Altera FPGA引脚定义

Altera FPGA引脚定义
Altera FPGA引脚定义

Altera FPGA引脚定义2011-02-28 15:20:33

1.用户I/O:通用输入输出引脚。

2.配置管脚:

MSEL[1:0] 用于选择配置模式,比如AS、PS等。

DATA0 FPGA串行数据输入,连接到配置器件的串行数据输出管脚。

DCLK FPGA串行时钟输出,为配置器件提供串行时钟。

nCSO(I/O)FPGA片选信号输出,连接到配置器件的nCS管脚。

ASDO(I/O)FPGA串行数据输出,连接到配置器件的ASDI管脚。

nCEO 下载链期间始能输出。在一条下载链中,当第一个器件配置完成后,此信号将始能下一个器件开始进行配置。下载链上最后一个器件的nCEO悬空。

nCE 下载链器件始能输入,连接到上一个器件的nCEO,下载链的最后一个器件nCE接地。

nCNFIG 用户模式配置起始信号。

nSTATUS 配置状态信号。

CONF_DONE 配置结束信号。

3.电源管脚:

VCCINT 内核电压。130nm为1.5V,90nm为1.2V

VCCIO 端口电压。一般为3.3V,还可以支持多种电压,5V、1.8V、1.5V

VREF 参考电压

GND 信号地

4.时钟管脚:

VCC_PLL PLL管脚电压,直接连VCCIO

VCCA_PLL PLL模拟电压,截止通过滤波器接到VCCINT上

GNDA_PLL PLL模拟地

GNDD_PLL PLL数字地

CLK[n] PLL时钟输入

PLL[n]_OUT PLL时钟输出

5.特殊管脚:

VCCPD 用于寻则驱动

VCCSEL 用于控制配置管脚和PLL相关的输入缓冲电压

PROSEL 上电复位选项

NIOPULLUP 用于控制配置时所使用的用户I/O的内部上拉电阻是否工作

TEMPDIODEN 用于关联温度敏感二极管

*********************************************************************** **********

1/1.I/O,ASDO

在AS 模式下是专用输出脚,在PS 和JTAG 模式下可以当I/O 脚来用。在AS 模式下,这个脚是CII 向串行配置芯片发送控制信号的脚。也是用来从配置芯片中读配置数据的脚。在AS 模式下,ASDO 有一个内部的上拉电阻,一直有效,配置完成后,该脚就变成三态输入脚。ASDO 脚直接接到配置芯片的ASDI 脚(第5 脚)。

2/2.I/O,nCSO

在AS 模式下是专用输出脚,在PS 和JTAG 模式下可以当I/O 脚来用.在AS 模式下,这个脚是CII 用来给外面的串行配置芯片发送的使能脚。在AS 模式下,ASDO 有一个内部的上拉电阻,一直有效。这个脚是低电平有效的。直接接到配置芯片的/CS 脚(第1 脚)。

3/3.I/O,CRC_ERROR

当错误检测CRC 电路被选用时,这个脚就被作为CRC_ERROR 脚,如果不用默认就用来做I/O。但要注意,这个脚是不支持漏极开路和反向的。当它作为CRC_ERROR 时,高电平输出则表示出现了CRC 校验错误(在配置SRAM 各个比特时出现了错误)。CRC 电路的支持可以在setting 中加上。这个脚一般与nCONFIG 脚配合起来用。即如果配置过程出错,重新配置.

4/4.I/O,CLKUSR

当在软件中打开Enable User-supplled start-up clock(CLKUSR)选项后,这个脚就只可以作为用户提供的初始化时钟输入脚。在所有配置数据都已经被接收后,CONF_DONE 脚会变成高电平,CII 器件还需要299 个时钟周期来初始化寄存器,I/O 等等状态,FPGA 有两种方式,一种是用内部的晶振(10MHz),另一种就是从CLKUSR 接进来的时钟(最大不能超过100MHz)。有这个功能,可以延缓FPGA 开始工作的时间,可以在需要和其它器件进行同步的特殊应用中用到。

7/13.I/O,VREF

用来给某些差分标准提供一个参考电平。没有用到的话,可以当成I/O 来用。

14/20. DATA0

专用输入脚。在AS 模式下,配置的过程是:CII 将nCSO 置低电平,配置芯片被使能。CII然后通过DCLK 和ASDO 配合操作,发送操作的命令,以及读的地址给配置芯片。配置芯片然后通过DATA 脚给CII 发送数据。DATA 脚就接到CII 的DATA0 脚上。CII 接收完所有的配置数据后,就会释放CONF_DONE 脚(即不强制使CONF_DONE 脚为低电平),CONF_DONE 脚是漏极开路(Open-Drain)的。这时候,因为CONF_DONE 在外部会接一个10K 的电阻,所以它会变成高电平。同时,CII 就停止DCLK 信号。在CONF_DONE 变成高电平以后(这时它又相当于变成一个输入脚),初始化的过程就开始了。所以,CONF_DONE 这个脚外面一

定要接一个10K 的电阻,以保证初始化过程可以正确开始。

DATA0,DCLK,NCSO,ASDO 脚上都有微弱的上拉电阻,且一直有效。在配置完成后,这些脚都会变成输入三态,并被内部微弱的上拉电阻将电平置为高电平。在AS 模式下,DATA0就接到配置芯片的DATA(第2 脚)。

15/21. DCLK

PS 模式下是输入,AS 模式下是输出。在PS 模式下,DCLK 是一个时钟输入脚,是外部器件将配置数据传送给FPGA 的时钟。数

据是在DCLK 的上升沿把数据,在AS 模式下,DCLK脚是一个时

钟输出脚,就是提供一个配置时钟。直接接到配置芯片的DCLK 脚

上去(第6脚)。无论是哪种配置模式,配置完成后,这个脚都会变成三态。如果外接的是配置器件,配置器件会置DCLK 脚为低电平。如果使用的是主控芯片,可以将DCLK 置高也可以将DCLK 置低。配置完成后,触发这个脚并不会影响已配置完的FPGA。这个脚带了输入Buffer,支持施密特触发器的磁滞功能。

16/22. nCE

专用输入脚。这个脚是一个低电平有效的片选使能信号。nCE 脚是配置使能脚。在配置,初始化以及用户模式下,nCE 脚必须置低。在多个器件的配置过程中,第一个器件的nCE 脚要置低,它的nCEO 要连接到下一个器件的nCE 脚上,形成了一个链。nCE 脚在用JTAG编程模式下也需要将nCE 脚置低。这个脚带了输入Buffer,支持施密特触发器的磁滞功能。

20/26. nCONFIG

专用的输入管脚。这个管脚是一个配置控制输入脚。如果这个脚在用户模式下被置低,FPGA就会丢失掉它的配置数据,并进入一个复位状态,并将所有的I/O 脚置成三态的。nCONFIG从低电平跳变到高电平的过程会初始化重配置的过程。如果配置方案采用增强型的配置器件或EPC2,用户可以将nCONFIG 脚直接接到VCC 或到配置芯片的nINIT_CONF 脚上去。这个脚带了输入Buffer,支持施密特触发器的磁滞功能。实际上,在用户模式下,nCONFIG信号就是用来初始化重配置的。当nCONFIG 脚被置低后,初始化进程就开始了。当nCONFIG脚被置低后,CII 就被复位了,并进入了复位状态,nSTATUS 和CONF_DONE 脚被置低,所有的I/O 脚进入三态。nCONFIG 信号必须至少保持2us。当nCONFIG 又回到高电平状态后,nSTATUS 又被释放。重配置就开始了。在实际应用过程中可以将nCONFIG 脚接一个10K 的上拉电阻到3.3V.

40/56. DEV_OE

I/O 脚或全局I/O 使能脚。在Quartus II 软件中可以使能

DEV_OE 选项(Enable Device-wideoutput Enable),如果使能了这一个功能,这个脚可以当全局I/O 使能脚,这个脚的功能是,如果它被置低,所有的I/O 都进入三态。

75/107. INIT_DONE

I/O 脚或漏极开路的输出脚。当这个脚被使能后,该脚上从低到高的跳变指示FPGA 已经进入了用户模式。如果INIT_DONE 输出脚被使能,在配置完成以后,这个脚就不能被用做用户I/O 了。在QuartusII 里面可以通过使能Enable INIT_DONE 输出选项使能这个脚。

76/108. nCEO

I/O 脚或输出脚。当配置完成后,这个脚会输出低电平。在多个器件的配置过程中,这个脚会连接到下一个器件的nCE 脚,这个时候,它还需要在外面接一个10K 的上拉电阻到Vccio。多个器件的配置过程中,最后一个器件的nCEO 可以浮空。如果想把这个脚当成可用的I/O,需要在软件里面做一下设置。另外,就算是做I/O,也要等配置完成以后。

82/121. nSTATUS

这是一个专用的配置状态脚。双向脚,当它是输出脚时,是漏极开路的。在上电之后,FPGA立刻将nSTATUS 脚置成低电平,并在上电复位(POR)完成之后,释放它,将它置为高电平。作为状态输出脚时,在配置过程中如果有任何一个错误发生了,nSTATUS 脚会被置低。作为状态输入脚时,在配置或初始化过程中,外部控制芯片可以将这个脚拉低,这时候FPGA就会进入错误状态。这个脚不能用作普通I/O 脚。nSTATUS 脚必须上拉一个10K 欧的电阻。

83/123. CONF_DONE

这是一个专用的配置状态脚。双向脚,当它是输出脚时,是漏极开路的。当作为状态输出脚时,在配置之前和过程中,它都被置为低电平。一旦配置数据接收完成,并且没有任何错误,初始化周期一开始,CONF_DONE 就会被释放。当作为状态输入脚时,在所有数据都被接收后,要将它置为高电平。之后器件就开始初始化再进入用户模式。它不可以用作普通I/O来用。这个脚外成也必须接一个10K 欧的电阻。

84/125,85/126. MSEL[1:0]

这些脚要接到零或电源,表示高电平或低电平。00 表示用AS 模式,10 表示PS 模式,01是FAST AS 模式.如果用JTAG 模式,就把它们接00, JTAG 模式跟MSEL 无关,即用JTAG模式,MSEL 会被忽略,但是因为它们不能浮空,所以都建议将它接到地。

142/206 DEV_CLRn

I/O 或全局的清零输入端。在QuartusII 里面,如果选上Enable Device-Wide Reset(DEV_CLRn)这个功能。这个脚就是全局清零端。当这个脚被置低,所有的寄存器都会被清零。这个脚不会影响到JTAG 的边界扫描或编程的操作。

(完整word版)各种接口针脚定义大全,推荐文档

3.5mm插头 最常见的立体声耳机分三层,标准分布为“左右地红白”(从端部到根部依次是左声道、右声道、地线,其中左声道常用红色线皮,右声道常用白色的)。 最常见的是银白色的和铜黄色的,银色的是铜镀银,铜黄色的就是铜。由于银的稳定性和电子工程性优于铜,所以铜镀上银后可以升级使用该插头设备的用户体验。 USB接口 USB是一种常用的pc接口,他只有4根线,两根电源两根信号,故信号是串行传输的,usb接口也称为串行口,usb2.0的速度可以达到480Mbps。可以满足各种工业和民用需要.USB接口的输出电压和电流是: +5V 500mA 实际上有误差,最大不能超过+/-0.2V 也就是4.8-5.2V 。usb接口的4根线一般是下面这样分配的,需要注意的是千万不要把正负极弄反了,否则会烧掉usb设备或者电脑的南桥芯片:黑线:gnd 红线:vcc 绿线:data+ 白线:data-

USB接口定义图 USB接口定义颜色 一般的排列方式是:红白绿黑从左到右 定义: 红色-USB电源:标有-VCC、Power、5V、5VSB字样 白色-USB数据线:(负)-DATA-、USBD-、PD-、USBDT- 绿色-USB数据线:(正)-DATA+、USBD+、PD+、USBDT+ 黑色-地线: GND、Ground USB接口的连接线有两种形式,通常我们将其与电脑接口连接的一端称为“A”连接头,而将连接外设的接头称为“B”连接头(通常的外设都是内建USB数据线而仅仅包含与电脑相连的“A”连接头)。 USB接口是一种越来越流行的接口方式了,因为USB接口的特点很突出:速度快、兼容性好、不占中断、可以串接、支持热插拨等等,

完整word版各种接口针脚定义大全

3.5mm 插头 最常见的立体声耳机分三层,标准分布为“左右地红白”(从端部到根部依次是左声道、右声道、地线,其中左声道常用红色线皮,右声道常用白色的)。 最常见的是银白色的和铜黄色的,银色的是铜镀银,铜黄色的就是铜。由于银的稳定性和电子工程性优于铜,所以铜镀上银后可以升级使用该插头设备的用户体验。 USB接口 USB是一种常用的pc接口,他只有4根线,两根电源两根信号,故信号是串行传输的,usb接口也称为串行口, usb2.0的速度可以达到480Mbps。可以满足各种工业和民用需要.USB接口的输出电压和电流是: +5V 500mA 实际上有误差,最大不能超过+/-0.2V 也就是4.8-5.2V 。usb接口的4根线一般是下面这样分配的,需要注意的是千万不要把正负极弄反了,

否则会烧掉usb设备或者电脑的南桥芯片:黑线:gnd 红线:vcc 绿线:data+ 白线:data- 1 USB接口定义图 USB接口定义颜色 一般的排列方式是:红白绿黑从左到右 定义: 红色-USB电源:标有-VCC、Power、5V、5VSB字样 白色-USB数据线:(负)-DATA-、USBD-、PD-、USBDT- 绿色-USB数据线:(正)-DATA+、USBD+、PD+、USBDT+ 黑色-地线: GND、Ground USB接口的连接线有两种形式,通常我们将其与电脑接口连接的一端称为“A”连接头,而将连接外设的接头称为“B”连接头(通常的外设都是内建USB数据线而仅仅包含与电脑相连的“A”连

接头)。 USB接口是一种越来越流行的接口方式了,因为USB接口的特点很突出:速度快、兼容性好、不占中断、可以串接、支持热插拨等等, 2 所以如今有许多打印机、扫描仪、数字摄像头、数码相机、MP3播放器、MODEM等都开始使用USB做为接口模式,USB接口定义也很简单: 1 +5V 2 DATA-数据- 3 DATA+数据+ 4 GND 地 串口 主板一般都集成两个串口,可Windows却最多可提供8个串口资源供硬件设置使用(编号COM1到COM8),虽然其I/O地址不相同,但是总共只占据两个IRQ(1、3、5、7共享IRQ4,2、4、6、8共享IRQ3),平常我们常用的是COM1~COM4这四个端口。我们经常在使用中遇到这个问题——如果在COM1上安装了串口鼠标或其他外设,就不能在COM3上安装如Modem之类的其它硬件,这就是因为IRQ设置冲突而无法工作。这时玩家们可以将另外的外设安装在COM2或4。 标准的串口能够达到最高115Kbps的数据传输速度,而一些增强型串口如ESP(Enhanced Serial Port,增强型串口) 、Super

fpga中各引脚的功能

分配fpga管脚时该怎么选择,引脚有什么属性需要考虑,quartus2中引脚有几个属性:Reserved,Group,I/O Bank,Vref Group,I/O standard( 3.3-V LVTTL(default) )分别是什么意思,要怎么设置? 谢谢Totag 的回答,你看我的理解对不对:IO standard是根据你所要输入的电平来设置,Group是根据所分配的信号端口自动确定,而每个引脚的IO Bank 本身已经确定! 另外,分配的引脚所属的IO Bank不同有关系吗?引脚的分配除了要考虑专用引脚和用户引脚的区别外,还要考虑什么因素? 首先说IO standard:这个是用于支持对应不同的电平标准。FPGA IO口的电压由IO bank上的VCC引入。一个bank上引入3.3V TTL电平,那么此时整个bank上输出3.3V的TTL电平。设置这个第一是为了和current strength一起计算功率。第二个是用于在IO口上加载正确的上拉/下拉电阻。只要你设置完成,Quartus会按照你的电平标准自动布线。 第二是IO Bank:你在quartus pin planner 的top view下右键然后点击show IO banks,这个时候就会看到FPGA的管脚被几种颜色划分开了。一种颜色下的IO 口代表一组bank。你在吧管脚的location约束完成以后。IO Bank会自动填充完毕的。 第三是Group:Group就是你所输出的信号的名字啦。比如你有一组信号叫cnt。你对cnt的某一根赋值,那么。。这里的Group会自动填充为cnt 。 第四是Reserved:这个是对管脚内部的IO逻辑进行约束的,你在下面可以看到一些值。介绍几个吧。bidrectional:双向,tri-state:三态等等。这个约束的是FPGA 在IO端的输入输出区域的逻辑。比如你选择tri-state。那么这个时候,在你IO 口前部的IO区,quartus会自动给你生成一个三态门。 第五个是Vref Group:这个Group是bank内部的细分区域,因为一个bank可能多达60个脚。为了快速定位,你可以利用这个vref group来找到某个管脚。(这个是非修改属性)无法修改。 你的理解是正确的,另外,跨越IO bank的信号没有问题。只是注意跨bank的电平是否一致即可。对于跨IO bank的延迟对于FPGA而言没有多少延迟。 管脚分配呢,你可以看一下quartus里面pin planner内部那张top view对于每个管脚的说明。大多数管脚是可以当做普通IO使用的。只是有些特殊要求的时候。只可以使用对应的IO,比如差分输入,高时钟输入等等。这个是要参照对应器件的IO 手册来决定的。而且对应的设计大多数的器件生产商都会给出参考设计。里面包括了IO的设计,pcb的设计以及内部程序端口的约束。所以具体问题具体分析。

FPGA学习笔记之引脚分配

2016/2/10 笔记一:分配引脚的四种方法:(Quartus II (64-bit)) 1、常规方法,利用Pin Planner命令,适用于引脚使用比较少的工程,简洁方便; 2、使用.csv文件进行引脚分配: 步骤一:利用记事本新建一个.csv的格式文件,内容格式如图下图所示,然后保存; 步骤二:选择菜单栏Assignments-->Import Assignment,添加刚才生成的文件路径;

步骤三:点击OK,引脚分配完成。 注意:.csv文件保存路径不要有中文,建议保存在工程文件夹下。 3、使用.qsf文件进行引脚分配: 步骤一:在Quartus II中打开.qsf文件(系统默认生成.qsf文件,默认保存在该工程文件夹下) 步骤二:添加以下格式内容,格式如下图所示; 步骤三:点击保存,引脚分配完成。 4、使用.tcl文件进行引脚分配: 步骤一:生成.tcl文件,选择菜单栏Project-->Generate Tcl File For Project,点击OK,默认保存路径为该工程文件夹; 步骤二:添加以下格式内容,格式和.qsf文件格式一致; 步骤三:选择菜单栏Tool-->Tcl Scripts,选择生成的.tcl文件,点击Run,引脚分配完成。

说明:在实际的应用过程中,我们应该根据工程的子模块个数和引脚的使用多少来选择合适的引脚分配方式,笔者总结了以下几条:(不喜勿喷,还望多多赐教) 1、工程中使用的引脚数为个位数时,并且特别少,建议使用常规方法,利用Pin Planner 命令进行引脚分配; 2、工程中只有一个子模块时,如果引脚众多,尤其使用到数码管显示时,建议使用.tcl 文件进行引脚分配; 如图所示,.tcl文件中标识符和变量名已经给出,只需要输入对应引脚,比较方便。在多子模块的情况下,.tcl文件中没有给出标识符和变量名,这点需要注意。 3、多个子模块,使用引脚众多的情况下,利用.tcl文件、.csv文件和.qsf文件进行引脚分配大同小异,不过个人更喜欢利

JTAG各类接口针脚定义及含义

JTAG各类接口针脚定义及含义 JTAG有10pin的、14pin的和20pin的,尽管引脚数和引脚的排列顺序不同,但是其中有一些引脚是一样的,各个引脚的定义如下。 一、引脚定义 Test Clock Input (TCK) -----强制要求1 TCK在IEEE1149.1标准里是强制要求的。TCK为TAP的操作提供了一个独立的、基本的时钟信号,TAP的所有操作都是通过这个时钟信号来驱动的。 Test Mode Selection Input (TMS) -----强制要求2 TMS信号在TCK的上升沿有效。TMS在IEEE1149.1标准里是强制要求的。TMS信号用来控制TAP状态机的转换。通过TMS信号,可以控制TAP在不同的状态间相互转换。 Test Data Input (TDI) -----强制要求3 TDI在IEEE1149.1标准里是强制要求的。TDI是数据输入的接口。所有要输入到特定寄存器的数据都是通过TDI接口一位一位串行输入的(由TCK驱动)。 Test Data Output (TDO) -----强制要求4 TDO在IEEE1149.1标准里是强制要求的。TDO是数据输出的接口。所有要从特定的寄存器中输出的数据都是通过TDO接口一位一位串行输出的(由TCK驱动)。 Test Reset Input (TRST) ----可选项1 这个信号接口在IEEE 1149.1标准里是可选的,并不是强制要求的。TRST可以用来对TAPController进行复位(初始化)。因为通过TMS也可以对TAP Controll进行复位(初始化)。所以有四线JTAG与五线JTAG之分。 (VTREF) -----强制要求5 接口信号电平参考电压一般直接连接Vsupply。这个可以用来确定ARM的JTAG接口使用的逻辑电平(比如3.3V还是5.0V?) Return Test Clock ( RTCK) ----可选项2 可选项,由目标端反馈给仿真器的时钟信号,用来同步TCK信号的产生,不使用时直接接地。System Reset ( nSRST)----可选项3 可选项,与目标板上的系统复位信号相连,可以直接对目标系统复位。同时可以检测目标系统的复位情况,为了防止误触发应在目标端加上适当的上拉电阻。 USER IN 用户自定义输入。可以接到一个IO上,用来接受上位机的控制。 USER OUT 用户自定义输出。可以接到一个IO上,用来向上位机的反馈一个状态 由于JTAG经常使用排线连接,为了增强抗干扰能力,在每条信号线间加上地线就出现了这种20针的接口。但事实上,RTCK、USER IN、USER OUT一般都不使用,于是还有一种14针的接口。对于实际开发应用来说,由于实验室电源稳定,电磁环境较好,干扰不大。

Xilinx FPGA 引脚功能详细介绍

XilinxFPGA引脚功能详细介绍 注:技术交流用,希望对大家有所帮助。 IO_LXXY_# 用户IO引脚 XX代表某个Bank内唯一的一对引脚,Y=[P|N]代表对上升沿还是下降沿敏感,#代表bank号 2.IO_LXXY_ZZZ_# 多功能引脚 ZZZ代表在用户IO的基本上添加一个或多个以下功能。 Dn:I/O(在readback期间),在selectMAP或者BPI模式下,D[15:0]配置为数据口。在从SelectMAP读反馈期间,如果RDWR_B=1,则这些引脚变成输出口。配置完成后,这些引脚又作为普通用户引脚。 D0_DIN_MISO_MISO1:I,在并口模式(SelectMAP/BPI)下,D0是数据的最低位,在Bit-serial模式下,DIN是信号数据的输入;在SPI模式下,MISO是主输入或者从输出;在SPI*2或者SPI*4模式下,MISO1是SPI总线的第二位。 D1_MISO2,D2_MISO3:I,在并口模式下,D1和D2是数据总线的低位;在SPI*4模式下,MISO2和MISO3是SPI总线的MSBs。 An:O,A[25:0]为BPI模式的地址位。配置完成后,变为用户I/O口。 AW AKE:O,电源保存挂起模式的状态输出引脚。SUSPEND是一个专用引脚,AWAKE 是一个多功能引脚。除非SUSPEND模式被使能,AWAKE被用作用户I/O。 MOSI_CSI_B_MISO0:I/O,在SPI模式下,主输出或者从输入;在SelectMAP模式下,CSI_B是一个低电平有效的片选信号;在SPI*2或者SPI*4的模式下,MISO0是SPI总线的第一位数据。 FCS_B:O,BPI flash 的片选信号。 FOE_B:O,BPI flash的输出使能信号 FWE_B:O,BPI flash 的写使用信号 LDC:O,BPI模式配置期间为低电平 HDC:O,BPI模式配置期间为高电平 CSO_B:O,在并口模式下,工具链片选信号。在SPI模式下,为SPI flsah片选信号。 IRDY1/2,TRDY1/2:O,在PCI设计中,以LogiCORE IP方式使用。 DOUT_BUSY:O,在SelectMAP模式下,BUSY表示设备状态;在位串口模式下,DOUT 提供配置数据流。 RDWR_B_VREF:I,在SelectMAP模式下,这是一个低电平有效的写使能信号;配置完成后,如果需要,RDWR_B可以在BANK2中做为Vref。 HSW APEN:I,在配置之后和配置过程中,低电平使用上拉。 INIT_B:双向,开漏,低电平表示配置内存已经被清理;保持低电平,配置被延迟;在配置过程中,低电平表示配置数据错误已经发生;配置完成后,可以用来指示POST_CRC 状态。 SCPn:I,挂起控制引脚SCP[7:0],用于挂起多引脚唤醒特性。 CMPMOSI,CMPMISO,CMPCLK:N/A,保留。 M0,M1:I,配置模式选择。M0=并口(0)或者串口(1),M1=主机(0)或者从机(1)。 CCLK:I/O,配置时钟,主模式下输出,从模式下输入。 USERCCLK:I,主模式下,可行用户配置时钟。 GCLK:I,这些引脚连接到全局时钟缓存器,在不需要时钟的时候,这些引脚可以作为常规用户引脚。 VREF_#:N/A,这些是输入临界电压引脚。当外部的临界电压不必要时,他可以作为

最新各种接口针脚定义大全

各种接口针脚定义大 全

3.5mm插头 最常见的立体声耳机分三层,标准分布为“左右地红白”(从端部到根部依次是左声道、右声道、地线,其中左声道常用红色线皮,右声道常用白色的)。 最常见的是银白色的和铜黄色的,银色的是铜镀银,铜黄色的就是铜。由于银的稳定性和电子工程性优于铜,所以铜镀上银后可以升级使用该插头设备的用户体验。 USB接口 USB是一种常用的pc接口,他只有4根线,两根电源两根信号,故信号是串行传输的,usb接口也称为串行口,usb2.0的速度可以达到480Mbps。可以满足各种工业和民用需要.USB接口的输出电压和电流是: +5V 500mA 实际上有误差,最大不能超过+/-0.2V 也就是4.8-5.2V 。usb接口的4根线一般是下面这样分配的,需要注意的是千万不要把正负极弄反了,否则会烧掉usb设备或者电脑的南桥芯片:黑线:gnd 红线:vcc 绿线:data+ 白线:data-

USB接口定义图 USB接口定义颜色 一般的排列方式是:红白绿黑从左到右 定义: 红色-USB电源:标有-VCC、Power、5V、5VSB字样 白色-USB数据线:(负)-DATA-、USBD-、PD-、USBDT- 绿色-USB数据线:(正)-DATA+、USBD+、PD+、USBDT+ 黑色-地线: GND、Ground USB接口的连接线有两种形式,通常我们将其与电脑接口连接的一端称为“A”连接头,而将连接外设的接头称为“B”连接头(通常的外设都是内建USB数据线而仅仅包含与电脑相连的“A”连接头)。

USB接口是一种越来越流行的接口方式了,因为USB接口的特点很突出:速度快、兼容性好、不占中断、可以串接、支持热插拨等等,所以如今有许多打印机、扫描仪、数字摄像头、数码相机、MP3播放器、MODEM等都开始使用USB做为接口模式,USB接口定义也很简单: 1 +5V 2 DATA-数据- 3 DATA+数据+ 4 GND 地 串口 主板一般都集成两个串口,可Windows却最多可提供8个串口资源供硬件设置使用(编号COM1到COM8),虽然其I/O地址不相同,但是总共只占据两个IRQ(1、3、5、7共享IRQ4,2、4、6、8共享IRQ3),平常我们常用的是COM1~COM4这四个端口。我们经常在使用中遇到这个问题——如果在COM1上安装了串口鼠标或其他外设,就不能在COM3上安装如Modem之类的其它硬件,这就是因为IRQ设置冲突而无法工作。这时玩家们可以将另外的外设安装在COM2或4。 标准的串口能够达到最高115Kbps的数据传输速度,而一些增强型串口如ESP(Enhanced Serial Port,增强型串口) 、Super

FPGA入门及Quartus II使用教程(内部资料)

FPGA入门及Quartus II使用教程FPGA是英文Field Programmable Gate Array的缩写,即现场可编程门阵列,它是在可编程阵列逻辑PAL(Programmable Array Logic)、门阵列逻辑GAL(Gate Array Logic)等可编程器件的基础上上进一步发展的产物。 可以这样讲,ASIC(Application Specific Integrated Circuit )内部的所有资源,是用积木堆积起来的小房子,可以是一个欧美风情的房子,还可以是一个北京四合院…….而FPGA内部就可以说是一个个小积木,也就是内部有大量的资源提供给我们,根据我们的需求进行内部的设计。并且可以通过软件仿真,我们可以事先验证设计的正确性。 第一章FPGA的基本开发流程 下面我们基于Altera 公司的QuantusII 软件来说明FPGA 的开发流程。 下图是一个典型的基于Quartus II的FPGA开发整体流程框图。

1、建立工程师每个开发过程的开始,Quartus II以工程为单位对设计过程进行管 理。 2、建立顶层图。可以这样理解,顶层图是一个容器,将整个工程的各个模块包 容在里边,编译的时候就将这些模块整合在一起。也可以理解为它是一个大元件,比如一个单片机,内部包含各个模块,编译的时候就是生成一个这样的大元件。 3、采用ALTERA公司提供的LPM功能模块。Quartus软件环境包含了大量的常 用功能模块,比如计数器、累加器、比较器等等。 4、自己建立模块。由于有些设计中现有的模块功能不能满足具体设计的要求, 那就只能自己设计。使用硬件描述语言,当然也可以用原理图的输入方法,可以独立的把它们当成一个工程来设计,并且生成一个模块符号(Symbol),类似于那些LPM功能模块。这里可以理解为,如果我们需求的滤波器,没有现成的合适的,那我们可以通过LC自己来搭建一个滤波器。 5、将顶层图的各个功能模块连线起来。这个过程类似电路图设计,把各个芯片 连起来,组成电路系统。 6、系统的功能原理图至此已经基本出炉了,下一步就是选择芯片字载体,分配 引脚,设置编译选项等等。 7、编译。这个过程类似软件开发里德编译,但是实际上这个过程比软件的编译 复杂的多,因为它最终要实现硬件里边的物理结构,包含了优化逻辑的组合,综合逻辑以及布线等步骤。 8、编译后会生成2个文件,一个是*.sof文件,一个是*.pof文件,前者可以通过 JTAG方式下载到FPGA内部,可以进行调试,但断电后数据丢失;后者通过AS或者PS方式下载到FPGA的配置芯片里边(EEPROM或者FLASH),重新上电后FPGA会通过配置将数据读出。 9、对于复杂的设计,工程编译好了,我们可以通过Quartus软件或者其他仿真 软件来对设计进行反复仿真和验证,直到满足要求。(主要是时序仿真)。 第二章基于Quartus II的实例 一、建立工程 首先,打开Quartus II软件。

电脑主板各种接口及引脚定义

电脑主板各种接口及引脚定义,下图为常见的主板外设接口 首先是ATX 20-Pin电源接口电源接口,根据下图你可方便判断和分辨。 现在为提高CPU的供电,从P4主板开始,都有个4P接口,单独为CPU供电,在此也已经标出。

主板上CPU等网风扇接口。 主板上音频线接口。

主板SATA串口硬盘接口。 PS/2接口 鼠标和键盘绝大多数采用PS/2接口,鼠标和键盘的PS/2接口的物理外观完全相同,初学者往往容易插错,以至于业界不得不在PC'99规范中用两种不同的颜色来将其区别开,而事实上它们在工作原理上是完全相同的,从下面的PS/2接口针脚定义我们就可以看出来。

上图的分别为AT键盘(既常说的大口键盘),和PS2键盘(即小口键盘),如今市场上PS2键盘的数量越来越多了,而AT键盘已经要沦为昨日黄花了。因为键盘的定义相似,所以两者有共同的地方,各针脚定义如下: 1、DATA 数据信号 2、空 3、GND 地端 4、+5V 5、CLOCK 时钟 6 空(仅限PS2键盘) USB接口 USB(Universal Serial Bus,通用串行总线)接口是由Compaq、IBM、Microsoft 等多家公司于1994年底联合提出的接口标准,其目的是用于取代逐渐不适应外设需求的传统串、并口。1996年业界正式通过了USB1.0标准,但由于未获当时主流的Win95支持(直到Win95 OSR2才通过外挂模块提供对USB1.0的支持)而未得到普及,直到1998年USB1.1标准确立和Win98内核正式提供对USB接口的直接支持之后,USB才真正开始普及,到今天已经发展到USB2.0标准。 USB接口的连接线有两种形式,通常我们将其与电脑接口连接的一端称为“A”连接头,而将连接外设的接头称为“B”连接头(通常的外设都是内建USB数据线而仅仅包含与电脑相连的“A”连接头)。Negative data ,positive data

HDMI接口引脚定义及对照表

Edit by Simon on 2013-03-02 HDMI 接口引脚定义对照表 Pin A Type B Type C Type D Type 总共有19pin,规格为4.45mm ×13.9mm ,为最常见的HDMI 接头规格,相对等于DVI Single-Link 传输。在HDMI 1.2a 之前,最大能传输165MHz 的TMDS,所以最大传输规格1600x1200。 总共有29pin,可传输HDMI A type 两倍的TMDS 资料量,相对等于DVI Dual-Link 传输,用于传输高分辨率(2560x1600以上)。 总共有19pin,可以说是缩小版的HDMI A type,但脚位定义有所改变。主要是用在便携式装置上,例如DV 、数码相机、便携式多媒体播放机等。(又称mini-HDMI ,但实际上HDMI 官方并没此名称。) 俗称Micro HDMI 是定义为HDMI 1.4版本的,保持hdmi 标准的19pin .但是尺寸与微型USB 的接口差不多,尺寸为2.8mm ×6.4mm ,主要应用在一些小型的移动设备上,如手机,MP4等等。 1TMDS Data2+TMDS Data2+TMDS Data2Shield Hot Plug Detect 2TMDS Data2Shield TMDS Data2Shield TMDS Data2+Utility 3TMDS Data2–TMDS Data2–TMDS Data2–TMDS Data2+4TMDS Data1+TMDS Data1+TMDS Data1Shield TMDS Data2Shield 5TMDS Data1Shield TMDS Data1Shield TMDS Data1+TMDS Data2-6TMDS Data1–TMDS Data1–TMDS Data1–TMDS Data1+7TMDS Data0+TMDS Data0+TMDS Data0Shield TMDS Data1Shield 8TMDS Data0Shield TMDS Data0Shield TMDS Data0+TMDS Data1-9TMDS Data0–TMDS Data0–TMDS Data0–TMDS Data0+10TMDS Clock+TMDS Clock+TMDS Clock Shield TMDS Data0Shield 11TMDS Clock Shield TMDS Clock Shield TMDS Clock+TMDS Data0-12TMDS Clock–TMDS Clock–TMDS Clock–TMDS Clock+13CEC TMDS Data5+DDC/CEC Ground TMDS Clock Shield 14Reserved (N.C.)TMDS Data5Shield CEC TMDS Clock-15SCL TMDS Data5-SCL CEC 16SDA TMDS Data4+SDA DDC/CEC Ground 17DDC/CEC Ground TMDS Data4Shield Reserved (N.C.)SCL 18+5V Power TMDS Data4-+5V Power SDA 19Hot Plug Detect TMDS Data3+Hot Plug Detect +5V Power 20TMDS Data3Shield 21TMDS Data3-22CEC 23Reserved (N.C.)24Reserved (N.C.)25SCL 26SDA 27DDC/CEC Ground 28+5V Power 29 Hot Plug Detect

并行接口引脚定义

PC 并行接口引脚定义 2009-08-11 16:27:53 PC 并行接口外观是 25 针母插座: 引脚定义 Pin Name Dir Description 1/STROBE Strobe 2D0Data Bit 0 3D1Data Bit 1 4D2Data Bit 2 5D3Data Bit 3 6D4Data Bit 4 7D5Data Bit 5 8D6Data Bit 6 9D7Data Bit 7 10/ACK Acknowledge

11BUSY Busy 12PE Paper End 13SEL Select 14/AUTOFD Autofeed 15/ERROR Error 16/INIT Initialize 17/SELIN Select In 18GND Signal Ground 19GND Signal Ground 20GND Signal Ground 21GND Signal Ground 22GND Signal Ground 23GND Signal Ground 24GND Signal Ground 25GND Signal Ground ECP 并行口定义 ECP 是 Extended Capabilities Port 的缩写,外观同并行口,是 25 针母插座:

引脚定义 Pin Name Dir Description 1nStrobe Strobe 2data0Address, Data or RLE Data Bit 0 3data1Address, Data or RLE Data Bit 1 4data2Address, Data or RLE Data Bit 2 5data3Address, Data or RLE Data Bit 3 6data4Address, Data or RLE Data Bit 4 7data5Address, Data or RLE Data Bit 5 8data6Address, Data or RLE Data Bit 6 9data7Address, Data or RLE Data Bit 7 10/nAck Acknowledge 11Busy Busy 12PError Paper End 13Select Select 14/nAutoFd Autofeed 15/nFault Error 16/nInit Initialize

各种接口针脚定义-RJ45接RJ48接口串口并口接口(精)

各种接口针脚定义-RJ45接、RJ48接口、串口、并口接口 RJ45接口信号定义,以及网线连接头信号安排 以太网10/100Base-T 接口: Pin Name Description 1 TX+ Tranceive Data+ (发信号+) 2 TX- Tranceive Data- (发信号-) 3 RX+ Receive Data+ (收信号+) 4 n/c Not connected (空脚) 5 n/c Not connected (空脚) 6 RX- Receive Data- (收信号-) 7 n/c Not connected (空脚) 8 n/c Not connected (空脚) 以太网100Base-T4 接口: Pin Name Description 1 TX_D1+ Tranceive Data+ 2 TX_D1- Tranceive Data- 3 RX_D2+ Receive Data+ 4 BI_D3+ Bi-directional Data+ 5 BI_D3- Bi-directional Data- 6 RX_D2- Receive Data- 7 BI_D4+ Bi-directional Data+ 8 BI_D4- Bi-directional Data- 1 white/orange 2 orange/white 3 white/green 4 blue/white 5 white/blue 6 green/white 7 white/brown 8 brown/white

注:RJ45接口采用差分传输方式,tx+、tx-是一对双绞线,拧在一起可以减少干扰。 RJ48接口信号定义 RJ48是用于T1/E1等串行线路的接口。和以太网的RJ45是一样的。 对于接不同的传输,信号定义不一样。 RJ48口呈“凸” 这个形状,线序从左往右为87654321. 例如CT1/PRI-CSU (RJ-48C)信号定义如下 RJ-48C Pin Description 1 Receive Ring 2 Receive Tip 4 Ring 5 Tip 对于T1/E1 Trunk and Digital Voice Port (RJ-4 Pin1 Signal 1 RX + (input) 2 RX - (input) 3 — 4 TX + (output) 5 TX - (output) 6 — 7 — 8 — 串口、并口接口定义 并行口与串行口的区别是交换信息的方式不同,并行口能同时通过8条数据线传输信息,一次传输一个字节;而串行口只能用1条线传输一位数据,每次传输一个字节的一位。并行口由于同时传输更多的信息,速度明显高于串行口,但串行口可以用于比并行口更远距离的数据传输。 1、25针并行口插口的针脚功能: 针脚功能针脚功能 1 选通(STROBE低电平) 10 确认(ACKNLG低电平) 2 数据位0 (DATAO) 11 忙(BUSY) 3 数据位1 (DATA1) 12 却纸(PE) 4 数据位2 (DATA2) 13 选择(SLCT)

XilinxFPGA引脚功能详细介绍

Xi lin X F PGA 引脚功能详细介绍 注:技术交流用,希望对大家有所帮助。 I O_LXX Y _ # 用户10弓I脚 XX代表某个Bank内唯一得一对引脚,Y=[P|N ]代表对上升沿还就是下降沿敏感,# 代表ban k 号 2. I0_LXXY —Z Z Z_ #多功能引脚 Z ZZ代表在用户10得基本上添加一个或多个以下功能。 Dn:1/ 0(在r eadb a ck期间),在selectMAP或者BPI模式下,D [1 5 :0]配置为数据口。在从Selec t MAP读反馈期间,如果RDWR_B= 1,则这些引脚变成输出口。配置完成后,这些引脚又作为普通用户引脚? D 0_DIN_ M ISO_M I SO1: I,在并口模式(Sel ec tMAP/ B PI)下,D0 就是数据得最低位,在Bit —se r ial模式下,DI N就是信号数据得输入;在SPI模式下,MISO就是主输入或者从输出;在SPI*2或者S PI * 4模式下,M I SO 1就是S P I总线得第二位。 D1_MISO 2 ,D2_MIS O 3: I,在并口模式下,D1与D2就是数据总线得低位;在S PI * 4 模式下, MISO2 与MISO3 就是SPI 总线得MSBs. A n :O, A : 25 :0]为 B PI模式得地址位。配置完成后,变为用户I/ O口。 A WAKE: O ,电源保存挂起模式得状态输出引脚。SU S P E ND就是一个专用引脚,A WA K E就是一个多功能引脚。除非SUSPEND模式被使能,AWAK E被用作用户I / O。 M O SI _CSI_B_MI S O0:I/O,在SPI模式下,主输出或者从输入在Se l ectMAP模式下,CS I_B 就是一个低电平有效得片选信号;在SPI * 2或者S P I *4得模式下,M I SO 0就是S PI总线得第一位数据。 FCS_B:O,BPI flash 得片选信号. FO E _B:O,B PI flash 得输出使能信号 FW E_ B : O , BP I f l a sh得写使用信号 LDC : O,BP I模式配置期间为低电平 HDC: 0 ,B PI 模式配置期间为高电平 CSO_B :O,在并口模式下,工具链片选信号。在SP I模式下,为SPI f ls ah片选信号。 I R DY 1/2, T R DY1 / 2:0,在PCI 设计中,以L og i C ORE IP 方式使用。 DO U T _B USY:O,在S e l ec tM A P模式下,B U SY 表示设备状态;在位串口模式下,DO UT提供配置数据流。 R D W R_B_VREF:I,在S elec t M AP模式下,这就是一个低电平有效得写使能信号;配置完成后,如果需要,R DW R_B可以在BANK 2中做为Vref. HSWA P EN:I ,在配置之后与配置过程中,低电平使用上拉。 INIT _B:双向,开漏,低电平表示配置内存已经被清理;保持低电平,配置被延迟;在配 置过程中,低电平表示配置数据错误已经发生;配置完成后,可以用来指示POST_C RC 状 态。 S CPn:I,挂起控制引脚SCP[7: 0],用于挂起多引脚唤醒特性? C MPMOSI,CMPM I S O, CMPC L K : N/A,保留。 M0, M1 : I,配置模式选择。M 0 =并口(0)或者串口(1 ),M仁主机(0)或者从机(1 )。 CC LK :I/O, 配置时钟,主模式下输出,从模式下输入。 US E RCCL K :I,主模式下,可行用户配置时钟。 GCLK:I ,这些引脚连接到全局时钟缓存器,在不需要时钟得时候,这些引脚可以作为常

各种接口针脚定义

RJ45 接口信号定义,以及网线连接头信号安排 以太网10/100Base-T 接口: Pin Name Description 1 TX+ Tranceive Data+ ( 发信号+) 2 TX- Tranceive Data- ( 发信号-) 3 RX+ Receive Data+ ( 收信号+) 4 n/c Not connected ( 空脚) 5 n/c Not connected ( 空脚) 6 RX- Receive Data- ( 收信号-) 7 n/c Not connected ( 空脚) 8 n/c Not connected ( 空脚) 以太网100Base-T4 接口: Pin Name Description 1 TX_D1+ Tranceive Data+ 2 TX_D1- Tranceive Data- 3 RX_D2+ Receive Data+ 4 BI_D3+ Bi-directional Data+ 5 BI_D3- Bi-directional Data- 6 RX_D2- Receive Data- 7 BI_D4+ Bi-directional Data+ 8 BI_D4- Bi-directional Data- 1white/orange 2orange/white 3white/green 4blue/white 5white/blue 6green/white 7white/brown 8brown/white 注:RJ45 接口采用差分传输方式,tx+ 、tx- 是一对双绞线,拧在一起可以减少干扰 RJ48 接口信号定义 RJ48 是用于T1/E1 等串行线路的接口。和以太网的RJ45 是一样的。对于接不同的传输,信号定义不一样。 RJ48 口呈“凸”这个形状,线序从左往右为87654321. 例如CT1/PRI-CSU (RJ-48C) 信号定义如下 RJ-48C Pin Description 1Receive Ring 2Receive Tip 4 Ring 5 Tip 对于T1/E1 Trunk and Digital Voice Port (RJ-4 Pin1 Sig nal 1RX + (in put) 2RX - (in put) 3— 4TX + (output) 5TX - (output) 6—

Quartus-II中FPGA管脚的分配策略

精品 Quartus II中FPGA管脚的分配策略 编写:*** 校核: 审核: 二〇一年月日

目录 目录 ...................................................................................... I QUARTUS II中FPGA管脚分配策略 .. (1) 1.FPGA管脚介绍 (1) 1.1.电源管脚 (2) 1.2.配置管脚 (2) 1.3.普通I/O管脚 (3) 1.4.时钟管脚 (3) 2.FPGA管脚分配方法 (4) 2.1.P IN P LANNER方式 (4) 2.2.I MPORT A SSIGNMENTS方式 (5) 2.3.T CL S CRIPTS方式 (8) 2.4.项目组统一使用方式 (11) 3.编写FPGA管脚分配文件 (12) 3.1.查看PDF格式的原理图 (12) 3.2.查看P RJ PCB格式的原理图 (13) 4.保存FPGA管脚分配文件 (14) 4.1.T CL格式或CSV格式 (15) 4.2.QSF格式 (15) 4.3.项目组统一使用格式 (15)

附录管脚类型说明 (16)

Quartus II中FPGA管脚分配策略 1. FPGA管脚介绍 FPGA的管脚从使用对象来说可分为两大类:专用管脚和用户自定义管脚。一般情况下,专用管脚大概占FPGA管脚数的20% ~ 30%,剩下的70% ~ 80%为用户自定义管脚。从功能上来说可分为电源管脚、配置管脚、时钟管脚、普通I/O管脚等。 下面以Altera公司的Cyclone IV E系列芯片EP4CE30F23C8为例,如图1所示,芯片总共包含484个芯片管脚。图中不同颜色的区域代表不同的Bank,整个芯片主要分为8个Bank,FPGA 的各个管脚分布在不同的Bank中。 其中,三角形标记的管脚为电源管脚,正三角表示VCC,倒三角表示GND,三角内部的O表示I/O管脚电源,I表示内核电源。 圆形标记的管脚为普通用户I/O管脚,可以由用户随意使用。 正方形标记且内部有时钟沿符号的管脚为全局时钟管脚。 五边形标记的管脚为配置管脚。

Quartus-II中FPGA管脚的分配策略

Quartus II中FPGA管脚的分配策略 编写:*** 校核: 审核: 二〇一年月日

目录 目录................................................ I QUARTUS II中FPGA管脚分配策略. (1) 1.FPGA管脚介绍 (1) .电源管脚 (1) .配置管脚 (2) .普通I/O管脚 (2) .时钟管脚 (2) 2.FPGA管脚分配方法 (3) .P IN P LANNER方式 (3) .I MPORT A SSIGNMENTS方式 (3) .T CL S CRIPTS方式 (6) .项目组统一使用方式 (8) 3.编写FPGA管脚分配文件 (9) .查看PDF格式的原理图 (9) .查看P RJ PCB格式的原理图 (10) 4.保存FPGA管脚分配文件 (11) .T CL格式或CSV格式 (11) .QSF格式 (11) .项目组统一使用格式 (11) 附录管脚类型说明 (12)

Quartus II中FPGA管脚分配策略 1.FPGA管脚介绍 FPGA的管脚从使用对象来说可分为两大类:专用管脚和用户自定义管脚。一般情况下,专用管脚大概占FPGA管脚数的20% ~ 30%,剩下的70% ~ 80%为用户自定义管脚。从功能上来说可分为电源管脚、配置管脚、时钟管脚、普通I/O管脚等。 下面以Altera公司的Cyclone IV E系列芯片EP4CE30F23C8为例,如图1所示,芯片总共包含484个芯片管脚。图中不同颜色的区域代表不同的Bank,整个芯片主要分为8个Bank,FPGA的各个管脚分布在不同的Bank中。 其中,三角形标记的管脚为电源管脚,正三角表示VCC,倒三角表示GND,三角内部的O表示I/O管脚电源,I表示内核电源。 圆形标记的管脚为普通用户I/O管脚,可以由用户随意使用。 正方形标记且内部有时钟沿符号的管脚为全局时钟管脚。 五边形标记的管脚为配置管脚。 图1 Wire Bond 1.1.电源管脚 FPGA通常需要两个电压才能运行,一个是内核电压,另一个是I/O电压。每个电压通过独立的电源管脚来提供。内核电压是用来给FPGA内部的逻辑门和触发器供电。随着FPGA的发展,内核电压从5V、、、到,变得越来越低。I/O电压用来给各个Bank供电,每个Bank都有独立的I/O电压输入。一般情况下,内核电压会比I/O电压低。

相关文档
最新文档