CKDG-4.2/0.28-7%单相串联电抗器 单相分补串联电抗器配套电容器60KVAR

CKDG-4.2/0.28-7%单相串联电抗器 单相分补串联电抗器配套电容器60KVAR
CKDG-4.2/0.28-7%单相串联电抗器 单相分补串联电抗器配套电容器60KVAR

单相分补电抗器说明

单相分补电抗器主要用于低压无功补偿系统的分相补偿回路中;通常由一只单相电容器串联一台单相电抗器形成LC回路,根据客户的需要进行分相投切。电容柜根据线路感性负载耗用无功电流自动投入所需电容器量提供适当的无功电流,从而提高线路的功率因数;解决了电网线损耗和谐波干扰问题。

(单相分电抗器接线图)

一、CKDG-4.2/0.28-7%单相串联电抗器单相分补串联电抗器配套电容器60KVAR选型配置:

单相分补电抗器型号CKDG-4.2/0.28-7%

型式Type单相串联电抗器电抗率Reactor7%

电抗器容量Rated power 4.2KVAR联结Connection串联

系统电压Se.Vol0.22KV电流Se.Cur123.7A

相数Number of phases三相频率Frequency50Hz

电感量Inductance0.291mH温升Temperature rise<65K

冷却方式Cooling Type自冷品牌Brand上海民恩配套电容器容量60KVAR配套电容电压0.28KV

质保期Warranty period一年三包服务货期3-5天

二.CKDG-4.2/0.28-7%单相串联电抗器单相分补串联电抗器配套电容器60KVAR技术参数:

以下是串联电抗器厂家技术参数供您参考

1依据标准:GB/T10229-1988JB5346-1998串联电抗器标准

2电抗器型号:CKDG-4.2/0.28-7%

3电抗器品牌:上海民恩

4电抗器频率:50HZ/60HZ

5系统额定电压:0.22KV

6绝缘材料耐热等级:F/H级、冷却方式:AN

7使用条件:户内、海拔高度:2000m、环境温度:-25℃~+45℃

8外形尺寸:请咨询客服安装孔尺寸:

9单位:mm材质:铜包,铝包(客户自选)

10包装:木箱,托板木箱

11售后:免费技术咨询,技术指导,安装指导

12货期:2个工作日,税票:开17%增值税发票

三、CKDG-4.2/0.28-7%单相串联电抗器单相分补串联电抗器配套电容器60KVAR外形尺寸图:

四.CKDG-4.2/0.28-7%单相串联电抗器单相分补串联电抗器配套电容器60KVAR厂家实物图:

(电流双线包)

(小电流单线包)

五:CKDG-4.2/0.28-7%单相串联电抗器单相分补串联电抗器配套电容器60KVAR安装使用说明书:

一.CKDG-4.2/0.28-7%产品概述

CKDG-4.2/0.28-7%干式铁芯串联电抗器用于低压无功补偿柜中,与电容器相串联。

当低压电网中有大量整流、变流装置等谐波源时,其产生的高次谐波会严重危害主变及其它电器设备的安全运行。电抗器与电容器相串联后,能有效地抑制电网谐波,改善系统的电压波形,提高系统的功率因数,并能有效地减小合闸涌流及操作过电压,

保证了电容器的安全运行。

二.CKDG-4.2/0.28-7%产品型号说明

三.CKDG-4.2/0.28-7%结构特点

1.铁心采用优质低损耗冷轧硅钢片,铁心柱由多个气隙分成均匀小段,气隙采用环氧层压

玻璃布板作间隔,气隙间及铁饼与铁轭间采用耐高温高强度粘接剂粘接,以保证电抗气

隙在运行过程中不发生变化,同时有效减少铁芯饼之间的震动,从而降低噪升。

2.线圈采用F级漆包铜扁线或漆包铝扁线绕制,排列紧密且均匀,有较好的散热性能。

3.电抗器的线圈和铁芯组装成一体后经过预烘→浸漆→热烘固化这一工艺流程,采用H级

浸渍漆,使电抗器的线圈和铁芯牢固地结合在一起,不但大大减小了运行时的噪声,而

且具有极高的耐热

等级,可确保电抗器在高温下亦能安全地低噪音地运行。

四.CKDG-4.2/0.28-7%接线方式

五.运输、装卸与储存CKDG-4.2/0.28-7%

1.产品可用火车、汽车等交通工具运输,装运的车箱或船舱应保持清洁、干燥、无污秽物。

2.产品在装运中必须符合运输规程的安全要求。产品应紧固在一个牢固的底座上,在运输

过程中产品不允许有晃动、碰撞和移动现象。

3.如果采用不带包装箱运输,电抗器的附件及出厂文件,应另装箱,与电抗器一起发运。此

时,电抗器应该用有一定抗撕裂强度的软性包装材料将其密封好,采用密闭车箱运输。

4.无包装的产品应通过小车、夹件、吊环等孔来固定电抗器。要避免固定用的钢绳碰到电

抗器的器身上,更不能把钢绳固定在引线铜排或其它易损件上。

5.产品在运输过程中,其倾斜度不得大于20度。

6.产品在车站、码头中转或终点卸下后不要堆码,不能露天长时间存放。若遇特殊情况,

必须在包装箱下用木方垫好,并用防雨布遮好。

7.装卸产品时要用两根钢绳,同时着力四处,并注意产品重心的位置。两根钢绳的起吊夹

角不要大于60度。

8.需仓储保管的产品,不要拆除包装。如因验收需拆除包装,验收完毕后不论是否合格都

应恢复包装。

9.若要长期贮存电抗器,必须保证贮存环境良好,不要拆去出厂包装物,电抗器不要磕碰,

不要堆码,不能露天存放。

六.检查验收CKDG-4.2/0.28-7%

1.用户在接受电抗器时,应对外包装进行检查,若发现有破损或异样,应马上进行拍照取

证,并立刻开箱检查,查看电抗器有无损伤,产品零部件是否损伤和位移,紧固件是否松动,绝缘有否破损,线圈表面有否污秽痕迹等。

2.用户收到电抗器后应及时进行检查。按装箱单及铭牌查对产品及其型号、容量、额定电

压、额定频率、额定电抗率、相数等是否与订货合同相符。检查出厂文件是否齐全,配件是否与装箱单相符。

3.查看电抗器在运输过程中有无损伤,产品零部件是否损伤和位移,紧固件是否松动,绝

缘有否破损,线圈表面有否污秽痕迹等。

4.产品开箱检查后,若不立即投入运行,应重新包装好,并把它放在户内安全的地方,以

防损和防盗。

七.安装与运行CKDG-4.2/0.28-7%

1.将串联电抗器用螺栓固定在支架上,螺栓数量要和底座安装孔的数量相同,螺母紧固后

应采取防松动措施。

2.将串联电抗器底座上的接地螺栓与接地母排进行可靠连接,并检查是否接通。

3.将串联电抗器的接线端子与系统母排相连接,紧固螺栓的力矩必须达到8N/m,同时连接

线应有一定的弹性余地。

4.串联电抗器安装于柜内,应按其电压等级留足对地安全距离。

5.检查上述操作,如无问题,串联电抗器可投入试运行。

6.试运行60分钟无异常后,串联电抗器可正式投入使用。串联电抗器投入运行以后,禁止

触摸串联电抗器主体,以防止发生事故。

7.电抗器本体设有常闭接点的温敏开关(130度),应接于保护回路中,避免电抗器温度的

异常升高。

8.装有电抗器的电容柜应通风良好并设温度控制器和风机,以保证电抗器的环境温度不大

于40度。

八.维护与保养CKDG-4.2/0.28-7%

1.在干燥清洁场所,每年进行一次检查,在其它污秽比较严重的场所,每三或六个月检查

一次。

2.检查时,如发现有过多的灰尘聚集,则必须清除,以保证空气流通和防止绝缘击穿,使

用压缩空气对通风气道进行除尘。

3.检查紧固件和连接件是否松动,导电零部件以及其他零部件有无生锈和腐蚀的痕迹,并

且观察绝缘表面有无爬电的痕迹。

4.电抗器室要有防小动物进入的措施,以免发生意外事故。

5.常观察电抗器的温度变化,要及时与有关人员联系获取咨询。

6.电抗器的安装、试验、操作和维护必须由有资格的专业人员承担。

六:CKDG-4.2/0.28-7%单相串联电抗器单相分补串联电抗器配套电容器60KVAR K值的选择:

一、CKDG-4.2/0.28-7%滤波电抗器-电抗率K值的确定

1.系统中谐波很少,只是限制合闸涌流时则选K=0.5~1%即可满足要求。它对5次谐波电流放大严重,对3次谐波放大轻微。

2.系统中谐波不可忽视时,应查明供电系统的背景谐波含量,在合理确定K值。电抗率的配置应使电容器接入处谐波阻抗呈感性。电网背景谐波为5次及以上时,应配置K=4.5~6%。通常5次谐波最大,7次谐波次之,3次较小。国内外通常采用K=4.5~6%。配置K=6%的电抗器抑制5次谐波效果好,但明显的放大3次谐波及谐振点为204Hz,与5次谐波的频率250Hz,裕量大。配置4.5%的电抗器对3次谐波轻微放大,因此在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大是适宜的。它的谐振点235Hz与5次谐波间距较小。电网背景谐波

为3次及以上时应串联K=12%的电抗器。在电抗器电容器串联回路中,电抗器的感抗X

LN

与谐波

次数虚正比;电容器容抗X

CN

与谐波次数成反比。为了抑制5次及以上谐波。则要使5次及以上谐波器串联回路的谐振次数小于5次。这样,对于5次及以上谐波,电杭器电容器串联回路呈感性,消除了并联谐振的产生条件;对于基波,电抗器电容器串联回路呈容性,保持无功补偿作用。如电抗器电容器串联回路在n次谐波下谐振,则:

式中X

CN /X

LN

为电抗率的倒数,不同的电抗率对应不同的谐振次数或不同的谐振频率,如表1

所示。电抗器的电抗率以取6%为宜,可避免因电抗器、电容器的制造误差或运行中参数变化而造成对5次谐波的谐振。若电容器接入处,电网被污染严重,电抗率要另行计算。

Hz

如:K=4.5%则;K=5%则

K=6%则;K=7%则

K=12%则

表1电抗率对应的谐振次数或谐波频率

电抗率谐波次数谐波频率Hz

4.5% 4.7123

5.5

5% 4.47223

5.5% 4.26213

6% 4.08204

电容器串联电抗器后,电容器端电压会升高。为了便于分析。画出电流、电压向量图,如图表示。

图电抗器的设置、电流、电压向量

以电流I为基准,电抗器上压降U

LN 超前电流90°,系统电压U

XN

为两者向量和:U

XN

=U

CN

-U

LN

如电抗器电抗率为6%,则:

U LN =0.06U

CN

U XN =(1-0.06)U

CN

U CN =U

CN

/(1-0.06)=1.064U

XN

电容器串联电抗率为6%电抗器后,电容器端电压为电网电压的1.064倍

电容器允许产期运行在1.1倍额定电压下。因此,电容器端电压升高6.4%是可以承受的。如电抗器电抗率为12%,电容器端电压升高13.6%,应当选用额定电压440V电容器。

串联电抗器后回来电流也将增大,电抗率K=6%,电容器端电压为电网电压的1.064倍电流也增加到相同倍数。无功功率补偿容量是增加还是减少?电容器端电压升高无疑会增加无功功率补偿容量。

(1)电容器无功功率补偿容量Q’

C

Q’

C =(U

CN

/U

XN

)2Q

C

=(1.064U

XN

/U

XN

)2

Q’

C

=1.13Q

C

(2)电抗器消耗容性无功功率Q

L

Q L =3I2X

LN

=3(1.064U

XN

/U

XN

)2(0.06X

CN

)

=1.0642×0.06×(3U2

XN /X

CN

)=0.068Q

C

(3)实际无功功率补偿容量:

Q’C -Q L =(1.13-0.068)Q C =1.062Q C

从上式看出,电容器串联电抗器后,无功功率补偿不但没有减少,反而增加6.2%。

二、CKDG-4.2/0.28-7%滤波电抗器-电抗器的安装位置

串联电抗器无论装在电源侧或中性点侧,从限制合闸涌流和抑制谐波来说都是一样的。电抗器装在电源侧时运行条件苛刻,因它承受短路电流的冲击,对地电压也高(相对于中性点),因而对动、热稳定要就高,铁心电抗器有铁心饱和之虑。

电抗器装在中性点侧时对电抗器要求相对低,一般不受短路电流的冲击,动、热稳定没有特殊要,就承受的对地电压低。可见它比安装在电源侧缺少了电抗器的抗短路电流冲击的能力。

三、CKDG-4.2/0.28-7%滤波电抗器-电抗器的结构

电抗器的结构形式主要有空芯和铁芯两种结构。

铁芯结构的电抗器主要优点是:损耗小,电磁兼容性叫好,体积小。缺点是:有噪音并在事故电流较大时铁芯饱和失去了限流能力。当干式铁芯且采用氧树脂铸线圈的电抗器,其动、热稳定性均很好,适合装在柜中。油浸式铁芯电抗器虽然体积大些,但噪音较小,散热较好,安装方便,适用于户外使用。

空芯电抗器的主要优点是:线性度好,具有很强的限制短路电流的能力而且噪音小。缺点是:损耗大,体积大。这种电抗器户内,户外都适合,但不适合装在柜中。在户外安装容易解决防止电磁感应问题。最好采用分相布置“品”字形或“一”字形。这样相间拉开了距离,有利于防止相间短路和缩小事故范围。所以这种布置方式为首选。当场地受到限制不能分相布置时,可采用互相叠装式产品。三相叠装式产品的B 相线圈绕线制方向为反方向使支柱绝缘承受压力,因此在安装时一定按生产厂家的规定。

四、CKDG-4.2/0.28-7%滤波电抗器-TSC 动态无功补偿

,它采用晶闸管开关(过零触发),投切电力电容组,实现无功补偿。有效改善用电负荷的功率因数,具有显著的节能效果。在TSC 系统中采用串联电抗器,可有效地防止谐波放大,

有效的吸收大部分谐波电流,上海民恩是国际上领先进行动态无功补偿和滤波的公司。主要市场遍布国内。2005年以来,已有数百套装置在20于省市各行业中应用。

所有的汽车厂,点焊机负荷变化极为快速,并且引发大量的无功功率,这种负荷经常产生较大的电压波动、电压闪变,导致电焊质量差并影响焊接的生产效率,过电流会损坏电极及被焊接材料、而欠电流也会严重地影响焊接质量。采用上海民恩动态补偿装置能明显地提高焊接质量及生产效率,稳定电压、消除闪变并能充分地利用现有的设备,减少基本费用开支。核心部件是控制器。由信号处理器DSP和VLSI电路为基础,在每一个电网周期对所有的数据进行分析1ms内据算出所需无功补偿的技术,所有相的谐波分量同时都被计算出来,发出触发信号确保5~20ms投切电容器组,AR型串7%的电抗器(平衡补偿系统),或14%的电抗器(不平衡补偿系统),以防止电容器组与电网发生5次、3次谐波并联谐振。

汽车工业点焊设备绝大多数是用380V电源,由二相供电(L1—L2、L2—L3或L3—L1),通常三相负载的平衡问题在工厂供电设计时就已经考虑,把点焊机的供电布局接近平衡,避免因三相不平衡而出现零序电流,所以在这种情况下通常采用三相平衡就可以了。参看欧美几个大汽车公司的有关资料,点焊机的供电不平衡度为20%以下时,对供电网络采用无功功率平衡补偿无大碍,在不平衡度超过20%时,就应该考虑选用不平衡补偿。

上海民恩的三相不平衡补偿系统,补偿电容器组额定电压为480V,且电容器分为三组,为三角形接法,每组分别连接L1-L2、L2-L3、L3-L1。当点焊机一旦工作,控制器同步进行网络

检测分析,分别确定连接L1-L2、L2-L3、L3-L1电源上的点焊机所需的无功功率,并与设定的目标值比较,在小于20ms内投切对应在L1-L2、L2-L3、L3-L1上的不同容量的电容器组,从而及时补偿无功功率。

上海民恩动态无功补偿的优势,最重要的是补偿响应时间和补偿电容器的接线方式。在国外公开资料中,只有上海民恩等少数公司能做到5-20ms投切全部电容器组,世界上其他著名厂家只能做到80ms或100ms投切一步电容器组。对于跨接在二相供电上的焊接系统的补偿,最先进、安全的技术是上海民恩的三角形接法的三相不平衡补偿系统。

-----------以上资料由上海民恩电气有限公司提供

串联电抗器的作用

1电抗器的作用 串联电抗器顾名思义就是指串联在电路中电抗器(电感),无功补偿和谐波治理行业内的串联电抗器主要是指和电容器串联的电抗器,电抗器和电容器串联后构成谐振回路,起到消谐或滤波的作用,而电抗器在谐振回路中起的作用如下: 1.1降低电容器组的涌流倍数和涌流频率。 降低电容器组的涌流倍数和涌流频率,以保护电容器和便于选择配套设备。加装串联电抗器后可以把合闸涌流抑制在1+电抗率倒数的平方根倍以下。国标GB50227-2008要求应将涌流限制在电容器额定电流的20倍以下(通常为10倍左右),为了不发生谐波放大(谐波牵引),要求串联电抗器的伏安特性尽量为线性。网络谐波较小时,采用限制涌流的电抗器;电抗率在0.1%-1%左右即可将涌流限制在额定电流的10倍以下,以减少电抗器的有功损耗,而且电抗器的体积小、占地面积小、便于安装在电容器柜内。采用这种电抗器是即经济,又节能。 1.2与电容器组构成全谐振回路,滤除特征次谐波。 串联滤波电抗器感抗与电容器容抗全调谐后,组成特征次谐波的交流滤波器,滤去某次特征次谐波,从而降低母线上该次谐波的电压畸变,减少线路上特征次谐波电流,提高网络同母线供电的电能质量。 1.3与电容器组构成偏谐振回路,抑制特征次谐波。 先决条件是需要清楚电网的谐波情况,查清周围电力用户有无大型整流设备、电弧炉、轧钢机等能产生谐波的负荷,有无性能不良好的高压变压器及高压电机,尽可能实测一下电网谐波的实际值,再根据实际谐波成分来配置合适的电抗器。 1.4提高短路阻抗,减小短路容量,降低短路电流。 无功补偿支路前置了串联电抗器,当出现电容器故障时,例如电容器极板击穿或对地击穿,系统通过系统阻抗和串联电抗器阻抗提供短路电流,由于串联电抗器阻抗远大于系统阻抗,所以有效降低了电容器短路故障时的短路容量,保证了配电断路器断开短路电流可能,提高了系统的安全、稳定性能。 1.5减少电容器组向故障电容器组的放电电流,保护电力电容器。 当投运的无功补偿电容器组为多个支路时,其中一组电容器出现故障时其它在运行的电容器组会通过故障电容器放电,串联电抗器可以有效减少这种放电涌流,保证保护装置切断故障电容器组的可能性。 1.6减少电容器组的投切涌流,降低涌流暂态过程的幅值,有利于接触器灭弧。 接触器投切电容器的过程中都会产生涌流,串联电抗器可以有效抑制操作电流的暂态过程,有利于接触器触头的断开,避免弧光重燃,引起操作过电压。降低过电压的幅值,保护电容器,避免过电压击穿或绝缘老化。 1.7减小操作电容器组引起的过电压幅值,避免电网过电压保护。 接触器投切电容器的过程中都会产生操作过电压,串联电抗器可以有效抑制接触器触头重击穿现象出现,降低操作过电压的幅值,保护电容器,避免过电压击穿或加速绝缘老化。 随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。产生电网谐波“污染”的另一个重要原因是电网接有冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。这不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。 电能质量的综合治理应遵循谁污染谁治理,多层治理、分级协调的原则。在地区的配电和变

RLC联谐振频率及其计算公式

RLC串联谐振频率及其计算公式串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是X L =X C时,为R-L-C串联电路产生谐振之条件。

图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即 Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路之频率: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。

7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之 间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 πfL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L?X C) 当 f = f r时, Z = R 为最小值,电路为电阻性。

电抗器基本知识介绍

电抗器基本知识介绍 一、干式电抗器的种类与用途 电抗器是重要的的电力设备,在电力系统中起补偿杂散容性电流、限制合闸涌流、限制短路电流、滤波、平波、启动、防雷、阻波等作用。根据电抗器的结构型式可分为空心电抗器、铁心电抗器与半心电抗器。 补偿杂散容性电流的电抗器主要有并联电抗器与消弧线圈。并联电抗器的作用是限制电力传输系统的工频电压升高现象,工频电压升高的原因在于空载长线的电容效应、不对称对地短路故障与突然甩负荷。消弧线圈通常应用在配电系统,它的作用是使得单相对地短路电流不能持续燃烧,导致电弧熄灭。消弧线圈通常具有调谐功能,可根据电力系统的杂散电容与脱谐度改变其电感值。 串联电抗器或称阻尼电抗器的作用是限制合闸涌流。串联电抗器与电力电容器串联使用,用于限制对电容器组合闸时的浪涌电流,通常选取电容器组容量的6%。 限流电抗器是串联于电力系统之中,多用于发电机出线端或配电系统的出线端,起限制短路电流的作用。为了与其他电力设备配合,其实际阻抗不能小于额定值。 滤波电抗器与电容器配合使用,构成LC谐振支路。针对特定次数的谐波达到谐振,滤除电力系统中的有害次谐波。 平波电抗器应用在直流系统中,起限制直流电流的脉动幅值作用。在设计平波电抗器时须注意线圈中的电流是按电阻分布的,设计时最好采用微分方程组计算。若按交流阻抗设计可能造成线圈出现过热现象,且阻抗值未必准确。 启动电抗器用于交流电动机启动时刻,限制 防雷线圈通常用于变电站进出线上,减 阻波器与防雷线圈的应用场合相仿,线 用于阻碍电力 便于将通讯载波提

取出来,实现电力载波的重要设备。 户外空心干式电抗器是20世纪80年代出现的新一代电抗器产品,如图1.1所示。它是利用环氧绕包技术将绕组完全密封,导线相互粘接大大的增加了绕组的机械强度。同时利用新的耐候材料喷吐于包封的表面,使得产品能够满足在户外的苛刻条件下运行。包封间由撑条形成气道,包封间与包封内绕组多采用并联连接以便满足容量与散热的要求。为了满足各个并联支路电流合理分配的需要,采用分数匝来减少支路间的环流问题。为了能够形成分数匝,采用星形架作为绕组的出线连接端。绕组的上下星架通过拉纱方式固定,固化后整个产品成为一个整体。这种结构的电抗器与传统方式的电抗器相比较具有可以直接用于户外、电感为线性、噪音小、防爆、使用维护方便等特点,因而对于某些此产品有可能正逐步取代其他形式的电抗器。 由于受到绕组结构的限制,户外空芯干式电抗器通常不适合电感量(>700mH )较大或电感较小(<0.08mH)但电流较大的场合,否则就会造成体积过于庞大或者支路电流极不平衡。在这两种极端条件下,需要适当改变线圈的绕线形式。此外,空心电抗器通常占地面积最大、对外漏磁最严重,这是这类电抗器的主要缺点。 干式铁心电抗器主要是由铁心和线圈组成的,如图1.2所示。干式铁心电抗 器主要由铁心、线圈构成。铁心可分为铁心柱与 铁轭两部分,铁心柱通常是由铁饼与气隙组成。 线圈与铁心柱套装,并由端部垫块固定。铁心柱 则由螺杆与上下铁轭夹件固定成整体。对于三相 电抗器常采用三心柱结构,但对于三相不平衡运 行条件下,需采用多心柱结构,否则容易造成铁 心磁饱和问题。干式铁心电抗器的线圈通常采用 浇注、绕包与浸漆方式。由于铁磁介质的导磁率极高, 而且其磁化曲线是非线性的, 故用在铁心电抗器中的铁心必须带气隙。带气隙的铁心,其磁阻主要取决于气隙的尺寸。由于气隙的磁化特性基本上是线性的, 所以铁心电抗器的电感值取决于自身线圈匝数以及线圈和铁心气隙的尺寸。由于干式铁心电抗器是将磁能主要存贮于铁心气隙当中,铁心相当于对磁路短路,相当于只有气隙总长度的空心线圈。因此铁心电抗器线圈的匝数较少, 从而图1.2 干式铁心电抗器

串联谐振耐压试验工作原理

https://www.360docs.net/doc/9e8456170.html,/100 串联谐振耐压试验工作原理 串联谐振耐压试验装置又叫串联谐振,分为调频式和调感式。一般是由变频电源、励磁变压器、电抗器和电容分压器组成。被试品的电容与电抗器构成串联谐振连接方式;分压器并联在被试品上,用于测量被试品上的谐振电压,并作过压保护信号。 串联谐振耐压试验装置的应用 串联谐振广泛用于电力、冶金、石油、化工等行业,适用于大容量,高电压的电容性试品的交接和预防性试验。串联谐振耐压试验装置主要用于以下方面: 1、6kV-500kV高压交联电缆的交流耐压试验 2、发电机的交流耐压试验 3、GIS和SF6开关的交流耐压试验 4、6kV-500kV变压器的工频耐压试验 5、其它电力高压设备如母线,套管,互感器的交流耐压试验。 串联谐振耐压试验装置的工作原理 串联谐振变在电子设备的LC电路,也称为谐振电路,谐振电路,或调谐电路,

https://www.360docs.net/doc/9e8456170.html,/100由两个电子部件连接在一起,一个电感,由字母L表示,和一个电容器,由字母C的电 路可以作为表示作为电谐振器,一个的电模拟音叉,将能量存储在振荡电路的谐振频率。 串联谐振变电路被使用,也可以用于在特定频率产生的信号,或从一个更复杂的信号 拾取出来的信号在特定频率。它们在许多电子设备中,特别是无线电设备,电路,例如用 于关键元件的振荡器,过滤器,调谐器和混频器。 串联谐振变电路是一个理想化的模型,因为它假定不存在由于耗散能量的电阻。 LC电路的任何实际实施将始终包括的组件和连接导线内的小,但非零电阻造成的损失。虽 然没有实际的电路是没有损耗,但却是有益的研究这个理想的电路形式,以取得理解和物理 直觉。对于一个电路模型结合性。 如果一个充电电容器两端的电感器相连,电荷将开始流过电感器,一个磁场建立它周 围和减少电容器上的电压。最终在所有电容器的电荷将消失,其两端的电压将达到零。然 而,电流将继续下去,因为电感器抗蚀剂中的电流变化。以保持其流动的能量被从磁场, 这将开始下降萃取。该电流开始对电容器具有相反极性的电压充电到其原始充电。当磁场 被完全消耗的电流将停止,充电将再次如前存储在电容器中,具有相反的极性。然后循环 将再次开始,与通过电感的电流在相反的方向。 串联谐振变来回流动的电容器极板之间,通过电感。能源来回振荡电容和电感之间, 直到(如果不是从外部电路通过补充电源)内部电阻,使振荡消失。它的作用,称为数学

无功补偿电容器串联电抗器的选用

无功补偿电容器串联电抗器的选用 在高压无功补偿装置中,一般都装有串联电抗器,它的作用主要有两点:1)限制合闸涌流,使其不超过20倍;2)抑制供电系统的高次谐波,用来保护电容器。因此,电抗器在无功补偿装置中的作用非常重要。 然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。 下面总结电容器串联电抗器时,电抗率选择的一般规律。 1. 电网谐波中以3次为主 根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。 2. 电网谐波中以3、5次为主 (1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。 3. 电网谐波以5次及以上为主 (1)5次谐波含量较小,应选择4.5%~6%的串联电抗器;(2)5次谐波含量较大,应选择4.5%的串联电抗器。对于采用0.1%~1%的串两电抗器,要防止对5次、7次谐波的严重放大伙谐振。对于采用4.5%~6%的串联电抗器,要防止怼次谐波的严重放大或谐振。当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器端的电压升高的情况分析计算,可选用0.5%~1%的电抗器。 根据以上的选择原则,对无功补偿装置中的串联电抗器有以下建议: (1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,必须考虑电容器装置接入处的谐波背景。 (2)对于已经投运的电容器装置,其串联电抗器选择是否合理须进一步验算,并组织现场实测,了解电网谐波背景的变化。对于电抗率选择合理的电容器装置不得随意增大或减小电容器组的容量。 (3)电容器组容量变化很大时,可选用于电容器同步调整分接头的电抗器或选择电抗

变压器串联电抗器

串联电抗器的作用及选择来源:中国互感器网时间:2007-09-28 字体:[ 大中小] 投稿由计算结果可以看出,选择6%的串联电抗器对 3 次谐波电压放大率FVN 为1.21,5 次谐波电压放大率FVN 为0.69。对经过与现场谐波实测数据比较发现: 3 次谐波电压放大率FVN 与以上理论计算值基本一致, 5 次谐波电压放大率FVN 但的误差较大。文献[5]认为:简化的电路模型对于 3 次谐波电压放大率FVN 的计算有工程价值,但对 5 次谐波电压放大率FVN 的计算无工程价值。2400 kvar 的电容器组配置电抗率为6%的串联电抗器,产生了3 次谐波放大,且超过公用电网谐波电压(相电压)3.2%的限值。因此可以判断在如此谐波背景下,2400kvar 的电容器组配置电抗率为6%的串联电抗器是不恰当的。(5)电抗率的合理选择要做到合理地选择电抗率必须了解该电容器接入母线处的背景谐波,根据实测结果对症下药。并联电容器的串联电抗器,IEC 标准按照其作用分为阻尼电抗器和调谐电抗器。阻尼电抗器的作用是限制并联电容器组的合闸涌流,其电抗率可选择得比较小,一般为0.1%~1%;调谐电抗器的作用是抑制谐波。当电网中存在的谐波不可忽视时,则应考虑使用调谐电抗器,其电抗率可选择得比较大,用以调节并联电路的参数,使电容支路对于各次有威胁性谐波的最低次谐波阻抗成为感性,据式(4)可得K 值即对于谐波次数最低为5 次的,K>4%;对于谐波次数最低为 3 次的,K>11.1%。如果该变电所的2400 kvar 电容器组的电抗率分别按照0.1%、1%、4.5%、12%配置,试将有关参数代入式(3),经过计算,1~7 次谐波电压放大率FVN 的结果如表3 所示。由计算结果可以看出,选择12%的串联电抗器对 3 次谐波电压放大率FVN 仅为0.50。因此电抗率按照12%配置是值得进一步验算的。经过进一步验算(谐振分析、限制涌流分析因篇幅所限略),选择12%的串联电抗器不会发生3 次、5 次谐波并联谐振或接近于谐振,同时另外一组电抗率为12%的电容器单组或追加投入时,涌流能够得到有效限制。(6)电抗率选择的进一步分析值得一提的是我国的电网普遍存在 3 次谐波,故不同电抗率所对应的 3 次谐波谐振电容器容量QCX3 应该引起足够的重视。由式(5)计算可得,分别选择4.5%、6%和12%的串联电抗器后,3 次谐波谐振电容器容量分别为即当串联电抗率选4.5%,电容器的容量达到或接近电容器装置接入母线的短路容量的 6.6%时,就会发生3 次谐波并联谐振或接近于谐振;当串联电抗率选6%,电容器的容量达到或接近电容器装置接入母线的短路容量的 5.1%时,也会发生 3 次谐波并联谐振或接近于谐振;当串联电抗率选12%,一般不会发生 3 次谐波并联谐振。一般情况下,110kV 变电所装设的电容器的容量较小(0.05S d ~0.06 S d),不会发生3 次谐波并联谐振或接近于谐振,但会引起3 次谐波的放大;而220kV 变电所装设的电容器的容量较大,完全有可能发生 3 次谐波并联谐振或接近于谐振,因此务必引起设计人员的高度重视。 3 串联电抗器的选择 3.1 串联电抗器额定端电压串联电抗器的额定端电压与串联电抗率、电容器的额定电压有关。该额定端电压等于电容器的额定电压乘以电抗率(一相中仅一个串联段时),10kV 串联电抗器的额定端电压的选择见表4。来源:http https://www.360docs.net/doc/9e8456170.html, 3.2 串联电抗器额定容量串联电抗器额定容量等于电容器的额定容量乘以电抗率(单相和三相均可按此简便计算)。由此可见,串联电抗器额定端电压、额定容量均与电容器的额定电压、额定容量及电抗率有关。电容器的额定电压、额定容量

串联谐振系统讲解

在电阻、电感及电容所组成的串联电路内,当容抗XC与感抗XL相等时,即XC=XL,电路中的电压U与电流I的相位相同,电路呈现纯电阻性,这种现象叫串联谐振。当电路发生串联谐振时电路的阻抗Z=√R^2 +(XC-XL)^2=R,电路中总阻抗最小,电流将达到最大值。 串联谐振的三大应用 高压大电容量设备进行交流耐压试验时,试验变压器容量要求非常大,试验设备笨重,而 应用串联谐振原理可以利用电压及容量小得多的设备产生所需的试验电压,满足试验要求。下面三新电力给大家介绍一下串联谐振试验装置在各个领域的应用。 1.在电缆试验中的应用 城乡电网中电缆的大量使用,其故障时有发生。为保证交联电缆的安全运行,国家电网公司对电缆交接和预防性试验做出了新的规定,用交流耐压试验替代原来的直流耐压试验,以 避免直流试验的累积效应对电缆造成损伤。

国际大电网会议(CIGRE)21.09工作组的建议导则提出高压挤包绝缘电缆的现场试验采用DAXZ串联谐振试验系统,频率范围为30~300Hz。并在1997年发表的题为“高压橡塑电缆系统敷设后的试验”的总结报告中明确指出以下3条。 ①由于直流电场强度按电阻率分布,而电阻率受温度等影响较大,同时耐压试验过程中,终端头的外部闪络引起的行波可能造成绝缘损坏。 ②直流耐压试验在很高电压下,难以检出相间的绝缘缺陷。 ③直流电压本身容易在电缆内部集起空间电荷,引起电缆附件沿绝缘闪络,因波过程还会产生过电压,这些现象迭加在一起,使局部电场增强,容易形成绝缘弱点,在试验过程中可能导致绝缘击穿,并可能在运行中引起事故。 很多电缆在交接试验中按GB50150-2006标准进行直流耐压试验顺利进行,但投运不久就发生绝缘击穿事故,正常运行的电缆被直流耐压试验损坏的情况也时有发生。交流耐压试验因其电场分布符合运行实际情况,故对电缆的试验最为有效。 通常交流电力电缆的电容量较大,试验电流也很大,调感式设备的体积将非常巨大并且电感调节也很困难,而调频式装置则灵活性更强,更易于实现。因此,电缆现场交流耐压试验多利用变频谐振试验设备。三新可根据客户需求制造10KV、35KV、110KV、220KV、500KV 电压等级的串联谐振试验装置。 2.在GIS设备中的应用 气体绝缘开关设备在工厂整体组装完成以后或分单元进行调整试验,试验合格后以分单元运输的方式运往现场安装。运输过程中的振动、撞击等可能导致GIS元件或组装件内坚固件松动或移位;安装过程中,在联结、密封等工艺处理方面可能失误,导致电极表面刮伤或安装错位引起电极表面缺陷;安装现场可能从空气中进入悬浮尘埃。导电微粒杂质等,这些在安装现场通过常规试验将难以检查出来,对GIS的安全运行将是极大的威胁。 由于试验设备和条件所限,早期的GIS产品多数未进行严格的现场耐压试验。事故统计表明没有进行现场耐压试验的GIS大都发生了事故。因此,GIS必须进行现场耐压试验。 GIS的现场耐压主要包括交流电压、振荡操作冲击电压和振荡雷电冲击电压等3种试验方法。其中交流耐压试验是GIS现场耐压试验最常见的方法,它能够有效地检查异常的电场结构(如电极损坏)。 目前,由于试验设备和条件所限,现场一般只做交流耐压试验。IEC517和GB7674认定对SF6气体绝缘试验电压频率在10~300Hz范围内与工频电压试验基本等效。国内外大多采用调频式串联谐振耐压试验装置进行GIS现场交流耐压试验。

电抗器工作原理及作用(用途)

电抗器 懂得放手的人找到轻松,懂得遗忘的人找到自由,懂得关怀的人找到幸福!女人的聪明在于能欣赏男人的聪明。生活是灯,工作是油,若要灯亮,就要加油!相爱时,飞到天边都觉得踏实,因为有你的牵挂;分手后,坐在家里都觉得失重,因为没有了方向。

内容简介一:电抗器在电力系统中的作用 二:电抗器的分类 三:详细介绍及选用方法 四:各种电抗器的计算公式 五:经典问答 一:电抗器在电力系统中的作用

由于电力系统中大量使用电力电子器件,直流用电,变频用电等,产生了大量的谐波,使得看是简单的问题变得复杂了,用以补偿的电容器频繁损坏,有的甚至无法投入补偿电容器,当谐波较小时,可以用谐波抑制器,但系统中的谐波较高时,就要用串联电抗器了,放大谐波电流. 电抗率为4.5%~7%滤波电抗器,用于抑制电网中5次及以上谐波;电抗率为12%~13 %滤波电抗器,用于抑制电网中3次及以上谐波.电抗器装于柜内,应加装通风设备散热.电抗器能在额定电压的1.35倍下长期运行,常用电抗器的电抗率种类有4.5%、5%、6%、7%、12%、13%等,电抗器的温升:铁芯85K,线圈95K,绝缘水平:3kV/1min,无击穿与闪络,电抗器在1.8倍额定电流下的电抗值,其下降值不大于5%,电抗器有三相、单相之分,三相电抗器任二相电抗值之差不大于±3%,电抗器可用于400V或600V系统,电抗器噪声等级,不大于50dB,电抗器耐温等级H级以上. 信息来自:输配电设备网 电力系统中所采取的电抗器,常见的有串联电抗器和并联电抗器。串联电抗器主要用来限制短路电流,也有在滤波器中与电容器串联或并联用来限制电网中的高次谐波。并联电抗器用来吸收电网中的容性无功,如500kV电网中的高压电抗器,500kV变电站中的低压电抗器,都是用来吸收线路充电电容无功的;220kV、110kV、35kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。可以通过调整并联电抗器的数量来调整运行电压。超高压并联电抗器有改善电力系统无功功率有关运行状况的多种功能,主要包括:1)轻空载或轻负荷线路上的电容效应,以降低工频暂态过电压。2)改善长输电线路上的电压分布。3)使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动,同时也减轻了线路上的功率损失。4)在大机组与系统并列时,降低高压母线上工频稳态电压,便于发电机同期并列。5)防止发电机带长线路可能出现的自励磁谐振现象。6)当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容,以加速潜供电流自动熄灭,便于采用单相快速重合闸。 电力网中所采用的电抗器,实质上是一个无导磁材料的空心线圈。它可以根据需要,布置为垂直、水平和品字形三种装配形式。在电力系统发生短路时,会产生数值很大的短路电流。如果不加以限制,要保持电气设备的动态稳定和热稳定是非常困难的。因此,为了满足某些断路器遮断容量的要求,常在出线断路器处串联电抗器,增大短路阻抗,限制短路电流。 由于采用了电抗器,在发生短路时,电抗器上的电压降较大,所以也起到了维持母线电压水平的作用,使母线上的电压波动较小,保证了非故障线路上的用户电

串联谐振电抗器介绍说明_串联谐振装置

https://www.360docs.net/doc/9e8456170.html, 串联谐振电抗器介绍说明_串联谐振装置武汉汇卓电力自动化有限责任公司关注到我国电力事业的迅猛发展以及城市电网改造 的进行,用交联聚乙烯(XLPE)电力电缆代替架空线路已经成为一种趋势,且电压等级和 截面积、长度等都不断增加,导致交流耐压设备也不断增加,试验容量也不断提升,传统交 流耐压设备现主要为HZXZ系列串联谐振试验装置,其高压谐振电抗器多采用“带铁芯式 桶型”结构,此结构在很大程度上增加了单个设备的体积及重量,并且,带铁芯是结构其散 热效果较差,考虑现场试验的实际情况和操作搬运的方便性及产品整体实用性能,我公司特 研发出“超轻型环形空心电抗器”,这在很大程度上解决了现场搬运工作,提高工作效率。 串联谐振电抗器主要性能特点: 1、内部绝缘采用耐高温、高绝缘性的硅胶灌封浇注; 2、空芯结构设计,较传统铁芯式结构相比,改善了铁芯磁饱和及散热的性能; 3、外壳采用POM材料开模具一次注塑成型,表面洁净光滑、机械强度高、耐高温、 耐碰撞、耐磨损;

https://www.360docs.net/doc/9e8456170.html, 4、整体结构为干式空芯环形结构,大大改善产品搬运、安装及拆卸、储存工作; 5、积木式组合方式、环形端面设计结构,最大限度改善散热性能,改善散热量,提高使用性能及工作寿命; 参考常规配置 1、10kV电缆配置;(按截面积300mm2为例)电抗器规格:10kV/5.5A/2.8H

https://www.360docs.net/doc/9e8456170.html, 被试品对象电抗器组合方式激励变输出选择变频电 源配置型号

https://www.360docs.net/doc/9e8456170.html, 10kV电缆1公里2台串联0.9kV5kW110kVA/22kV 10kV电缆2公里3台串联0.9kV5kW165kVA/22kV 10kV电缆3公里2台串联2组并 0.9kV10kW220kVA/22kV 联

RLC串联谐振的频率与计算公式

RLC 串联谐振频率及其计算公式 2009-04-21 09:51 串联谐振是指所研究的串联电路部分的电压和电流达到同相位 ,即电路中电感的感抗和电容的容抗在数值 上时相等的,从而使所研究电路呈现纯电阻特性 ,在给定端电压的情况下,所研究的电路中将岀现最大电流,电 路中消耗的有功功率也最大. 1. 谐振定义:电路中L 、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量, 即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器 L 及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率 (resonance),或称共振频率,以 f r 表示之。 2 2 4. 串联谐振电路之条件如图 1所示:当Q=Q ? I X L = I X C 也就是 X L =X C 时,为R-L-C 串联电路产生谐振之条件。 图1串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即 Z =R+jX L ?jX c =R nr7 RR PF — cos 0 = — = — = 1 ⑶电路功率因子为1。即 / … 2 (4) 电路平均功率最大。即 P=l R (5) 电路总虚功率为零。即 Q L =Q C ?Q T =Q L ?Q C =0 6. 串联谐振电路之频率: (2) 电路电流为最大。即 一 E E T JL 1―一 Z R

(1) 公式: O c I 2 X C _V C _ X c 11 ~P~ ~ I 2 R — "F —〒—2兀f’CR ~ co r CR 1 fl = ^x L x~ R\c ~ R (3) 品质因子Q 值愈大表示电路对谐振时之响应愈佳。一般 Q 值在10~ 100之 间。 8. 串联谐振电路阻抗与频率之关系如图 (2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L =2 n fL ,与频率成正比,故为一斜线 当f = fr 时,Z = R 为最小值,电路为电阻性。 当f > f r 时,X L > X c ,电路为电感性。 当f v fr 时,X L < X c ,电路为电容性。 当f = 0或f =灯寸,Z = 空电路为开路。 (5)若将电源频率f 由小增大,则电路阻抗 Z 的变化为先减后增。 9. 串联谐振电路之选择性如图(3)所示: ⑵R - L -C 串联电路欲产生谐振时,可调整电源频率 使其 达到谐振频率f r ,而与电阻R 完全无关。 f 、电感器L 或电容器C 7. 串联谐振电路之质量因子: ⑴定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子 (2) 公式: I 2 R —2" R (o r L 与频率成反比,故为一曲线 (4)阻抗 Z = R+ j(X L ?X c )

串联谐振电抗器全分类讲解

https://www.360docs.net/doc/9e8456170.html, 串联谐振电抗器全分类讲解 串联谐振电抗器也叫电感器,一个导体通电时就会在其所占据的一定空间范围产生磁场,所以所有能载流的电导体都有一般意义上的感性。然而通电长直导体的电感较小,所产生的磁场不强,因此实际的电抗器是导线绕成螺线管形式,称空心电抗器;有时为了让这只螺线管具有更大的电感,便在螺线管中插入铁心,称铁心电抗器。电抗分为感抗和容抗,比较科学的归类是感抗器(电感器)和容抗器(电容器)统称为电抗器,然而由于过去先有了电感器,并且被称为电抗器,所以现在人们所说的电容器就是容抗器,而电抗器专指电感器。

https://www.360docs.net/doc/9e8456170.html, 一、电抗器的作用 串联谐振电抗器的接分串联和并联两种方式。串联电抗器通常起限流作用,并联电抗器经常用于无功补偿。串联电抗器主要用来限制短路电流,在滤波器中与电容器串联或并联用来限制电网中的高次谐波。 220kV、110kV、35kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。可以通过调整并联电抗器的数量来调整运行电压。超高压并联电抗器有改善电力系统无功功率有关运行状况的多种功能,主要包括: 1、轻空载或轻负荷线路上的电容效应,以降低工频暂态过电压; 2、改善长输电线路上的电压分布; 3、使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动同时也减轻了线路上的功率损失; 4、在大机组与系统并列时降低高压母线上工频稳态电压,便于发电机同期并列; 5、防止发电机带长线路可能出现的自励磁谐振现象;

https://www.360docs.net/doc/9e8456170.html, 6、当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容,以加速潜供电流自动熄灭,便于采用。 二、电抗器的分类 按结构及冷却介质、按接法、按功能、按用途进行分类。 1、按结构及冷却介质:分为空心式、铁心式、干式、油浸式等,例如:干式空心电抗器、干式铁心电抗器、油浸铁心电抗器、油浸空心电抗器、夹持式干式空心电抗器、绕包式干式空心电抗器、水泥电抗器等。 2、按接法:分为并联电抗器和串联电抗器。 3、按功能:分为限流和补偿。 4、按用途:按具体用途细分,例如:限流电抗器、滤波电抗器、平波电抗器、功率因数补偿电抗器、串联电抗器、平衡电抗器、接地电抗器、消弧线圈、进线电抗器、出线电抗

RLC并联谐振电路

电路课程设计举例: 以RLC 并联谐振电路 1.电路课程设计目的 (1)验证RLC 并联电路谐振条件及谐振电路的特点; (2)学习使用EWB 仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的RLC 串联电路图如下图所示。 图1 RLC 并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 )1(111L C j R L j C j R Y ωωωω-+=++= 发生谐振时满足L C ωω0 01 = ,则RLC 并联谐振角频率ω0和谐振频 率 f 分别是 LC LC f πω21, 10 0= = RLC 并联谐振电路的特点如下。 (1)谐振时 Y=G,电路呈电阻性,导纳的模最小G B G Y =+=2 2 . (2)若外施电流 I s 一定,谐振时,电压为最大,G I U S o =,且与外施电 流同相。 (3)电阻中的电流也达到最大,且与外施电流相等,I I S R = . (4)谐振时 0=+I I C L ,即电感电流和电容电流大小相等,方向相反。

3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有几种方法可以观察电路发生串联谐振: (1)利用电流表测量总电流 I s 和流经R 的电流I R ,两者相等时即 为并联谐振。 (2)利用示波器观察总电源与流经 R 的电流波形,两者同相即为并 联谐振。 例题:已知电感L 为0.02H,电容C 为50uf,电阻R 为200Ω。 由 LC f π210 = 计算得, Hz f 1.1570 = 按上图进行EWB 的仿真,得到下图。

流经电阻R的电流和总电流I相等为10mA,流进电感L和电容C的总电流为5.550uF,几乎为零,所以电路达到谐振状态。 总电源与流经R的电流波形同相,所以电路达到并联谐振状态。4.实验体会和总结 这次实验我学会了运用EWB仿真RLC并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

串联电抗器抑制谐波

串联电抗器如何抑制谐波 关键字:串联电抗器谐波抑制电抗率选择无功补偿电抗器 前言 随着电力电子技术的广泛应用与发展,供电系统中增加了大量的非线性负载,如低压小容量家用电器和高压大容量的工业用交、直流变换装置,特别是静止变流器的采用,由于它是以开关方式工作的,会引起电网电流、电压波形发生畸变,从而引起电网的谐波“污染”。产生电网谐波“污染”的另一个重要原因是电网接有冲击性、波动性负荷,如电弧炉、大型轧钢机、电力机车等,它们在运行中不仅会产生大量的高次谐波,而且会使电压波动、闪变、三相不平衡日趋严重。这不仅会导致供用电设备本身的安全性降低,而且会严重削弱和干扰电网的经济运行,形成了对电网的“公害”。 电能质量的综合治理应遵循谁污染谁治理,多层治理、分级协调的原则。在地区的配电和变电系统中,选择主要电能质量污染源和对电能质量敏感的负荷中心设立电能质量控制枢纽点,在这些点进行在线电能质量监测、采取相应的电能质量改善措施显得格外重要。 在并联电容器装置接入母线处的谐波“污染”暂未得到根本整治之前,如果不采取必要的措施,将会产生一定的谐波放大。在并联电容器的回路中串联电抗器是非常有效和可行的方法。串联电抗器的主要作用是抑制高次谐波和限制合闸涌流[1],防止谐波对电容器造成危害,避免电容器装置的接入对电网谐波的过度放大和谐振发生。但是串联电抗器绝不能与电容器组任意组合,更不能不考虑电容器组接入母线处的谐波背景。文章着重就串联电抗器抑制谐波的作用展开分析,并提出电抗率的选择方法。 电抗器参数的计算 1 基本情况介绍 某110kV变电所新装两组容量2400kvar的电容器组,由生产厂家提供成套无功补偿装置,其中配置了电抗率为6%的串联电抗器,容量为144kvar。电容器组投入运行之后,经过实测发现,该110kV变电所的10kV母线的电压总畸变率达到4.33%,超过公用电网谐波电压(相电压)4%的限值[2],其中3次谐波的畸变率达到3.77%,超过公用电网谐波电压(相电压)3.2%的限值[2]。

RLC串联谐振频率及其计算公式

R L C串联谐振频率及其计算公式 2009-04-21 09:51 串联谐振是指所研究的串联电路部分的电压和电流达到同相位,即电路中电感的感抗和电容的容抗在数值上时相等的,从而使所研究电路呈现纯电阻特性,在给定端电压的情况下,所研究的电路中将出现最大电流,电路中消耗的有功功率也最大. 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释 出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q I2X L = I2 X C也就是 X L =X C 时,为R-L-C 串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路之特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C Q T=Q L Q C=0 6. 串联谐振电路之频率: (1) 公式:

(2) R - L -C 串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r ,而与电阻R完全无关。 7. 串联谐振电路之质量因子: (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率 之比,称为谐振时之品质因子。 (2) 公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 π fL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L X C) 当 f = f r时,Z = R 为最小值,电路为电阻性。 当f >f r时,X L>X C,电路为电感性。

电抗器的作用

电路中电抗器一般有两个作用:①抑制浪涌(电压、电流);②抑制谐波电流。 1. 抑制浪涌: 在大功率电力电子电路中,合闸瞬间,往往产生一个很大的冲击电流(浪涌电流),浪涌 电流虽然作用时间短,但峰值却很大。比如,电弧炉、大型轧钢机,大型开关电源,UPS 电源,变频器等,开机浪涌电流往往超过正常工作电流的100倍以上。在输入侧串接电抗器,能有效的抑制这种浪涌电流。『合闸瞬间,电抗器呈高阻态(相当于开路)』。 2. 抑制谐波电流 随着电力电子技术的广泛应用,我们的电网中增加了大量的非线性负载,比如,AC-DC 电源,UPS,变频器等,它们都是以开关方式工作的。这些以开关方式工作的用电设备, 往往变成了谐波电流的发生源,“污染”电网,使电网电压波形畸变。谐波的危害之一便 是中心线过载发热燃烧。电抗器的接入,能有效抑制谐波污染。 电力系统中所采取的电抗器常见的有串联电抗器和并联电抗器。串联电抗器主要用来限制 短路电流,也有在滤波器中与电容器串联或并联用来限制电网中的高次谐波。 220kV、110kV、35kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。可以通过调整并联电抗器的数量来调整运行电压。超高压并联电抗器有改善电力系统无功功率有关 运行状况的多种功能,主要包括:(1)轻空载或轻负荷线路上的电容效应,以降低 工频暂态过电压。(2)改善长输电线路上的电压分布。(3)使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动同时也减轻了线路上的功率损失。(4)在大机组与系统并列时降低高压母线上工频稳态电压,便于发电机同期并列。 (5)防止发电机带长线路可能出现的自励磁谐振现象。(6)当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容,以加速潜供电流自动熄灭,便于采用。电抗器的接线分串联和并联两种方式。串联电抗器通常起限流作用, 并联电抗器经常用于无功补偿。目前主要用于无功补偿和滤波. 1.半芯干式并联 电抗器:在超高压远距离输电系统中,连接于变压器的三次线圈上。用于补偿线路的电容 性充电电流,限制系统电压升高和操作过电压,保证线路可靠运行。 2.半芯干式串联 电抗器:安装在电容器回路中,在电容器回路投入时起合闸涌流作用并抑制谐波

串联谐振电路分析

外施耐压串联谐振电路分析 已知:串联谐振装置电抗器组合方式为两串三并(即三条并联支路上各有两个电抗器串联起来),单个电抗器电感值为L ,单个电抗器电阻值为r ,所有电抗器的铭牌参数均一致。被试品电容值为C ,试验中被试品加压到U ,励磁变选用的高低压抽头电压变比为K ,励磁变视在功率S ,励磁变额定电压U o ,励磁变额定电流为I o ,被试品加压到U 时励磁变的损耗为P 损耗。 一.需计算量如下: 1.画出串联谐振时整个电路的基本电路图。 2.画出谐振时高压侧的向量图。 3.串联谐振频率f 的计算公式。 f= LC 21 π(本题装置串联谐振频率f=LC 832 π) 4.串谐高压侧电路电流I 高压侧的计算公式,并且算出分配到单个电抗器的电 流,电压时多少? I 高压侧=U jC f 2 π;谐振时:分配到单个电抗器电流L I = LC UC 6;

分配到单个电抗器电压L U =2 U -。 5.串谐低压侧电路电流I 低压侧的计算公式。 I 低压侧=U jC f 2 **πK 6.电路品质因数Q (放大倍数)的计算公式。 Q= wCR 1或R wL (本题装置串联谐振品质因数Q=C 232 r L ) 7.被试品或电抗器组合的无功功率Q 无功计算公式。 Q 无功=2U jC f 2 *π 或L 2233U C f j8- *π (=L 32L,本题Q 无功= 3 L U C f j16-2233 *π ) 8.串联谐振高压侧有功功率P 计算公式。 P=R 2222U C f 4 - *π (=R 32r 本题P=3 r U C f 8-2222 *π) 9.串联谐振高压侧电路总功率P 总计算公式。 P 总=2U jC f 2 *πL 2233U C f j8- *πR 2222U C f 4- *π 化简 P 总 = ()jCR f 2-CL f 4-1U jC f 22***πππ (= L 32L ;=R 32r 本题P 总=?? ? ??***3jCr f 4-3CL f 8-1U jC f 22πππ ; 谐振时P 总=R 2 2 2 2U C f 4- *π=3 r U C f 8-2 222 *π) 10.励磁变输出高压U 输出,I 输出,P 输出计算公式。 I 输出=U jC f 2 *π U 输出=U jC f 2 *π(C L R j f 21 j f 2*+*+ππ) (= L 32L ;=R 32r 本题U 输出=U jC f 2 *π(C j f 213jL f 43r 2*+*+ππ))

相关文档
最新文档