离散数学 【全60讲】

离散数学 【全60讲】
离散数学 【全60讲】

江西省南昌市2015-2016学年度第一学期期末试卷

(江西师大附中使用)高三理科数学分析

一、整体解读

试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。 1.回归教材,注重基础

试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。 2.适当设置题目难度与区分度

选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。 3.布局合理,考查全面,着重数学方法和数学思想的考察

在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析

1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →

=,则A BA C →→

?的最小值为( )

A .1

4- B .12-

C .34-

D .1-

【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。解法较多,属于较难题,得分率较低。

【易错点】1.不能正确用OA ,OB

,OC 表示其它向量。

2.找不出OB 与OA 的夹角和OB

与OC 的夹角的倍数关系。

【解题思路】1.把向量用OA ,OB

,OC 表示出来。

2.把求最值问题转化为三角函数的最值求解。

【解析】设单位圆的圆心为O ,由AB AC →

=得,22

()()OB OA OC OA -=- ,因为

1OA OB OC ===

,所以有,OB OA OC OA ?=? 则()()AB AC OB OA OC OA ?=-?-

2OB OC OB OA OA OC OA =?-?-?+

21OB OC OB OA =?-?+

设OB 与OA 的夹角为α,则OB

与OC 的夹角为2α

所以,cos22cos 1AB AC αα?=-+ 211

2(cos )22

α=--

即,AB AC ? 的最小值为1

2

-,故选B 。

【举一反三】

【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知

//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ

== 则AE AF ? 的最小值为.

【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何

运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ? ,体

现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】

2918

【解析】因为1,9DF DC λ= 12

DC AB =

119199918CF DF DC DC DC DC AB λλλλλ

--=-=-== ,

AE AB BE AB BC λ=+=+ ,19191818AF AB BC CF AB BC AB AB BC λλλλ

-+=++=++=+ ,

()

221919191181818AE AF AB BC AB BC AB BC AB BC

λλλλλλλλλ+++?????=+?+=+++?? ? ?????

19199421cos1201818

λλ

λλ++=

?++???

?2117172992181818λλ=

++≥+= 当且仅当2192λλ=即23λ=时AE AF ? 的最小值为

29

18

. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的

交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设8

9

FA FB →

?=

,求BDK ?内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。

【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。

2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。 【解题思路】1.设出点的坐标,列出方程。 2.利用韦达定理,设而不求,简化运算过程。 3.根据圆的性质,巧用点到直线的距离公式求解。

【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =

则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -, 故2

14x my y x =-??

=?整理得2

440y my -+=,故121244

y y m y y +=??=? 则直线BD 的方程为()212221y y y y x x x x +-=--即2

222144y y y x y y ?

?-=- ?-??

令0y =,得1214

y y

x ==,所以()1,0F 在直线BD 上.

(Ⅱ)由(Ⅰ)可知121244

y y m y y +=??=?,所以()()2

12121142x x my my m +=-+-=-,

()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →

=-

故()()()2

1212121211584FA FB x x y y x x x x m →→

?=--+=-++=-,

则2

84

84,93

m m -=

∴=±,故直线l 的方程为3430x y ++=或3430x y -+=

21y y -==

故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,

故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131

,54t t +--------------10分 由

31315

4t t +-=

得1

9t =或9t =(舍去).故圆M 的半径为31253

t r +=

= 所以圆M 的方程为2

21499x y ?

?-+= ??

?

【举一反三】

【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=5

4|PQ|.

(1)求C 的方程;

(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.

【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x.

(2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入

y 2=2px ,得

x 0=8

p

所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8

p

.

由题设得p 2+8p =54×8

p ,解得p =-2(舍去)或p =2,

所以C 的方程为y 2=4x.

(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.

故线段的AB 的中点为D(2m 2+1,2m), |AB|=

m 2+1|y 1-y 2|=4(m 2+1).

又直线l ′的斜率为-m ,

所以l ′的方程为x =-1

m y +2m 2+3.

将上式代入y 2=4x ,

并整理得y 2+4

m y -4(2m 2+3)=0.

设M(x 3,y 3),N(x 4,y 4),

则y 3+y 4=-4

m

,y 3y 4=-4(2m 2+3).

故线段MN 的中点为E ? ????

2m

2+2m 2+3,-2m ,

|MN|=

1+1

m 2|y 3-y 4|=4(m 2+1)2m 2+1

m 2

.

由于线段MN 垂直平分线段AB ,

故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=1

2|MN|,

从而14|AB|2+|DE|2=1

4|MN|2,即 4(m 2+1)2+

? ????2m +2m 2+? ??

??2

m 2+22=

4(m 2+1)2(2m 2+1)

m 4

化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.

三、考卷比较

本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。

即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。题型分值完全一样。选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。

3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。

四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)

离散数学 第11章形式语言与自动机

第11章形式语言与自动机 1.写出字符串011的全部前缀、后缀和子串。 解:前缀:{0,01,011,ε},后缀:{1,11,011,ε},子串:{0,01,011,ε,11,1} 2.以合理的顺序展开下列语言,把它们写成带省略号的列举法表示。 (1){ab }* ,(2){a ,b }* ,(3){a }* {b }* ,(4){a n b 2n |n ≥0}。 解:(1){ε,ab ,abab ,ababab ,…} (2){ε,a ,b ,aa ,ab ,ba ,bb ,aaa ,aab ,aba ,abb ,…} (3){ε,a ,b ,ab ,aa ,bb ,aaa ,aab ,bbb ,abb ,…} (4){ε,abb ,aabbbb ,…} 3.现有文法G [S ]:S →aAb ,A →BcA ,A →B ,B →idt ,B →ε,给出下面几个句子的推导过程。 (1)aidtccb (2)ab (3)aidtcidtcidtb 解:(1) S →aAb →aBcAb →aidtcAb →aidtcBcAb →aidtccAb →aidtccBb →aidtccb (2)S →aAb →aBb →ab (3) S →aAb →aBcAb →aidtcAb →aidtcBcAb →aidtcidtcAb →aidtcidtcBb →aidtcidtcidtb 4.指出G =({S },{a ,b },P ,S )属于哪一型文法,其中P ={S →bSS ,S →a },并用集合的形式写出它产生的语言。 解:该文法属于上下文无关文法。 {以b 开头以aa 结尾且字符a 的个数比字符b 的个数多1的所有符号串} 5.设M =({p ,q ,r },{a ,b },δ,p ,{r })为有限自动机,其中δ如表11-1所示,画出M 的状态转换图,并用格局转换推导式证明字符串abaab ∈L (M )。 表11-1 解:M 的状态转换图如图11-1所示: (p ,abaab )├(q ,baab )├(p ,aab )├(q ,ab )├(r ,b )├(r ,ε) 其中r ∈F ,即(r ,ε)是终止格局 6.设有一个NFA :M =({ p ,q ,r ,S },{0,1},δ,p ,{S }),其中状态转换函数δ如表11-2 所示,试构造与它等价的DFA 。 表11-2 图11-1

应用离散数学-集合与关系

集合与关系《应用离散数学》 第3章 21世纪高等教育计算机规划教材

目录 3.1 集合及其运算 3.2 二元关系及其运算3.3 二元关系的性质与闭包3.4 等价关系与划分 3.5 偏序关系与拓扑排序3.6 函 数 3.7 集合的等势与基数3.8 多元关系及其应用

集合是现代数学中最重要的基本概念之一,数学概念的建立由于使用了集合而变得完善并且统一起来。集合论已成为现代各个数学分支的基础,同时还渗透到各个科学技术领域,成为不可缺少的数学工具和表达语言。对于计算机科学工作者来说,集合论也是必备的基础知识,它在开关理论、形式语言、编译原理等领域中有着广泛的应用。 本章首先介绍集合及其运算,然后介绍二元关系及其关系矩阵和关系图,二元关系的运算、二元关系的性质、二元关系的闭包,等价关系与划分、函数,最后介绍多元关系及其在数据库中的应用等。

3.1 集合及其运算 3.1.1 基本概念 集合是数学中最基本的概念之一,如同几何中的点、线、面等概念一样,是不能用其他概念精确定义的原始概念。集合是什么呢?直观地说,把一些东西汇集到一起组成一个整体就叫做集合,而这些东西就是这个集合的元素或叫成员。 例3.1 (1)一个班级里的全体学生构成一个集合。 (2)平面上的所有点构成一个集合。 (3)方程 的实数解构成一个集合。 (4)自然数的全体(包含0)构成一个集合,用N表示。 (5)整数的全体构成一个集合,用Z表示。 (6)有理数的全体构成一个集合,用Q表示。 (7)实数的全体构成一个集合,用R表示。

(8)复数的全体构成一个集合,用C表示。 (9)正整数集合Z+,正有理数集合Q+,正实数集合R+。(10)非零整数集合Z*,非零有理数集合Q*,非零实数集合R*。(11)所有n 阶(n≥2)实矩阵构成一个集合,用M n(R)表示,即

7离散数学(集合的运算)实验报告

大连民族学院 计算机科学与工程学院实验报告 实验题目:集合的运算 课程名称:离散数学 实验类型:□演示性□验证性□操作性□设计性□综合性专业:网络工程班级:网络111班 学生姓名:张山学号:2011083123 实验日期:2013年12月22日实验地点:I区实验机房 实验学时:8小时实验成绩: 指导教师签字:年月日老师评语:

实验题目:集合的运算 实验原理: 1、实验内容与要求: 实验内容:本实验求两个集合间的运算,给定两个集合A、B,求集合A与集合B之间的交集、并集、差集、对称差集和笛卡尔乘积。 实验要求:对于给定的集合A、B。用C++/C语言设计一个程序(本实验采用C++),该程序能够完成两个集合间的各种运算,可根据需要选择输出某种运算结果,也可一次输出所有运算结果。 2、实验算法: 实验算法分为如下几步: (1)、设计整体框架 该程序采取操作、打印分离(求解和输出分开)的思想。即先设计函数求解各部分运算并将相应结果传入数组(所求集合)中,然后根据需要打印运算结果。 (2)、建立一个集合类(Gather) 类体包括的数组a、b、c、d、e、f、g分别存储集合A、B以及所求各种运算的集合。接口(实现操作的函数)包括构造函数,菜单显示函数,求解操作函数,打印各种运算结果等函数。 (3)、设计类体中的接口 构造函数:对对象进行初始化,建立集合A与集合B。 菜单显示函数:设计提示选项,给使用者操作提示。 操作函数:该函数是程序的主题部分,完成对集合的所有运算的求解过程,并将结果弹入(存入)对应数组(集合)中,用于打印。 具体操作如下:

1*求交集:根据集合中交集的定义,将数组a、b中元素挨个比较,把共同元素选出来,并存入数组c(交集集合)中,即求得集合A、B的交集。 2*求并集:根据集合中并集的定义,先将数组a中元素依次存入数组g(并集集合)中,存储集合A中某元素前,先将其与已存入g中的元素依次比较,若相同则存入下一个元素,否则直接存入g中,直到所有A中元素存储完毕。接着把b中元素依次存入数组g(并集集合)中,存储前将b中每个元素依次与已存入数组g中的集合A的元素比较,若数组g中没有与该元素相同的元素,则将该元素存入g(并集集合)中,否则进行下一次比较,直到所有b中元素比较并存储完毕,即求得A与B 的并集。 3*求差集:根据集合中差集的定义知,差集分为两部分,A对B的差集(数组d)和B对A的差集(e)。设计求解A对B的差集,将集合A中元素依次与B中元素比较,若B中无元素与该元素相同,则将其存入数组d中(同时删除d中相同的元素,操作方法与求并集时删除相同元素类似),否则进行下一轮比较,直到A中所有元素比较完毕,即求得A对B的差集(数组d)。求解B对A的差集方法与求解A对B 的差集类似,这里不再重复。 4*求对称差:根据集合中对称差集的定义,将3*中所求两部分差集求并集并存入数组f中即可。操作过程与求并集相似,这里不再重复。 5*求笛卡尔乘积:根据集合中笛卡尔乘积集的定义,分为A*B和B*A。先设计A*B是我算法,将a中元素循环依次与b中元素配对即可。求B*A与求A*B类似,这里不再重复。 实验步骤: 一、分析实验 阅读实验指导书和离散数学课本,充分理解整个实验的实验内容及要求,以便对实验进行科学的设计。然后对整个实验进行“解剖”,即把整个实验系统地分成若干

北航离散数学第11章习题答案

第11章习题答案 3. 对图11.3的有向图,找出从u 1到u 4的长度为2,3,4的所有通路,并找出顶点u 4上的长 度为2,3,4的所有回路。用M 2,M 3,,M 4 ,来验证这些结果。 解:从u 1到u 4长度为2的通路有1条:(u 1,u 2,u 4) 从u 1到u 4长度为3的通路有2条:(u 1,u 2,u 3,u 4),(u 1,u 4,u 2,u 4) 从u 1到u 4长度为4的通路有3条:(u 1,u 2,u 3,u 2,u 4),(u 1,u 2,u 4,u 2,u 4),(u 1,u 4,u 2, u 3,u 4) 顶点u 4上的长度为2的回路有1条:(u 4,u 2,u 4) 顶点u 4上的长度为3的回路有1条:(u 4,u 2,u 3,u 4) 顶点u 4上的长度为4的回路有2条:(u 4,u 2,u 3,u 2,u 4),(u 4,u 2,u 4,u 2,u 4) M =?? ??????????0010 101011001010 M 2=?? ??????????11 00111010201110 M 3 =????????? ???10 20 212022102120 M 4 =????????????221 323031403230 由M 2 ,M 3 ,,M 4 中的第1行第4列的元素可见,从u 1到u 4长度为2,3,4的通路分别有1 条,2条,3条。由M 2,M 3,,M 4 中的第4行第4列的元素可见,u 4上的长度为2,3,4的回路分别有1条,1条,2条,说明所找的上述通路和回路正确。 5. 设有向图D 具有顶点集合{u 1,u 2,…,u n },M 是D 的邻接矩阵。证明对于i ≠j 和k=1,2,…, n-1,如果M k (k=1,2,…,n-1)中第i 行第j 列上的元素均为0,则u i 和u j 必定属于D 的不同的强分图。 证明:假设u i 和u j 属于D 的同一个强分图,则u i 和u j 互相可达。由定理9.2可知,从一顶点到另一顶点可达,则有基本通路,因此存在u i 到u j 的基本通路。已知有向图D 中有n 个顶点,根据定理9.4:n 个顶点的有向图中,任何基本通路的长度都不超过n-1。因此存在 u i 到u j 的长度不超过n-1的基本通路。然而,根据定理11.1和已知条件:M k (k=1,2,…,n-1)中第i 行第j 列上的元素均为0,说明从u i 到u j 不存在长度小于或等于n-1的通路。这与前面所述存在u i 到u j 的长度不超过n-1的基本通路矛盾,因此u i 和u j 必定属于D 的不同的强分图。 6. 试用图11.4的有向图的邻接矩阵求出可达性矩阵,并利用可达性矩阵求其强分图。 解: M=????????????????0001010000000010100000010 M 2 =??? ? ???? ??? ?????010******* 00010 1000001000

离散数学 第二讲

1.1.3 命题符号化 1.1.2介绍的5种常用的联结词也可称为真值联结词或逻辑联结词。在命题逻辑中,利用这些联结词可将各种各样的复合命题符号化,基本的步骤如下: 9找出各简单命题,将它们符号化; 9使用合适的联结词,将简单命题逐个联结起来,组成复合命题的符号化形式。

例1.12将下列命题符号化: (1)小王是游泳冠军或百米赛跑冠军。 (2)小王现在在宿舍或在图书馆里。 (3)选小王或小李中的一人做班长。 解:根据以上步骤,上述命题可符号化为: (1)p ∨q,其中,p:小王是游泳冠军,q:小王是百米赛跑冠军。 (2)p ∨q,其中,p:小王在宿舍,q:小王在图书馆。这里的“或”是排斥或,但因p与q不能同时发生,所以仍然符号化为p ∨q。 (3)(p ∧?q) ∨(q ∧?p),其中,p:选小王做班长,q:选小李做班长。这里的“或”是排斥或,因p与q可能同时发生,所以须符号化为(p ∧?q) ∨(q ∧?p)。

例1.13将下列命题符号化: (1)如果我上街,我就去书店看看,除非我很累。 (2)小王是电子工程学院的学生,他生于1983年或1984年,他是三好学生。 解:上述命题可符号化为: (1)?r→(p→q),其中,p:我上街,q:我去书店看看,r:我很累。(该命题也可符号化为(p∧?r)→q或p→(?r→q)) (2)p∧(q∨r)∧s,其中,p:小王是电子工程学院的学生,q:他生于1983年,r:他生于1984年,s:他是三好生。

1.1 命题符号化及联结词 5个联结词的优先级顺序为: ?、∧、∨、→、? 例我们写符号串: p ∨q ∧r→q∧?s ∨r 即为如下公式:(p ∨(q ∧r))→((q∧(?s)) ∨r)

离散数学N元集合关系个数计算

Author :ssjs Mail : 看了离散数学中的关系整理了一点关于n 元集合中各种关系的计算,现写下这个方便大家学习交流理解。对文章所致一切后果不负任何责任,请谨慎使用。 如有错误之处请指正。 定义: 1,对称:对于a,b R a b ∈∈∈),b (),a (,A 有如果只要 2,反对称:如果R a b R b a b b ∈∈=∈),(),(a ,A ,a 和时仅当 3,自反:如果对每个元素R ),(A a ∈∈a a 有 4,反自反:如果对于每个R ),(A a ?∈a a 有 5,传递:如果对R ),(,R ),(R ),(,A ,,∈∈∈∈c a c b b a c b a 则且 6,非对称:如果R ),(R ),(?∈a b b a 推出【注】其中是含(a,a)这样的有序对的。 【重要】集合A 的关系是从A 到A 的关系 (也就是说集合A 的关系是A A ?的子集)。 如下结论: N 元集合上的自反关系数为:)1(2 -n n N 元集合上的对称关系数为:2/)1(2+n n N 元集合上的反对称关系数为:2/)1(n 3 2-n n N 元集合上的非对称关系数为:2/)1(3-n n N 元集合上的反自反关系数为:)1(n 2-n N 元集合上的自反和对称关系数为:2/)1(n 2-n N 元集合上的不自反也不反自反关系数为:)1(n n 222 2-?-n 下面是上面结论的计算 1,自反 2A A ,A n n =?=因为也就是说集合A 有n 平方个有序对,由自反定义可知,对R ),(A a ∈∈?a a 有所以n 个有序对()).....3,2,1i X ,X (n i i =其中一定在所求关系中,否则的话此关系就不是自反的了,那么还有n n -2个有序对,所以由集合子集对应二进制串可得自反关系数为)1(n 222--=n n n 下图有助于理解。 (1,1) (2,2).......(n,n) | (1,2) (1,3).........(n-1,n) N n n -2 个有序对

离散数学第三章集合的基本概念和运算知识点总结

集合论部分 第三章、集合的基本概念和运算 3.1 集合的基本概念集合的定义与表示 集合与元素 集合没有精确的数学定义 理解:一些离散个体组成的全体组成集合的个体称为它的元素或成员集合的表示 列元素法A={ a, b, c, d } 谓词表示法B={ x | P(x) } B 由使得P(x) 为真的x构成常用数集 N, Z, Q, R, C 分别表示自然数、整数、有理数、 实数和复数集合,注意0 是自然数. 元素与集合的关系:隶属关系 属于∈,不属于? 实例 A={ x | x∈R∧x2-1=0 }, A={-1,1} 1∈A, 2?A 注意:对于任何集合A 和元素x (可以是集合), x∈A和x?A 两者成立其一,且仅成立其一.

集合之间的关系 包含(子集)A?B??x (x∈A→x∈B) 不包含A?B??x (x∈A∧x?B) 相等A = B?A?B∧B?A 不相等A≠B 真包含A?B?A?B∧A≠B 不真包含A?B 思考:≠和?的定义 注意∈和?是不同层次的问题 空集?不含任何元素的集合 实例{x | x2+1=0∧x∈R} 就是空集 定理空集是任何集合的子集 ??A??x (x∈?→x∈A) ?T 推论空集是惟一的. 证假设存在?1和?2,则?1??2 且?1??2,因此?1=?2全集E 相对性

在给定问题中,全集包含任何集合,即?A (A?E ) 幂集定义P(A) = { x | x?A } 实例 P(?) = {?}, P({?}) = {?,{?}} P({1,{2,3}})={?,{1},{{2,3}},{1,{2,3}}} 计数 如果|A| = n,则|P(A)| = 2n 3.2 集合的基本运算 集合基本运算的定义??-~⊕ 并A?B = { x | x∈A∨x∈B } 交A?B = { x | x∈A∧x∈B } 相对补A-B = { x | x∈A∧x?B } 对称差A⊕B = (A-B)?(B-A) = (A?B)-(A?B) 绝对补~A = E-A 文氏图(John Venn)

离散数学第10章习题答案

第10章习题答案 1.解 (1)设G 有m 条边,由握手定理得2m =∑∈V v v d )(=2+2+3+3+4=14,所以G 的边数7条。 (2)由于这两个序列中有奇数个是奇数,由握手定理的推论知,它们都不能成为图的度数列。 (3) 由握手定理得∑∈V v v d )(=2m =24,度数为3的结点有6个占去18度,还有6度由其它结点占有, 其余结点的度数可为0、1、2,当均为2时所用结点数最少,所以应由3个结点占有这6度,即图G 中至多有9个结点。 2.证明 设1v 、2v 、…、n v 表示任给的n 个人,以1v 、2v 、…、n v 为结点,当且仅当两人为朋友时其对应的结点之间连一条边,这样得到一个简单图G 。由握手定理知 ∑=n k k v d 1 )(=3n 必为偶数,从而n 必为偶数。 3. 解 由于非负整数列d =(d 1,d 2,…,d n )是可图化的当且仅当∑=n i i d 1 ≡0(mod 2),所以(1)、(2)、 (3)、(5)能构成无向图的度数列。 (1)、(2)、(3)是可简单图化的。其对应的无向简单图如图所示。 (5)是不可简单图化的。若不然,存在无向图G 以为1,3,3,3度数列,不妨设G 中结点为1v 、2v 、 3v 、4v ,且d(1v )=1,d(2v )=d(3v )=d(4v )=3。而1v 只能与2v 、3v 、4v 之一相邻,设1v 与2v 相邻,于 是d(3v )=d(4v )=3不成立,矛盾。 4.证明 因为两图中都有4个3度结点,左图中每个3度结点均与2个2度结点邻接,而右图中每个3度结点均只与1个2度结点邻接,所以这两个无向图是不同构的。 5. 解 具有三个结点的所有非同构的简单有向图共16个,如图所示,其中(8)~(16)为其生成子图。 6. 解 (1)G 的所有子图如图所示。 (1)(3)(5) (6) (9)(10) (13) (14)

离散数学各章要点11

主要内容 集合S和运算构成半群的条件(封闭性、结合律);集合S和运算构成独异点的条件(封闭性、结合律、单位元). 2. 半群与独异点的两条幂运算规则:x n x m=x n+m , (x n)m= x nm 3. 半群S的非空子集A构成子半群的条件(A对于S中运算封闭);独异点S的非空子集A构成子独异点的条件(A对于S中运算封闭, 单位元属于A) 4. 通过笛卡儿积构造直积 5. 同态映射的判别:υ(xy)=υ(x)υ(y) (对于独异点要加上υ(e)=e) 6. 集合G和二元运算构成群的条件(封闭性、结合律、单位元、每个元素有逆元). 7. 特殊群的定义(有限与无限群、Abel群、平凡群)与群的阶. 8. 元素的幂与元素的阶 9. 群的性质:幂运算规则、消去律、群方程的唯一解、有关元素的阶的性质. 10 子群的定义 11 子群的三个判定定理及其应用 12 典型子群:由元素生成的子群,群G的中心C, 若干个子群的交集 13 陪集的定义及实例. 14 陪集及其代表元素之间的关系. 15 陪集的四条性质. 16 有限群G的拉格朗日定理(|G|=|H|[G:H])及两个推论. 17 正规子群的定义及实例. 18 正规子群的两个判别定理以及相应的四种判别方法. 19 商群的定义及其实例. 20 群同态映射的定义与典型同态映射的实例. 21 特殊同态的分类(单同态、满同态、同构、自同态).

22 同态核与同态像 23 同态映射的性质:同态映射保持元素及子群的对应性, 同态核的性质, 同态基本定理. 24 循环群的定义及分类(无限循环群与有限循环群) 25 无限循环群G=只有两个生成元a和a-1;n阶循环群有υ(n)个生成元. 26 无限循环群G=有无数个子群, 对于任何自然数m, 都是G的子群;n阶循环群恰有d个子群, 其中d是n的正因子个数. 27 n元置换的不同表法之间的转换, 置换乘法及求逆. 28 n元对称群及其子群--n元交错群 学习要求 1. 判断给定集合和运算是否构成半群和独异点. 2. 了解半群及独异点中的幂运算规则. 3. 判断半群或独异点的子集是否构成子半群或子独异点. 4. 了解半群及独异点的直积概念. 5. 了解半群或独异点的同态映射的概念. 6. 能判断给定集合和运算是否构成群. 7. 了解有限群、无限群、平凡群、交换群、Abel群. 8. 会求有限群的阶、元素的幂、元素的阶. 9. 能求群方程的解. 10 能使用消去律及群的其他性质证明有关群的简单命题. 11 会证明群的子集是子群 12 了解几个典型子群的定义 13 在群G中会求已知子群H的右(或左)陪集. 14

离散数学 集合与关系 函数 习题 测验

一、已知A、B、C是三个集合,证明(A∪B)-C=(A-C)∪(B-C) 证明:因为 x∈(A∪B)-C?x∈(A∪B)-C ?x∈(A∪B)∧x?C ?(x∈A∨x∈B)∧x?C ?(x∈A∧x?C)∨(x∈B∧x?C) ?x∈(A-C)∨x∈(B-C) ?x∈(A-C)∪(B-C) 所以,(A∪B)-C=(A-C)∪(B-C)。 二、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)和t(R),并作出它们及R的关系图。 解:r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>} R2=R5={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} R3={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<5,4>} R4={<2,2>,<2,4>,<3,4>,<4,4>,<5,1>,<5,5>,<5,4>} t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>, <5,5>} 三、证明等价关系 设R是集合A上的一个具有传递和自反性质的关系,T是A上的关系,使得∈T?∈R且∈R,证明T是一个等价关系。 证明因R自反,任意a∈A,有∈R,由T的定义,有∈T,故T自反。 若∈T,即∈R且∈R,也就是∈R且∈R,从而∈T,故T对称。 若∈T,∈T,即∈R且∈R,∈R且∈R,因R 传递,由∈R和∈R可得∈R,由∈R和∈R可得∈R,由∈R和∈R可得∈T,故T传递。 所以,T是A上的等价关系。 四、函数 设A、B、C、D是集合,f是A到B的双射,g是C到D的双射,令h:A×C→B×D且?∈A×C,h()=。证明h是双射。 证明:1)先证h是满射。 ?∈B×D,则b∈B,d∈D,因为f是A到B的双射,g是C到D的双射,所以存在a∈A,c∈C,使得f(a)=b,f(c)=d,亦即存在∈A×C,使得h()=

离散数学(集合地运算)实验报告材料

民族学院 计算机科学与工程学院实验报告 实验题目:集合的运算 课程名称:离散数学 实验类型:□演示性□验证性□操作性□设计性□综合性专业:网络工程班级:网络111班 学生:山学号:2011083123 实验日期:2013年12月22日实验地点:I区实验机房 实验学时:8小时实验成绩: 指导教师签字:年月日老师评语:

实验题目:集合的运算 实验原理: 1、实验容与要求: 实验容:本实验求两个集合间的运算,给定两个集合A、B,求集合A与集合B 之间的交集、并集、差集、对称差集和笛卡尔乘积。 实验要求:对于给定的集合A、B。用C++/C语言设计一个程序(本实验采用C++),该程序能够完成两个集合间的各种运算,可根据需要选择输出某种运算结果,也可一次输出所有运算结果。 2、实验算法: 实验算法分为如下几步: (1)、设计整体框架 该程序采取操作、打印分离(求解和输出分开)的思想。即先设计函数求解各部分运算并将相应结果传入数组(所求集合)中,然后根据需要打印运算结果。 (2)、建立一个集合类(Gather) 类体包括的数组a、b、c、d、e、f、g分别存储集合A、B以及所求各种运算的集合。接口(实现操作的函数)包括构造函数,菜单显示函数,求解操作函数,打印各种运算结果等函数。 (3)、设计类体中的接口 构造函数:对对象进行初始化,建立集合A与集合B。 菜单显示函数:设计提示选项,给使用者操作提示。 操作函数:该函数是程序的主题部分,完成对集合的所有运算的求解过程,并将结果弹入(存入)对应数组(集合)中,用于打印。 具体操作如下:

1*求交集:根据集合集的定义,将数组a、b中元素挨个比较,把共同元素选出来,并存入数组c(交集集合)中,即求得集合A、B的交集。 2*求并集:根据集合中并集的定义,先将数组a中元素依次存入数组g(并集集合)中,存储集合A中某元素前,先将其与已存入g中的元素依次比较,若相同则存入下一个元素,否则直接存入g中,直到所有A中元素存储完毕。接着把b中元素依次存入数组g(并集集合)中,存储前将b中每个元素依次与已存入数组g中的集合A的元素比较,若数组g中没有与该元素相同的元素,则将该元素存入g(并集集合)中,否则进行下一次比较,直到所有b中元素比较并存储完毕,即求得A与B 的并集。 3*求差集:根据集合中差集的定义知,差集分为两部分,A对B的差集(数组d)和B对A的差集(e)。设计求解A对B的差集,将集合A中元素依次与B中元素比较,若B中无元素与该元素相同,则将其存入数组d中(同时删除d中相同的元素,操作方法与求并集时删除相同元素类似),否则进行下一轮比较,直到A中所有元素比较完毕,即求得A对B的差集(数组d)。求解B对A的差集方法与求解A对B 的差集类似,这里不再重复。 4*求对称差:根据集合中对称差集的定义,将3*中所求两部分差集求并集并存入数组f中即可。操作过程与求并集相似,这里不再重复。 5*求笛卡尔乘积:根据集合中笛卡尔乘积集的定义,分为A*B和B* A。先设计A* B是我算法,将a中元素循环依次与b中元素配对即可。求B* A与求A* B类似,这里不再重复。 实验步骤: 一、分析实验 阅读实验指导书和离散数学课本,充分理解整个实验的实验容及要求,以便对实验进行科学的设计。然后对整个实验进行“解剖”,即把整个实验系统地分成若干部

离散数学第11章答案(刘玉珍 刘永梅)

习题11.1 1. 若n 个顶点的简单无向图G 中至少有2个孤立点,则结论自然成立;若G 中只有一个孤立点,而2n ≥,则G 中至少有3个顶点,其中至少有2个非孤立点,可不考虑孤立点;若G 中无孤立点,则G 中n 个顶点度数均不小于1.现设G 中n 个顶点的度数均不小于1,又G 为简单图,故所有顶点的度数均不大于n-1,即n 个顶点的度数的取值只能是1,2,…,n-1,由鸽舍原理知,结论成立。 2. 设G 有x 个顶点,则92)6(36)deg(122>??-+?≤=?∑∈x x v V v 3. m n k n k n n k n v m k k k V v 2)1()1()()deg(2-+=?+?-+?==∑∈ 4. ∑∈∈?≤=≤∈?V v V v v n v m V v v n })max{deg()deg(2})deg(min{ 故所证不等式成立。 5.(1)非同构的4个顶点的自补图只有一个;非同构的5个顶点的自补 图有2个 (2)G 为自补图?G 与G 的边数相同,设均为m ,又G 与G 的边数之和为n K 的 边数 2)1(-n n ,即2 ) 1(-n n =2m ,亦即)1(-n n =4m ,故n 为4的倍数,即n=4k ,或n-1为4的倍数,即n=4k+1,+∈I k 6.(1)<0,1,1,2,3,3>,<3,3,3,3>均为可图解的,其对应图为 <1,3,3,3>非可图解,否则,设3)deg()deg()deg(,1)deg(4321====v v v v ,由于要构成无向简单图,故,1v ,2v ,3v ,4v 之间必定有边关联,这与1)deg(1=v 矛盾,< 2,3,4,4,5>,<2,2,4>非可图解,以为简单图中所有顶点的度数多为n-1。 <1,2,2,3,4,5>z 中有奇数个,故非可图解。

离散数学第四版课后答案(第8章)

第8 章 习题解答 8.1 图8.6 中,(1)所示的图为,3,1K (2) 所示的图为,3,2K (3)所示的图为,2,2K 它们分别各有不同的同构形式. 8.2 若G 为零图,用一种颜色就够了,若G 是非零图的二部图,用两种颜色就够了. 分析 根据二部图的定义可知,n 阶零图(无边的图)是三部图(含平凡图),对n 阶零图的每个顶点都用同一种颜色染色,因为无边,所以,不会出现相邻顶点染同色,因而一种颜色就够用了. 8.3 完全二部图,,s r K 中的边数rs m =. 分析 设完全二部图s r K ,的顶点集为V, 则 ?==2121,V V V V V ,且,||,||21s V r V ==s r K ,是简单图,且1V 中每个顶点与2V 中所有顶点相邻,而且1V 中任何两个不同顶点关联的 边互不相同,所以,边数rs m =. 8.4 完全二部图s r K ,中匹配数},m in{1s r =β,即1β等于s r ,中的小者.

分析 不妨设,s r ≤且二部图s r K ,中,,||,||21s V r V ==由Hall 定理可知,图中存在1V 到2V 的完备匹配,设M 为一个完备匹配,则 1V 中顶点全为M 饱和点,所以,.1r =β 8.5 能安排多种方案,使每个工人去完成一项他们各自能胜任的任务. 分析 设},,{1丙乙甲=V ,则1V 为工人集合, },,{2c b a V =,则2V 为任务集合.令}|),{(,21y x y x E V V V 能胜任== ,得无向 图>=

离散数学(第一讲)

一、离散数学介绍 离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。 离散数学常常被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。 其中各部分内容在本书中又有如下涉及: 1.集合论部分:集合及其运算(3.1)、二元关系(3.2)与函数(3.5)、自然数及自然数集、集合的基数注:集合这个概念比较了解,在数学上,基数(cardinal number)也叫势(cardinality),指集合论中刻画任意集合所含元素数量多少的一个概念。这是康托尔在1874年~1884年引入最原始的集合论(现称朴素集合论)时, 给出的基数概念。他最先考虑的是集合{1,2,3} 和 {2,3,4},它们并非相同,但有相同的基数。 那何谓两个集合有相同数目的元素? 康托尔的答案,是所谓一一对应,即把两个集合的元素一对一的排起来,若能做到,两个集合的基数自然相同。 这个答案虽然简单,却起到了革命性的作用,因为用相同的方法即可比较任意集合,包括无穷集合的大小。 2.图论部分(第5章):图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配

集、覆盖集、独立集与匹配、带权图及其应用3.代数结构部分(第6、7章):代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4.组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理 组合数学在本书中没有介绍,而关于组合数学的问题却是十分有趣的,可以供大家思考一下。 组合数学中的著名问题 ?计算一些物品在特定条件下分组的方法数目。这些是关于排列、组合和整数分拆的。 ?地图着色问题:对世界地图着色,每一个国家使用一种颜色。如果要求相邻国家的颜色相异,是 否总共只需四种颜色?这是图论的问题。 ?船夫过河问题:船夫要把一匹狼、一只羊和一棵白菜运过河。只要船夫不在场,羊就会吃白菜、 狼就会吃羊。船夫的船每次只能运送一种东西。 怎样把所有东西都运过河?这是线性规划的问 题。 ?中国邮差问题:由中国组合数学家 ?管梅谷教授① ?提出。邮递员要穿过城市的每一条路至少一次,怎样行走走过的路程最短?这不是一个NP完全 问题,存在多项式复杂度算法:先求出度为奇数 的点,用匹配算法算出这些点间的连接方式,然 后再用欧拉路径算法求解。这也是图论的问题。 ?任务分配问题(也称婚配问题):有一些员工要完成一些任务。各个员工完成不同任务所花费的时 间都不同。每个员工只分配一项任务。每项任务 只被分配给一个员工。怎样分配员工与任务以使 所花费的时间最少?这是线性规划的问题。 ?如何构作幻方。

离散数学集合运算C++或C语言实验报告

离散数学实验报告 专业班级:12级计算机本部一班姓名:鲍佳珍 学号:201212201401016 实验成绩: 1.【实验题目】 命题逻辑实验四 2.【实验目的】 掌握用计算机求集合的交、并、差和补运算的方法。 3.【实验内容】 编程实现集合的交、并、差和补运算。 4、【实验要求】 C或C++语言编程实现 5.【算法描述】 (1)用数组A,B,C,E表示集合。假定A={1,3,4,5,6,7,9,10}, B={2,,3,4,7,8,10}, E={1,2,3,4,5,6,7,8,9,10}, 输入数组A,B,E(全集),输入数据时要求检查数据是否重复(集合中的数据要求不重复),要求集合A,B是集合E的子集。 以下每一个运算都要求先将集合C置成空集。 (2)二个集合的交运算:A?B={x|x∈A且x∈B} 把数组A中元素逐一与数组B中的元素进行比较,将相同的元素放在数组C 中,数组C便是集合A和集合B的交。 C语言算法: for(i=0;i

for(j=0;j int main(){

离散数学第一章知识点总结

离散数学第一章知识点总结(仅供参考) 1.判断给定的句子是否为命题的基本步骤:首先应是陈述句;其次要有唯一的真值。 例:(1)我正在说谎。 不是命题。因为无法判定其真假值,若假设它为假即我正在说谎,则意味着它的反为真,即我正在说实话,二者相矛盾;若假定它为真即我正在说实话,则意味着它的反为假, 我正在说谎,二者也相矛盾。这其实是一个语义上的悖论。悖论不是命题 (2)x-y?>2。 不是命题。因为x, y的值不确定,某些x, y使x?y>2为真,某些x, y使x?y>2 为假,即x?y>2的真假随x, y的值的变化而变化。因此x?y>2的真假无法确定,所以x?y >2不是命题。 2.命题可以分为两种类型:原子命题(不能再分解为更简单命题,又可称为简单命题); 复合命题(通过联结词、标点符号将原子命题联结而成的命题) 3.命题常元:一个命题标识符如果表示确定的简单命题,就称为命题常元 命题变元:如果一个命题标识符只表示任意简单命题的位置标志,就称它为命题变元 注:当命题变元P用一个特定的简单命题取代时,P才能确定真值,这时也称对P进行指派 4.联接词:(1)否定联接词:﹁假为真,真为假;还可以用“非”、“不”、“没有”、“无”、 “并不”等多种方式表示否定 (2)合取联接词:∧一个为假就为假还可用“并且”、“同时”、“以及”、“既…… 又……”、“不但……而且……”、“虽然……但是……”等多种方 式表达合取 (3)析取联接词:∨一个为真就为真;一般用或表示 注:联结词∨是可兼或,因为当命题P和Q的真值都为真时, 其值也为真。但自然语言中的“或”既可以是“排斥或?” 也可以是“可兼或?”。 例晚上我们去教室学习或去电影院看电影。(排斥或) 例他可能数学考了100分或英语考了100分。(可兼或) 例刘静今天跑了200米或300米远。(既不表示“可兼或” 也不表示“排斥或”,它只是表示刘静所跑的大概路程, 因此它不是命题联结词,故例是原子命题。) (4)蕴涵联结词: ? 前真后假才为假;还可以用当……则……、因为……所 以……、仅当、只有……才……、除非……才……、除非……、 否则非……表示 (5)等价联接词:? 同真同假才为真;还可以用当且仅当、充分必要表示 5.命题公式:1)单个命题变元是合式公式,并简称为原子命题公式; 2)如果A是合式公式,那么(﹁A)也是合式公式; 3)如果A, B都是合式公式,那么(A∧B ), (A∨B ), (A?B ), (A B )都是 合式 公式; 4)当且仅当有限次地应用1), 2), 3)所得到的包含命题变元、联结词和括号 的字 符串是合式公式。 根据定义可知,P, (﹁P ), (P ? (P∨Q )), ((﹁P∧Q )∧P ), ((P ? Q ) ?R ) 都是命题公式。而 (∨P ), (P ?Q, (P ∨Q ) ? R )都不是命题公式。 6.n元命题公式:一个命题公式中总共包含有n个不同的命题变元

离散数学 第五讲

2.2 一阶逻辑谓词公式及解释 简单命题函数+ 逻辑联结词?谓词表达式 问题:怎样的谓词表达式才能成为谓词公式,并能进行逻辑演算?

定义2.4在形式化中,我们将使用如下7种符号: 1.个体常项:用小写英文字母a ,b ,c ,…表示,当个体域D 给出时,它可以是D 中某个元素。 2.个体变项:用小写英文字母x ,y ,z ,…表示,当个体域D 给出时,D 中任意元素可代入个体变项。 3.函数符号:用小写英文字母f ,g ,…表示,当个体域D 给出时,n 元函数符号f (x 1,…,x n )可以是D n 到D 的任意一个映射。 4.谓词符号:用大写英文字母F ,G ,H ,…表示,当个体域D 给出时,n 元谓词符号F (x 1,…,x n )可以是D n 上的任意一个谓词。 2.2.1 合式公式与翻译

5.量词符号:?,? 6.联结词符号:?,∧,∨,→,? 7.括号和逗号:(、)、, 定义2.5谓词逻辑中的项,被递归定义为: 1.个体常项是项; 2.个体变项是项; 3.若?(x 1, …, x n )是n元函数,t 1 , …, t n 是项,则?(t 1 , …, t n )也是项; 4.所有项都是有限次使用1、2、3、生成的符号串才是项。 2.2.1 合式公式与翻译

2.2.1 合式公式与翻译——说明 1.有了项的定义,函数的概念就可用来表示个体常项和个体变项。如:P(x):x是教授,f(x):x的父亲,a:张三,那么P(f(a))则表示:“张三的父亲是教授” 2.函数的使用给谓词表示带来很大的方便。如:用谓词表示命题:对任意的整数x,x2 –1=(x+1)(x-1)是恒等式。 令:I(x):x是整数,f(x)=x2 –1,g(x)= (x+1)(x-1),E(x,y):x=y,则该命题可表示为:?x(I(x)→E(f(x), g(x)))

离散数学集合运算c语言

离散数学集合运算(第一次作业) C语言写法: #include //求长度的运算 void main() { int i,j,n; float A[]; float B[]; float C[]; \\用于存放A于B的交 float D[]; \\用于存放A与B的并 float E[]; \\用于存放A与B的差 float F[]; \\用于存放A与B的对称差 float G[]; \\用于存放A的幂集 int k; char x; n=strlen(A); for(i=0;i

printf(“\n”); } if(i >=n) { if(G[0]) cout <

相关文档
最新文档