TK减速器结构与装配

TK减速器结构与装配
TK减速器结构与装配

各种减速器说明书及装配图完整版

一、设计题目:二级直齿圆柱齿轮减速器 1.要求:拟定传动关系:由电动机、V带、减速器、联轴器、工作机构成。 2.工作条件:双班工作,有轻微振动,小批量生产,单向传动,使用5年,运输带允许误差5%。 3.知条件:运输带卷筒转速19/min r, 减速箱输出轴功率 4.25 P=马力, 二、传动装置总体设计: 1. 组成:传动装置由电机、减速器、工作机组成。 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均 匀,要求轴有较大的刚度。 3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设 置在高速级。其传动方案如下: 三、选择电机 1.计算电机所需功率d P:查手册第3页表1-7: η-带传动效率:0.96 1 η-每对轴承传动效率:0.99 2 η-圆柱齿轮的传动效率:0.96 3 η-联轴器的传动效率:0.993 4 η—卷筒的传动效率:0.96 5 说明: η-电机至工作机之间的传动装置的总效率:

2确定电机转速:查指导书第7页表1:取V带传动比i=2 4 二级圆柱齿轮减速器传动比i=840所以电动机转速的可选范围是: 符合这一范围的转速有:750、1000、1500、3000 根据电动机所需功率和转速查手册第155页表12-1有4种适用 的电动机型号,因此有4种传动比方案如下: 综合考虑电动机和传动装置的尺寸、重量、和带传动、减速器的传动比,可见第3种方案比较合适,因此选用电动机型号为Y132M1-6,其主要参数如下: 四确定传动装置的总传动比和分配传动比:

总传动比:96050.5319 n i n = ==总卷筒 分配传动比:取 3.05i =带 则1250.53/3.0516.49i i ?== ()121.31.5i i =取121.3i i =经计算2 3.56i =1 4.56i = 注:i 带为带轮传动比,1i 为高速级传动比,2i 为低速级传动比。 五 计算传动装置的运动和动力参数: 将传动装置各轴由高速到低速依次定为1轴、2轴、3轴、4轴 01122334,,,ηηηη——依次为电机与轴 1,轴1与轴2,轴2与轴3,轴3与 轴4之间的传动效率。 1. 各轴转速:1960 314.86/min 3.05 m n n r i == =带 2各轴输入功率:101 3.670.96 3.52d p p kW η=?=?= 3各轴输入转矩: 3.67 9550955036.5.960 d d w p T N m n ==? = 运动和动力参数结果如下表: 六 设计V 带和带轮: 1.设计V 带

STR主减速器装配

图片内容图片内容:: 装从动齿轮 工序号工序号:: 一(、(一一) 重要级别重要级别: ★★★ 操作内容操作内容:: 差壳孔与从动齿轮螺栓孔对正差壳孔与从动齿轮螺栓孔对正,,连接 螺栓先用手拧入1~2扣。 不按规定操作将造成螺纹损伤不按规定操作将造成螺纹损伤,,螺栓早期失效螺栓早期失效。。

图片内容图片内容:: 拧紧从动齿轮螺栓 工序号工序号:: 一(、(二二) 重要级别重要级别: ★★★★ 操作内容操作内容:: 拧紧力矩310—260Nm ;如果使用风扳机 拧紧拧紧,,螺栓必须螺栓必须对称拧紧对称拧紧对称拧紧。。 不按规定操作将造成从动齿轮早期失效不按规定操作将造成从动齿轮早期失效。。

主 减 装 配 工 序 操 作 指 导 图片内容图片内容:: 压装锁片 工序号工序号:: 一(、(三三) 重要级别重要级别: ★★★ 操作内容操作内容:: 锁止有效锁止有效、、可靠 不按规定操作将造成螺栓松动不按规定操作将造成螺栓松动、、齿轮打齿齿轮打齿。。

主 减 装 配 工 序 操 作 指 导 图片内容图片内容:: 压装轴承 工序号工序号:: 一(、(四四) 重要级别重要级别: ★★★★ 操作内容操作内容:: 轴承端面与差壳无间隙 不按规定操作将造成不按规定操作将造成差速器轴承预紧失效差速器轴承预紧失效差速器轴承预紧失效,,齿侧隙不稳定稳定,,主、从动齿轮早期失效从动齿轮早期失效。。

主 减 装 配 工 序 操 作 指 导 图片内容图片内容:: 压装轴承 工序号工序号:: 二(、(一一) 重要级别重要级别: ★★★ 操作内容操作内容::轴承在轴承座中压装到底轴承在轴承座中压装到底、、无间隙 不按规定操作将造成主动齿轮松动不按规定操作将造成主动齿轮松动。。

主减速器装配、调整

1.题目名称:主减速器装配、调整。主减速器散件(差速器部分不拆)组装为 总成,并调整,使其符合技术要求。 2.时限:60min。 3.考场准备: (1) EQ1090型汽车主减速器总成1台。 (2) 汽车维修常用工具1套。 (3) 装配架。 (4) 专用测量仪表和计时表。 4.考核评分标准: 5.操作要点: (1) 装配时差速器支承垫圈有油槽的一面应朝向半轴齿轮的背面。 (2) 差速器左右壳装合时,应按原有记号装合。 (3) 将差速器总成装上壳体,并调整差速器两端轴承的预紧度。调整方法是用手转动从动圆锥齿轮,并将两端轴承调整螺母拧紧后再退回1/10~1/16圈,然后用规定的扭矩值(0.98Nm~3.43Nm)拧紧轴承盖紧固螺栓。最后将主动圆锥齿轮装上壳体。 (4) 在不装油封的情况下,将主动圆锥齿轮装好,并用规定的扭矩值(0.78 Nm ~1.47

Nm)拧紧锁紧螺母,将圆锥主动齿轮及轴承座总成夹在虎钳上,用百分表测量其轴向间隙,具体方法是将百分表测杆触头顶在主动圆锥齿轮测量。若间隙大于0.1mm时,应减少主动圆锥齿轮两个轴承之间的调整垫片的厚度。 (5) 主减速器安装好后,应检查和调整主从动圆锥齿轮的啮合间隙和接触面积,检调接触面积的方法是在从动圆锥齿轮的轮齿上涂一层红丹油,用手转动主动圆锥齿轮数圈,观察齿轮齿面上的啮合印迹,若啮合印迹偏向轮齿的大端或顶端时,应减少主动圆锥齿轮轴承座下的调整垫片,使主动圆锥齿轮内移;若啮合印迹偏向轮齿的小端或根部时,则应增加调整垫片,使主动圆锥齿轮外移;其标准位置,如图a所示。 (6)检查主、从动圆锥齿轮啮合间隙的方法是将百分表测杆触头垂直地顶住从动圆锥齿轮轮齿的大端凸面上,如图b所示。 (a) (b) 固定主动圆锥齿轮,并来回摆动从动圆锥齿轮此时百分表的读数即为主、从动圆锥齿轮的啮合间隙。要求啮合间隙为0.15mm~0.40mm。若间隙过大应转动差速器两端轴承的调整螺母使从动圆锥齿轮移近主动圆锥齿轮,反之,应使从动圆锥齿轮移离主动圆锥齿轮。

减速器零件、装配全图

一、减速器的工作原理 减速机一般用于低转速大扭矩的传动设备,把电动机.内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。 减速机是通过机械传动装置来降低电机(马达)转速,而变频器是通过改变交流电频率以达到电机(马达)速度调节的目的。通过变频器降低电机转速时,可以达到节能的目的。 减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。 一级圆柱齿轮减速器是通过装在箱体内的一对啮合齿轮的转动实现减速运动的。动力由电动机通过皮带轮传送到齿轮轴,然后通过两啮合齿轮(小齿轮带动大齿轮)传送到轴,从而实现减速之目的。 二、减速器的构造 减速器主要由传动零件(齿轮或蜗杆等)、轴、轴承、箱体及其附件所组成。现简要介绍一下减速器的构造。 1.齿轮、轴及轴承组合 小齿轮与高速轴制成一体,即采用齿轮轴结构。这种结构用于齿轮直径和轴的直径相差不大的场合。大齿轮装配在低速轴上,利用平键作周向固定。轴上零件利用轴肩、轴套和轴承盖作轴向固定。由于齿轮啮合时有轴向分力,

故两轴均采用一对圆锥滚子轴承支承,承受径向载荷和轴向载荷的复合作用。轴承采用润滑油润滑,为防止齿轮啮合的热油直接进入轴承,在轴承与小齿轮之间,位于轴承座孔的箱体内壁处设有档油环。为防止在轴外伸段与轴承透盖接合处箱内润滑剂漏失以及外界灰尘、异物进入箱内,在轴承透盖中装有密封元件。图中采用接触式唇形密封圈,适用于环境多尘的场合。 2.箱体 箱体是减速器的重要组成部件。它是传动零件的基座,应具有足够的强 度和刚度。箱体通常用灰铸铁铸造,对于受冲击载荷的重型减速器也可采用铸钢箱体。单件生产的减速器,为了简化工艺,降低成本,可采用钢板焊接箱体。 箱体是由灰铸铁铸造的。为了便于轴系部件的安装和拆卸,箱体制成沿 轴心线水平剖分式。上箱盖和下箱座用普通螺栓联接成一整体。轴承座的联接螺栓应尽量靠近轴承座孔,而轴承座旁的凸台应具有足够的承托面,以便放置联接螺栓,并保证旋紧螺栓时需要的扳手空间。为了保证箱体具有足够的刚度,在轴承座附近加有加强肋。为了保证减速器安置在基座上的稳定性,并尽可能减少箱体底座平面的机械加工面积,箱体底座一般不采用完整的平面,图中减速器下箱底座面是采用两块矩形加工基面。 3.减速器的附件 为了保证减速器的正常工作,除了对齿轮、轴、轴承组合和箱体的结构 设计应给予足够重视外,还应考虑到为减速器润滑油池注油、排油、检查油面高度、拆装时上下箱体的精确定位、吊运等辅助零部件的合理选择和设计。 1)观察孔及其盖板 为了检查传动零件的啮合情况、接触斑点、侧隙,并向箱体内注入润滑油,应在箱体的上部适当位置设置观察孔。观察孔设在上箱顶盖能够直接观察到齿轮啮合部位的地方。平时,观察孔的盖板用螺钉固定在箱盖上。图中检查孔为长方形,其大小应允许将手伸入箱内以便检查齿轮啮合情况。 2)通气器 减速器工作时,箱体内温度升高,气体膨胀,压力增大。为使箱内受热 膨胀的空气能自由地排出以保证箱体内外压力平衡,不致使润滑油沿分箱面和轴伸出段或其他缝隙渗漏,通常在箱体顶部装设通气器。采用的通气器是具有垂直、水平相通气孔的通气螺塞。通气螺塞旋紧在检查孔盖板的螺孔中。

主减速器装配调整

1?题目名称:主减速器装配、调整。主减速器散件(差速器部分不拆)组装为 总成,并调整,使其符合技术要求。 2.时限:60min。 3.考场准备: (1)EQ1090型汽车主减速器总成1台。 (2)汽车维修常用工具1套。 (3)装配架。 (4)专用测量仪表和计时表。 4.考核评分标准: 5.操作要点: (1)装配时差速器支承垫圈有油槽的一面应朝向半轴齿轮的背面。 (2)差速器左右壳装合时,应按原有记号装合。 (3)将差速器总成装上壳体,并调整差速器两端轴承的预紧度。调整方法是用手转 动从动圆锥齿轮,并将两端轴承调整螺母拧紧后再退回1/10?1/16圈,然后用规定的扭矩值()拧紧轴承盖紧固螺栓。最后将主动圆锥齿轮装上壳体。 (4)在不装油封的情况下,将主动圆锥齿轮装好,并用规定的扭矩值( Nm Nm) 拧紧锁紧螺母,将圆锥主动齿轮及轴承座总成夹在虎钳上,用百分表测量其轴向间隙,

具体方法是将百分表测杆触头顶在主动圆锥齿轮测量。若间隙大于时,应减少主动圆

锥齿轮两个轴承之间的调整垫片的厚度。 (5) 主减速器安装好后,应检查和调整主从动圆锥齿轮的啮合间隙和接触面积,检 调接触面积的方法是在从动圆锥齿轮的轮齿上涂一层红丹油,用手转动主动圆锥齿轮 数圈,观察齿轮齿面上的啮合印迹,若啮合印迹偏向轮齿的大端或顶端时,应减少主 动圆锥齿轮轴承座下的调整垫片,使主动圆锥齿轮内移;若啮合印迹偏向轮齿的小端 或根部时,则应增加调整垫片,使主动圆锥齿轮外移;其标准位置,如图 a 所示。 (6) 检查主、从动圆锥齿轮啮合间隙的方法是将百分表测杆触头垂直地顶住从动圆 (b) 固定主动圆锥齿轮,并来回摆动从动圆锥齿轮此时百分表的读数即为主、从动圆 锥齿轮的啮合间隙。要求啮合间隙为?。若间隙过大应转动差速器两端轴承的调整螺 母使从动圆锥齿轮移近主动圆锥齿轮,反之,应使从动圆锥齿轮移离主动圆锥齿轮。 锥齿轮轮齿的大端凸面上,如图 b 所示。 血谯箭初齿轮的啮fr 活迹 沏ift 阖特主?繼动箱笙的啮合问E?

圆锥齿轮圆柱齿轮减速器(内含装配图和零件图)

目录. 第1章选择电动机和计算运动参数 (3) 1.1 电动机的选择 (3) 1.2 计算传动比: (4) 1.3 计算各轴的转速: (4) 1.4 计算各轴的输入功率: (5) 1.5 各轴的输入转矩 (5) 第2章齿轮设计 (5) 2.1 高速锥齿轮传动的设计 (5) 2.2 低速级斜齿轮传动的设计 (13) 第3章设计轴的尺寸并校核。 (19) 3.1 轴材料选择和最小直径估算 (19) 3.2 轴的结构设计 (20) 3.3 轴的校核 (25) 3.3.1 高速轴 (25) 3.3.2 中间轴 (27) 3.3.3 低速轴 (29) 第4章滚动轴承的选择及计算 (33) 4.1.1 输入轴滚动轴承计算 (33) 4.1.2 中间轴滚动轴承计算 (35) 4.1.3 输出轴滚动轴承计算 (36) 第5章键联接的选择及校核计算 (38) 5.1 输入轴键计算 (38) 5.2 中间轴键计算 (38) 5.3 输出轴键计算 (38) 第6章联轴器的选择及校核 (39) 6.1 在轴的计算中已选定联轴器型号。 (39) 6.2 联轴器的校核 (39) 第7章润滑与密封 (39) 第8章设计主要尺寸及数据 (40) 第9章设计小结 (41) 第10章参考文献: (42)

机械设计课程设计任务书 设计题目:带式运输机圆锥—圆柱齿轮减速器 设计内容: (1)设计说明书(一份) (2)减速器装配图(1张) (3)减速器零件图(不低于3张 系统简图: 联轴器 联轴器 输送带 减速器 电动机 滚筒 原始数据:运输带拉力 F=2400N ,运输带速度 s m 5.1=∨,滚筒直径 D=315mm,使 用年限5年 工作条件:连续单向运转,载荷较平稳,两班制。环境最高温度350C ;允许运输带速 度误差为±5%,小批量生产。 设计步骤:

一年级直齿减速器装配图画图步骤详解

一年级直齿减速器装配 图画图步骤详解 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

一级直齿减速器装配图画图步骤详解 (参考图:P198、p25、p15) 第一步首先估算箱体结构的大概尺寸,(箱体长>大齿轮分度圆直径+小齿轮分度圆直径;箱体宽>输出轴全长),然后考虑采用图纸的幅面和绘制的比例,规划画图的布局空间。 第二步根据前期绘制的零件图尺寸,先在图纸区域合适位置放置输入轴,输出轴和大、小齿轮的位置,两齿轮须在分度圆处啮合。 第三步,根据轴的结构设计,画与各自轴相配合的轴承。 第四步,绘制机体内壁线,外壁线,轴承座外端面线 机体内壁线距离小齿轮的端面距离为△2≥δ,根据计算取△ 2=8mm,(计算见设计说明书);大齿轮齿顶圆与箱体内壁距离为△1≥δ,取△1=9.6mm, 外壁线距离内壁线距离等于壁厚δ=8mm, 轴承座外端面线距离箱体内壁的距离l2=δ+C1+C2+(8~12)mm C1、C2根据轴承端盖连接螺栓直径查表,(8~12)为区分加工面和非加工面的尺寸余量,取8mm, 轴承盖外端面距离轴承座外端面的距离为盖厚e,可查指导书P37页根据结构设计确定。 凸台的外壁线距离内壁线l1=δ+C1+C2,

第五步,画轴承端盖和密封装置,轴承端盖画法参见P37表,密封装置由于轴承采用油脂润滑,需要设计档油板,结构设计可参见P56图和,也可自由设计结构。轴承透盖与轴颈之间的配合采用毡圈式密封,结构可参考P58图以及P146页附表设计。 第六步,按照各构件的计算尺寸和俯视图的映射关系,向上做出正视图部分。机盖、机座肋厚m1=δ1,m=δ,见表,轴承端盖螺钉直径d3,轴承端盖外径D2,机座、机盖壁厚均可按表计算求得,大齿轮外轮廓半径按P73箱体结构设计要求确定。 第七步,按照指导书P73凸台结构设计投影方法画出凸台结构,并画出轴承旁连接螺栓(间距100-150mm)和机盖与机座连接螺栓(留出扳手空间),按P74机座底凸缘结构设计机座。按P73绘制小齿轮一端的外轮廓半径,使得外轮廓圆弧超过轴承旁凸台,便于形状的设计。至此,箱体整体外观轮廓设计基本完成。 第八步,补画细部结构,如窥视孔盖板,通气器,油标、油塞、定位销、启盖螺钉、吊环、吊钩,结构尺寸见P133介绍。绘制减速器油沟(p19)结构。 第九步,按投影关系画左视图,标注尺寸,完成整图设计.

减速器装配图、大齿轮零件图和输出轴零件图讲诉

第1章初始参数及其设计要求 保证机构件强度前提下,注意外形美观,各部分比例协调。初始参数:功率P=2.8kW,总传动比i=5

第2章电动机 2.1 电动机的选择 根据粉碎机的工作条件及生产要求,在电动机能够满足使用要求的前提下,尽可能选用价格较低的电动机,以降低制造成本。由于额定功率相同的电动机,如果转速越低,则尺寸越大,价格越贵。粉碎机所需要的功率为kw =,故 P8.2 选用Y系列(Y100L2-4)型三相笼型异步电动机。 Y系列三相笼型异步电动机是按照国际电工委员会(IEO)标准设计的,具有国际互换性的特点。其中Y系列(Y100L2-4)电动机为全封闭的自扇冷式笼型三相异步电动机,具有防灰尘、铁屑或其它杂务物侵入电动机内部之特点,B 级绝缘,工作环境不超过+40℃,相对温度不超过95%,海拔高度不超过1000m,额定电压为380V,频率50HZ,适用于无特殊要求的机械上,如农业机械。 Y系列三相笼型异步电动具有效率高、启动转矩大、且提高了防护等级为IP54、提高了绝缘等级、噪音低、结构合理产品先进、应用很广泛。其主要技术参数如下: 型号:4 Y L 2 100- 同步转速:min 1500r / 额定功率:kw = P3 满载转速:min 1420r / 堵转转矩/额定转矩:) ? T N /( 2.2m n 最大转矩/额定转矩:) /( T ? N 2.2m n 质量:kg 3.4 极数:4极 机座中心高:mm 100 该电动机采用立式安装,机座不带底脚,端盖与凸缘,轴伸向下。

2.2电机机座的选择

第3章 传动比及其相关参数计算 3.1 传动比及其相关参数的分配 根据设计要求,电动机型号为Y100L2-4,功率P=3kw ,转速n=1420r/min 。输出端转速为n=300r/min 。 总传动比: 73.4300 14401 === n n i ; (3-1) 分配传动比:取3=D i ; 齿轮减速器: 58.13 73 .4=== D L i i i ; (3-2) 高速传动比: 5.158.14.14.112=?==L i i ; (3-3) 低速传动比: 05.15 .158 .11223=== i i i L 。 (3-2) 3.2 运动参数计算 3.2.1 各轴转速 电机输出轴: min /1420r n n D == 轴I : min /33.4733 1420 1r i n n D === (3-4) 轴II :

浅谈主减速器的装配与调整(1)

浅谈主减速器的装配与调整 摘要:在载重汽车中,驱动桥的主减速器,不仅承受很大的径向力和轴向力,而且要承受巨大的扭力,且经常受到剧烈的冲击载荷。特别是一些车辆超载严重,更加剧其零部件磨损。使配合件的相对位置发生变化,造成配合间隙变大,齿轮啮合不良,破坏了本来完好的技术状态,造成主减速器损坏的故障。因此,谈谈自己对主减速器正确的装配和调整方法。 关键词:主减速器异响调整 一、主减速器的故障现象 几年前,我承修了一辆亚星JT6970型客车教练车。该车曾因主减速器响而进行了修理,但是行驶约3个月后,主减速器又出现了响声。于是,我跟随驾驶员试车,发现汽车起步短时间内或换挡时有金属撞击声,在车速稳定后撞击声变为连续噪声,在缓速或急剧改变车速时有“咯啦”、“咯啦”的响声。回到单位后,拆下尾牙后盖,检查从动锥齿轮,看到从动锥齿轮齿高处有少许损伤。 二、拆检 我拆下了尾牙总成,分解后,对主减速器主要零部件进行检查,经检查,发现以下问题: (1)主动锥齿轮磨损严重,且齿顶有少许崩脱现象,从动锥齿轮齿面中部磨损较严重。 (2)主动锥齿轮支承圆柱滚子轴承42307较松,经

检查,轴承轴向间隙为0.35mm,径向间隙为0.24mm,超过使用要求,该轴承主要是主动锥齿轮轴承的预紧力调整不当,主动齿轮轴向间隙过大,或轴承承孔变形造成的。 三、异响的故障原因 经以上检查,证实故障原因是因啮合工作面偏齿顶,使其啮合间隙过大,并在重荷时,造成齿尖损伤,这都是装配调整不正确而产生的后果。由于该主、从动锥齿轮损伤,且磨损较大,于是更换了主、从动锥齿轮及主动锥齿轮支承圆柱滚子轴承。 四、装配与调整的技术要求 (1)半轴齿轮与行星齿轮间隙要求 更换了新的行星齿轮和半轴齿轮的齿推垫片后,装好差速器总成,并检查其啮合间隙为0.12mm,达到0.05~0.20mm的技术范围。 (2)调整主动锥齿轮轴承预紧度的方法 轴承预紧度调整过小,会使齿轮在大负荷时造成齿轮轴向串动使啮合情况变坏,造成齿轮早期损坏,预紧度调整过大,将影响传动效率,缩短轴承寿命,还会使轴承发热,甚至烧坏轴承。 我调整该车主动锥齿轮轴承预紧度的方法是:按要求装配好后,慢慢转动主动锥齿轮轴凸缘,太紧时,拆开,适当增加隔套处的调整垫片,再以要求的220Nm的力矩拧紧螺母后,用手转动主动齿轮轴时,能转动且灵活,沿轴向推拉主动齿轮轴又无感到的轴向间隙,再将

一级圆柱齿轮减速器装配图的画法(含装配图)

一、仔细分析,对所画对象做到心中有数 在画装配图之前,要对现有资料进行整理和分析,进一步搞清装配体的用途、性能、结构特点以及各组成部分的相互位置和装配关系,对其它完整形状做到心中有数。 二、确定表达方案 根据装配图的视图选择原则,确定表达方案。 对该减速器其表达方案可考虑为: 主视图应符合其工作位置,重点表达外形,同时对右边螺栓连接及放油螺塞连接采用局部剖视,这样不但表达了这两处的装配连接关系,同时对箱体右边和下边壁厚进行了表达,而且油面高度及大齿轮的浸油情况也一目了然;左边可对销钉连接及油标结构进行局部剖视,表达出这两处的装配连接关系;上边可对透气装置采用局部剖视,表达出各零件的装配连接关系及该结构的工作情况。 俯视图采用沿结合剖切的画法,将内部的装配关系以及零件之间的相互位置清晰地表达出来,同时也表达出齿轮的啮合情况、回油槽的形状以及轴承的润滑情况。 左视图可采用外形图或局部视图,主要表达外形。可以考虑在其上作局部剖视,表达出安装孔的内部结构,以便于标注安装尺寸。 另外,还可用局部视图表达出螺栓台的形状。 建议用A1图幅,1:1比例绘制。 画装配图时应搞清装配体上各个结构及零件的装配关系,下面介绍该减速器的有关结构: 1、两轴系结构由于采用直齿圆柱齿轮,不受轴向力,因此两轴均由滚动轴承支承。轴向位置由端盖确定,而端盖嵌入箱体上对应槽中,两槽对应轴上装有八个零件,如图2-3所示,其尺寸96等于各零件尺寸之和。为了避免积累误差过大,保证装配要求,轴上各装有一个调整环,装配时修磨该环的厚度g使其总间隙达到要求0.1±0.02。因此,几台减速器之间零件不要互换,测绘过程中各组零件切勿放乱。

蜗杆减速器及其零件图和装配图(完整) - 副本

前言 在本学期临近期末的近半个月时间里,学校组织工科学院的学生开展了锻炼学生动手和动脑能力的课程设计。在这段时间里,把学到的理论知识用于实践。 课程设计每学期都有,但是这次和我以往做的不一样的地方:单独一个人完成一组设计数据。这就更能让学生的能力得到锻炼。但是在有限的时间里完成对于现阶段的我们来说比较庞大的“工作”来说,虽然能够按时间完成,但是相信设计过程中的不足之处还有多。希望老师能够指正。总的感想与总结有一下几点: 1.通过了3周的课程设计使我从各个方面都受到了机械设计的 训练,对机械的有关各个零部件有机的结合在一起得到了深刻的认识。 2.由于在设计方面我们没有经验,理论知识学的不牢固,在设计 中难免会出现这样那样的问题,如:在选择计算标准件是可能会出现误差,如果是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够准 3.在设计的过程中,培养了我综合应用机械设计课程及其他课程 的理论知识和应用生产实际知识解决工程实际问题的能力,在设计的过程中还培养出了我们的团队精神,大家共同解决了许多个人无法解决的问题,在这些过程中我们深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结。 最后,衷心感谢老师的指导和同学给予的帮助,才能让我的这次设计顺利按时完成。

目录 一.传动装置总体设计 (4) 二.电动机的选择 (4) 三.运动参数计算 (6) 四.蜗轮蜗杆的传动设计 (7) 五.蜗杆、蜗轮的基本尺寸设计 (13) 六.蜗轮轴的尺寸设计与校核 (15) 七.减速器箱体的结构设计 (18) 八.减速器其他零件的选择 (21) 九.减速器附件的选择 (23) 十.减速器的润滑 (25)

汽车驱动桥主减速器装配工艺设计分析

龙源期刊网 https://www.360docs.net/doc/958151311.html, 汽车驱动桥主减速器装配工艺设计分析 作者:朱永恒杨申 来源:《信息技术时代·上旬刊》2018年第01期 摘要:汽车驱动桥模块化设计很大程度上由各个零件间的关联关系确定,但零件配合属性通常是模糊的。为方便汽车驱动桥产品的模块化设计,运用了模糊关联分析与求解的设计方法。根据模糊概念理论,运用模糊关联规则对数据进行了规整和优化,建立了产品设计的模糊关联系统,给出了属性模糊矩阵,从而有效地处理模糊信息,为后续的模块化设计奠定基础。 关键词:驱动桥;主减速器;装配工艺 引言 驱动桥是车辆的重要组成部分,一般由桥壳、主减速器、差速器、半轴、轮边减速器等组成。汽车驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。因此,汽车生产商一般都会对每一批驱动桥进行可靠性试验,以考核驱动桥的质量。 1、主减速器和差速器的主要零件清单 根据零件模糊语义配合关系确定驱动桥中主减速器和差速器存在的零件。汽车驱动桥是个很复杂的整体,通过分解、分析并建立各个零件间功能、联接、物理关联关系,确定汽车驱动桥中主减速器及差速器总成的主要零件清单,如表1所示。 表1汽车驱动桥中主减速器的主要零件清单 2、驱动桥桥壳垂直弯曲疲劳试验 2.1、试验方法驱动桥桥壳承受着复杂的作用力,尤其是在汽车行驶过程中通过不平的路面、车轮与地面间所产生的冲击载荷。如果桥壳疲劳强度不够,会引起桥壳的变形或断裂。桥壳垂直弯曲疲劳试验主要是模拟桥壳在实车上的垂向工况,一般取样5件,以中值疲劳寿命不低于80万次、且试验样品中最低寿命不低于50万次来评判。,将桥壳安装在支架上,支点为该桥轮距的相应点,垂直载荷加载点为二钢板弹簧中心。安装时加力方向应与桥壳轴管中心线垂直,支点应能滚动,以适应加载变形不致运动干涉。以驱动桥满载轴荷的2.5倍作为最大载荷,以应力为零时的载荷作为最小载荷,利用液压疲劳试验机施加近似正弦波的交变载荷,频率一般为5~6Hz,直至桥壳破裂。 2.2、失效分析

主减速器在装配过程中垫片厚度选择

主减速器装配过程中垫片厚度选择 曹 张, 牛忠荣, 胡宗军, 程长征, 杨韶明 (合肥工业大学土木建筑工程学院,安徽合肥230009) 摘要:汽车主减速器装配质量的影响因素很多,其中一个重要的因素是如何选取垫片厚度的问题。文章采用有限元法对某商务车后桥主减速器装配过程进行力学分析,获得了主减速器装配过程中的变形和应力状态;针对主减速器工作中应满足最小驱动力矩的指标,通过数值计算得到垫片实际的厚度,为主减速器的一次性装配成功提供了依据。 关键词:主减速器;预紧力;有限元分析;垫片 中图分类号:U464.12 文献标识码:A 文章编号:1003-5060(2007)05-0583-04 Determination of the gasket thickness in the process of assembling the final drive CAO Zhang, NIU Zhong-rong, HU Zong-jun, CHENG Chang-zheng, YANG Shao-ming  ̄ (School of Civil Engineering, Hefei University of Technology, Hefei 230009, China)Abstract:Determination of the gasket thickness is an important factor which influences the assemblyquality of the final drive. In this paper, the finite element method is applied to the analysis of thestress and displacement fields of the final drive in the process of assembling. The suitable thickness ofthe gasket is gained through numerical calculation as the least driving moment which makes the finaldrive run easily meets the requirement of the assembly. Key words: final drive ; prettightening force; finite element analysis; gasket

减速器零件装配全图定稿版

减速器零件装配全图精 编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

一、减速器的工作原理 减速机一般用于低转速大扭矩的传动设备,把电动机.内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。 减速机是通过机械传动装置来降低电机(马达)转速,而变频器是通过改变交流电频率以达到电机(马达)速度调节的目的。通过变频器降低电机转速时,可以达到节能的目的。 减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速器的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。 一级圆柱齿轮减速器是通过装在箱体内的一对啮合齿轮的转动实现减速运动的。动力由电动机通过皮带轮传送到齿轮轴,然后通过两啮合齿轮(小齿轮带动大齿轮)传送到轴,从而实现减速之目的。 二、减速器的构造 减速器主要由传动零件(齿轮或蜗杆等)、轴、轴承、箱体及其附件所组成。现简要介绍一下减速器的构造。 1.齿轮、轴及轴承组合 小齿轮与高速轴制成一体,即采用齿轮轴结构。这种结构用于齿轮直径和轴的直径相差不大的场合。大齿轮装配在低速轴上,利用平键作周向固定。轴上零件利用轴肩、轴套和轴承盖作轴向固定。由于齿轮啮合时有轴向分力,故两轴均采用一对圆锥滚子轴承支承,承受径向载荷和轴向载荷的复合作用。轴承采用润滑油润滑,为防止齿轮啮合的热油

相关文档
最新文档