE公司推出的图形图像处理软件,功能强大,广泛应用于印刷、广告设计、封面制作、网页图像制作、照片编辑等领域。利用Photosop可以对图像进行各种平面处理。绘制简单的几何图形、给黑白图像上色、进行图像格式和颜色模式的转换。 二、Photosop7.0的启动与退出 1、启动Photoshop的方法: 单击开始/程序/Photoshop7.0即可启动.或者打开一个Photoshop文件也能够启动Photoshop. 2、退出Photoshop的方法: 单击关闭按钮或按下CTRL+Q组合键或ALT+F4组合键,都可以退出Photoshop。 三、Photoshop的窗口组成(标题栏、菜单栏、工具栏、工具箱、图像图口、控制面板、状态栏、Photoshop 桌面) 1、标题栏:位于窗口最顶端。 2、菜单栏:其中包括9个菜单。位于标题栏下方。 3、工具栏:位于菜单栏下方。可以随着工具的改变而改变。 4、工具箱:位于工具栏的左下方。 5、图像窗口:位于工具栏的正下方。用来显示图像的区域,用于编辑和修改图像。 6、控制面版:窗口右侧的小窗口称为控制面版。用于改变图象的属性。 7、状态栏:位于窗口底部,提供一些当前操作的帮助信息。 8、Photoshop桌面:Photoshop窗口的灰色区域为桌面。其中包括显示工具箱、控制面板和图像窗口。 四、图像窗口:图像窗口由(标题栏、图像显示区、控制窗口图标) 1、标题栏:显示图像文件名、文件格式、显示比例大小、层名称以及颜色模式。 2、图像显示区:用于编辑图像和显示图像。 3、控制窗口图标:双击此图标可以关闭图像窗口。单击此图标,可以打开一个菜单,选择其中的命令即可。 五、工具箱和工具栏

PSA变压吸附制氮原理资料

制氮机 制氮机,是指以空气为原料,利用物理方法将其中的氧和氮分离而获得氮气的设备。 根据分类方法的不同,即深冷空分法、分子筛空分法(PSA)和膜空分法,工业上应用的制氮机,可以分为三种。 制氮机是按变压吸附技术设计、制造的氮气设备。制氮机以优质进口碳分子筛(CMS)为吸附剂,采用常温下变压吸附原理(PSA)分离空气制取高纯度的氮气。通常使用两吸附塔并联,由进口PLC控制进口气动阀自动运行,交替进行加压吸附和解压再生,完成氮氧分离,获得所需高纯度的氮气。 中文名制氮机 含义制取氮气的机械组合 工作原理利用碳分子筛的吸附特性 主要分类深冷空分,膜空分,碳分子筛空分、 1工作原理 1. ? PSA变压吸附制氮原理 2. ?深冷空分制氮原理 3. ?膜空分制氮原理 2主要分类 1. ?深冷空分制氮 2. ?分子筛空分制氮 3. ?膜空分制氮 3设备特点 4系统用途 5技术参数 工作原理 PSA变压吸附制氮原理 碳分子筛可以同时吸附空气中的氧和氮,其吸附量也随着压力的升高而升高,而且在同一压力下氧和氮的平衡吸附量无明显的差异。因而,仅凭压力的变化很难完成氧和氮的有效分离。如果进一步考虑吸附速度的话,就能将氧和氮的吸附特性有效地区分开来。氧分子直径比氮分子小,因而扩散速度比氮快数百倍,故碳分子筛吸附氧的速度也很快,吸附约1分钟就达到90%以上;而此时氮的吸附量仅有5%左右,所以此时吸附的大体上都是氧气,而剩下的大体上都是氮气。这样,如果将吸附时间控制在1分钟以内的话,就可以将氧和氮初步分离开来,也就是说,吸附和解吸是靠压力差来实现的,压力升高时吸附,压力下降时解吸。而区分氧和氮是靠两者被吸附的速度差,通过控制吸附时间来实现的,将时间控制的很短,氧已充分吸附,而氮还未来得及吸附,就停止了吸附过程。因而变压吸附制氮要有压力的变化,也要将时间控制在1分钟以内。

PSA VPSA 变压吸附

工业上吸附分离过程中使用的吸附剂通常都是循环使用的,为了使吸附分离法经济有效的实现,除了吸附剂要具有良好的吸附性能以外,吸附剂的再生方法也具有关键意义。吸附剂的再生程度决定了产品的纯度,也影响吸附剂的吸附能力;吸附剂的再生时间决定了吸附循环周期的长短,也决定了吸附剂用量的多少。因此选择合适的再生方法,对吸附分离法工业化起着重要作用。从描述吸附平衡的吸附等温曲线可以看出,在同一温度下,吸附质在吸附剂上的吸附量随吸附质的分压(浓度)的上升而增大;在同一吸附质分压(浓度)下,吸附质在吸附剂上的吸附量随吸附温度的升高而减少。也就是是说加压降温有利于吸附质的吸附,降压加温有利于吸附质的解吸或吸附剂的再生。按照吸附剂的再生方法,通常将吸附分离循环过程分为两类:变温吸附和变压吸附变温吸附. (Temperature Swing Adsorption缩写为TSA)就是在较低温度(常温或更低)下进行吸附,在较高温度下使吸附的组分解吸出来,使吸附剂再生,循环使用,即变温吸附是在两条不同的等温吸附线之间上下移动进行着吸附和解吸过程。变温吸附通常适用于原料气中杂质组分含量低、产品回收率要求较高或难解吸杂质组分的分离过程。 变压吸附(Pressure Swing Adsorption缩写为PSA)就是在较高压力下进行吸附,在较低压力(甚至真空状态)下使吸附的组分解吸出来,使吸附剂再生,得以循环使用。由于变压吸附循环周期一般较短,吸附热来不及散失可供解吸用,吸附热和解吸热引起的床层温度变化很小,可以近似看作等温过程。 工业变压吸附分离过程中,采用哪种再生方法是根据被分离气体混合物中各组分的性质、产品纯度和收率要求、吸附剂的特性以及操作条件等来选择的,通常是几种再生方法配合实施。无论采用何种方法再生,再生结束时吸附床内吸附质的残留量不会等于零,即吸附床内吸附剂不可能彻底再生,而只能将吸附床内吸附质的残留量降低至最小。 2.1 吸附的概念 变压吸附(PSA)技术是近30 多年来发展起来的一项新型气体分离与净化技术。1942年德国发表了第一篇无热吸附净化空气的专利文献。60年代初,美国联合碳化物公司首次实现了变压吸附四床工艺技术的工业化。由于变压吸附技术投资少、运行费用低、产品纯度高、操作简单、灵活、环境污染小、原料气源适应范围宽,因此,进入70年代后,这项技术被广泛应用于石油化工、冶金、轻工及环保等领域。 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行

PSA(变压吸附)制氮机

制氮机操作规程 一、开机操作 1、合上电气系统电源,打开电控箱上电源开关。此时电源指示灯亮或触摸屏显示“运行状态”画面。 2、打开各冷却水阀,使空压机、冷干机、冷却水路畅通。 3、打开空气储罐下排污阀,排尽储罐内积水。 4、启动冷干机工作后,启动空压机工作。 5、按启动按钮或轻触“自动”、“启动”按钮位置,系统开始按程序运行。 6、当氮气压力开始上升后,全部打开氮气储罐出口阀,缓慢打开放空阀,将不合格氮气放空,将放空流量调节到额定输出氮气流量的50%。 7、将流量调节到要求输出流量的刻度上,观察氮气分析仪上显示的氮气纯度,看其是否逐步和稳定在要求的纯度上。 8、当压力、纯度、流量均达到要求后,关闭放空阀,转开供气阀,将流量调节至要求输出流量的刻度上,向使用点输送合格氮气。 二、停机操作 1、按停止键,制氮系统即自动停止运行,(按停止键时,最好选择在均压B=A 结束时刻进行)。 2、关闭氮气供气阀门,并关闭氮气缓冲罐出口阀门,使制氮吸附系统内氮气保压。 3、停止空压机工作,然后停止冷干机工作。 4、关闭电控箱上电源开关,切断电源。 5、作一次各手动排污点的排污。 三、注意事项 1、在系统工作时,应观察A、B吸附塔工作过程中的吸附、均压压力、气源压力及氮气输出压力。监视各压力表在吸附、解吸、均压时压力是否正常。 2、调压阀可调节输出氮气的压力,出厂时已根据用户要求压力调试好,在使用过程中,不要调节。 3、本厂配置的氮气流量计是按空气在标准状态(20℃,0.1MPa)流量来标定的,而实际使用中的测量氮气时的流量计处于工作状态,与流量计标定时的状态是不

同的,因此,必须对流量进行压力、温度修正。 四、维护保养 1、冷干机和空压机下部的手动排污阀每1小时排污一次。 2、空气储罐排污阀每2小时排污一次。 3、每星期对冷干机、空压机散热片上的灰尘用干燥的压缩空气进行吹扫。 4、每个月检查各过滤器的压差表指针是否处绿色正常位置,同时检查下部排放污水中的含油情况,当油量过大时应及时检查空压机的保养情况。 5、当制氮机停用长期存放时,应将系统入口及出口阀门关严保压,防止吸附塔内碳分子筛受潮变质,最好定期三个月后启动一次制氮装置,使分子筛活化。 6、每6个月对氮气分析仪做一次校对,当仪表显示不准确时,及时更换同型号的传感器,运行二年需对仪表进行检修。 7、正常运行6000-8000小时,需及时更换过滤器滤芯。 8、运行一年后需要对电器部分、气动阀、电磁阀做一次检修(气动阀正常工作为100万次,电磁阀为150万次)。

浅谈PHOTOSHOP课程的课堂教学

浅谈PHOTOSHOP课程的课堂教学 【摘要】Photoshop是职业院校设计类专业的基础必修课之一。本文从如何培养提高学生兴趣、教学内容的设计以及教学方法运用等几个方面探讨了Photoshop的课堂教学。 【关键词】PHTOTOSHOP;课堂教学;创新能力 PhotoShop是目前市场上最流行、使用范围最广的图形图像处理软件,其内容丰富,工具繁多,图片效果丰富多彩,无论是在广告、平面、室内、动画设计,还是在摄影、出版、印刷等领域,都深受广大设计人员和电脑美术爱好者的喜爱。同时也是职业院校计算机和艺术设计专业的基础必修课之一。面对职业院校学生起点水平参差不齐、美术功底薄弱、审美能力、兴趣的差异,如何将学生引入课堂教学中,激发学生的学习兴趣、培养学生的理解力和创新能力,使学生不仅能完成学习任务、而且能够真正的面对就业的需求,笔者就目前PhotoShop课堂教学的一些问题,谈几点看法。 一、激发学生的学习热情,培养学习兴趣 目前,大多数职业院校在进行Photoshop教学时采用的是传统讲授型教学,教师在课堂教学中按照教材规定的章节顺序来讲,简单的按照从易到难、从简单到复杂的顺序循序渐进的进行教学,学生处于被动学习的状态,很容易产生厌烦的情绪,尤其是面对电脑和网络,更加容易转移注意力,偷偷玩游戏或者上网,十分影响课堂教学的效果。这就要求教师在课堂教学中要时刻调动学生的积极性和学习兴趣。“兴趣是最好的老师”,没有兴趣就谈不上深入的学习。针对职业院校的学生来说,他们虽然底子薄、美术基础相对较差,但是思维相当活跃,有自己的想法和创意,所以在第一次课上,教师不必急于进行课程的讲授,使学生了解本课程、对课程感兴趣是十分必要的,可以先向学生展示Photoshop在如今的计算机设计领域的各种应用,例如广告设计海报、摄影照片的处理、卡通绘画、建筑效果图后期以及创意图像合成等典型应用实例,并从构思、色彩搭配、创意等角度做简单分析评述,直观的体验和感受比枯燥的程序更容易激发学生浓厚的兴趣,接着加深他们对本门课程的了解,学习Photoshop能够考取哪些证书、可以做的一些社会上的平面设计兼职工作、能够增加就业的砝码、能获得大约多少收入等等,并例举一些往届毕业生的成功案例,进一步增强学生的兴趣和自信心,使他们渴望参与课程的学习,掌握这门技术。这样学生学习的欲望和兴趣被充分调动起来,对以后的教学便起到了事半功倍的效果。 对于Photoshop课程来说,每节课的导入是十分重要的环节。软件的专业术语和操作步骤比较繁多,如果没有在导入环节较好的设置情景就直接平铺直叙的进入学习,会使学生在每堂课开始就昏昏欲睡或者注意力被转移,难以达到预期的教学效果。 二、根据专业合理设计教学内容:

变压吸附基础知识

一、基础知识 1.气体知识 氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。它无色、无味,透明,属于亚惰性气体,不维持生命。高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。氮气(N2)在空气中的含量为78.084% (空气中各种气体的容积组分为:N2: 78.084%、02: 20.9476%、氩气:0.9364%、CO2: 0.0314%、其它还有 H2、 CH4、 N2O、 O3、 SO2、NO2 等,但含量极少),分子量为 28,沸点: -195.8C,冷凝点:-210C。 2.压力知识 变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂一一碳分子筛最佳吸附压力为 0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。 二、PSA制氮工作原理: 变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示: 碳分子筛的孔径分布特性使其能够实现 O2 、N2 的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对 O2、 N2 的分离作用是基于这两种气体的动力学直径的微小差别,O2 分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率, N2 分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和 CO2 的扩散同氧相差不大,而氩扩散较慢。最终从吸附塔富集出来的是 N2 和 Ar 的混合气。

变压吸附PSA操作规程

变压吸附(PSA)操作规程 第一部分设计基础资料 一装置概况 1.气体组成 原料气:氢气压力5.0Mpa,≤40℃,流量73.63Nm3/h 产品氢气 副产品解析气≤40℃压力0.02Mpa 流量24Nm3/h 2.年运行时间8000小时 二.消耗指标 仪表空气30 Nm3/h 置换用氮气(间断使用)50Nm3/h 三.排放物 解析气24 Nm3/h

第二部分生产工艺介绍 一生产工艺原理 变压吸附工艺的原理是利用所采用的吸附剂对不同组分的吸附容量随着压力的不同而呈现差异的特性,在吸附剂的选择吸附条件下,加压吸附原料气中的杂质组分,弱吸附组分H2等通过床层由吸附器顶部排出,从而使氢气与杂质分离。减压时被吸附的杂质组分脱附,同时吸附剂获得再生。 吸附器内的吸附剂对杂质的吸附是定量的,当吸附剂对杂质的吸附达到一定量后,杂质从吸附剂上能有效的解吸,使吸附剂能重复使用时,吸附分离工艺才有实用意义。故每个吸附器在实际过程中必须经过吸附和再生阶段。对每个吸附器而言,制取净化气的过程是间歇的,必须采用多个吸附器循环操作,才能连续制取氢气。本装置采用四塔流程,简称4-1-2/P工艺,即采用四个吸附器,单塔进料,二次均压,冲洗解吸循环操作工艺,由程序控制器控制其程控阀门的动作进行切换,整个操作过程都是在环境温度下进行。 二.工艺流程简述 来自界外的原料气温度≤40℃。压力5.0Mpa,经调节阀(PCV-201)减压至1.6Mpa后进入原料气缓冲罐(V201),压力稳定后进入与四个吸附器(T0201A~D)及一组程控阀组成的变压吸附系统。 变压吸附系统采用四塔操作,经过吸附、二次均压降、顺放、逆放、冲洗、二次均压升、终充等工艺流程。原料气自上而下通过其中正处于吸附状态的吸附器,由其内部的吸附剂进行选择性的吸附,原料气中大部分H2组分在经过吸附气后未被吸附,在吸附压力下从吸附器顶端流出,得到合格的产品气,经调节阀(PCV-202)调节后进入氢气缓冲罐(V0202),缓冲稳压后经转子

photoshop教程下载合集整理(共40g)

Photoshop 教程下载合集整理(共40G)Photoshop 教程下载合集整理(共40G) 1、Photoshop CS3中文版完全自学教程(PDF)迅雷下载:thunder://QUFodHRwOi8vd3d3LnluaXNvLmNuL2Rvd25s b2FkLmFzcD9pZD0zNjgmZHA9MSZmaWQ9MVpa/ 2、Photoshop CS中文版教程与实训(PDF)迅雷下载:thunder://QUFodHRwOi8vd3d3LnluaXNvLmNuL2Rvd25s b2FkLmFzcD9pZD0zNzQmZHA9MSZmaWQ9MVpa/ 3、选择的艺术——Photoshop CS图像处理深度剖析(PDF)迅雷下载: thunder://QUFodHRwOi8vd3d3LnluaXNvLmNuL2Rvd25s b2FkLmFzcD9pZD0zNzUmZHA9MSZmaWQ9MVpa/4、photoshop 修色圣典(photoshop lab color)[PDF]迅雷下载:thunder://QUFodHRwOi8vd3d3LnluaXNvLmNuL2Rvd25s b2FkLmFzcD9pZD0zODEmZHA9MSZmaWQ9MVpa/5、Photoshop照片精修饰技巧Gnomon Photographic Retouching in Adobe Photoshop[ISO]迅雷下载:thunder://QUFodHRwOi8vd3d3LnluaXNvLmNuL2Rvd25s b2FkLmFzcD9pZD0zODImZHA9MSZmaWQ9MVpa/6、Photoshop CS图像艺术处理炫招(Adobe Photoshop CS

变压吸附_PSA_空气分离工艺技术进展

变压吸附(PSA )空气分离工艺技术进展 韩跃斌,王一平,边守军,郭翠梨,张金利 (天津大学化工学院 300072) 摘要:论述了PSA 法空分的工艺技术,为提供产品气纯度和回收率而对工艺流程作出的改进,并提出了PSA 法空分工艺流程下一步的研究方向。 关键词:PSA ;空分;工艺流程 中图分类号:TQ02811 文献标识码:A 文章编号:100129219(1999)06236207 收稿日期:1999201213 0 前言 O 2和N 2是化学工业中重要的原料,在冶 金、电子、环保以及医疗等领域都有广泛的用途。O 2和N 2都由空气分离得到,以前主要采用低温精馏法(即深冷法)制取,变压吸附(PSA )分离法出现后,开始应用于空分领域,并且技术日益成熟,首先在中小规模空气分离领域,尤其是供应富氧或富氮时,PSA 法空分工艺建立了自己的优势。与深冷法相比,PSA 法的优点在于,常温操作,启动时间短,投资少,自动化程度高,占地面积少,产品纯度调节方便,工艺设备简单等。目前,新发展的膜分离法为世人所瞩目,有设备紧凑、简单、处理量大和投资费用较低等优点,但也存在薄膜易于损坏、对原料气净化要求高、操作压力大、维修费用高、可靠性差等弱点,制膜技术有待不断改进,与之相比,PSA 法空分已经比较成熟。 一段时间以来,在保持PSA 法经济性的前提下,人们把提高产品气的纯度和回收率作为目标,深入研究了PSA 法空分流程的各个步骤和影响纯度及回收率的因素,改进了操作时序和管路流向,开发了一些新工艺,使PSA 法生产的O 2纯度可达到9915%,N 2的纯度更高达9919%甚至99199%以上,回收率也可达到60%。本文主要概括了人们为了提高产品纯度 和回收率而对传统PSA 工艺所作的改进,以及 另外一些有创新的工艺,并总结了影响产品气纯度和回收率的一些因素。 1 真空变压吸附(VSA ) PSA 法空分操作压力是根据装置规模、产 品纯度和用途,分别使用由大气压至014×105Pa 的吸附压力,和由真空至大气压的解吸压力。一般来讲,若提高吸附压力,则吸附剂的吸附容量会增加,因此可以减少吸附剂用量,但是由于解吸排出的废气量增加,致使收率降低。可采用真空再生法将吸附压力降低至接近大气压,抽真空解吸,这种方法简称为VSA ,已经成为变压吸附的主流,早在1993年前后,日本已经有大约200台大、中型VSA 流程装置(解吸压力变动范围为(01013~0105)×105Pa 表压)在运行[1]。VSA 提高产品气纯度和收率的效果很明显。日本专利报道[2],同样以CMS 作吸附剂制氮,常压再生法N 2纯度为9910%,而真空再生时N 2纯度可达到9919%。这是因为,真空再生使得吸附相解吸更彻底。如图1[3]所示是PSA 制氮分别用真空解吸和大气压解吸时氮收率的比较。与高压吸附的PSA 流程相比,VSA 另一个优点是能耗降低。高压吸附流程能耗主要在原料气的压缩能耗,而采用真空解吸时,抽真空的负载仅是吸附相组分,只是原料气的一部分,而且抽真空过程中床的真

Photoshop教学教案

PhotoShop课程教案 主讲:张波 班级:建筑、环艺、广告等艺术设计专业 学时:80课时 课程目的:了解Photoshop平面设计的基本知识,培养动手能力 课程内容:第一章颜色基础 第二章选区的使用 第三章图层的使用 第四章绘图工具使用 第五章通道与蒙版技术 第六章颜色的混合模式和色彩校正 第七章滤镜的使用 第八章历史记录和批处理 课程重点:图层的使用及组合 各种滤镜的操作 课程难点:通道技术 授课地点:机房与多机媒体教室 教学方法:讲授与实践结合 第一章颜色基础 学时:2课时 课程目的:了解各种颜色模式 授课地点:房与多机媒体教室 教学方法:讲授与实践结合 本章重点:图像格式 由于颜色受观察者的视觉生理、视觉心理以及视觉环境等因素的影响,因而需构建一定的颜色模型来对颜色进行度量。以度量天气气候高低的单位(摄氏和华氏)为例来说明颜色的不同模型的含义。 目前有HSB、RGB、CMYK、L*a*b和灰度等几种颜色模型。 HSB模型 色相(Hue):由物体反射或透射的光的波长,表示在标准色相中的位置,用0°~360 °表示。 饱和度(Saturation):颜色的纯度,表示色相中灰色所占的比例。用0%(灰色)~100%(完全饱和)表示。 亮度(Bright)是指颜色的相对明暗度,用0%(黑)~100%(白)表示。 补色:在色相环中互为180 °方向的颜色称为互补色。如0°的红色与180°的青色互为补色, 黑色的补色为仍为黑色,白色的补色仍为白色。 反色(反相):彩色情况下,反色等于补色,即在色相环中互为180 °方向的颜色也为互反色,但与补色有一点不同,黑色与白色互为反色。

变压吸附(PSA)制氮原理及工艺基本知识

变压吸附(PSA)制氮技术原理及工艺基本知识 一、基础知识 1 氮气知识 1.1 氮气基本知识 氮气作为空气中含量最丰富的气休,取之不竭,用之不尽。氮气为双原子气体,组成氮分子的两个原子以共价三键相联系,结合得相当牢固,致使氮分子具有特殊的稳定性,在巳知的双原子气体中,氮气居榜首。氮的离解能(氮分子分解为原子时需要吸收的能量)为941.69kJ?moL-1。氮的化学性质不活泼,在一般状态下表现为很大的惰性。在高温下,氮能与某些金属或非金属化合生成氮化物,并能直接与氧和氢化合。在常温、常压下,氮是无色、无味、无毒、不燃、不爆的气体,使用上很安全。 在常压下,把氮气冷至-196℃将变成无色、透明、易于流动的液氮。液氮将凝结成雪花状的固体物质。 氮气是窒息性气体,能致生命体于死亡。 氮气(N 2)在空气中的含量为78.084%(空气中各种气休的容积组分为:N 2 :78.084%、 O 2:20.9476%、氪气:0.9364%、CO 2 :0.0314%、其它还有H 2 、CH 4 、N 2 0、0 3 、S0 2 、N0 2 等, 但含量极少),分子量为28,沸点:-195.8℃, 冷凝点:-210℃。 1.2 氮气的用途 氮气的惰性和液氮的低温被广之用作保护气体和冷源。以氮气为基本成份的氮基气氛热处理,是为了节能和充分利用自然资源的一种新工艺新技术,它可节省有机原料消耗。氮还有“灵丹妙药”之称而受人青睐,它和人的日常生活密切相关。例如,氮气用于粮食防蛀贮藏时,粮库内充入氮气,蛀虫在36h内可全部因缺氧窒息而死,杀灭1万斤粮食害虫,约只需几角钱。若用磷化锌等剧海药品黑杀,每万斤粮食需耗药费100多元,而且污染粮食,影响人民健康。又如充氮贮存的苹果,8个月后仍香脆爽口,每斤苹果的保鲜费仅需几分钱。茶叶充氮包裝,1年后茶质新鲜,茶汤清澈明亮,滋味淳香。 2 压力知识 变压吸附 (PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂碳分子筛最佳吸附压力为0.75~0.9MPa, 整个制氮系统中气体均是带压的,具有冲

(完整版)《PHOTOSHOP》课程教学总结

《PHOTOSHOP》课程教学总结 南京交通职业技术学院易星 摘要:Photoshop是一门操作、实用性强的图像处理软件,它不仅对学生的专业技能水平要求很高,同时对学生的想象力、创造力,以及相应的美术基础也有一定的要求。我院PHOTOSHOP教学组结合PS课程特色及职业院校学生的特点,调整教学内容与教学方法,调动了学生的学习积极性、主动性,激发了学生的学习兴趣,取得了良好的学习效果。 关键词:PHOTOSHOP,职业教育,教学方法 PHOTOSHOP课程在我院作为计算机基础技能课程对图形图象专 业的学生全面展开,如何使PS教学与各专业办学特点相融合,使教学能够取得更好教学效果,我在教学上进行一些改革与探索,取得了一些心得体会。 1.上好每一节课,激发学生的学习热情 我认为上好Photoshop课──图片欣赏课十分重要,它能够使学生对这门课有个整体的了解,同时也能增强学生的学习兴趣,开阔学生的视野,提高学生的欣赏能力,增强学生学习的信心,为学生进行下一步的学习奠定坚实的基础。在上课时我为学生展示一些多种图像模式表现的色彩效果,让他们了解色彩在图像处理中的重要作用。滤镜是Photoshop的万花筒,可以在顷刻之间完成许多令人惊叹的效果。为了让学生感受到强大的滤镜功能,我把原图像和用滤镜处理的效果图片展示给学生,让他们进行比较,使他们初步体会滤镜这种图像特效工具的使用效果。为了增强学生的学习信心,我还向他们展示了别的学校学生的优秀作品,从图片的整体构思、创意、色彩、整体效果等审美角度给学生进行讲解,在拓宽了学生视野的同时也给学生带来一种亲切感,使他们相信自己完成

Photoshop的学习后也能进行一些复杂的图像设计处理。 2.学以致用,善于从生活中挖掘“例子” 围绕如何用Photoshop更好的处理图片这一主题设计了广告设计与制作学习网站,让学生自主学习图像处理这一教学单元。还安排了如何处理数码图片的教学,比如照片中的红眼现象,如何处理曝光不足的数码照片,调整偏色照片和制作自已或他人的艺术照这些教学内容。从实践过程来看,学生们觉得这些知识能帮助他们解决生活中的实际问题,因而表现出极大的学习兴趣和学习热情。在学习网站、书本的帮助下,大多数的学生都能够独立完成学习任务,体验到自主学习带来的成就感。 3.根据教学需要调整教学内容,让学生掌握的知识更系统 根据我学习Photoshop几年的经验,我将Photoshop的教学分为四个教学单元:基础知识,图像色彩的处理,滤镜的使用,综合实践。其中综合实践课又贯穿于每一教学单元中。“任务驱动的教学模式”以其能有效的调动起学生的积极性在信息技术课的教学中已得到了充分的肯定。作为教师的我们应该根据教学内容按排好这些任务的大小,顺序,使得任务之间是相互关联,循序渐进“螺旋式”上升过程,便于学生对所学知识有一个系统的理解、认识。 总之,在这一学期的教学过程中,我尽力地做好每项工作。其中学到的东西固然不少,但不足之处也很多。在以后的教学中,我将不断总结经验,发扬优点,改正缺点,不断探索瓣的教学方法和

PS教程

PS教程 一、魔术棒法——最直观的方法 适用范围:图像和背景色色差明显,背景色单一,图像边界清晰。 方法意图:通过删除背景色来获取图像。 方法缺陷:对散乱的毛发没有用。 使用方法:1、点击“魔术棒”工具; 2、在“魔术棒”工具条中,在“连续”项前打勾; 3、“容差”值填入“20”。(值可以看之后的效果好坏进行调节); 4、用魔术棒点背景色,会出现虚框围住背景色; 5、如果对虚框的范围不满意,可以先按CTRL+D取消虚框,再对上一步的“容差”值进行调节; 6、如果对虚框范围满意,按键盘上的DELE键,删除背景色,就得到了单一的图像。 二、色彩范围法——快速 适用范围:图像和背景色色差明显,背景色单一,图像中无背景色。 方法意图:通过背景色来抠图。 方法缺陷:对图像中带有背景色的不适用。 使用方法:1、颜色吸管拾取背景色; 2、点击菜单中“选择”功能里的“色彩范围”功能; 3、在“反相”项前打勾,确定后就选中图像了。 三、 磁性索套法——方便、精确、快速和我常用的方法 适用范围:图像边界清晰。

方法意图:磁性索套会自动识别图像边界,并自动黏附在图像边界上。 方法缺陷:边界模糊处需仔细放置边界点。 使用方法:1、右击“索套”工具,选中“磁性索套”工具; 2、用“磁性索套”工具,沿着图像边界放置边界点,两点之间会自动产生一条线,并黏附在图像边界上。 3、边界模糊处需仔细放置边界点。 4、索套闭合后,抠图就完成了。 四、(索套)羽化法——粗加工 适用范围:粗略的抠图。 方法意图:粗略抠图,不求精确。 方法缺陷:图像边界不精确。 使用方法:1、点击“索套”工具; 2、用索套粗略地围住图像,边框各处要与图像边界有差不多的距离;这点能保证之后羽化范围的一致性,提高抠图的精确性; 3、右击鼠标,选择“羽化”功能; 4、调节羽化值,一般填入“20”,确定后就粗略选中图像了。羽化值的大小,要根据前一步边框与图像的间距大小调节。 五、(索套)钢笔工具法——最精确最花工夫的方法 适用范围:图像边界复杂,不连续,加工精度度高。 方法意图:完全*手工逐一放置边界点来抠图。 方法缺陷:慢。抠一个图连手脚指都抠的话,要15分钟左右。 使用方法: 钢笔工具法步骤如下: 1、索套建立粗略路径

变压吸附(PSA)法制氢操作规程

变压吸附(PSA)法 变换气制氢 操作手册(工艺部分) XXXX化工 2009年9月

第一章前言 第二章工艺说明 第一节装置概述 第二节一段系统工作原理和过程实施 第三节二段系统工作过程 第四节工艺流程 第三章变压吸附装置的开停车 第一节系统的置换 第二节系统仪器仪表及自控系统开车前的准备工作第三节系统试车 第四节系统运行调节 第五节系统停车 第六节系统停车后的再启动 第四章安全技术 第一节概述 第二节本装置有害物质对人体的危害及预防措施 第三节装置的安全设施 第四节氢气系统运行安全要点 第五节消防 第六节安全生产基本注意事项 第五章安全规程

第一章前言 本装置是采用两段法变压吸附(Pressure Swing Adsorption简称PSA)工艺分离原料气,获得合格的二氧化碳及产品氢气。其中一段将原料气中二氧化碳分离提浓(≥98.5%)后送往下工段,脱除部分二氧化碳后的中间气再经二段完全脱除CO2及其他杂质气体,使产品氢气中H2含量≥99.9%。装置设计参数如下: 原料气组成(V): H2 N2 CO2 CO CH4 41~43% 0.5~2% 55~60% 0.5~2% ~1.0% 处理能力:4500Nm3/h 中间气CO2含量:10%(V) 产品氢气中H2含量:≥99.9% 产品气CO2浓度:≥98.5% 吸附压力: 一段0.72~0.977 MPa(G) 二段0.7~0.957 MPa(G) 吸附温度:≤40 ℃ 本装置为吹扫解吸PSA脱碳工艺,就本工艺特点而言,氢气中杂质含量越低,氢气等气体回收率就越低。所以操作中不应单纯追求氢气的纯度,而应视实际需要,控制适当纯度,以获较高的经济效益。 在启动和运转这套装置前,要求操作人员透彻地阅读这份操作手册,因为不适当的操作会导致运行性能低劣和吸附剂损坏。 本手册中所涉及压力均为表压,组成浓度均为体积百分数,以下不再专门标注。

PSA变压吸附

一、变压吸附基础知识 第1题什么是吸附?分为几种类型? 答:咐附是分离混合物的一种方式,它是利用多孔性固体吸附剂处理流体混合物,利用混合物中各组分在吸附剂中的被吸附力的不同,使其中一种或数种物质吸附于固体表面上以达到分离的目的。 根据吸附表面和被吸附物质之间的作用力的不同,可分为物理吸附和化学吸附两种类型。 第2题吸附有哪些步骤 答:从动力学的角度看,吸附可分为以下几个步骤: (1)外扩散;(2)内扩散;(3)吸附;(4)脱附;(5)反内扩散;(6)反外扩散。 第3题什么是变压吸附? 答:变压吸附(Pressure Swing Adsorption)简称PSA,是一种对气体混合物进行提纯的过程,以物理吸附原理为基础,利用两个压力上吸附剂对不同物质吸附能力的不同将杂质和提纯物质分离。 变压吸附工艺是在两种压力状态之间工作的,杂质的吸附在高压下进行,在低压下解吸使吸附剂再生,而产品在两种压力状态下均只有少量吸附或不吸附,这种不断循环的过程。 第4题变压吸附气体分离技术有哪些优点? 答:(1)产品纯度高:特别是对氢和氦等组分几乎能够把所有杂质除去;( 2)工艺简单:原料中几种杂质组分可以一步除去不需预先处理;(3)操作简单,能耗低:一般都在常温和不高的压力下操作,设备简单,吸附床再生不需外加热源;(4)吸附剂寿命长;吸附剂使用期限为半永久性,?每年只需少量补充,正常操作下吸附剂一般使用十年以上。 第5题常用的吸附剂有哪几种? 答:常用的吸附剂主要有以下几种:硅胶、活性氧化铝、活性碳、沸石分子筛、碳分子筛等。 第6题什么叫做吸附剂的孔容? 答:吸附剂中微孔的容积称为孔容,通常以单位重量吸附剂中微孔的容积来表示,单位是cm 3 /g。 第7题什么是吸附剂的比表面积? 答:比表面积即单位重量吸附剂所具有的面积,单位为m 2 /g,吸附剂的表面积主要是微孔孔壁的表面积。 第8题在吸附过程中,吸附床分为哪几个区段? 答:吸附床可分为三个区段:(1)为吸附饱和区,?在此区吸附剂不再只吸附,达到动态平衡状态;(2)为吸附传质区,传质区愈短,表示传 ?质阻力愈小(即传质系数大),床层中吸附剂的利用率越高;(3)为吸附床的尚未吸附区。 第9题什么叫吸附前沿(或传质前沿)? 答:在实际的吸附床,由于吸附剂传质阻力的存在,吸附质流体以一定的速率进入吸附

ps教学步骤

1.1步骤 1.新建宽和高均为500像素的文件,白色背景,RGB模式 2.设置前景色为红色,背景色为白色,用“椭圆选框工具”,建立椭圆选区,用前景色填充 3.按Alt键,用“多边形套索工具”在椭圆上选取扇形选区约270度,设置前景色为绿色,填充选区为绿色 4.用“多边形套索工具”以同样的方法再选取一块扇形选区约40°,填充选区为蓝色 5.重新选择两个稍小些的扇形区域,稍移开一些位置形成切割效果 6.按Shift键,用“魔棒工具”连续选择3个色块,形成选区 7.按ctrl+Alt组合键,同时连续按“向上方向键”,3个色块同时向上复制累积形成正圆形饼状立体示意图 1.2步骤 1.打开素材图1-2-1与图1-2-2 2.在图1-2-1中,执行“选择”〉“全选”命令,全部选择图1-2-1中的风景,执行“编辑”〉“拷贝”命令 3.用魔棒工具配合其他选择工具,选取窗格空白处 4.执行“编辑”〉“粘贴到”命令,将“风景”内容填入到“室内”窗格的空白处,产生从“室内”向外观看到“风景”的效果,如果对粘贴的位置不满意,可使用“移动工具”,拖动“风景”原

内容,调整至合适位置 5.在“图层”调板中,观察原选区的图层调板,原选区的内容在目标选区被蒙版覆盖,所览图出现在目标选区的图层蒙版所览图旁边。图层和图层蒙版之间是分离的——也就是说,可以单独移动图层或图层蒙版。 1.3步骤 1.新建一个文件,宽和高为300×200像素 2.选择“横排文字工具”,输入数字“2”,,字体为“幼圆”,大小为130像素,颜色为蓝色(#340fea) 3.使用文字工具继续分别输入3个“0”,颜色分别为青色(#74ebef)、绿色(#6ded02)和黄色(#ecec00),每个数字形成一个新图层 4.调整各个图层之间的关系,使相邻各个数字相互重叠,并处于同一水平线上,将每个文字图层转化为普通图层 5.执行“图层”〉“图层样式”〉“斜面浮雕”命令,打开“斜面浮雕”对话框,设置为大小为5像素,软化为0像素,角度30度不透明度为75,单击确定按钮。分别给每个数字所在的图层添加斜面和浮雕效果。 6.按ctrl键,在图层面板上,单击图层“蓝2”缩略图,载入数字“2”选区 7.选择“椭圆选框工具”按Alt键,在“2”与“0”中部的交叠处拖动鼠标,减去该处选区

PSA变压吸附制氮原理

PSA(变压吸附)-制氮简介一、流程示意图 汽化器 二、氮气系统方案描述

到 ISO8573.1质量等级1级。这样洁净干燥的压缩空气便可进入后级制氮部分经变压吸附产生纯度≥99%的氮气。 3. 变压吸附制氮系统:变压吸附(Pressure Swing Adsorption ,简称PSA )是一种先进的气体分离技术,它在当今世界的现场供气方面具有不可替代的地位。 a. PSA 技术具有以下优点: - 产品纯度可以随流量的变化进行调节; - 在低压和常压下工作,安全节能; - 设备简单,维护简便 - 微机控制,全自动无人操作。 b. 吸附剂:吸附剂是PSA 制氮设备的核心部分。一般来说,PSA 制氮设备选择的是碳分子筛,它吸附空气中的氧气、二氧化碳、水分等,而氮气不能被吸附。 c. 变压吸附的原理:在吸附平衡情况下,任何一种吸附剂在吸附同一气体时,气体压力越高,则吸附剂的吸附量越大。反之,压力越低,则吸附量越小。如下图所示: 如上所述,在空气压力升高时,碳分子筛将大量吸附氧气、二氧化碳和水分。当压力降到常压时,碳分子筛对氧气、二氧化碳和水分的吸附量非常小。变压吸附设备主要由A 、B 二只装有碳分子筛的吸附塔和控制系统组成。当压缩空气(压力一般为0.8MPa )从下至上通过A 塔时,氧气、二氧化碳和水分被碳分子筛所吸附,而氮气则被通过并从塔顶流出。当A 塔内分子筛吸附饱和时便切换到B 塔进行上述吸附过程并同时对A 塔分子筛进行再生。所谓再生,即将吸附塔内气体排至大气从而使压力迅速降低至常压,使分子筛吸附的氧气、二氧化吸附量

碳和水分从分子筛内释放出来的过程。

浅谈PHOTOSHOP课程的教学

浅谈PHOTOSHOP课程的教学 山东五莲县职业中专李曰利 摘要:本文以教学设计的理论为依据,针对Photoshop这门课实践性和创新性强的特点,探讨如何通过对教学内容的设计、不同教学方法的使用以及相应教学评价的实施来激发学生对这门课程的学习兴趣,以帮助学生能更好更快地学好Photoshop,从而培养学生的创新精神和创新能力。 关键词:教学内容教学方法教学评价教学设计 Photoshop是一个迄今为止使用范围最广泛的图像处理软件,该软件的图像处理功能异常强大,编辑手段和技巧层出不穷,要想让学生熟悉PhotoShop的各种功能,不可能一蹴而就,要从教学内容的设计、教学方法的选用、教学评价的实施等多个方面来改进Photoshop课程的教学设计。我作为一名职业学校的计算机教师,从事Photoshop教学多年,积累了一点经验,下面我就来谈谈如何改进Photoshop课程的教学设计,从而使学生能尽快地掌握该软件的使用,培养学生自主学习能力和创新能力。 一、教学内容的设计 1.上好每一节课,时刻记住激发学生的学习兴趣 学生是学习的主体,教师的任务不单纯是传授知识,更主要的是教育学生掌握学习方法,学会学习。因此,教学中教师应把学生的注意力吸引到参与学习的兴趣上来,最大限度地发挥他们学习的主动性与积极性,引导他们对问题的积极思考与探索,从而自行发现原理,掌握新知。 Photoshop的第一堂课,我让学生欣赏一些图像及其效果图,使学生对Photoshop这门课有一个整体的了解,同时也能激发学生学习这门课的兴趣,为了增强学生的学习信心,还向他们展示历届学生的优秀作品,从图片的整体构思、创意、色彩、整体效果等审美角度给学生进行讲解,在拓宽学生视野的同时也增强了学生的信心,使他们相信自己完成Photoshop的学习后也能处理一些复杂的图像,制作一些迷人的效果。 由于Photoshop工具多,功能强大,学生有时会因为一时掌握不了而感到烦燥,这就要我们老师不断改变教学方法,时刻注意调动学生的积极性,教授时不要照本宣科,即不要过度地依赖教材。 2.从学生的实际生活中取得素材,培养学生认真的工作态度 学生上机操作时,往往在图像上乱写乱画,把好端端的图涂抹得非常难看,看着好端端的图片被自己处理得越来越差,学生会对自己失去信心,会对学好Photoshop这门课失去信心,针对这个情况,我就用数码相机给每一个学生拍摄

PSA变压吸附

变压吸附单元 液化空气提出的变压吸附制H2项目是10个由特殊吸附材料填充组成的吸附器进行操作。这些吸附剂可以是氧化铝、活性炭或合成沸石,具有优先选择吸附气相组分中的N2、碳的氧化物和碳氢化合物。通常,杂质的分子量越大或者杂质的极性越大,这些杂质在吸附剂表面的吸附量也越大。吸附剂的选择考虑进料气中所含有杂质的不同,大部分的吸附剂包含多层不同类型的吸附剂,这与进料气中杂质的类型有关。 变压吸附工艺基于吸附的两个物理性质: 1、杂质的分压越大,被吸附的量越多 2、 H2和其它的轻气被吸附的能力非常弱。 因为H2被吸附的能力非常弱,因此H2会穿过吸附床,得到纯的H2产品,而其它的杂质都会被吸附。该吸附过程是在高压下进行的,目的是使对杂质吸收的最大化,当吸附饱和时,可以通过降低压力(变压)进行再生。 变压吸附循环过程的设计有四个相同的过程。通过在不同的吸附器之间循环,可以对H2的混合物进行提纯,连续生产H2,一个做为进料气压力用于生产,其他的进行再生。 吸附器的数量取决于: 1、要处理气的性质 2、要求的处理能力 3、投资和回报的相对重要性 通常,变压吸附单元主要包含以下三个方面: 1、吸附/产品 2、减压再生 3、加压(复压) 在一个生产周期里,每个吸附器先后经历以上三个操作,在任何时候,当有两个吸附器在吸附时,有七个吸附器在平衡、减压或者再生,剩下的一个在加压。 在吸附阶段,停留时间取决于处理气体流量的大小,气体杂质在吸附器中被选择吸附而H2被微弱吸附,因此H2可以通过吸附床,H2的纯度逐渐增加直到变成纯的H2。在吸附阶段之后,吸附器需进行再生。在吸附器中,由于杂质被吸附清除,通过降低吸附器内杂质分压使得吸附器再生。 1、首先通过减压(总压的降低) 2、然后清除(用清除阶段的回收氢气在低压下清洗) 减压是在几个步骤下进行的: 1、高压吸附器均压到其他已再生完的低压吸附器内,达到平衡。

ps教学计划

一、课程性质和任务 Photoshop是计算机专业必修的一门专业课程,该课程在专业建设中占有重要的地位,重点培养学生的实践动手能力和审美水平。该课程从“如何做”入手,再进一步提升到“为什么这样做的”的水准,最终达到由学生自行创意制作的阶段。因此,内容着重基础知识、基本概念和基本操作技能,强调Photoshop软件的使用,同时兼顾计算机图形设计领域的前沿知识和创意设计。 二、课程教学目标 (一)技能目标: (1) 了解和掌握Photoshop基本理论和基本常识; (2) 熟练掌握Photoshop的使用技巧; (3) 熟练使用Photoshop 操作界面和功能; (4) 理解Photoshop中选择区域、通道、路径、图层等相关概念并能正确使用; (5) 掌握图像合成的基本方法与技巧; (6) 理解计算机中颜色的表示方法和图像的颜色模式; (7) 掌握Photoshop软件使用环境下的创意设计; (8) 培养学生的审美水平和创意设计能力; (9) 能独立完成、自主创意一幅作品; (10) 了解Photoshop 其它相关新版本的的应用常识。 (二)能力目标: (1) 熟练地运用Photoshop制作效果图,并能在实际工作中得到应用。

(2) 培养学生搜集资料、阅读资料和利用资料的能力; (3) 培养学生的自学能力。 (三)情感目标: (1) 培养学生的团队协作精神; (2) 培养学生的工作、学习的主动性。 (3) 培养学生具有创新意识和创新精神 (4) 提高学生的艺术修养 三、课程内容和教学要求 课程教学知识点 (一)Photoshop基础知识 学习图形图像处理软件的意义,(Photoshop软件的安装、启动和退出,photoshop中的基本概念,软件界面的介绍) (二)Photoshop选区的选取与编辑(选区工具组,套索工具组,使用魔术棒工具建立选区,使用选择颜色范围建立选区,控制选取范围,载入和保存选取范围) (三)Photoshop图像编辑(图像的尺寸和分辨率,基本编辑命令,旋转、翻转和自由变换,还原和重做,填充和描边) (四)Photoshop图像的工具与绘图(画笔的应用,绘图工具,文字处理,历史面板) (五)Photoshop的图像色彩和色调的调整(颜色的基本概念,图像颜色模式之间的转换,控制基本色调,控制特殊色调,控制图像的色彩) (六)Photoshop图层的应用与编辑(图层简要概述,多种类型的图层,图层的编辑操作,

相关文档
最新文档