一类不定方程的解集判别171222095217

一类不定方程的解集判别171222095217
一类不定方程的解集判别171222095217

一类不定方程的解集判别171222095217

张祖华

平阴县职业教育中心济南平阴 250400

摘要:本文对一类不定方程的解集作出判别。

关键词:方程不定方程解集

定理1:关于x,y的方程x2+2x+75y-1=0不存在正整数解.

定理2:关于x,y的方程x2+2x+75y-1=0不存在正整数解.

参考文献:

[1]张祖华等.解无约束优化的一种新的xx,数学进展,已录用。

[2]张祖华.一元高次方程根的若干xx(W2017060347599), 数学进展,已录用。

[3]张祖华.第四类超越方程解的可计数性(W2017052145671), 数学进展,已录用。

[4]张祖华.第五类高次不定方程的无穷解(W2017041439231), 数学进展,已录用。

不定方程的解法

基本介绍编辑本段 不定方程是数论的一个分支,它有着悠 久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。 古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969 年,莫德尔较系统地总结了这方面的研究成果。 2 发展历史编辑本段

希腊的丢番图早在公元3 世纪就开始研究不定方程,因此常称不定方程为丢番图方程。Diophantus ,古代希腊人,被誉为代数学的鼻祖,流传下来关于他的生平事迹并不多。今天我们称整系数的不定方程为「Diophantus 方程」,内容主要是探讨其整数解或有理数解。他有三本著作,其中最有名的是《算术》,当中包含了189 个问题及其答案,而许多都是不定方程组(变量的个数大于方程的个数)或不定方程式(两个变数以上)。丢番图只考虑正有理数解,而不定方程通常有无穷多解的。 研究不定方程要解决三个问题:①判断何时有解。②有解时决定解的个数。③求出所有的解。中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5 世纪的《张丘建算经》中的百鸡问题标志中国对不定方程理论有了系统研究。秦九韶的大衍求一术将不定方程与同余理论联系起来。百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何”。设x,y,z 分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。 3 常见类型编辑本段

线性方程组有解的判别定理

非齐次线性方程组同解的讨论 摘要 本文主要讨论两个非齐次线性方程组有相同解的条件,即如何判定这两个非齐次线性方程组有相同的解. 关键词 非齐次线性方程组 同解 陪集 零空间 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题。 下面是一个非齐次线性方程组,我们用矩阵的形式写出 11121121222212n n m m mn m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? 令 A= 111212122212n n m m mn a a a a a a a a a ???????????? ,b= 12m b b b ???????????? 。 即非齐次线性方程组可写成Ax b =。 一 、线性方程组同解的性质 引理 1 如果非齐次线性方程组Ax b =与Bx d =同解,则矩阵[]A b 与[]B d 的秩相等. 证明 设非齐次线性方程组Ax b =的导出组的基础解系为111,,,r ξξξ ,其中1 r 为矩阵[]A b 的秩,再设非齐次线性方程组Bx=d 的导出组的基础解系为 2 12,,,r ηηη ,其中2r 为矩阵[]B d 的秩,如果*η是非齐次线性方程组Ax=b 与Bx=d 特解,由于这两个方程组同解,所以向量组1*11,,,,r ξξξη 与向量组2*12,,,,r ηηηη 等价。从而这两个线性无关的向量组所含的向量个数相等,于是有12,r r =则矩阵[]A b 与[]B d 的秩相等. 引理[1]2 设A 、B 为m n ?矩阵,则齐次线性方程组0Ax =与0Bx =同解的充

六年级奥数考点:不定方程问题

考点:不定方程问题 一、知识要点 当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。如5x-3y=9就是不定方程。这种方程的解是不确定的。如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。如5x-3y=9的解有: x=2.4 x=2.7 x=3.06 x=3.6 y=1 y=1.5 y=2.1 y=3 如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。 解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。 对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。 解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。 二、精讲精练 【例题1】求3x+4y=23的自然数解。 先将原方程变形,y=23-3x 4 。可列表试验求解: 所以方程3x+4y=23的自然数解为 X=1 x=5

Y=5 y=2 练习1 1、(课后)求3x+2y=25的自然数解。 2、求4x+5y=37的自然数解。 3、求5x-3y=16的最小自然数解。 【例题2】求下列方程组的正整数解。 5x+7y+3z=25 3x-y-6z=2 这是一个三元一次不定方程组。解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。 5x+7y+3z=25 ① 3x-y-6z=2 ② 由①×2+②,得13x+13y=52 X+y=4 ③ 把③式变形,得y=4-x。 因为x、y、z都是正整数,所以x只能取1、2、3. 当x=1时,y=3 当x=2时,y=2 当x=3时,y=1 把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。 x=2,y=2时,z也无正整数解。 x=3时,y=1时,z=1.

不定方程的求解方法汇总

不定方程的求解方法汇总 行测数量运算的考查中,不定方程是计算问题的常考题型,难度不大,易求解。但是想要快速正确的求解出结果,还是需要一些技巧和方法的。专家认为,掌握了技巧和方法,经过大量练题一定可以实现有效的提升,不定方程的题目必定成为你的送分题。 一、不定方程的概念 在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。 在这里解释一下独立方程。看个例子大家便可以明白了: 4x+3y=26①,8x+6y=52② 因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。 二、求解不定方程的方法 1、奇偶性 奇数+奇数=偶数奇数×奇数=奇数 偶数+偶数=偶数偶数×偶数=偶数 奇数+偶数=奇数奇数×偶数=偶数 性质:奇偶奇 7x为奇数,x也为奇数。x可能的取值有1、3、5。当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。

2、尾数法 当看到未知数前面的系数为0或者5结尾时,考虑尾数法。任何正整数与5的乘积尾数只有两种可能0或5。 性质:奇偶奇 5x 为奇数,则其尾数必定为5,则4y的尾数为4,y可能为1、6、11,这三种可能。但已知乙部门人数超过10人,则y=11,求得x=3,故答案选择C。 3、整除法 当未知数前面的系数与和或差有除1之外的公因数时,考虑用整除法。 4、特值法 当题目考察不定方程组,且一般情况下,求解(x+y+z)之和时考虑特值法。不定方程组拥有无数组解,而(x+y+z)的结果是唯一的,那么我们便可以随便找一组解代入即可。同时要使计算相对简单,便可以将系数较为复杂的未知数设为特值0,简化运算。

二元一次不定方程的解法总结与例题

探究二元一次不定方程 (Inquires into the dual indefinite equation) 冯晓梁(XiaoLiang Feng)(江西科技师范学院数计学院数一班 330031)【摘要】:二元一次不定方程是最简单的不定方程, 一些复杂的不定方程常常化为二元一次不定方程问题加以解决。我们讨论二元一次方程的整数解。 The dual indefinite equation is the simple the indefinite equation, some complex indefinite equations change into the dual indefinite equation question to solve frequently. We discuss the dual linear equation the integer solution. 【关键字】:二元一次不定方程初等数论整数解 (Dual indefinite equation Primary theory of numbers Integer solution) 二元一次方程的概念:含有两个未知数,并且未知项的次数是1的方程叫做二元一次方程。一个方程是二元一次方程必须同时满足下列条件;①等号两边的代数式是整式; ②具有两个未知数;③未知项的次数是1。 如:2x-3y=7是二元一次方程,而方程4xy-3=0中含有两个未知数,且两个未知数的次数都是1,但是未知项4xy的次数是2,所以,它是二元二次方程,而不是二元一次方程。 定理1.形如(不同时为零)的方程称为二元一次不定方程。 [1] 二元一次方程的解和解二元一次方程:能使一个二元一次方程两边的值相等的未知数的一组值叫做这个方程的一个解,但若对未知数的取值附加某些限制,方程的解可能只有有限个。 通常求一个二元一次方程的解的方法是用一个未知数的代数式表示另一个未知数,如x-2y=3变形为x=3+2y,然后给出一个y的值就能求出x的一个对应值,这样得到的x、y的每对对应值,都是x-2y=3的一个解。 定理2.方程有解的充要是;[2] 若,且为的一个解,则方程的一切解都可以表示成: (t为任意整数)

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

2015安徽公务员考试行测考点大全:数量关系-不定方程问题

2015安徽公务员考试行测考点大全:数量关系-不定方程问题知识框架 数学运算问题一共分为十四个模块,其中一块是计算问题。不定方程问题是计算问题中算式计算里面的一种。 公务员考试中不定方程应用题一般只有三种类型。解答不定方程时,一定要找出题中明显或隐含的限制条件,从而利用数的奇偶性、数的质合性、数的整除特性、尾数法、特殊值法、代入排除法等技巧去解,理清解题思路,掌握解题方法,就能轻松搞定不定方程问题。 核心点拨 1、题型简介 未知数个数多于方程个数的方程(组),叫做不定方程(组)。通常只讨论它的整数解或正整数解。

在各类公务员考试中,最常出现的是二元一次方程,其通用形式为ax+by=c,其中a、b、c为已知整数,x、y为所求自然数。在解不定方程问题时,我们需要利用整数的奇偶性、自然数的质合性、数的整除特性、尾数法、特殊值法、代入排除法等多种数学知识来得到答案。 2、核心知识 形如,,的方程叫做不定方程,其中前两个方程又叫做一次不定方程。这些方程的解是不确定的,我们通常研究: a.不定方程是否有解? b.不定方程有多少个解? c.求不定方程的整数解或正整数解。 (1)二元一次不定方程 对于二元一次不定方程问题,我们有以下两个定理: 定理1: 二元一次不定方程, A.若其中,则原方程无整数解; B.若,则原方程有整数解; C.若,则可以在方程两边同时除以,从而使原方程的一次项系数互质,从而转化为B的情形。 如:方程2x+4y=5没有整数解;2x+3y=5有整数解。 定理2: 若不定方程有整数解,则方程有整数解,此解称为特解。

方程的所有解(即通解)为(k为整数)。 (2)多元一次不定方程(组) 多元一次不定方程(组)可转化为二元一次不定方程求解。 例: ②-①消去x得y+2z=11 ③ ③的通解为,k为整数。 所以x=10-y-z=4-k,当k=0时,x最大,此时y=1,z=5。 (3)其他不定方程 3、核心知识使用详解 解不定方程问题常用的解法: (1)代数恒等变形:如因式分解、配方、换元等; (2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解; (3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解; (4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解; (5)无穷递推法。 (6)特殊值法:已知不定方程(组),在求解含有未知数的等式的值时,在该等式是定值的情况下,可以采用特殊值法,且可以设为特殊值的未知数的个数=未知数的总个数-方程的个数。 夯实基础

第六节不定方程

第六节 不定方程 所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理数、整数或正整数等等)的方程或方程组。不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。在本节我们来看一看不定方程的基础性的题目。 基础知识 1.不定方程问题的常见类型: (1)求不定方程的解; (2)判定不定方程是否有解; (3)判定不定方程的解的个数(有限个还是无限个)。 2.解不定方程问题常用的解法: (1)代数恒等变形:如因式分解、配方、换元等; (2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解; (3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解; (4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解; (5)无穷递推法。 以下给出几个关于特殊方程的求解定理: (一)二元一次不定方程(组) 定义1.形如c by ax =+(,,,,Z c b a ∈b a ,不同时为零)的方程称为二元一次不定方程。 定理1.方程c by ax =+有解的充要是c b a |),(; 定理2.若1),(=b a ,且00,y x 为c by ax =+的一个解,则方程的一切解都可以表示成 ??? ????-=+=t b a a y y t b a b x x ),(),(00t (为任意整数)。 定理3.n 元一次不定方程c x a x a x a n n =+++Λ2211,(N c a a a n ∈,,,,21Λ)有解的充要条件是c a a a n |),,,(21Λ. 方法与技巧: 1.解二元一次不定方程通常先判定方程有无解。若有解,可先求c by ax =+一个特解,从而写出通解。当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减

求不定方程整数解的常用方法

求不定方程整数解的常用方法 摘要:不定方程,是指未知数的个数多于方程的个数,且未知数受到某些限制的方程或方程组.因此,要求一个不定方程的全部的解,是相当困难的,有时甚至是不可能或不现实的.本文利用变量替换、未知数之间的关系、韦达定理、整除性、求根公式、判别式、因式分解等有关理论,求得一类不定方程的正整数解.通过一些具体的例子,给出了常用的不定方程的解法,分别为分离整数法、辗转相除法、不等式估值法、逐渐减小系数法、分离常数项的方法、奇偶性分析法、换元法、构造法、配方法、韦达定理、整除性分析法、利用求根公式、判别式、因式分解法等等. 关键字:不定方程;整数解;整除性

1引言 不定方程是数论的一个分支,有悠久的历史与丰富的内容,与其他数学领域有密切联系,是数论中的重要的、活跃的研究课题之一,我国对不定方程的研究以延续了数千年,“百钱百鸡问题”等一直流传至今,“物不知其数”的解法被称为中国剩余定理,学习不定方程,不仅可以拓宽数学知识面,而且可以培养思维能力,提高数学的解题技能. 中学阶段是学生的思维能力迅猛发展的关键阶段.在此阶段要注重培养学生的思维能力,开发学生智力,因此对于初等数论的一般方法、理论有一定的了解是必不可少的.让学生做题讲究思想、方法与技巧、创造性的解决问题,就要有一定的方法与技巧的积累与总结. 不定方程的重要性在中学中得到了充分的体现,无论在中高考还是在每年世界各地的数学竞赛中,不定方程都占有一席之地,而且它还是培养学生思维能力、观察能力、运算能力、解决问题能力的好材料. 2不定方程的定义 所谓不定方程是指未知数的个数多于方程的个数,且未知数受到某些(如要求是有理数,整数或正整数等等)限制的方程或方程组.不定方程也称丢番图方程,是数论的重要分支学科,也是数学上最活跃的数学领域之一,不定方程的内容十分丰富,与代数数论、几何数论、集合数论都有较为密切的联系. 下面对中学阶段常用的求不定方程整数解的方法做以总结: 3一般常用的求不定方程整数解的方法 (1)分离整数法 此法主要是通过解未知数的系数中绝对值较小的未知数,将其结果中整数部分分离出来,则剩下部分仍为整数,则令其为一个新的整数变量,以此类推,直到能直接观察出特解的不定方程为止,再追根溯源,求出原方程的特解. 例1 求不定方程02 5=-++y x x 的整数解 解 已知方程可化为 2 31232223225++=++++=+++=++=x x x x x x x x y 因为y 是整数,所以2 3+x 也是整数. 由此 5,1,3,1,3,3,1,12---=--=+x x 即 相应的.0,2,0,4=y

线性方程组数值解法

. 计算法实验 题目:

班级:学号::

目录 计算法实验 (1) 1 实验目的 (3) 2 实验步骤 (3) 2.1环境配置: (3) 2.2添加头文件 (3) 2.3主要模块 (3) 3 代码 (3) 3.1主程序部分 (3) 3.2多项式程部分 (3) 3.3核心算法部分 (3) 3.4数据结构部分 (3) 4运行结果 (3) 4.1列主元高斯消去法运行结果 (3) 4.2LU三角分解法运行结果 (3) 4.3雅克比迭代法运行结果 (3) 边界情况调试 (3) 5总结 (3) 输入输出 (3) 列主元高斯消元法 (3) 雅克比迭代法 (3) 6参考资料 (3)

1 实验目的 1.通过编程加深对列主元高斯消去法、LU三角分解法和雅克比迭代法等求解多 项式程法的理解 2.观察上述三种法的计算稳定性和求解精度并比较各种法利弊 2 实验步骤 2.1环境配置: VS2013,C++控制台程序 2.2添加头文件 #include "stdio.h" #include "stdlib.h" #include "stdafx.h" #include 2.3主要模块 程序一共分成三层,最底层是数据结构部分,负责存储数据,第二层是交互部分,即多项式程部分,负责输入输出获得数据,最上层是核心的算法部分,负责处理已获得的数据。具体功能如下: ●数据结构部分 数据结构部分是整个程序的最底层,负责存储部分。因数组作为数据元素插入和删除操作较少,而顺序表空间利用率大且查看便,故此程序选用二维顺序表保存系数。数据结构文件中写的是有关其的所有基本操作以供其他文件调用。 ●多项式程部分

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

初中数学几种不定方程和方程组的解题技巧和方法

初中数学几种不定方程和方程组的解题技巧和方法 凯里市大风洞正钰中学曾祥文 摘要:教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。在初中数学教学中不定方程与方程(组)占很大的比例,是中学生经常出错和不懂的部分。本文主要探讨几种不定方程和方程组的解题技巧和方法。 关键词:初中数学不定方程方程 教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。有效教学是教师在达成教学目标和满足学生发展需要方面都很成功的教学行为,它是教学的社会价值和个体价值的双重体现。数学是人们对客观世界定性把握和定量刻画、逐渐抽象、形成方法和理论,并进行广泛应用的过程。数学教学是教师对学生进行数学思维培养的一种认知过程。 方程(组)中,未知数的个数多于方程的个数时,它的解往往有无数多个,不能唯一确定,因此这类方程常称为不定方程(组),解不定方程没有固定的方法,需具体问题具体分析,经常用到整数的整除、奇数偶数的特性、因数分解、不等式估值、穷举、分离整数、配方等知识与方法,解不定方程的技巧是对方程适当变形,灵活运用相关知识。本文就几类常见的不定方程与方程做如下浅析。 1 非负数的巧用 在初中数学中,经常用的非负数有:①a2 ≥0 ;②|a|≥0;③a≥0若干个非负数的和为0,那么每个非负数均为0, 例1:已经x2 + y2-x+2y+5/4= 0 ,求x 、y的值。 评析:方程左边配方可变为非负数之和 解:由x2 + y2-x+ 2y+5/4= 0 得( x—1/2 ) 2+ ( y +1 ) 2= 0 所以( x—1/2 ) 2≥0,( y + 1 )2≥≥0 一般地,几个非负数之和为0,则每个非负数均为0。所以x=1/2, y=1 2 二元一次方程的整数解

2021年数列中不定方程问题的几种解题策略

数列中不定方程问题的几种解题策 略 欧阳光明(2021.03.07) 王海东 (江苏省丹阳市第五中学,212300) 数列是高中数学的重要内容,又是学习高等数学的基础,在高考中占有极其重要的地位.数列中不定方程的整数解问题逐渐成为一个新的热点,在近年来的高考模拟卷中,这类问题屡见不鲜,本文中的例题也都是近年来大市模考题的改编.本文试图对与数列有关的不定方程的整数解问题的解法作初步的探讨,以期给同学们的学习带来帮助。 题型一:二元不定方程 双变量的不定方程,在高中阶段主要是求出此类不定方程的整数解,方法较灵活,下面介绍3种常用的方法。 方法 1.因式分解法:先将不定方程两边的数分解为质因数的乘积,多项式分解为若干个因式的乘积,再由题意分类讨论求解。 题1(2014·浙江卷)已知等差数列{}n a 的公差d >0.设{}n a 的前 n 项和为n S ,11=a ,3632=?S S . (1)求d 及S n ; (2)求m ,k (m ,k ∈N *)的值,使得65...21=+++++++k m m m m a a a a . 解析(1)略(2)由(1)得2,12n S n a n n =-=(n ∈N *) 所以65)1)(12(=+-+k k m ,由m ,k ∈N *知1112>+≥-+k k m

65151365?=?=,故???=+=-+5 11312k k m 所以???==45k m 点评 本题中将不定方程变形为()()135112?=+?-+k k m ,因为分解方式是唯一的,所以可以得到关于k m ,的二元一次方程组求解。 方法 2.利用整除性质 在二元不定方程中,当其中一个变量很好分离时,可分离变量后利用整除性质解决. 题2.设数列{}n b 的通项公式为2121n n b n t -=-+,问:是否存在正整数t , 使得12m b b b ,,(3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 解析:要使得12,,m b b b 成等差数列,则212m b b b =+ 即:312123121m t t m t -=+++-+ 即:431 m t =+- ∵,m t N *∈,∴t 只能取2,3,5 当2t =时,7m =;当3t =时,5m =;当5t =时,4m =. 点评 本题利用t 表示 m 从而由431 m t =+-得到14-t 是整数,于是1-t 是4的约数,从而估计出可能的所有取值,再逐一检验即可,当然,本题也可以利用m 表示t 来处理. 方法 3.不等式估计法:利用不等式工具确定不定方程中某些字母的范围或等式一边的范围,再分别求解。如转化为()()n g m f =型,利用()n g 的上界或下界来估计()m f 的范围,通过解不等式得出m 的范围,再一一验证即可。 题3:已知n n n b 3=,试问是否存在正整数q p , (其中q p <<1),使 q p b b b ,,1成等比数列?若存在,求出所有满足条件的数组(p ,q );若 不存在,说明理由. 解析:假设存在正整数数组(p ,q ),使成等比数列,则

线性方程组数值解法总结

好久没来论坛,刚刚发现以前的帖子现在那么火很欣慰,谢谢大家支持! 今天趁着不想做其他事情,把线性方程组的数值解法总结下,有不足的地方希望大神指教!数学建模中也会用到线性方程组的解法,你会发现上10个的方程手动解得话把你累个半死,而且不一定有结果,直接用matlab的函数,可以,关键是你不理解用着你安心吗?你怎么知道解得对不对? 我打算开个长久帖子,直到讲完为止!这是第一讲,如有纰漏请多多直接,大家一起交流!线性方程组解法有两大类:直接法和迭代法 直接法是解精确解,这里主要讲一下Gauss消去法,目前求解中小型线性方程组(阶数不超过1000),它是常用的方法,一般用于系数矩阵稠密,而有没有特殊结构的线性方程组。 首先,有三角形方程组的解法引入Gauss消去法,下三角方程组用前代法求解, 这个很简单,就是通过第一个解第二个,然后一直这样直到解出最后一个未知数,代码如下:前代法: function [b]= qiandai_method(L,b) n=size(L,1); %n 矩阵L的行数 for j=1:n-1 %前代法求解结果存放在b中 b(j)=b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j); end b(n)=b(n)/L(n,n); 上三角方程组用回代法,和前面一样就是从下面开始解x,代码: 后代法: function [y]=houdai_method(U,y) n=size(U,1); %n 矩阵L的行数 for j=n:-1:2 %后代法求解结果存放在y中 y(j)=y(j)/U(j,j); y(1:j-1)=y(1:j-1)-y(j)*U(1:j-1,j); end y(1)=y(1)/U(1,1); Gauss消去的前提就是这两个算法: 具体思想是把任何一个线性方程组的系数矩阵A,分解为一个上三角和一个下三角的乘积,即A=LU,其中L为下三角,U为上三角。 那么具体怎么做呢? 有高斯变换,什么是高斯变换?由于时间有限我不可能去输入公式,所以我用最平白的话把它描述出来。 你先想一下怎么把一个矩阵的某一列的从第j个分量后全部变0? 高斯变换就是通过每次一个矩阵Li把A的第i列对角线元素以下的都变为0,最后把这么多Li一次左乘起来就是一个矩阵L’=L(n-1)L(n-2)…L2L1,而L’A=U, 那么L=L’的转置,这样就得到了A得分解。 我们要求Ax=b A=LU

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

线性方程组的数值解法

第三章线性方程组地数值解法 范数 (1> 常用范数 ① 向量 1- 范数: ② 向量 2- 范数: ③ 向量∞- 范数: ④ 向量 p- 范数: 向量1- 范数,向量2- 范数,向量∞- 范数实际上为任意 p- 范数地特例. (2> 矩阵范数 设,则 (1>,A地行范数 (2>,A地列范数 (3>,A地 2- 范数,也称谱范数 (4>, F- 范数 其中指矩阵地最大特征值 (3>谱半径(用于判断迭代法地收敛值> 设为矩阵A地特征值,则

称为A地谱半径 谱半径小于任何半径,若,则 (4>设A为非奇异矩阵,称 为A地条件数 矩阵地条件数与范数选取有关,通常有 显然当A对称时 直接法 Gauss消去法 ①Gauss顺序消去法 对线性方程组Ax=b,设,按顺序消元法,写出增广矩阵(A┆b>第一步,写出,将2~n行中地变为0 第k步,写出,将k+1~n行中地变为0 具体步骤可参照下面地例题 例5:用Gauss消去法解方程组

解: Guass列主元消去法 消去过程与Guass消元法基本相同,不同地是每一步消元时,都要将所选到地绝对值最大元素作为主元. 具体分析参见习题详解1 ②矩阵三角(LU>分解法 基本思想:将Ax=b化为LUx=b,令Ux=y 可得Ly=b,Ux=y,相当于先求出y,再求出x 其中,L,U分别为下三角矩阵和上三角矩阵 若L为单位下三角矩阵,则称为Doolittle分解。若U为单位上三角矩阵,则称为Crout分解. ③矩阵Doolittle分解法

计算公式 具体解题见习题详解2 注意计算顺序,先行再列,用简图表示为 虚线上地元素为对角元,划为行元. ④ 分解法 计算公式

233列不定方程解应用题题库教师版

1、 熟练掌握不定方程的解题技巧 2、 能够根据题意找到等量关系设未知数解方程 3、 学会解不定方程的经典例题 一、知识点说明 历史概述 不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来. 考点说明 在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。 二、运用不定方程解应用题步骤 1、根据题目叙述找到等量关系列出方程 2、根据解不定方程方法解方程 3、找到符合条件的解 模块一、不定方程与数论 【例 1】 把2001拆成两个正整数的和,一个是11的倍数(要尽量小),一个是13的倍数(要尽量大),求 这两个数. 【解析】 这是一道整数分拆的常规题.可设拆成的两个数分别为11x 和13y ,则有:11132001x y +=,要 让x 取最小值,y 取最大值. 可把式子变形为:2001111315312132122153131313x x x x y x -?+-++===-+,可见12213 x +是整数,满足这一条件的x 最小为7,且当7x =时,148y =. 知识精讲 教学目标 2-3-3列不定方程解应用题

线性方程组解的情况及其判别准则

摘要:近年来,线性代数在自然科学和工程技术中的应用日益广泛,而线性方程组求解问题是线性代数的基本研究内容之一,同时它也是贯穿线性代数知识的主线。本文探究了线性方程组一般理论的发展,用向量空间和矩阵原理分析了线性方程组解的情况及其判别准则。介绍了线性方程组理论在解决解析几何问题中的作用,举例说明了线性方程组解的结构理论在判断空间几何图形间位置关系时的便利之处。 关键字:线性方程组;解空间;基础解系;矩阵的秩 Abstract:In recent years, linear algebra in science and engineering application, and wide linear equations solving problems is the basic content of linear algebra, at the same time, it is one of the main knowledge of linear algebra.This article has researched the development of system of linear equations theory,discussed the general theory of linear equations, vector space with the development and matrix theory to analyze the linear equations and the criterion of the situation. Introduces the theory of linear equations in solving the problem of analytic geometry, illustrates the role of linear equations of structure theory in judgment space relation between the geometry of the convenience of position. space geometric figure between time the position relations with theory of the system of linear equation with examples. Key words: linear equations, The solution space, Basic solution, Matrix rank

数列中不定方程问题的几种解题策略

数列中不定方程问题的几种解题策略

数列中不定方程问题的几种解题策略 王海东 (江苏省丹阳市第五中学,212300) 数列是高中数学的重要内容,又是学习高等数学的基础,在高考中占有极其重要的地位.数列中不定方程的整数解问题逐渐成为一个新的热点,在近年来的高考模拟卷中,这类问题屡见不鲜,本文中的例题也都是近年来大市模考题的改编.本文试图对与数列有关的不定方程的整数解问题的解法作初步的探讨,以期给同学们的学习带来帮助。 题型一:二元不定方程 双变量的不定方程,在高中阶段主要是求出此类不定方程的整数解,方法较灵活,下面介绍3种常用的方法。 方法1. 因式分解法:先将不定方程两边的数分解为质因数的乘积,多项式分解为若干个因式的乘积,再由题意分类讨论求解。 题1(2014·浙江卷)已知等差数列{}n a 的公差d >0.设{}n a 的前 n 项和为n S ,11=a ,3632=?S S . (1)求d 及S n ; (2)求m ,k (m ,k ∈N *)的值,使得65...21=+++++++k m m m m a a a a . 解析(1)略 (2)由(1)得2,12n S n a n n =-=(n ∈N *) =+++++++k m m m m a a a a ...21()2 122121-++-+k m m k ) ()1)(12(+-+=k k m 所以65)1)(12(=+-+k k m ,由m ,k ∈N *知1112>+≥-+k k m 65151365?=?=,故???=+=-+5 11312k k m 所以???==45k m 点评 本题中将不定方程变形为()()135112?=+?-+k k m ,因为分解方式

不定方程练习题

十一、不定方程(二) 年级 班 姓名 得分 一、填空题 1.已知△和☆分别表示两个自然数,+☆= . 2.箱子里有乒乓球若干个,其中25%是一级品,五分之几是二级品,其余91个是三级品.那么,箱子里有乒乓球 个. 3.某班同学分成若干小组去值树,若每组植树n 棵,且n 为质数,则剩下树苗20棵;若每组植树9棵,则还缺少2棵树苗.这个班的同学共分成了 组. 4.不定方程23732=++z y x 的自然数解是 . 5.王老师家的电话号码是七位数,将前四位数组成的数与后四位数组成的数相加得9063;将前三位组成的数与后四位组成的数相加得2529.王老师家的电话号码是 . 6.有三个分子相同的最简假分数,化成带分数后为8 7,65,32c b a .已知a ,b ,c 都小于10,a ,b ,c 依次为 , , . 7.全家每个人各喝了一满碗咖啡加牛奶,并且李明喝了全部牛奶(若干碗)的 4 1和全部咖啡(若干碗)的 61.那么,全家有 口人. 8.某单位职工到郊外植树,其中31的职工各带一个孩子参加,男职工每人种13棵树,女职工每人种10棵,每个孩子种6棵,他们共种了216棵树,那么其中有女职工 人. 9.将一个棱长为整数(单位:分米)的长方体6个面都涂上红色,然后把它们全部切成棱长为1厘米的小正方体.在这些小正方体中,6个面都没涂红色的有12块,仅有2面涂红色的有28块,仅有1面涂红色的有 块.原来长方体的体积是 立方分米. 10.李林在银行兑换了一张面额为100元以内的人民币支票,兑换员不小心将支票上的元与角、分数字看倒置了(例如,把元看成元),并按看错的数字支付.李林将其款花去元之后,发现其余款恰为支票面额的两倍,于是急忙到银行将多领的款额退回.那么,李林应退回的款额是 元.

非齐次线性方程组同解的判定和同解类

非齐次线性方程组同解的判定和同解类 摘要 本文主要讨论两个非齐次线性方程组同解的条件及当两个非齐次线性方程组的导出组的解空间相同时解集之间的关系。 关键词 非齐次线性方程组 同解 陪集 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题. 预备知识 定理1设,A B 是向量组C 两个线性无关的极大组,则存在可逆矩阵P ,使得 B PA =。 定理2设A 、B 为m n ?矩阵,且秩A =秩B ,如果存在矩阵C ,使得 CA B = 则存在m m ?可逆矩阵P ,使得 PA B = 证明 设秩A =秩B =r ,则存在可逆矩阵1P 与Q 使 011A P A A ??=????, 01B QB B ??=???? 其中0A ,0B 分别为秩数等于r 的r n ?矩阵,由于B CA =,则B 的行可由A 的行线性表出,从而B 的行可由0A 的行线性表出,进而0B 的行可由0A 的行线性表出, 于是矩阵00A B ?? ???? 的行向量组的极大线性无关组为0A 的各行,因为0B 的各行线性无 关且秩0B r =,所以0B 的各行亦构成一个线性无关组,则存在可逆矩阵r P 使得 00r B P A = 又设 110A C A =,12020r B C B C P A == 令 221 0r r n r P P C P C I -?? =? ?-?? 则1P 为可逆矩阵,且

相关文档
最新文档