压控振荡器的设计与仿真

压控振荡器的设计与仿真
压控振荡器的设计与仿真

目录

1 引言 (2)

2 振荡器的原理 (5)

2.1 振荡器的功能、分类与参数 (5)

2.2 起振条件 (9)

2.3 压控振荡器的数学模型 (10)

3 利用ADS仿真与分析 (11)

3.1 偏置电路的的设计 (12)

3.2 可变电容VC特性曲线测试 (13)

3.3 压控振荡器的设计 (15)

3.4 压控振荡器相位噪声分析 (18)

3.5 VCO振荡频率线性度分析 (23)

4 结论 (24)

致谢 (25)

参考文献 (25)

压控振荡器的设计与仿真

Advanced Design System客户端软件设计

电子信息工程(非师范类)专业

指导教师

摘要:ADS可以进行时域电路仿真,频域电路仿真以及数字信号处理仿真设计,并可对设计结果进行成品率分析与优化,大大提高了复杂电路的设计效率。本论文运用ADS仿真软件对压控振荡器进行仿真设计,设计出满足设计目标的系统,具有良好的输出功率,相位噪声性能及震荡频谱线性度。本论文从器件选型开始,通过ADS软件仿真完成了有源器件选型,带通滤波器选型,振荡器拓扑结构确定,可变电容VC特性曲线,瞬态仿真及谐波平衡仿真。实现了准确可行的射频压控振荡器的计算机辅助设计。关键字:压控振荡器,谐波平衡仿真,ADS

1 引言

振荡器自其诞生以来就一直在通信、电子、航海航空航天及医学等领域扮演重要的角色,具有广泛的用途。在无线电技术发展的初期,它就在发射机中用来产生高频载波电压,在超外差接收机中用作本机振荡器,成为发射和接收设备的基本部件。随着电子技术的迅速发展,振荡器的用途也越来越广泛,例如在无线电测量仪器中,它产生各种频段的正弦信号电压:在热加工、热处理、超声波加工和某些医疗设备中,它产生大功率的高频电能对负载加热;某些电气设备用振荡器做成的无触点开关进行控制;电子钟和电子手表中采用频率稳定度很高的振荡电路作为定时部件等。尤其在通信系统电路中,压控振荡器(VCO)是其关键部件,特别是在锁相环电路、时钟恢复电路和频率综合器电路等更是重中之重,可以毫不夸张地说在电子通信技术领域,VCO几乎与电流源和运放具有同等重要地位。

人们对振荡器的研究未曾停止过。从早期的真空管时代当后期的晶体管时代,无论是理论上还是电路结构和性能上,无论是体积上还是制作成本上无疑都取得了飞跃性的

进展,但在很长的一段时期内都是处在用分离元件组装而成的阶段,其性能较差,成本相对较高,体积较大和难以大批量生产。随着通信领域的不断向前推进,终端产品越来越要求轻、薄、短、小,越来越要求低成本、高性能、大批量生产,这对于先前的分离元件组合模式将不再胜任,并提出新的要求和挑战。集成电路各项技术的发展迎合了这些要求,特别是主流CMOS工艺提供以上要求的解决方案,单片集成振荡器的研制取得了极大的进步。

然而,由于工艺条件的限制,RF电路的设计多采用GaAs, Bipolar, BiCMOS工艺实现,难以和现在主流的标准CMOS工艺集成。因此,优性能的标准的CMOS VCO设计成为近年来RF电路设计的热门课题。

射频电路需要在特定的载波频率点上建立稳定的谐波振荡,以便为调制和混频创造必要的条件,压控振荡器(VCO)作为收发系统常见的器件,它的性能指标主要包括:

频率调谐范围,输出功率,(长期及短期)频率稳定度,相位噪声,频谱纯度,电调速度,推频系数,频率牵引等。

频率调谐范围是VCO的主要指标之一,与谐振器及电路的拓扑结构有关。通常,调谐范围越大,谐振器的Q值越小,谐振器的Q值与振荡器的相位噪声有关,Q值越小,相位噪声性能越差。

振荡器的频率稳定度包括长期稳定度和短期稳定度,它们各自又分别包括幅度稳定度和相位稳定度。长期相位稳定度和短期幅度稳定度在振荡器中通常不考虑;长期幅度稳定度主要受环境温度影响,短期相位稳定度主要指相位噪声。在各种高性能、宽动态范围的频率变换中,相位噪声是一个主要限制因素。在数字通信系统中,载波信号的相位噪声还要影响载波跟踪精度。

其它的指标中,振荡器的频谱纯度表示了输出中对谐波和杂波的抑制能力;推频系数表示了由于电源电压变化而引起的振荡频率的变化;频率牵引则表示了负载的变化对振荡频率的影响;电调速度表示了振荡频率随调谐电压变化快慢的能力。

在压控振荡器的各项指标中,频率调谐范围和输出功率是衡量振荡器的初级指标,其余各项指标依据具体应用背景不向而有所侧重。例如,在作为频率合成器的一部分时,对VCO的要求,可概括为一下几方面:应满足较高的相位噪声要求;要有极快的调谐速度,频温特性和频漂性能要好;功率平坦度好;电磁兼容性好。

现在,国内外许多厂家都已生产出针对不同应用的VCO。表1是具有代表性的国内十三所和Agilent公司生产的部分压控振荡器产品的部分指标:

表1 VCO性能指标

上述产品中,封装形式均为TO-8封装。对于封装内的电路中一般使用的是晶体管管芯和变容二极管管芯,这样可减少管脚分布电感、电容的影响,减少对分布参数的考虑。但是,制作此类封装需专门设备,制作工艺复杂,进入门槛高,产品价格较高。频率较高时,这些参数对电路性能的影响非常显著。需要在设计时仔细考虑,选择合适的电路形式,尽量降低电路对器件参数的敏感度。

另外,自前还用一种称为YIG(钇铁右榴石)的铁氧体器件作为谐振器的压控振荡器,谐振频率用外磁场调谐,调谐带宽可以很宽,因为YIG谐振器可以有很高的Q值,YIG振荡器的相位噪声性能很好。但由于成本较高,且较难设计,所需电流大,调谐速度较变容二极管调谐的VCO慢。

近年来,随着通信电子领域的迅速发展,对电子设备的要求越来越高,尤其是对像振荡器等这种基础部件的要求更是如此。但多年来我国在这方面的研究投入无论在军用还是民用上均不够重视,仅限于在引进和改进状态,还没有达到质的跨越,没有自主的知识产权(IP),也是我国电子通信类滞后发达国家的一个重要原因。而且我国多数仍然利用传统的双极工艺,致使产品在体积上、重量上、成本上都较大,各种参数性能不够优越,稳定性差、难以和现代主流CMOS工艺集成等等都是我国相关领域发展的瓶颈。

因此,我国在电子通信领域市场潜力非常大,自主研究高性能、高质量、低成本的压控振荡器市场前景广阔、意义巨大。

本论文使用ADS软件从器件选型到电路进行仿真,详细阐述了压控振荡器的设计步骤,对S波段1.8GHz下频率综合器对电感电容压控振荡器的要求,实现AT41411单片集成压控振荡器的设计与仿真,设计的具体指标是频率范围为1700~1900MHz,控制电压0~5V,供电电压12V。

2 振荡器的原理

2.1 振荡器的功能、分类与参数

振荡器是一种不需要外加输入信号就能够自激输出交变信号的电子装置,振荡器实际上是起一个能量转换的作用,它将直流能量转换成具有一定频率,一定幅度和一定波形的交流能量[1]。凡是可以完成这一目的的装置都可以是振荡器.但是用电子管、晶体管等器件与L、C、R等元件组成的振荡器则完全取代了以往所有能产生震荡的方法,因为它有如下优点:

(1)它将直流电能转变为交流电能,而本身静止不动,不需要做机械转动活移动。如果用高频交流发电机,则其旋转速度必须很高,最高频率也只能到达50KHz。

(2)它产生的是“等幅振荡”,而火花发射机等产生的是“阻尼振荡”。

(3)使用方便,灵活性很大,它的功率可以自毫瓦级至几百千瓦,工作频率可以自极低频率至微波波段。

按照振荡器按工作原理,可以分为反馈振荡器和负阻振荡器。

按元器件主要分为RC振荡器,LC振荡器和晶体振荡器

1.RC振荡器采用RC网络作为选频移相网络的振荡器统称为RC正弦振荡器,属音频振荡器。

2.LC振荡器采用LC振荡回路作为移相和选频网络的正反馈振荡器称为LC振荡器。

3晶体振荡器中石英晶体振荡器是一种高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。

石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

国际电工委员会(IEC)将石英晶体振荡器分为4类:普通晶体振荡(SPXO),电压控制式晶体振荡器(VCXO),温度补偿式晶体振荡(TCXO),恒温控制式晶体振荡(OCXO)。目前发展中的还有数字补偿式晶体损振荡(DCXO)微机补偿晶体振荡器(MCXO)等等。

晶体振荡器的应用有:

1.通用晶体振荡器,用于各种电路中,产生振荡频率。

2.时钟脉冲用石英晶体谐振器,与其它元件配合产生标准脉冲信号,广泛用于数字电路中。

3.微处理器用石英晶体谐振器。

4.CTVVTR用石英晶体谐振器。

5.钟表用石英晶体振荡器。

晶体振荡器的技术指标

1.总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大频差。总频差包括频率温度稳定度、频率温度准确度、频率老化率、频率电源电压稳定度和频率负载稳定度共同造成的最大频差。一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。例如:精密制导雷达。

2. 频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。

fT=±(fmax-fmin)/(fmax+fmin)

fTref =±MAX[|(fmax-fref)/fref|,|(fmin-fref)/fref|]

fT:频率温度稳定度(不带隐含基准温度)

fTref:频率温度稳定度(带隐含基准温度)

fmax :规定温度范围内测得的最高频率

fmin:规定温度范围内测得的最低频率

fref:规定基准温度测得的频率说明:采用fTref指标的晶体振荡器其生产难度要高于采用fT指标的晶体振荡器,故fTref指标的晶体振荡器售价较高。

3. 频率稳定预热时间:以晶体振荡器稳定输出频率为基准,从加电到输出频率小于规定频率允差所需要的时间。在多数应用中,晶体振荡器是长期加电的,然而在某些应用中晶体振荡器需频繁的开机和关机,这时频率稳定预热时间指标需要被考虑到(尤其是对于在苛刻环境中使用的军用通讯电台,当要求频率温度稳定度≤±0.3ppm(-45℃~85℃),采用OCXO作为本振,频率稳定预热时间将不少于5分钟,而采用DTCXO只需要十几秒钟)。

4. 频率老化率:在恒定的环境条件下测量振荡器频率时,振荡器频率和时间

之间的关系。这种长期频率漂移是由晶体元件和振荡器电路元件的缓慢变化造成的,可用规定时限后的最大变化率(如±10ppb/天,加电72小时后),或规定的时限内最大的总频率变化(如:±1ppm/(第一年)和±5ppm/(十年))来表示。TCXO的频率老化率为:±0.2ppm~±2ppm(第一年)和±1ppm~±5ppm(十年)(除特殊情况,TCXO很少采用每天频率老化率的指标,因为即使在实验室的条件下,温度变化引起的频率变化也将大大超过温度补偿晶体振荡器每天的频率老化,因此这个指标失去了实际的意义)。OCXO的频率老化率为:±0.5ppb~±10ppb/天(加电72小时后),±30ppb~±2ppm(第一年),±0.3ppm~±3ppm(十年)。

5.频率压控范围:将频率控制电压从基准电压调到规定的终点电压,晶体振荡器频率的最小峰值改变量。基准电压为+2.5V,规定终点电压为+0.5V和+

4.5V,压控晶体振荡器在+0.5V频率控制电压时频率改变量为-110ppm,在+4.5V 频率控制电压时频率改变量为+130ppm,则VCXO电压控制频率压控范围表示为:≥±100ppm(2.5V±2V)。

6.压控频率响应范围:当调制频率变化时,峰值频偏与调制频率之间的关系。通常用规定的调制频率比规定的调制基准频率低若干dB表示。(VCXO频率压控范围频率响应为0~10kHz。)

7.频率压控线性:与理想(直线)函数相比的输出频率-输入控制电压传输特性的一种量度,它以百分数表示整个范围频偏的可容许非线性度。典型的VCXO频率压控线性为:≤±10%,≤±20%。简单的VCXO频率压控线性计算方法为(当频率压控极性为正极性时):频率压控线性=±((fmax-fmin)/ f0)3100% fmax:VCXO在最大压控电压时的输出频率

fmin:VCXO在最小压控电压时的输出频率

f0:压控中心电压频率

8.单边带相位噪声£(f):偏离载波f处,一个相位调制边带的功率密度与载波功率之比。根据振荡器输出信号波形的不同,可以将震荡期分为正弦波振荡器和非正弦波振荡器,其中非正弦波振荡器它产生的信号可以使方波或三角波等。

一般来说,振荡器由以下三部分组成:

(1)晶体管或电真空器件。其中真空器件主要用于高频大功率振荡器的设计,而晶体管主要用于低频小功率振荡器的设计。

(2)谐振回路。谐振回路决定振荡器的工作频率,因为只有与回路谢振频率一致的

交变电磁才能与电子进行有效的相互作用。

(3)能量反馈模块。描述振荡器的最主要的参数就是频率稳定度,它是评价振荡器在规定时间内振荡频率相对变化量大小的一个指标。按时间的长短不同,频率稳定度分为长期频率稳定度、短期频率稳定度和瞬时频率稳定度。长期频率稳定度是指一天以上乃至几个月内因管子和元件老化而引起的相对频率变化量;短期频率稳定度是指一天之内因温度、电源电压等外界因素变化而引起的相对频率变化量【2】;振荡频率的随机起伏称为瞬时频率稳定度,频率的瞬变将产生调频噪声、相位噪声和相位抖动。震荡幅度的随机起伏将引起调幅噪声。

一次,振荡器在没有外加调制时,输出的频率不仅含振荡频率f

0,在f

附近还包含

有许多旁频,连续分布在f

0两边。如下图所示,纵坐标是功率,f

处是载波,两边是噪

音功率,包括调频噪音功率和调幅噪音功率。

图1 正弦信号的噪声边带频谱

图2 相对噪声的定义

如图2所示,(单边带)相位噪声通常用在相对于载波某一频偏处,相对于载波电平的归一化1Hz 带宽的功率谱密度表示(dBc/Hz )。

通常所讲的频率稳定度都指短期频率稳定度。若将规定时间等分为n 各间隔,在各间隔内实测的频率相应位f 1,f 2,……f n,,当所要求的振荡频率(称为标称频率)为f g 时,短期频率稳定度定义为

lim g

n g f f →∞?=…………(2.1.1)

式中,()g i g i f f f ?=-为第i 个间隔内实测的绝对频率偏差值;()

g f ?为实测绝对频率偏差的平均值,即 ()()11lim n g

i g n i f f f n →∞=?=-∑…………(2.1.2) ()g f ?又称为绝对频率准确度,为平均实测频率相对于标称频率的偏差值

[3]。

2.2 起振条件 振荡器是一个在只有直流电源供电的情况下,产生周期变化的电压信号的电路。 所有振荡器都是非线性的,尽管非线性会使信号发生一些失真。但线性技术可以用来分析和设计振荡器[4]。图1(a )是一个单输入,单输出的负反馈系统,该系统的开环传递函数为H (S ),其闭环传递函数可以表示为[5]

()1()

Vout H s Vin H s =+…………(2.2.1) 当0s j ω=,0()1H j ω=-时,负反馈系统输出为无穷大。这样系统中的任何节点上

有一个小小的抖动或者噪声都能够使得系统发生振荡,这时候负反馈系统变成正反馈。这种情况在运算放大器设计中是绝对不允许的,然而对于振荡器来说,振荡器电路就必须工作在正反馈情况下。

总的来说,一个负反馈系统必须满足以下两个Barkhause 振荡原则[6],电路才能够在频率点0ω上发生振荡。

(1). 振荡器系统的开环增益0()1H j ω≥

(2). 振荡器系统的开环相位偏移为180°。

在实际电路设计中,振荡器的开环增益往往是计算值的2-3倍,即要设置一个安全

裕量。这主要是为了克服工艺和温度的偏差,以及由于电路非线性造成的开环增益的下降。

图3 振荡器的负反馈形式

图1(a) 所示为振荡器的负反馈形式,其中正向开环传递函数的相位偏移为180°,反向反馈通路的相位偏移也是180°,因此整个开环的相位偏移为360°。图1(b )是振荡器的正反馈表示形式,为了保证振荡器起振,正像开环传递函数的相位偏移为360°,且满足0()1H j ω≥;相位偏移360°也就是正反馈系统的输入和输出相位相同,因此图1(c )与1(b )是等价的[5]。

2.3 压控振荡器的数学模型

一个理想的压控振荡器的频率压控特性可以表示为[6]

0out vco cont K V ωω=+…………(2.3.1)

其中0ω表示对应于cont V =0时的振荡频率,cont V 为压控电压,vco K 为压控振荡器的“增

益”或“灵敏度”.单位Hz/V 。

即一个理想的压控振荡器其输出频率是其输入电压的线性函数,如图4 [7]

图4 理想压控振荡器VCO 的定义压控特性

振荡器的频率与相位的关系表示为:

out t φω?=

?…………(2.3.2) 则根据式子(3.1)和(3.2),假设Kvco 为常数,可以得到振荡器的相位为

()00000out vco cont vco cont dt K V dt t K V dt φωφωφωφ=+=++=++???…………(3.3)

其中定义振荡器的相位增量为

()ex

vco cont K s V s

φ=…………(2.3.3) 前面我们提到过实际VCO 的正弦输出波形中包含大量的谐波[8],为此可以假设VCO 输出的控制电压为一小的正弦信号cos cont m m V V t ω=,那么根据上面的共识可以将输出表

达成

()

0000()cos sin m out vco cont vco m m V V t V t K V dt V t K t ωωωω??=+=+ ???? =000cos cos sin sin sin sin m m o vco m vco m m m V V V t K t V t K t ωωωωωω????- ? ?????

………(2.3.4) 假设m V 足够小使得/1vco m m K V rad ω<<,那么即有

()()0000cos sin sin m out vco m m V V t V t V t K t ωωωω??≈- ???

=()()00000cos cos cos 2vco m m m m

K V V V t t t ωωωωωω---+????…………(2.3.5) 3 利用ADS 仿真与分析

设计振荡器这种有源器件,一般分为以下几个步骤:

(1)选取管子,设计前必须根据要求的指标确定管子的参数,选好三极管和变容二极管等。

(2)根据三极管的最佳噪音特性确定直流偏置电路的偏置电阻[9]。

(3)确定变容二极管的VC 特性,先由指标(设计的振荡器频率)确定可变电容的值,然后根据VC 曲线确定二极管两端的直流电压。

(4)进行谐波仿真,分析相位噪音,生成压控曲线,观察设计的振荡器的压控线性

度。

设计的振荡器采用ADS中自带的AT41411硅双极管,变容二极管选用MV1404。

其中AT41411的主要指标有如下几种。

(1)低噪音特性:1GHz噪音系数是1.4dB,2GHz噪音系数是1.8dB。

(2)高增益:1GHz时增益为18dB,2GHz时增益为13dB。

(3)截止频率:7GHz,有足够宽的频带。

(4)1.8GHz时最佳噪音特性的直流偏置:Vce=8V,Ic=10mA。

3.1 偏置电路的的设计

打开ADS软件,新建一个工程,,在工程中建立一个原理图,按照设计好的原理图进行连线并修改元件参数。

图5 偏置电路设计原理图

在图中插入一个一个直流仿真控制器DC,两个目标控件及一个优化控件OPTIM,具体参数按图6进行修改,在原理图上设置两个节点Vcb,Veb,点击Simulate进行仿真,得到最终电阻优化值,如图7所示。

图 6 控件参数

图7 最终电阻优化值

3.2 可变电容VC特性曲线测试

从新建立一个原理图,按图8所示进行连接,修改元器件数值。

图8 变容二极管测试电路图

在图中插入变量控件、S参数仿真控制器及参数控件,设置其具体值如图9

图9 控件参数

单击仿真按钮后在数据显示窗口中添加一个一个方程,方程内容为“C_Varactor=-1/(2*pi*freq[0,0]*imag(Z11[0]))”,如图10所示。

图10 电容的测试方程

在数据显示窗口插入一个关于C_Varactor的曲线,如图11所示,这就是变容二极管的电容与偏置电压之间的关系。

图11 变容二极管的电容与偏置电压的关系曲线

为了更清楚的观察电容与偏置电压的关系,在数据显示窗口插入一个关于C_Varactor的数据列表,如图13所示。

图13 C_Varactor的数据列表

这样就完成了可变电容的V-C特性曲线的测试。

3.3 压控振荡器的设计

打开偏置电路设计原理图和变容二极管测试电路图,将其中的电路图复制到新的原理图中,从新设置三极管偏置电路,由于压控振荡器电路中含有高频成分,因此需要在直流偏置电路中加入高频扼流元件,如图14所示。

图14 新的直流偏置网络

将变容二极管电路和三极管电路按照图15的方式连接起来,组成压控振荡器的电路结构。

图15 压控振荡器的电路结构

按照下面内容设置电路中元件的参数:

?SRC1:Vdc=5V

?L1=1000nH

?C1=10pH

?R1=420.433Ohm

?L2=1000pH

?SRC3:Vdc=-5V

?L4=2nH

?R4=50Ohm

?R2=676.512Ohm

?L3=1000nH

?SRC2:Vdc=12V

?C2=1000pH

?R3=50Ohm

在原理图的输出端口添加一个节点Vout,并且插入一个瞬态仿真控制器,按照下面内容设置瞬态仿真控制器的参数

?StartTime=0,便是仿真的起始时间为0

?StopTime=30ns,表示仿真的终止时间为30ns.

?MaxTimeStep=0.01ns,表示仿真的最大时间间隔为0.01ns。

完成设置的瞬态仿真控制器如图16所示。

图16 瞬态仿真控制器的设置

进行仿真,等仿真结束后,在数据显示窗口插入一个关于Vout的矩形图,并在图中插入两个标记如图17所示。同时插入一个方程,用来查看两个标记之间信号的频谱,方程的内容为“Spectrum=fs(Vout,,,,,,indep(m1),indep(m2))”

如图18所示。

图17 输出信号的时域波形

图18 输出信号的频谱方程

在数据显示窗口加入一个关于Spectrum幅度(Magnitude)的矩形图,并在矩形图中插入一个标记,如图19所示。

图19 输出信号的频谱

从波形可以看到,振荡器已经很稳定地振荡起来了,并且有一定的振荡时间,从抽出的两点的数据可以看出,该振荡波形是相当稳定的,幅度差可以不必考虑,频谱纯度也较高,对m1和m2 这段时域进行傅里叶变换,可以看到振荡器振荡频率的频谱,从m3标记的数值可以看出,该振荡的振荡频率为1.872GHz。非常接近设计指标。

3.4 压控振荡器相位噪声分析

通过前面的介绍可以知道,利用ADS里面的谐波平衡法仿真,可以分析振荡器的相位噪声。

以新名称保存VCO的原理图,在图中插入一个谐波平衡法仿真控制器,对其参数进行修改,如图20。

图20 谐波平衡法仿真控制器

在振荡器里加入一个Oscport器件配合使用,接在反馈网络和谐振网络之间,如图21所示。这是谐波平衡法仿真相位噪音的需要。

图21 Oscport器件的连接

考虑到该器件的频率隔离度不够高,所以在输出端加一个带通滤波器,并对其进行设置。

图22 输出端口的带通滤波器

这样就完成了谐波平衡仿真的电路原理图,如图23所示。

图23 谐波平衡仿真的电路原理图

进行仿真,等仿真结束后在数据显示窗口插入一个关于V out的功率谱密度的矩形图,如图24所示,从图中可以看出基波频率上的能量最大。

高频压控振荡器设计

前言 (1) 1高频压控振荡器设计原理压控振荡器 (2) 1.1工作原理 (2) 1.2变容二极管压控振荡器的基本工作原理 (2) 2高频压控振荡器电路设计 (4) 2.1设计的资料及设备 (4) 2.2变容二极管压控振荡器电路的设计思路 (4) 2.3变容二极管压控振荡器的电路设计 (4) 2.4实验电路的基本参数 (5) 2.5实验电路原理图 (6) 3高频压控振荡器电路的仿真 (7) 3.1M ULTISIM软件简介 (7) 3.2M ULTISIM界面介绍 (8) 3.2.1电路仿真图 (9) 3.2.2压控振荡器的主要技术指标 (9) 3.3典型点的频谱图 (9) 4高频压控振荡器电路实现与分析 (16) 4.1实验电路连接 (16) 4.2实验步骤 (16) 4.3实验注意事项 (18) 4.4硬件测试 (19) 5心得体会 (21) 参考文献 (22)

压控振荡器广泛应用于通信系统和其他电子系统中,在LC振荡器决定振荡器的LC 回路中,使用电压控制电容器(变容管),可以在一定的频率范围内构成电调谐振荡器。这种包含有压控元件作为频率控制器件的振荡器就称为压控振荡器。它广泛应用与频率调制器、锁相环路以及无线电发射机和接收机中。 压控振荡器是锁相环频率合成器的重要组成单元,在很大程度上决定了锁相环的性能。在多种射频工艺中,COMS工艺以高集成度、低成本得到广泛的应用。 压控振荡器(VCO)在无线系统和其他必须在一个范围的频率内进行调谐的通信系统中是十分常见的组成部分。许多厂商都提供VCO产品,他们的封装形式和性能水平也是多种多样。现代表面的贴装的射频集成电路(RFIC)VCO继承了近百来工程研究成果。在这段历史当中。VCO技术一直在不断地改进中,产品外形越来越小而相位噪声和调谐线性度越来越好。 对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。晶体压控振荡器的频率稳定度高,但调频范围窄;RC压控振荡器的频率稳定度低而调频范围宽,LC压控振荡器居二者之间。 压控振荡器可分为环路振荡器和LC振荡器。环路振荡器易于集成,但其相位噪声性能比LC振荡器差。为了使相位噪声满足通信标准的要求,这里对负阻RC压控振荡器进行了分析。

晶体振荡器课程设计

1石英晶体及其特性 (1) 1.1 石英晶体简介............................................... . ... 1.2石英晶体的阻抗频率特性...................................... 1 ... 2晶体管的部工作原理 (3) 3.晶体振荡器电路的类型及其工作原理 (4) 3.1串联型谐振晶体振荡器........................................ 4…??… 3.2并联谐振型晶体振荡器........................................ 6…??… 3.3泛音晶体振荡器................................................ 8 .. 4 确定工作点和回路参数(以皮尔斯电路为例) (10) 4.1主要技术指标 (10) 4.2确定工作点 (10) 4.3交流参数的确定 (11) 5提高振荡器的频率稳定度........................................... 1 2 6.总结 (13) 参考文献:........................................................ 1.4

Word 文档

1石英晶体及其特性 1.1石英晶体简介 石英是矿物质硅石的一种,化学成分是Sio2,形状是呈角锥形的六棱结晶体,具有各向异性的物理特性。按其自然形状有三个对称轴,电轴X,机械轴丫光轴Z。石英谐振器中的各种晶片,就是按与各轴不同角度,切割成正方形、长方形、圆形、或棒型的薄片,如图1的AT、BT、CT、DT 等切型。不同切型的晶片振动型式不,性能不同 1.2石英晶体的阻抗频率特性 石英谐振器的电路符号和等效电路如图121。C0称为静态电容,即晶体不振动时两极板间的等效电容,与晶片尺寸有关,一般约为几到几十pF。晶体作机械振动时的惯性以Lq、弹性用Cq振动时因磨擦造成的损耗用Rq来等效,它们的数值与晶片切割方位、形状和大小有关, 一般Lq为10 3102H,Cq为10 410 1pF,Rq 在几一几百欧之间。它

高频课设电容三端式振荡器

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 电容三端式振荡器 初始条件: 电容三端式振荡器原理,Multisim软件 要求完成的主要任务: (1)设计任务 根据电容三端式振荡器的原理,设计电路图,并在multisim软件仿真出波形结果。 (2)设计要求 ①正常工作状况时的波形图; ②起振条件的仿真,要求改变偏置电阻、相位电容和电源电压值,再观察起振波形和振荡电压的变化情况。 时间安排: 1、2014 年11月17 日集中,作课设具体实施计划与课程设计报告格式的要求说明。 2、2014 年11月17 日,查阅相关资料,学习基本原理。 3、2014 年11月18 日至2014 年11月20日,方案选择和电路设计。 4、2014 年11月20 日至2014 年11月21日,电路仿真和设计说明书撰写。 5、2014 年11月23 日上交课程设计报告,同时进行答辩。 课设答疑地点:鉴主13楼电子科学与技术实验室。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 1 克拉泼振荡器原理 (3) 1.1 克拉泼振荡器产生的原因 (3) 1.2 克拉泼振荡器电路分析 (3) 1.3 克拉泼振荡器起振条件 (4) 1.3.1 相位条件 (4) 1.3.2振幅条件 (4) 1.4 克拉泼振荡器的振荡频率 (5) 2 克拉泼振荡器仿真分析 (6) 2.1 正常起振的电路图 (6) 2.2改变偏置电阻的仿真 (7) 2.3改变相位电容的仿真 (8) 2.4改变电源大小的仿真 (8) 3 心得体会 (9) 参考文献 (10)

压控振荡器的设计与仿真.

目录 1 引言 (2) 2 振荡器的原理 (5) 2.1 振荡器的功能、分类与参数 (5) 2.2 起振条件 (9) 2.3 压控振荡器的数学模型 (10) 3 利用ADS仿真与分析 (11) 3.1 偏置电路的的设计 (12) 3.2 可变电容VC特性曲线测试 (13) 3.3 压控振荡器的设计 (15) 3.4 压控振荡器相位噪声分析 (18) 3.5 VCO振荡频率线性度分析 (23) 4 结论 (24) 致谢 (25) 参考文献 (25)

压控振荡器的设计与仿真 Advanced Design System客户端软件设计 电子信息工程(非师范类)专业 指导教师 摘要:ADS可以进行时域电路仿真,频域电路仿真以及数字信号处理仿真设计,并可对设计结果进行成品率分析与优化,大大提高了复杂电路的设计效率。本论文运用ADS仿真软件对压控振荡器进行仿真设计,设计出满足设计目标的系统,具有良好的输出功率,相位噪声性能及震荡频谱线性度。本论文从器件选型开始,通过ADS软件仿真完成了有源器件选型,带通滤波器选型,振荡器拓扑结构确定,可变电容VC特性曲线,瞬态仿真及谐波平衡仿真。实现了准确可行的射频压控振荡器的计算机辅助设计。关键字:压控振荡器,谐波平衡仿真,ADS 1 引言 振荡器自其诞生以来就一直在通信、电子、航海航空航天及医学等领域扮演重要的角色,具有广泛的用途。在无线电技术发展的初期,它就在发射机中用来产生高频载波电压,在超外差接收机中用作本机振荡器,成为发射和接收设备的基本部件。随着电子技术的迅速发展,振荡器的用途也越来越广泛,例如在无线电测量仪器中,它产生各种频段的正弦信号电压:在热加工、热处理、超声波加工和某些医疗设备中,它产生大功率的高频电能对负载加热;某些电气设备用振荡器做成的无触点开关进行控制;电子钟和电子手表中采用频率稳定度很高的振荡电路作为定时部件等。尤其在通信系统电路中,压控振荡器(VCO)是其关键部件,特别是在锁相环电路、时钟恢复电路和频率综合器电路等更是重中之重,可以毫不夸张地说在电子通信技术领域,VCO几乎与电流源和运放具有同等重要地位。 人们对振荡器的研究未曾停止过。从早期的真空管时代当后期的晶体管时代,无论是理论上还是电路结构和性能上,无论是体积上还是制作成本上无疑都取得了飞跃性的

Proteus与cadence实训(高频正弦波振荡器)

课程设计任务书 学生姓名:专业班级:电子1001班指导教师:韩屏工作单位:信息工程学院题目: 高频晶体正弦波振荡器 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个高频晶体正弦波振荡器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus 软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对高频晶体正弦波振荡器电路进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 目录 (1) 摘要 (2) 一、工作原理说明 (3) 1.1、振荡器概念 (3) 1.2、静态工作点的确定 (3) 1.3、振荡器的起振检查 (4) 二、电路设计 (5) 2.1、正弦波振荡器的设计 (5) 2.2、电路功能的仿真 (7) 2.3、Cadence部分原理图设计 (9) 三、PCB版图设计 (15) 四、心得体会 (18) 五、参考文献 (19)

压控振荡器原理和应用说明

压控振荡器(VCO 一应用范围 用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。 二基本工作原理 利用变容管结电容Cj 随反向偏置电压VT 变化而变化的特点(VT=OV 时Cj 是最大值,一 般变容管VT 落在2V-8V 压间,Cj 呈线性变化,VT 在8-10V 则一般为非线性变化,如图1 所示,VT 在10-20V 时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当 改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO 。 压控振荡器的调谐电压 VT 要针对所要求的产品类别及典型应用环境(例如用户提供调谐要 求,在锁相环使用中泵源提供的输出控制电压范围等 )来选择或设计,不同的压控振荡器, 对调谐电压VT 有不同的要求,一般而言,对调谐线性有较高要求者, VT 选在1-10V ,对宽 频带调谐时,VT 则多选择1-20V 或1-24V 。图1为变容二极管的V — C 特性曲线。 图1变容二极管的V — C 特性曲线 三压控振荡器的基本参数 1工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“ MHZ 或 “GHz 。 2输出功率:在工作频段内输出功率标称值,用 Po 表示。通常单位为“ dBmW 。 3输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△ P 表示,通常 单位为“ dBmW 。 4调谐灵敏度:定义为调谐电压每变化1V 时,引起振荡频率的变化量,用 MHz/ △ VT 表示,在线性区,灵敏度最咼,在非线性区灵敏度降低。 5谐波抑制:定义在测试频点,二次谐波抑制 =10Log (P 基波/P 谐波)(dBmw )。 6推频系数:定义为供电电压每变化1V 时,引起的测试频点振荡频率的变化量,用 MHz/V 表 示。 7相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振 f0为fm 的带内,各杂散能量的总和按fin 平均值+15f0点频谱能量之比,单位为dBC/Hz 相位噪 声特点是频谱能量集中在f0附近,因此fm 越小,相噪测量值就越大,目前测量相噪选定 WV) 0 8 10

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

压控LC电容三点式振荡器设计及仿真

实验二压控LC 电容三点式振荡器设计及仿真 一、实验目的 1、了解和掌握LC 电容三点式振荡器电路组成和工作原理。 2、了解和掌握压控振荡器电路原理。 3、理解电路元件参数对性能指标的影响。 4、熟悉电路分析软件的使用。 二、实验准备 1、学习LC 电容三点式西勒振荡器电路组成和工作原理。 2、学习压控振荡器的工作原理。 3、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 三、设计要求及主要指标 1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳振荡。 2、实现电压控制振荡器频率变化。 3、分析静态工作点,振荡回路各参数影响,变容二极管参数。 4、振荡频率范围:50MHz~70MHz,控制电压范围3~10V。 5、三极管选用MPSH10(特征频率最小为650MHz,最大IC 电流50mA,可 满足频率范围要求),直流电压源12V,变容二极管选用MV209。 四、设计步骤 1、整体电路的设计框图

整个设计分三个部分,主体为LC 振荡电路,在此电路基础上添加压控部分,设计中采用变容二极管MV209 来控制振荡器频率,由于负载会对振荡电路的 频 率产生影响,所以需要添加缓冲器隔离以使振荡电路不受负载影响。 2、LC 振荡器设计 首先应选取满足设计要求的放大管,本设计中采用MPSH10 三极管,其特征频率f T=1000MHz。LC 振荡器的连接方式有很多,但其原理基本一致,本实验中采用电容三点式西勒振荡电路的连接方式,该振荡电路在克拉泼振荡电路的基础上进行了细微的改良,增加了一个与电感L 并联的电容,主要利用其改变频率而不对振荡回路的分压比产生影响的特点。电路图如下所示:

(完整)高频课程设计_LC振荡器_西勒

高频电子线路课程设计报告设计题目:LC正弦波振荡器的设计 2014年1月10日

目录 一、设计任务与要求 (1) 二、设计方案 (1) 2.1电感反馈式三端振荡器 (1) 2.2电容反馈式三端振荡器 (2) 2.3克拉波电路振荡器 (3) 2.4西勒电路振荡器 (4) 三、设计内容 (5) 3.1LC振荡器的基本工作原理................................................ . (5) 3.2西勒电路原理图及分析 (6) 3.2.1振荡原理 (7) 3.2.2静态工作点的设置 (7) 3.3西勒振荡器原理图 (8) 3.4 仿真结果与分析 (8) 3.4.1软件简介 (8) 3.4.2进行仿真 (9) 3.4.3仿真结果分析 (11) 四、总结 (11) 五、主要参考文献 (13)

一、设计任务与要求 在本课程设计中,为了熟悉《高频电子线路》课程,着眼于LC正弦波振荡器的分析和研究。通过对电感反馈式三端振荡器(哈特莱振荡器)、电容反馈式三端振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析、对比和讨论,以达到课程设计的目的和要求。在课程设计中,为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。 本课程设计中要求设计的正弦波振荡器能够输出稳定正弦波信号,输出频率可调范围为10~20MHz。本设计中所涉及的仿真电路是比较简单的。但通过仿真得到的结论在实际的类似电路中有很普遍的意义。 二、设计方案 通过对高频电子线路相关知识的学习,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。由所学知识可知,西勒电路具有该电路频率稳定性非常高,振幅稳定,频率调节方便,适合做波段振荡器等优点。所以在本设计中拟采用并联改进型的西勒电路振荡器。 下面对几种振荡器进行分析论证: 2.1电感反馈式三端振荡器 电感三点式振荡器又称哈特莱振荡器,其原理电路如图所示:

高频实验2:LC与晶体振荡器

实验二:LC与晶体振荡器 一.实验目的 1.熟悉电子元器件和高频电子线路实验系统。 2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能。 3.熟悉静态工作点IEQ对振荡器振荡幅度和频率的影响。 4.熟悉LC谐振回路的电容变化对振荡器振荡频率的影响。 二.实验预习要求 1.做本实验时应具备的知识点: * 三点式LC振荡器 * 克拉泼电路 * 静态工作点值对振荡器工作的影响 2.做本实验时所用到的仪器: * LC与晶体振荡模块实验板 * 双踪示波器 * 频率计 * 万用表 三.实验电路原理 1.概述 LC振荡器实质上是满足振荡条件的正反馈放大器。LC振荡器是指振荡回路是由LC元件组成的。从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。 在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。 2.LC振荡器的起振条件 一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振、平衡条件和相位平衡条件。 3.C振荡器的频率稳定度 频率稳定度表示:在一定时间、或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。 4、LC振荡器的调整和参数选择 以实验采用的改进型电容三点振荡电路(西勃电路)为例 (1)静态工作点的调整 合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,偏置电路一般采用分压式电路,如实验电路图12-1所示。

基于Multisim11的压控振荡电路仿真设计

分类号 密级 基于Multisim11的压控振荡电路仿真设计 所在学院机械与电气工程学院 专业电气工程及其自动化 班级 姓名 学号 指导老师 年月日 诚信承诺

我谨在此承诺:本人所写的毕业论文《基于Multisim11的压控振荡电路仿真设计》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。 承诺人(签名): 年月日

摘要 Multisim是美国国家仪器有限公司推出的以Windows为基础的仿真工具,适用于初级的模拟及数字电路板的设计工作,Multisim不仅具有丰富的仿真分析能力,而且还包含了电路原理图的图形输入及电路硬件描述语言的输入方式。有了Multisim软件就相当于有了一个电子实验室,可以非常方便的从事各种电路设计及仿真分析工作。 随着无线通信技术的快速发展,使得市场对压控振荡电路产生了巨大的需求。压控振荡器是通过调节可变电阻或电容可以改变波形的振荡频率,一般是通过人工来调节的。而在自动控制场合往往要求能自动地调节振荡频率。常见的情况是给出一个控制电压,要求输出波形的振荡频率与控制电压成正比。这种电路称为压控振荡器。 本次设计的内容是基于Multisim11的压控振荡电路仿真设计,阐述了压控振荡器的电路原理以及组成结构。本次设计是采用集成运算放大器741芯片组成的滞回电压比较器和反向积分电路,利用二极管1N4148相当于电子开关的功能,控制电容的充放电时间,构成的压控振荡电路,从而实现输入电压对输出频率变化的控制。只要改变输入端的电压,就可以改变输出端的输出频率。并在电路设计与仿真平台Multisim11仿真环境中创建集成压控振荡器电路模块,进而使用Multisim仿真工具对其进行仿真从而达到设计的目的和要求。 关键词:Multisim,压控振荡器,1N4148

变容二极管压控振荡器课程设计

课程设计说明书(论文) 变容二极管压控振荡器 摘要 振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。根据所产生的波形的不同,可将振荡器分为正弦波振荡器和非正弦波振荡器两大类。压控振荡器(VCO)是利用电抗元件的等效电抗值能随外加电压变化特点,将其接入正弦振荡器中,使振荡频率随外加控制电压而变化,VCO在频率调制,频率合成,锁相环电路,电视解调器,频谱分析仪等方面有广发应用。变容二极管振荡器是利用变容二极管制成的VCO。 本课题主要是运用变容二极管PN结电容随外加电压变化而变化制成的VCO。关键词:压控,变容二极管,调频

课程设计说明书(论文) 目录 1 课题描述 (3) 2 设计原理 (3) 3 设计过程 (4) 3.1压控振荡器介绍 (4) 3.2设计内容 (5) 3.3设计步骤 (6) 4 设计结果及分析 (8) 总结 (9) 参考文献 (10)

课程设计说明书(论文) 1课题描述 在电子设备中,压控振荡器的应用极为广泛,如彩色电视接收机高频头中的本机振荡电路、各种自动频率控制(AFC)系统中的振荡电路、锁相环路(PLL)中所用的振荡电路等均为压控振荡器以及用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。振荡器输出的波形有正弦型的,也有方波型的。 本课题主要是运用变容二极管PN结电容随外加电压变化而变化制成的VCO。 2 设计原理 利用变容管结电容j C随反向偏置电压VT变化而变化的特点(VT=0V时j C是最大值,一般变容管VT落在2V-8V压间,j C呈线性变化,VT在8-10V则一般为非线性变化,如图1所示,VT在10-20V时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO)。压控振荡器的调谐电压VT要针对所要求的产品类别及典型应用环境(例如用户提供调谐要求,在锁相环使用中泵源提供的输出控制电压范围等)来选择或设计,不同的压控振荡器,对调谐电压VT 有不同的要求,一般而言,对调谐线性有较高要求者,VT选在1-10V,对宽频带调谐时,VT则多选择1-20V或1-24V。图1为变容二极管的V-C特性曲线。 (V) T 图2.1变容二极管的V-C特性曲线

高频课程设计_LC振荡器_克拉泼.(DOC)

高频电子线路课程设计报告设计题目:高频正弦信号发生器 2015年 1月 6 日

目录 一、设计任务与要求 (1) 二、设计方案 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (2) 2.3克拉波电路振荡器 (6) 三、设计内容 (8) 3.1LC振荡器的基本工作原理 (8) 3.2克拉泼电路原理图 (9) 3.2.1振荡原理 (9) 3.3克拉泼振荡器仿真 (10) 3.4.1软件简介 (10) 3.4.2进行仿真 (10) 3.4.3电容参数改变对波形的影响 (11) 四、总结 (17) 五、主要参考文献 (18) 六、附录.................................................................................... .. (18)

一、设计任务与要求 为了熟悉《高频电子线路》课程中所学到的知识,在本课程设计中,我和队友(石鹏涛、甘文鹏)对LC正弦波振荡器进行了分析和研究。通过对几种常见的振荡器(电感反馈式三端振荡器、电容反馈式三端振荡器、改进型电容反馈式振荡器)进行分析论证,我们最终选择了克拉泼振荡器。 在本次课程设计中,设计要求产生10~20Mhz的振荡频率。振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我们选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 最后我们利用了仿真软件对电路进行了一写的仿真分析,如改变电容的参数,分析对电路产生的影响等,再考虑输出频率和振幅的稳定性,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 二:设计方案 通过学习高频电子线路的相关知识,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路)等。通过老师所讲和查阅相关资料可知,克拉泼振荡电路具有该电路频率稳定性非常高,振幅稳定,适合做波段振荡器等优点。所以在本设计中拟采用改进型电容反馈式--克拉泼电路振荡器。 下面对几种振荡器进行分析论证: 2.1电感反馈式三端振荡器

高频压控振荡器开题报告

压控高频LC振荡器的设计 ————开题报告 学生:x x x,物理与信息工程学院 指导老师:x x x x x x 一.课题来源 正弦波振荡器在无线电技术领域应用十分广泛,在电子测量中,正弦波信号必不可少的基准信号源。正弦波振荡器主要有决定振荡频率的选频网络和维持振荡的正反馈放大器组成,正弦波振荡器可分为有LC振荡器、RC振荡器、石英晶体振荡器等。本论文主要讲述了高频高精度的LC正弦波振荡器的产生。介绍了该振荡器的基本工作原理、设计电路、性能和测试指标等。此外,还具体说明了电路设计的制作过程和元器件的检测、安装、焊接、调试等过程。阐述了技术指标要求测试方法和数据记录。并对实测数据进行了分析和总结。目前压控振荡器被广泛应用与通信系统电路中,例如锁相环、频率综合器以及时钟产生和时钟恢复电路。而且VCO压控LC器在现实通信领域也有很广泛的应用,其性能优于环形振荡器。振荡器自其诞生以来就一直在通信、电子、航海航空航天及医学等领域扮演重要的角色,具有广泛的用途。在无线电技术发展的初期,它就在发射机中用来产生高频载波电压,在超外差接收机中用作本机振荡器,成为发射和接收设备的基本部件。随着电子技术的迅速发展,振荡器的用途也越来越广泛,例如在无线电测量仪器中,它产生各种频段的正弦信号电压:在热加工、热处理、超声波加工和某些医疗设备中,它产生大功率的高频电能对负载加热;某些电气设备用振荡器做成的无触点开关进行控制;电子钟和电子手表中采用频率稳定度很高的振荡电路作为定时部件等。尤其在通信系统电路中,压控振荡器(VCO)是其关键部件,特别是在锁相环电路、时钟恢复电路和频率综合器电路等更是重中之重,可以毫不夸张地说在电子通信技术领域,VCO几乎与电流源和运放具有同等重要地位。在这次的论文选题中有软件方面的也有硬件方面的,而我本人对硬件比较感兴趣,且压控振荡器是硬件中比较核心的部分,因此我选择了《压控高频LC振荡器的设计》这样一个课题。

高频课程设计-LC振荡器设计

目录 目录 (1) 摘要 (2) 关键词 (2) 1 引言 (2) 1.1 课程设计背景 (2) 1.2 课程设计目的 (2) 1.3 课程设计内容 (2) 2 正弦波振荡电路 (3) 2.1 LC振荡器基本工作原理 (3) 2.2 各振荡电路的方案比较与分析 (3) 2.3 振荡器的稳频措施 (4) 2.4 改进型电容反馈电路 (4) 3 电路设计及仿真结果 (6) 3.1 参数计算 (6) 3.2进行仿真 (6) 3.3 仿真结果分析 (7) 4 课程设计心得体会 (7) 5 参考文献 (8)

LC 振荡器设计 摘要:电子线路中,在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅度的交变能量的电子电路称为高频信号发生器。 高频信号发生器主要是产生高频正弦震荡波,电路主要由高频振荡电路构成。振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。它无需外加激励信号。 本课程设计中,为了熟悉《高频电子线路》课程,着眼于LC 振荡器的分析研究与设计。在课程设计中,为了学习Multisim 软件的使用,以及锻炼电子仿真的能力,我选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。 关键词:LC 正弦波振荡器;西勒电路;Multisim 仿真 1 引言 1.1 课程设计背景 在电子线路中,由于LC 原件的标准型较差,谐振回路的Q 值较低,空载Q 值一般不超过300,有载QL 值更低。所以LC 振荡器的频率稳定度一般为3 10-量级,即使是克拉泼电路和西勒电路,也只能达到310-~ 410-量级。因为本次设计主要指标要求频率稳定度410-,所以选用西勒电路。 1.2 课程设计目的 (1) 掌握LC 振荡器的基本工作原理和主要技术指标还有西勒电路的电路图。 (2) 学习Multisim 仿真软件的使用方法。 (3) 学会设计电路图,理论联系实际,加深对理论知识的理解,提高分析和解决问题的能力。 1.3 课程设计内容 通过对高频电子线路相关知识的学习,我们知道LC 正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路和西勒电路)等。其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。由所学知识可

压控LC振荡器

2003年全国大学生电子设计大赛 设计报告 设计者:李永彬王萍宋均雷 赛前辅导老师:姚福安万鹏 单位:山东大学控制科学与工程学院 邮编:250061 A题电压控制LC正弦波振荡器 摘要 本系统由LC振荡电路、高频放大电路、采样保持电路、三位半电压显示模块、CPLD控制模块及四位LED显示模块等构成。本设计的特色在于应用变容二极管实现了压控变频及应用可编程逻辑器件实现了频率测量。 Abstract This system includes LC frequency generator, the sampling-holding circuit, controlled by the CPLD. This can realize that the function that change the frequency step by step. To display the outcome, the model applied in. 1. 方案论证及实现 根据压控LC震荡器题目的要求,提出以下两种方案:

1.方案一:变压器反馈式LC振荡器 变压器反馈式LC震荡电路要使用变压器,其体积和重量都比较大。而且,变压器的铁芯容易产生电磁干扰。 2.方案二:电感三点式振荡电路 电感三点式振荡电路电路反馈电压取自电感,而电感对高次谐波的阻抗较大,不能将高次谐波滤掉,因此输出波形中含有较多的高次谐波分量,波形较差,而且频率稳定度不高 3.方案三:电容三点式震荡电路 电容三点式振荡器的电路反馈电压取自电容,其对高次谐波的阻抗较较小,因此反馈电压中的高次谐波分量较小,波形较好。为达到题目要求实现压控,可采用变容二极管组成电容三点式振荡器。由于制版条件有限,不可能有效克服分布参数干扰的影响,但此方案仍为实现题目

通信电子线路课程设计报告——电感三点式正弦波振荡器

课程设计报告 课题名称_____通信电子线路课程设计_ 学院电子信息学院 专业 班级 学号 姓名 指导教师

目录 摘要 ............................................................................................ I 1绪论.. (1) 2正弦波振荡器 (2) 2.1 反馈振荡器产生振荡的原因及其工作原理 (2) 2.2平衡条件 (3) 2.3起振条件 (3) 2.4稳定条件 (4) 3电感三点式振荡器 (5) 3.1三点式振荡器的组成原则 (5) 3.2电感三点式振荡器 (5) 3.3 振荡器设计的模块分析 (6) 4 仿真与制作 (10) 4.1仿真. (10) 4.2分析调试 (12) 5 心得体会...................................13= 参考文献 (14)

摘要 反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式容易起振,调整频率方便,变电容而不影响反馈系数。 正弦波振荡器在各种电子设备中有着广泛的应用。例如,无线发射机中的载波信号源,接收设备中的本地振荡信号源,各种测量仪器如信号发生器、频率计、fT测试仪中的核心部分以及自动控制环节,都离不开正弦波振荡器。根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。 本文将简单介绍一种利用一款名为Multisim 11.0的软件作为电路设计的仿真软件,电容电感以及其他电子器件构成的高频电感三点式正弦波振荡器。电路中采用了晶体三极管作为电路的放大器,电路的额定电源电压为5.0 V,电流为1~3 mA,电路可输出输出频率为8 MHz(该频率具有较大的变化范围)。 关键词:高频、电感、振荡器

LC压控振荡器课程设计(含程序)

LC压控振荡器课程设计(含程序)武汉理工大学《学科基础课群课设》 摘要 本设计是一个功能完善,性能优良的高频VCO(Voltage Control Oscillation)。主 振器由分立元件组成。电压对频率的控制是通过变容二极管来实现的。即通过改变变容 二极管的反向压降,从而改变变容二极管的结电容,继而改变振荡频率。系统的输出频 ,3率范围为10MHz—40MHz。频率稳定度在以上。设计以单片机为控制核心,实现频10 率和电压值的实时测量及显示并控制频率步进,步进有粗调和细调的功能。粗调可实现 较大步进值调节,是调可实现较小步进值调节。该功能使得频率的准确定位十分方便。 本电路在调频部分为提高输出频率精度,采用单片机控制主振器参数,根据产生不同的 频率范围控制不同的主振器参数而达到提高精度和稳定度的目的。为了高频信号的良好 传输,本设计的部分电路板采用了人工刻板使得本设计更加特色鲜明,性能优良。 关键字:VCO 单片机变容二极管 ADC0804 Abstract

This design is a high frequency VCO with comprehensive and perfect function. The main vibrator is made up of several separable components. Voltage control on the frequency is realized by way of varicap diode. That, changing the reverse voltage of diode can adjust the frequency. The frequency of the apparatus can output from 10MHz to 40MHz, and its I 武汉理工大学《学科基础课群课设》 ,3frequency stability can reach .This design uses a single-chip as control core to measure 10 and display the frequency and voltage and regulate frequency. The frequency adjustment includes two procedures -approximate adjusting and slight adjusting, The slight adjusting can realize the precise frequency output. In order to change the precision of frequency to output, the circuit control the main vibrator with a single-chip. In order go gain what we to. we can change the different parameters of the main vibrator. In addition, Some part of the design wield arterial pattern plate. It nape the circuit mare perfect. Key words: VCO MCU DIODE ADC0804 目录 1. 系统设计 (1) 1.1 设计要求 (1)

电子线路课程设计-高频LC振荡器..

《高频LC振荡器》 专业班级:12级电信三班 姓名:彭祝凡赵骞秦海华 学号:080212129 080212123 08021125 指导教师:李强 设计时间: 2014年12月11日 物理与电气工程学院 2014 年12 月11 日

摘要 在信息飞速发展的时代,对信息的获取,传输与处理的方法越来越受到人们的重视。如何高速快捷且没有失真的传递信息成为关注的热点。通过对高频电子线路的学习,了解到高频信号发生器主要用来向各种电子设备和电路提供高频信号或高频标准信号,以便测试各种电子设备和电路的电器特性.一般采用LC谐式振荡器,频率可由调谐电容器的刻度读出。高频信号发生器主要是产生高频正弦震荡波,故电路主要是高频振荡电路构成。振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。为此,振荡器是电子技术领域中最基本的电子线路。 振荡器主要分为晶体振荡器和LC回路的三个端点与晶体管的三个电极分别连接而成的电路。其中三点式又分为两种基本电路。根据反馈网络由电容还是电感完成的分为电容反馈振荡器和电感反馈振荡器。同时为了提高振荡器的稳定度,通过电容三点式振荡器的改进可以得到克拉泼振荡器和西勒振荡器两种改进的电容反馈振荡器。其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,震荡频率可以做得很高。 通过对各电路的比较,以及根据课设要求频率稳定度等综合考虑,最终选择西勒振荡器,继而通过multisim设计电路和仿真,并完成相关技术指标。 关键字:三点式,振荡器,西勒电路,multisim

目录 摘要 (2) 1. 概述 (4) 2. 课程设计任务及要求 (4) 2.1 设计任务 (4) 2.2 设计要求 (4) 3. 理论设计 (4) 3.1方案论证 (4) 3.2系统设计 (5) 3.2.1 结构框图及说明 (5) 3.2.2 系统原理图及工作原理 (5) 3.3 单元电路设计 (6) 3.3.1单元电路工作原理 (6) 3.3.2元件参数选择 (8) 4. 安装调试 (9) 4.1 安装调试过程 (9) 4.2 故障分析 (10) 5. 结论 (10) 6. 使用仪器设备清单 (10) 7. 收获、体会和建议 (11) 8. 参考文献 (11) .

晶体振荡器的设计.

1.课程设计的目的 (3) 2.课程设计的内容 (3) 3.课程设计原理 (3) 4.课程设计的步骤或计算 (5) 5.课程设计的结果与结论 (11) 6.参考文献 (16)

一、设计的目的 设计一个晶振频率为20MHz,输出信号幅度≥5V(峰-峰值),可调的晶体振荡器 二、设计的内容 本次课程设计要求振荡器的输出频率为20Mhz,属于高频范围。所以选择LC振荡器作为参考对象,再考虑输出频率和振幅的稳定性,最终选择了克拉泼振荡器。通过ORCAD 的设计与仿真,Protel绘制PCB版图,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 三、设计原理 1.振荡器的概述 在电子线路中,除了要有对各种电信号进行放大的电子线路外,还需要有在没有激励信号的情况下产生周期性振荡信号的电子线路,这种电子线路就是振荡器。 振荡器是一种能量转换器,它不需要外部激励就能自动地将直流电源共给的功率转换为制定频率和振幅的交流信号功率输出。振荡器一般由晶体管等有源器件和某种具有选频能力的无源网络组成。 振荡器的种类很多,根据工作原理可分为反馈型振荡器和负阻型振荡器,根据所产生的波形可分为正弦波振荡器和非正弦波振荡器;根据选频网络可分为LC振荡器﹑晶体振荡器﹑RC振荡器等。 2.振荡器的振荡条件 反馈型振荡器的原理框图如下:

图1.1 反馈型振荡器的原理框图 如图1,放大器的电压放大倍数为K(s),反馈网络的电压反馈系数为F(s),则闭环电压放大倍数Ku(s)的表达式为[1]: K u (s)= ) () (s Us s Uo ( 1—1) 由 K(s)= ) () (s Ui s Uo (1—2) F(s)=) ()(s Uo s i U ' (1—3) U i(s)=U s (s)+)(s i U ' (1—4) 得 K u (s)= )()(1)(s F s K s K -=) (1) (s T s K - (1—5) 其中T(s)=K(s)F(s)= ) () (s Ui s i U ' (1—6) 称为反馈系统的环路增益。用s=j ω带入就得到稳态下的传输系数和环路增益。由式(1—5)可知,若在某一频率ω=ω1上T(j ω),Ku (j ω)将趋近于无穷大,这表明即使没有外加信号,也可以维持振荡输出。因此自激振荡的条件就是环路增益为1,即 T(j ω)=K(j ω)F((j ω)=1 (1—7) 通常称为振荡器的平衡条件。 由式(1—6)还可知|T(j ω)|>1,|)(ωj i U '|>|Ui (j ω)|,形成增幅振荡。 |T(j ω)|<1, |)(ωj i U '|<|Ui (j ω)|,形成减幅振荡。 综上,正弦波振荡器的平衡条件为: T(j ω)=K(j ω)F((j ω)=1 也可表示为|T(j ω)|=KF=1 (1—8a)

相关文档
最新文档