Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications

Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications
Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications

The ?oating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications

Huaichun Wu a ,b ,?,Shihong Zhang a ,Ganqing Jiang c ,Qinghua Huang d

a

State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing,100083,China b

School of Marine Science,China University of Geosciences,Beijing,100083,China c

Department of Geoscience,University of Nevada,Las Vegas,NV 89154-4010,U.S.A.d

Exploration and Development Research Institute of Daqing Oil Field Corporation Ltd.,Daqing,Heilongjiang,163712,China

a b s t r a c t

a r t i c l e i n f o Article history:

Received 19May 2008

Received in revised form 14October 2008Accepted 8December 2008

Available online 21January 2009Editor:P.DeMenocal

Keywords:

Late Cretaceous Milankovitch cycles

astronomical time scale (ATS)lacustrine anoxic event 1(LAE1)Songliao Basin

The Upper Cretaceous Qingshankou Formation (K 2qn)in the Songliao Basin (SLB)of Northeast China consists of up to 550m thick,lacustrine mudstone and shale that constitute one of the most important source rocks of the Daqing oil ?eld.A high-resolution cyclostratigraphic analysis of the natural gamma-ray logging from 10wells of the Qingshankou Formation (K 2qn)reveals orbital cycles of precession (20ka),obliquity (40ka)and eccentricity (100ka and 405ka),providing strong evidence for astronomically driven climate changes in the Late Cretaceous terrestrial environments.Floating astronomical time scales (ATS)are established for all sections,which demonstrate variable durations of K 2qn across the basin (1.09Ma –5.20Ma)and strong diachroneity of the lacustrine strata.Four periods of high depositional rates can be identi ?ed in the central parts of the basin,possibly recording deposition during times of sustained wet climate and high chemical weathering.An ATS established from well M206in the central depression zone of the basin,where the most complete and stable Milankovitch cycles are present,suggests that the maximum duration of the K 2qn is 5.20Ma (from 94.27Ma to 89.07Ma;Late Cenomanian to Early Coniacian).The lacustrine anoxic event 1(LAE1)at the Cenomanian –Turonian boundary lasted ~210–310ka,during which the most proli ?c petroleum source rocks in SLB were deposited.The onset (~94.21–94.18Ma)and duration (~210–310Ka)of LAE1in SLB are comparable to those of the oceanic anoxic event 2(OAE2;onset at 94.21Ma and duration of ~320–900ka),suggesting that the same trigger mechanism,such as increased atmospheric CO 2from large-scale igneous activity,may have initiated high primary productivity and organic carbon burial in both marine and terrestrial systems.

?2009Elsevier B.V.All rights reserved.

1.Introduction

The Cretaceous represents one of the warmest periods of the Phanerozoic eon and a time with signi ?cant ocean anoxic events (OAEs).Establishing a high-precision chronostratigraphic framework is fundamental for a better understanding of the global climate change under the Cretaceous supergreenhouse conditions.Owing to the limitations of radiometric ages and paleontological data in general,the astronomical time scale (ATS),established by tuning astronomical forcing signals recorded in sedimentary strata,plays critical roles for de ?ning and correlating the Cretaceous paleoclimatic/paleoceano-

graphic events including OAEs (e.g.Fiet et al.,2006;Li et al.,2008;Locklair and Sageman,2008;Mitchell et al.,2008).With the progresses made in the last decade,it is anticipated that an ATS covering the entire Cretaceous Period will be completed in a few years (Hinnov and Ogg,2007).The existing ATS,however,is restricted to marine strata.There is an immediate need to establish the Cretaceous ATS from terrestrial sedimentary basins so that the marine and terrestrial records can be compared and a better understanding of the Cretaceous Earth system change can be achieved.

Continental rift basins are unique repositories for long-term palaeoclimate records (Olsen and Kent,1999).Lacustrine mudstone and shales deposited in continental rift basins,due to their sensitivity to changes in precipitation –evaporation ratios and/or water-level changes,are particularly suitable for high-resolution cyclostratigraphic studies (e.g.,Olsen and Kent,1999;Prokoph and Agterberg,2000)and for establishing astronomical time scales with resolution potentially down to 0.02to 0.40Ma (e.g.,Hinnov,2004;Hinnov and Ogg,2007).

Earth and Planetary Science Letters 278(2009)308–323

?Corresponding author.School of Marine Science,China University of Geosciences,Xueyuan Road 29,Haidian District,Beijing 100083,China.Tel.:+861082334699;fax:+861082320065.

E-mail addresses:whcgeo@https://www.360docs.net/doc/909542160.html, ,whccugb@https://www.360docs.net/doc/909542160.html, (H.

Wu).0012-821X/$–see front matter ?2009Elsevier B.V.All rights reserved.doi:

10.1016/j.epsl.2008.12.016

Contents lists available at ScienceDirect

Earth and Planetary Science Letters

j o u r n a l h o m e p a g e :w ww.e l s e v i e r.c o m /l o c a t e /e p s l

The Songliao Basin in northeastern China is one of the largest Cretaceous continental rift basins in the world(Fig.1).Well-preserved Cretaceous lacustrine deposits in this basin provide a unique opportunity for the construction of terrestrial Cretaceous ATS. Particularly,the Upper Cretaceous Qingshankou Formation(K2qn) consists of up to550m thick,black mudstone,shale and oil shale that have attracted considerable attention regarding their potential linkage with Milankovitch climate forcing(e.g.,Wu et al.,2007;Cheng et al., 2008).The basal interval of this unit is enriched in oil shale and was considered as deposits during a lacustrine anoxic event(Huang et al., 1998,2007).This event,referred to as lacustrine anoxic event1 (LAE1),has been suspected to be time equivalent to the oceanic anoxic event2(OAE2),but the lack of age controls prevents a chronostrati-graphic correlation with the marine record.

In this paper,we present a cyclostratigraphic study based on the high-resolution natural gamma-ray logging of the Qingshankou Formation from10wells in an east–west transect across the Songliao Basin(Fig.2).The major objective of this study is to establish an astronomically calibrated time scale(ATS)for the Late Cretaceous lacustrine strata.With the new?oating ATS,we discuss(1)the stratigraphic correlation across the basin and temporal variations in sedimentary rates,(2)the duration of the ostracod biozones constrained by the ATS that may be useful for stratigraphic correlation between terrestrial and marine successions,and(3)the duration of the lacustrine anoxic event1(LAE1)and its correlation with the oceanic anoxic event2(OAE2).

2.Geological setting

2.1.Tectonics and stratigraphy

Geographically,the Songliao Basin(SLB)in northeastern China is surrounded by the Great Xing'an Mountains in the west,the Lessar Xing'an Mountains in the north and the Zhangguangcai Mountains in the east(Fig.1a–c).The southern margin of the basin is separated from the North China plate by the Late Paleozoic Chifeng–Kaiyuan fault zone (Sun et al.,2007).The tectonic evolution of the SLB can be divided into (1)a pre-rift phase,(2)a syn-rift phase,(3)a post-rift phase,and(4)a compression phase(Cheng et al.,2006)(Fig.1d).According to the characteristics of rises and depressions,the SLB can be divided into six ?rst-order tectonic units:central depression zone,north plunge zone, west slope zone,northeast uplift zone,southeast uplift zone,and southwest uplift zone(Gao et al.,1994)(Figs.1b and2).

The basement of the SLB consists of Precambrian to Paleozoic metamorphic and igneous rocks and Paleozoic to Mesozoic granites (Wang et al.,2006;Pei et al.,2007).Unconformably overlying the basement,up to7000m thick Mesozoic and Cenozoic terrestrial strata are unevenly distributed across the basin(Gao et al.,1994).A simpli?ed lithostratigraphy of the Songliao Basin is presented in Fig.1d.

The Upper Jurassic and Cretaceous strata in SLB is commonly subdivided into two sequences separated by a regional unconformity at the top of the Yingcheng Formation(K1y).The lower sequence includes the Upper Jurassic Huoshiling Formation(J3h)and the Lower Cretaceous Shahezi(K1s)and Yingcheng(K1y)Formations(Fig.1d). These formations are composed of volcanic–volcaniclastic rocks and alluvial–lacustrine sedimentary rocks.

The upper sequence consists of seven formations,in ascending order including Denglouku(K1d),Quantou(K2q),Qingshankou (K2qn),Yaojia(K2y),Nenjiang(K2n),Sifangtai(K2s)and Mingshui (K2m)Formations(Fig.1d).The Denglouku Formation(K1d)is composed mainly of alluvial and?uvial deposits,while the Quantou Formation(K2q)consists of coarse clastic rocks of?uvial origin in the lower part and lacustrine mudstones in the upper part.The lacustrine sandstone,mudstone,and shale of the Qingshankou (K2qn),Yaojia(K2y)and Nenjiang(K2n)Formations contain the majority of the oil source rocks,reservoir rocks and seals of the Daqing Oil?eld(Li,1995)(Figs.1d and2).Unconformably overlying the K2n,the Sifangtai(K2s)and Mingshui(K2m)Formations are mainly composed of siliciclastic rocks deposited from alluvial and deltaic environments during basin inversion.

The Qingshankou Formation(K2qn)was deposited during the post-rift thermal subsidence stage.The thickness of this unit varies from30to 550m across the basin(Fig.2).It conformably overlies the Quantou Formation(K2q)and is unconformably or conformably overlain by the Yaojia Formation(K2y).On the basis of lithofacies changes,the K2qn can be divided into three members(Fig.1d).Member1(K2qn1)is mainly composed of deep lacustrine black mudstone and shale.The oil shale at the lower part of the K2qn1is the most important marker for regional stratigraphic correlation.Member2and3of the K2qn(K2qn2+3)consist of interbedded black mudstone and gray-to celadon-colored siltstone. In general,the Qingshankou Formation shows a shallowing—upward trend from deep lacustrine deposit in the lower part(K2qn1)to shallow laustrine,coastal and deltaic deposits in the upper part(K2qn2+3)(Gao et al.,1994;Li,1995;Fig.1b and c).

2.2.The age of the Qingshankou Formation(K2qn)

Due to the lack of radiometric ages and dif?culties of de?ning the duration of terrestrial fossils,the age of the K2qn has been debated. Previous age assignments include(1)late Cenomanian-early Tur-onian(Chen,2000),(2)Cenomanian(Stratigraphy Committee of China,2002;Wan et al.,2005;Sha,2007),(3)Cenomanian–Turonian (Ye et al.,2002),and(4)late Cenomanian–early Coniacian(Wang et al.,2007).

Recent radiometric ages from volcanic rocks of the Yingcheng Formation(K1y)and paleontological data from Denglouku(K1d)and Quantou(K2q)Formations support a late Cenomanian age for the Qingshankou(K1qn)Formation.The SHRIMP zircon U-Pb age of111–113Ma(Zhang et al.,2007a)and K/Ar ages of113–136Ma(Wang et al., 2002)from the upper Yingcheng Formation(K1y)suggest that the age of the K1y is Aptian and the age of the K1d should be Albian(Fig.1d). The palynological assemblages of Quantonenpollenites crassatus–Cranwellia striatella and Trilobosporites–Cyathidites–Tricolpopollenites in the upper and lower part of the Quantou Formation(K1q)are of early Turonian and late Cenomanian,respectively(Li,2001).This is consistent with the palynological data from the K1d that have the ages of Early to Middle Albian(Li and Li,2005).Recently,Wang et al.(2007) estimated an age of~94Ma for the K2qn/K2q boundary by extrapolating the stratal thickness of the basin.This is con?rmed by their latest,yet to be published radiometric age from the K2qn(Wang, P.J.,personal communications,2008).

https://www.360docs.net/doc/909542160.html,custrine anoxic events(LAEs)in the SLB

Previous studies suggested that two great lacustrine anoxic events (LAEs)happened in SLB during the deposition of the K2qn1and K2n1+2, and it was proposed that they were related to two great marine transgressions that may have created warm and wet climate conditions (Fig.1d;Gao et al.,1994;Hou et al.,2000;Wang et al.,2001;Li and Pang, 2004).These lacustrine anoxic events was considered crucial for the formation of proli?c petroleum source rocks in SLB(Hou et al.,2000; Wang et al.,2001;Li and Pang,2004;Huang et al.,2007).Evidence supporting the lacustrine anoxic event1(LAE1)in K2qn1include(1) deposition of?nely laminated,organic and pyrite—rich black shale and oil shale with a positiveδ13C org spike(Wang et al.,2001;Huang et al., 2007;Huang,2007),(2)extinction of deep water-fauna during LAE1and ?ourish of diversi?ed fossil assemblage after LAE1(Huang et al.,1998; Hou et al.,2000),and(3)appearance of28,30-bisnorhopane which originates from a typical anoxic bacteria and preservation of complete C35 hopanes series,lower diasteranes content in mudstone(Hou et al.,2003).

The sedimentary sequence of the red terrigeneous sediments of the K2q,K2y and K2s and the black sediments of the K2qn1and K2n1+2

309

H.Wu et al./Earth and Planetary Science Letters278(2009)308–323

310H.Wu et al./Earth and Planetary Science Letters278(2009)308–323

may record the alternation of anoxic and oxic lacustrine depositional environments,similar to the redox cycles recorded in Cretaceous marine strata (Fig.1d;Huang,2007).The two great lake anoxic events (LAE1and LAE2in Fig.1d)in K 2qn 1and K 2n 1+2have been suspected to be correlatable with the ocean anoxic events (Hou et al.,2000;Huang,2007;Huang et al.,2007;Wang et al.,2007),but reliable time constraints are lacking.2.4.Biostratigraphy of the K 2qn

Fossils are abundant in the K 2qn and intensive paleontological studies have been conducted since 1959(e.g.,Gao et al.,1999;Ye et al.,2002).Fossils of the K 2qn include abundant ostracods,conchostraca,?sh,gastropods,bivalves,sporopollen,algae,and vertebrates (Hou et al.,2000;Wan et al.,2007).The identi ?cation of these fossils has played an important role in the stratigraphic correlation and division and the reconstruction of paleoecology,paleoenvironment and paleoclimate in the SLB.However,the biostratigraphic resolution is low and many fossils are restricted to either K 2qn 1or K 2qn 2+3.Fossil abundance and diversity also vary among sections across the basin and thus it has been dif ?cult to establish a reliable biostratigraphic framework correlatable with that of the marine successions (Wan et al.,2005).Recently,a detailed ostracod biostratigraphy of the K 2qn with 19ostracod biozones was established,based on collections from ?ve recovered wells (Zhang et al.,2007b ).These ostracod biozones are going to be calibrated by the new ?oating

ATS so that they can be correlated with the marine biozones in the future.

3.Data processing

Natural gamma-ray logging records the intensity of the gamma ray emitted during the decay of atomic nuclei of radioactive elements contained in sedimentary rocks.The intensity of gamma ray relates to the amount of 40K,232Th and 238U in rocks.Clay and organic particles have strong capacity of absorbing radioactive elements.The gamma-ray logging curves can therefore re ?ect changes in the amount of clay and organic materials in sediments,both of which are sensitive to controlling factors such as precipitation –evaporation ratios and lake-level ?uctuations induced by climate changes (e.g.,Serra,1984;Hinnov,2004).

In this study,natural gamma-ray logs from 10wells penetrating the Qingshankou Formation (K 2qn)across the basin were selected for cyclostratigraphic analysis (Figs.1b,c and 2).The shortest and the longest gamma-ray logs are J32(101m)and G692(544m),respectively (Figs.3–6).In well F64and J32of the west slope zone (Figs.1b and 2),K 2qn unconformably overlies the Upper Jurassic strata,while in the other 8wells K 2qn conformably overlies the Quantou Formation (K 2q).The sampling spacing is from 0.05m to 0.1524m for different logs.

Spectral analysis and continuous wavelet analysis were conducted in order to investigate whether the cyclicity records signal resulting

Fig.1.(a)Location of the Songliao Basin (SLB)in northeastern China.(b)Simpli ?ed paleogeographic reconstruction of the SLB during deposition of Member 1of the Qingshankou Formation (K 2qn 1).Tectonic units in the SLB and locations of the study wells (black dots)are indicated.Lines A –B mark the position of the cross section in Fig.2.(c)Paleogeographic reconstruction of the SLB during deposition of the K 2qn 2+3.(d)Simpli ?ed stratigraphy and geological events of the Upper Jurassic to Cretaceous in the SLB.The sea-level change curve is adopted from Gradstein et al.(2004)and the lake-level curve is from Gao et al.(1994)

.

Fig.2.Cross section of the Songliao Basin (modi ?ed from Wang et al.,2007).Position of sections matches those in Fig.1b.Sections L2and D501are located at the north plunge zone and northeast uplift zone,respectively.Abbreviation N 2t represents the Taikang Formation and the other abbreviations are the same as in Fig.1d.

311

H.Wu et al./Earth and Planetary Science Letters 278(2009)308–323

from astronomical climate forcing.A band-pass?lter was designed to remove the low(N100m)and high(b1m)frequency variability. Spectral analysis was performed with the REDFIT software package (Schulz and Mudelsee,2002).Wavelet analysis is used to transform depth-related sedimentary signature into wavelengths at distinct depth intervals,useful for detecting and distinguishing abrupt discon-tinuities,cyclicity and changes in sedimentation rate(Prokoph and Agterberg,2000).The wavelet software was provided by Torrence and Compo(1998)and is available at https://www.360docs.net/doc/909542160.html,/research/ wavelets/.

4.Cyclostratigraphy

4.1.Orbital parameters in Late Cretaceous

According to geological and paleomagnetic evidence(Zhao et al., 1990;Chi et al.,2000),the Songliao Basin has been adjacent to the present position in early Late Cretaceous.We used the June21insolation curve at45°N from94to90Ma as a reference(Fig.3a-1),which is calculated using Analyseries2.0(Paillard et al.,1996)and the improved La2004solution(Laskar et al.,2004).Four distinct frequency bands can be observed from the continuous wavelet analysis scalogram(Fig.3a-2), which are consistent with results from spectral analysis.Spectral analysis shows the presence of the principal eccentricity periods of 405ka(E3),125ka(E2)and100ka(E1),principal obliquity periods of 37.5ka(O1)with lesser ones of48ka(O2),56ka and28ka,and principal precession periods of22.5ka(P2),18.4ka(P1)and15.9ka(Fig.3a-3).We will use these periods as the Late Cretaceous“canonical”orbital varia-tions in our study.

4.2.Cycle analysis and cyclostratigraphic interpretation

Parallel bands in the wavelet scalograms show that the spectral power is con?ned to distinct and relatively continuous period bands for all sections(Fig.3b-l).Spectral analyses reveal distinctive spectral power peaks and the ratio of corresponding periods is ~20:5:2:1,which is similar to the ratio of Milankovitch cyclicities of 405ka:100ka:40ka:20ka(long eccentricity,short eccentricity, obliquity,precession)(Fig.3b-l).

We followed the method of Westerhold et al.(2007)to construct a cyclostratigraphy for the K2qn for each section(Figs.4–6).Direct cycle counting and Gaussian band pass?ltering of the data are used.The ?rst peak of gamma-ray logging(precession),extracted short and long eccentricity cycles were used as the starting point(Figs.4–6).Strong shifts in the wavelet spectral bands for sections G692(at2100m),L2 (at1770m),F64(at557m and500m)suggest changes in cycle periodicities due to change in sedimentation rates,so we use different Gaussian band pass?lters to extract orbital forcing cycles(Figs.5and 6).The longest section(M206)in the central depression zone and the shortest section(J32)in the west slope zone were selected as end members for interpreting the results from wavelet and spectral analyses and constructing cyclostratigraphy.

In section M206,the total thickness of K2qn is496.8m(from1286m to1782.8m in the well log;Fig.4).The lower part of K2qn(K2qn1)is composed mainly of gray and black mudstone,with thin calcareous mudstone layers and three black oil shale layers.The upper part of K2qn (K2qn2+3)consists mainly of thick,gray to dark-gray mudstone with calcareous mudstone interbeds,but changes to thinly laminated,red silty sandstone and mudstone towards the top(Fig.4a).The gamma-ray values are in the range of~60–180API.Low values correspond to calcareous mudstone,whereas high gamma-ray values are produced by black shale and mudstones.Signi?cantly low values at the top of K2qn correspond to the red silty sandstones(Fig.4).The density log has values mostly from1.7to2.3g/cm3,but lower values are found at the top, possibly related to increased porosity in sandstones(Fig.4).

Wavelet analysis of both gamma-ray and density logs reveal relatively continuous cycles with periods of68m,39m,13.5–9m,5–3.8m and2.5–1.7m(Fig.3f and g).The lack of a strong shift at periods of39m and13.5–9m in both gamma-ray and density logging suggests that relatively stable sedimentation rate prevailed during the deposi-tion of K2qn,while the variance at shorter periods of5–3.8m and2.5–

1.7m probably records short-term?uctuations in sediment supply

(e.g.,Prokoph and Agterberg,2000).

To determine whether the observed cycles in sedimentary strata were formed by astronomical forcing,the most commonly used method is to compare the relative ratio of the observed cycles with that of the Milankovitch cycles(Hinnov,2000;Weedon,2003).The ratios of the major periods of~39m,13.5–9m,5–3.8m and2.5–1.7m from natural gamma-ray and density logging of section M206is 20:5:2:1,which matches well with the Milankovitch cyclicities of 405ka:100ka:40ka:20ka(long eccentricity,short eccentricity, obliquity,precession).Spectral analysis on the full time series of the gamma-ray logging reveals four distinct cycles of14.2–8.9m,4.9–3.8m,2.6–2.3m and1.9–1.7m(Fig.3f and g).The ratio for the?ve main peaks of these cycles is13.3m:10.3m:4.05m:2.43m:1.9m (123:95:37.5:22.5:17.6).These ratios are similar to the results of spectral analysis on the June21insolation curve at45°N from94to 90Ma(Fig.3a).We thus consider that the sedimentary cyclicity in section M206was formed by orbital forcing(Weedon,2003).The major periods of~39m,13.5–9m,5–3.8m and2.5–1.7m were formed most likely by long(405ka)and short(100ka)eccentricity, obliquity(40ka)and precession(20ka),respectively.

The small cycle length of the original natural gamma-ray and density logging curves range from1.7m to2.5m,which are interpreted as precession-related sedimentary cycles(Fig.4).Counting from the base of the K2qn,each cycle is numbered and there are~253precession cycles in both gamma-ray and density logging data(Fig.4).Two Gaussian band-pass?lters were used to?lter the signals of the long and short eccentricity cycles of~39m and13.5–9m,respectively.The ?ltering outputs of the gamma-ray and density logging are shown in Fig.4.We counted12.8long eccentricity cycles and51.6short eccentricity cycles from the gamma-ray logging,but12.3long eccentricity cycles and50.1short eccentricity cycles from the density logging(Fig.4).There are about0.5long eccentricity and1.5short eccentricity offsets.The underlying reason for this difference is uncertain,but because the cycle bands in the wavelet scalograms and the?lter outputs of gamma-ray logging demonstrate more stable and constant signals than those of the density logging(Figs.3f,g and4), and because previous studies demonstrated that gamma-ray readings are more sensitive to variations in lithology and clay–mineral content than other logging tools(Serra,1984;Prokoph and Thurow,2000),we chose the gamma-ray logging data for cyclostratigraphic study for all sections in this study.

The total thickness of K2qn in section J32in the west slope zone is 101m(from398m to499m in the well log;Figs.3k and6f).It unconformably overlies the Jurassic volcanic rocks and is

Fig.3.(a)June21insolation curve at45°N from94to90Ma(a-1),wavelet scalogram(a-2)and spectral analysis(a-3)of the theoretical insolation curve,which are calculated using Analyseries2.0(Paillard et al.,1996)and La2004solution(Laskar et al.,2004).The shaded contours in wavelet scalograms are normalized linear variances,with blue representing low spectral power and red representing high spectral power.Regions below curves on both ends indicate the cone of in?uence where edge effects become signi?cant.(b)–(f)and(h)–(l)Wavelet scalogram and spectral analyses of the gamma-ray logging of the K2qn in different tectonic zones of the Songliao Basin.(g)Wavelet scalogram(g-1)and spectral analysis(g-2)of the density logging of M206.Letters“d”mark the possible discontinuities.See Figs.1b and2for location of sections,and Figs.4–6for original logging data.

312H.Wu et al./Earth and Planetary Science Letters278(2009)308–323

313 H.Wu et al./Earth and Planetary Science Letters278(2009)308–323

314H.Wu et al./Earth and Planetary Science Letters278(2009)308–323

Fig.3(continued).

unconformably overlain by sandstones of the second and third member of Yaojia Formation(K2y2+3).In this section,K2qn1is com-posed of purple mudstone and gray muddy siltstone and K2qn2+3 consists mainly of emerald,celadon and purple mudstone with sandstone and muddy siltstone.

The parallel bands in the wavelet scalogram of section J32show three cycle periods of16–9m,5.8m and3.2m.Spectral analysis on the full time series reveals two distinct cycle bands of6.2–4.3m and 3.6–2.8m(Fig.3k).These periods has a ratio of5:2:1,which is correlative to the short eccentricity,obliquity and precession ratio of 100ka:40ka:20ka(Fig.3k).Although spectral analysis for this section does not show the peaks of eccentricity cycles,short and long eccentricity cycles were extracted by the Gaussian band pass?lters according to the wavelet analysis and the variation of gamma-ray logging(Fig.3k).We counted 2.8long eccentricity,10.9short eccentricity and50precession cycles in section J32(Fig.6f).5.Discussion

5.1.Astrochronology of the Qingshankou Formation(K2qn)

The records from the K2qn in the SLB display excellent precession, obliquity,short and long eccentricity signals(Figs.3–6),and theoreti-cally,every band of signals can be used for tuning to the orbital solutions. However,because the precision of the orbital solution for Mesozoic is limited(Laskar et al.,2004),the high frequency cycles may not be suitable for constructing the ATS.Changes in resonance between the orbits of Earth and Mars may have altered the95to128ka eccentricity. Tidal friction in the Earth–Moon system could slow the Earth's rotation rate over time,increasing the periodicities of precession and obliquity (Laskar et al.,2004).Thus a full-spectrum tuning of the Mesozoic records to the La2004solution is impossible at the moment.Because the long eccentricity cycle(405ka)remains very stable at least back to~250

Ma,

Fig.4.(a)Simpli?ed lithology and stratigraphy of the K2qn from well M206.(b)Continuous gamma-ray(red line)and density(blue line)logging of the K2qn from M206with0.125m sampling resolution.The red and blue numbers indicate the number of precession-related cycles.(c)Cycle counting of long eccentricity?lter outputs of gamma-ray(red)and density (blue)logging data of the K2qn from M206.(d)Cycle counting of short eccentricity?lter outputs of gamma-ray(red)and density(blue)logging data of the K2qn from M206.The long and short eccentricity-related cycles are extracted by Gaussian band pass?lters with?lter frequency of0.0225±0.003cycles/m and0.104±0.013cycles/m,respectively.

315

H.Wu et al./Earth and Planetary Science Letters278(2009)308–323

it was recommended that a Mesozoic astronomically calibrated time scale can be established as a ?oating time scale using long eccentricity cycles (Laskar et al.,2004;Hinnov and Ogg,2007).However,the extracted long eccentricity cycles from most sections of the K 2qn are less stable than the short eccentricity cycles (Figs.4–6),which also show more stable and clear signals than other bands of signals in most

wavelet

Fig.5.Cycle counting of precession (black),long (red)and short (blue)eccentricity of gamma-ray logging data of the K 2qn from sections (a)G692,(b)C503and (c)Z805of the central depression zone.The long and short eccentricity cycles are extracted by Gaussian band pass ?lters.Filter frequency for long eccentricity cycles:G692–0.025±0.003(from 1800to 2100m)and 0.019±0.002(from 2100to 2344m)cycles/m;C503–0.0187±0.003cycles/m;Z805–0.0208±0.003cycles/m.Filter frequency for short eccentricity cycles:G692–0.083±0.026cycles/m;C503–0.075±0.01cycles/m;Z805–0.081±0.02cycles/m.

Fig.6.Cycle counting of precession (black),long (red)and short (blue)eccentricity of gamma-ray logging data of the K 2qn from sections (a)L2,(b)W209,(c)D501,(d)F64,(e)L271and (f)J32.The long and short eccentricity cycles are extracted by Gaussian band pass ?lters.Filter frequency for long eccentricity cycles:L2–0.028±0.005cycles/m;W209–0.0262±0.003cycles/m;D501–0.03125±0.004cycles/m;F64–0.02381±0.003cycles/m;L271–0.01923±0.003cycles/m;J32–0.02439±0.003cycles/m.Filter frequency for short eccentricity cycles:L2–0.108±0.021(from 1449to 1770m)and 0.091±0.01(from 1770to1874m)cycles/m;W209–0.1042±0.015cycles/m;D501–0.1266±0.025cycles/m;F64–0.09375±0.03125cycles/m;L271–0.0746±0.08cycles/m;J32–0.1111±0.033cycles/m.

316H.Wu et al./Earth and Planetary Science Letters 278(2009)308–323

317 H.Wu et al./Earth and Planetary Science Letters278(2009)308–323

scalograms and spectral analyses (Fig.3).Thus we chose to construct the ATS using the short eccentricity cycles.

After cycle analyses of all sections across the SLB,we chose section M206at the central depression zone as the reference section to establish the ATS (Fig.7)because this section records stable Milankovitch cycles,longest accumulation time (Figs.3f,g and 4),and no identi ?able stratigraphic discontinuities.The estimated age of ~94Ma for the K 2qn/K 2q boundary (Wang et al.,2007)was used as a reference for curve matching between the short eccentricity cycles from gamma-ray logging and the short eccentricity curve of La2004solution (Fig.7).

The

Fig.7.(a)Astronomical calibration of short eccentricity cycles from ?lter output of gamma-ray logging (red)compared with short eccentricity (blue)and full eccentricity (gray)of La2004solution (Laskar et al.,2004)for the Qingshankou formation (K 2qn)in M206.Also shown are the comparisons between extracted long eccentricity,obliquity and precession cycles from gamma-ray logging of well M206(red)and those of the La2004solution (black).The Gaussian band pass ?lters for short (long)eccentricity of La2004solution are 0.0093±0.0013(0.002469±0.0003)cycle/ka.(b)Ostracods biozones of the K 2qn (modi ?ed from Zhang et al.,2007b )calibrated by the established astronomical times of M206.

318H.Wu et al./Earth and Planetary Science Letters 278(2009)308–323

correlation was performed using the software of Analyseries 2.0 (Paillard et al.,1996).

In order to get a start point,?ltered long and short eccentricity, obliquity and precession curves of M206were slidden back and forth to get the best visual match of peak locations and amplitudes with La2004solution.The tuning was done by assigning ages of short eccentricity maxima of the La2004solution to the corresponding peaks of extracted short eccentricity of gamma-ray logging of K2qn as identi?ed and labeled in the cyclostratigraphy(Figs.4and7).The long eccentricity,however,show a small offset of~100ka with that of the La2004solution.This offset is possibly due to the unstable long eccentricity signal itself or related to uncertainties with the eccen-tricity solutions(Laskar et al.,2004).The precession and obliquity bands derived from the gamma-ray logging show similar variations with those of La2004solution(Fig.7a).

The established ATS from section M206suggests that the duration of the K2qn is about5.20Ma,from94.27Ma to89.07Ma covering Late Cenomanian to Early Coniacian(Fig.7a).The ATS provides time constraints for the ostracod biozones(Fig.7b),which will be useful for future stratigraphic correlations of the ostracod-bearing terrestrial strata and their correlations with marine successions.For example, the duration of the fossil zone of Ziziphocypris rugosa is about90.09–91.69Ma(Fig.7b).

Using the same method,we tentatively constructed the ATS for all the10sections of K2qn(Fig.8).The duration of K2qn varies from 5.20Ma in M206of the central depression zone to1.09Ma in section J32of the west slope zone(Fig.8and Table1).Signi?cant variations in the duration of K2qn indicate internal stratigraphic discontinuities and particularly the stratigraphic truncation at the top of the K2qn.

5.2.Preservation and origin of Milankovitch cycles

Wavelet and spectral analyses on the natural gamma-ray logging of the K2qn shows excellent preservation of astronomically driven sedimentary cycles,including long and short eccentricity,obliquity, and precession cycles in sections from the central parts of the basin where thicker and more complete strata are preserved(Fig.3b–i). However,in thinner sections of the west slope zone(F64,L271and J32), long eccentricity cycles were not detected in the wavelet or spectral scalograms(Fig.3j–l).These sections record only2–3long eccentricity cycles(Fig.6d–f),which are dif?cult to be detected by wavelet and spectral analyses.In section F64(Fig.3l),only precession and short eccentricity cycles can be identi?ed.Potential stratigraphic disconti-nuities can be identi?ed from these sections(Fig.8)on the basis of abrupt jumps in cycle thickness(cf.Prokoph and Agterberg,1999,2000), consistent with the appearance of relatively coarse-grained lithology (silty sandstone)at the discontinuities.Thus the incomplete preserva-tion of Milankovitch cycles in these sections may relate to non-deposition and/or erosion at the margin of the basin.Stratigraphic discontinuities may also exist in sections D501,Z805,G692and L2 (Fig.8),but the internal time-missing at these discontinuities is hard to be evaluated due to the lack of absolute age constraints across the basin. The traditionally de?ned K2qn2+3/K2qn1boundary show signi?cant diachroneity(Fig.8),but the?ne-grained lithologies(dominated by mudstones)across the boundary in the central parts of the basin suggest that the missing time at this level may be limited.The diachroneity at this boundary may record facies changes across the basin.A major stratigraphic unconformity occurs at the top of the K2qn,which may have resulted in signi?cant stratigraphic truncation across the basin.

The identi?cation of all bands of Milankovitch cycles in the central parts of SLB suggests strong astronomical climate forcing in the development of the sedimentary cyclicity in the K2qn.The sedimen-tary cycles recorded by the gamma-ray logging of relatively homo-geneous,?ne-grained lithologies(mudstones)in the K2qn may re?ect changes in clay mineral input in response to wet and dry periods.Wet periods may have enhanced chemical weathering and clay mineral input,resulting in positive gamma-ray peaks;while decreased chemical weathering during dry periods may have formed the negative gamma-ray peaks.The occurrence of four periods of high sedimentary rate(Fig.9)in the K2qn may record times of sustained wet climate and high sedimentary input in the basin.

5.3.The duration of lacustrine anoxic event1(LAE1)in the SLB and its correlation to OAE2

Because availableδ13C org values are very sparse and cannot de?ne a positiveδ13C org‘excursion’,the traditional LAE1in SLB was de?ned by the presence of oil shales in the lower K2qn1.The thickness of the oil shales ranges from17.0m(D501)to27.0m(G692and L2),which records~2–3short eccentricity cycles and~10–16precession cycles (Figs.4–6and Table1).Our new ATS indicate the shortest and the longest duration of LAE1are210ka(C503)and310ka(M206), respectively(Fig.8and Table1).

The LAE1has been suspected to be time equivalent to the oceanic anoxic event2(OAE2)at the Cenomanian–Turonian boundary(Huang et al.,1998,2007).The established ATS for the K2qn con?rms this correlation.The onset of the OAE2has recently been estimated as 94.09Ma(Sageman et al.,2006)and94.21/93.72Ma(Mitchell et al.,

Table1

Estimated age of the geological events in the Qingshankou formation(K2qn)according to?oating astronomical time scales and cyclostratigraphy

Wells Boundary(thickness)(m)Estimated age(duration)(Ma)Sedimentary

rates(cm/ka) K2qn LAE1K2qn K2qn1/K2qn2+3boundary LAE1

Southeast uplift zone

W209285.0–704.0(418.5)672.0–697.0(25.0)89.85–94.25(4.40)93.30Ma/611.0m93.96–94.21(0.25)9.51 Northeast uplift zone

D501576.0–762.5(186.5)739.0–756.0(17.0)91.80–94.27(2.47)93.38Ma/699.0m93.95–94.19(0.24)7.55

Central depression zone

C503687.0–1118.0(431.0)1090.0–1114.0(24.0)90.91–94.23(3.32)92.63Ma/1042.0m93.99–94.20(0.21)12.98

Z8051338.0–1685.0(347.0)1649.0–1674.0(25.0)91.23–94.31(3.08)93.83Ma/1630.0m93.98–94.21(0.23)11.3

M2061286.0–1782.8(496.8)1750.0–1775.0(25.0)89.07–94.27(5.20)93.32Ma/1700.8m93.87–94.18(0.31)9.55

G6921800.0–2344.0(544.0)2305.0–2332.0(27.0)89.67–94.27(4.60)93.65Ma/2270.0m93.95–94.20(0.25)11.83

North plunge zone

L21449.0–1874.0(425.0)1840.0–1867.0(27.0)89.77–94.25(4.48)93.57Ma/1797.0m93.92–94.18(0.26)9.49

West slope zone

F64446.0–585.5(139.5)–(1.36)––10.26

L271647.5–759.5(112.0)–(1.25)––8.96

J32398.0–499.0(101.0)–(1.09)––9.27

320H.Wu et al./Earth and Planetary Science Letters278(2009)308–323

2008)in central Colorado and Italy,respectively.These estimations,particularly the onset age of 94.21Ma,are consistent with the onset age of ~94.21–94.18Ma for the LAE1in SLB (Figs.7and 8).The duration of LAE1and OAE2,however,needs further investigation.First,the ~210–310ka duration for LAE1is based on the occurrence of oil shales rather than a chemical anomaly (such as the positive δ13C org excursion)in K 2qn;therefore its duration may have been under-estimated.Second,existing estimations for the duration of OAE2vary signi ?cantly from ~320ka to ~900ka.On the basis of biostratigraphic data and stratigraphic interpolation,Arthur et al.(1988)and Caron et al.(1999)estimated the duration of OAE2as 0.5–0.8Ma and 0.4Ma,respectively.Estimations based on orbital cyclicity include 563–601ka or 847–885ka in central Colorado (Sageman et al.,2006),320ka in western Canada (Prokoph et al.,2001),and 440ka in the Tarfaya Basin in Morocco (Kuhnt et al.,2005).Nonetheless,the ~210–310ka duration of LAE1is,in ?rst order,comparable with the ~320–900ka duration of OAE2,although apparently the duration of both LAE1and OAE2needs to be re ?ned.Widespread oceanic anoxia at OAE2has been proposed to have resulted from the large-scale igneous activity that may have released large quantities of CO 2to the atmosphere and/or reduced hydro-thermal ?uids to the ocean water column (Sinton and Duncan,1997;Kerr,1998;Turgeon and Creaser,2008).The coincidence of an anoxic (high organic carbon burial)event in both marine and lacustrine environments suggest the involvement of atmospheric CO 2.Elevated CO 2level may have enhanced the primary productivity in both marine and terrestrial systems (e.g.,Schlanger and Jenkyns,1976;Schlanger et al.,1987),leading to water column oxygen de ?ciency and increased organic carbon burial.Mitchell et al.(2008)proposed that the Cretaceous OAEs including OAE2may be astronomically driven,resulting from reduced seasonality during protracted period of low insolation variation.The same onset age of ~94.21–94.18Ma and existence of similar nodes of procession,obliquity and eccentricity around the LAE1(Fig.7a)and OAE2(Mitchell et al.,2008)support this hypothesis.However,it is unclear whether such nodes were resulted from reduced seasonality at elevated atmospheric CO 2or directly

from

https://www.360docs.net/doc/909542160.html,parison of sedimentation rates of the K 2qn across the tectonic zones of the Songliao basin.Four periods of high sedimentary rates can be identi ?ed (gray markers)and they may record periods of sustained wet climate during which enhanced chemical weathering increased sediment inputs in the basin.

321

H.Wu et al./Earth and Planetary Science Letters 278(2009)308–323

the in?uences of long-term insolation change.The time range of the data is insuf?cient to evaluate the response of other anoxic events in SLB and therefore the long-term“oceanic anoxic cycles”proposed by Mitchell et al.(2008).

6.Conclusions

Wavelet and spectral analyses on the natural gamma-ray logging of 10wells of the Late Cretaceous lacustrine Qingshankou Formation(K2qn) in the Songliao Basin reveal Milankovitch cycles of precession(20ka), obliquity(40ka)and eccentricity(100ka and405ka).The sedimentary cyclicity may have been formed by cyclic changes from wet to dry climate in response to astronomical forcing.The number of cycles decreases from the central depression zone to the margin of the basin,possibly resulting from non-deposition and/or erosion associated with stratigraphic discontinuities towards the basin margin and paleogeographic highs.

Floating astronomical time scales(ATS)for the sections in the central parts of basin were established by matching the extracted short eccentricity signals to the La2004solution.The accumulation time of K2qn varies from1.09Ma to5.20Ma across the basin.The longest ATS constructed from section M206in the central depression zone constrains the age of the K2qn as from Late Cenomanian to Early Coniacian(94.27–89.07Ma).The ATS also provides time constraints for the ostracod biozones,which may be useful for future stratigraphic correlation among ostracod-bearing terrestrial successions and potentially,between terres-trial and marine successions.The mean sedimentation rates range from 7.55cm/ka to12.98cm/ka.Four periods of high sedimentation rates were detected across the basin,possibly recording periods of sustained wet climate during which enhanced chemical weathering may have signi?cantly increased sediment inputs to the Songliao basin.

Based on the established ATS,the duration of the lacustrine anoxic event1(LAE1)at the basal Qingshankou Formation is estimated as 210–310ka.The onset age of LAE1(~94.21–94.18Ma)is comparable with that of the oceanic anoxic event2(OAE2)at the Cenomanian–Turonian boundary,which has been estimated as93.72/94.21Ma or 94.09Ma.The duration of LAE1(~210–310ka)and OAE2(~320–900ka)is in the?rst order agreement,but further investigations are needed to better constrain the duration of the anoxic events in both marine and terrestrial basins.The occurrence of a time-equivalent anoxic(high organic carbon burial)event in both terrestrial and marine basins suggest a shared trigger mechanism that involves increased atmospheric CO2from igneous activities.Elevated CO2may have facilitated primary productivity and anoxic water column chemistry in both marine and terrestrial basins.

Acknowledgements

The authors are grateful for the help from Chengshan Wang, Xiaoqiao Wan,Pujun Wang,Yanguang Ren and Yimin Dang.We express our sincere appreciation to the journal editor(Prof.Peter B. deMenocal)and four anonymous reviewers for their careful review and constructive suggestions that signi?cantly improved the paper. This study was jointly supported by the National Key Basic Research Development Program of China(Grant2006CB701400),the National Science Foundation of China(Grant40802012),“111project”(B07011) and Program for New Century Excellent Talents(Grant NCET-04-0727) of Ministry of Education of China.

References

Arthur,M.A.,Dean,W.E.,Pratt,L.M.,1988.Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary.Nature335, 714–717.

Caron,M.,Robaszynski,F.,Amedro,F.,Baudin,F.,Deconinck,J.F.,Hochuli,P.,von Salis-Perch Nielsen,K.,Tribovillard,N.,1999.Estimation de la durée de lévénement anoxique global au passage Cénomanien/Turonian:Approche cyclostratigraphique dans la formation Bahloul en Tunisie central.Bull.Soc.Géol.Fr.170,145–160.Chen,P.J.,https://www.360docs.net/doc/909542160.html,ments on the classi?cation and correlation of non-marine Jurassic and Cretaceous of China.J.Stratigr.24,114–119(in Chinese with English abstracts). Cheng,J.M.,McIntosh,J.C.,Xie,X.N.,Jiao,J.J.,2006.Hydrochemistry of formation water with implication to diagenetic reactions in Sanzhao depression and Qijia–gulong depression of Songliao Basin,China.J.Geochem.Explor.88,86–90.

Cheng,R.H.,Wang,G.D.,Wang,P.J.,2008.Sedimentary cycles of Quantou–Nenjiang, Cretaceous and Milankovitch cycles from the south hole of CCSD–SK in Songliao basin.Acta Geol.Sin.1,48–55(in Chinese with English abstracts).

Chi,Y.L.,Wang,P.J.,Wan,C.B.,Shan,X.L.,2000.Study on non-marine deep stratigraphy of oil-bearing basin in China.Jilin Science and Technology Press,Changchun,pp.1–24 (in Chinese with English abstracts).

Fiet,N.,Quidelleur,X.,Parize,O.,Bulot,L.G.,Gillot,P.Y.,2006.Lower Cretaceous stage durations combining radiometric data and orbital chronology:towards a more stable relative time scale?Earth Planet.Sci.Lett.246,407–417.

Gao,R.Q.,Zhang,Y.,Cui,T.C.,1994.Cretaceous Petroleum Bearing Strata in the Songliao Basin.Petroleum Industry Press,Beijing,pp.1–333(in Chinese with English abstract). Gao,R.Q.,Zhao,C.B.,Qiao,X.Y.,Zheng,Y.L.,Yan,F.Y.,Wan,C.B.,1999.Cretaceous Oil Strata Palynology From Songliao Basin.Geological Publishing House,Beijing,pp.1–373(in Chinese with English abstract).

Gradstein,F.M.,Ogg,J.G.,Smith,A.G.,2004.A Geologic Time Scale2004.Cambridge University Press,pp.55–62.

Hinnov,L.A.,2000.New perspectives on orbitally forced stratigraphy.Annu.Rev.Earth Planet.Sci.28,419–475.

Hinnov,L.A.,2004.Earth's orbital parameters and cycle stratigraphy.In:Gradstein,F.M., Ogg,J.G.,Smith,A.G.(Eds.),A Geologic Time Scale2004.Cambridge University Press,pp.55–62.

Hinnov,L.A.,Ogg,J.G.,2007.Cyclostratigraphy and the astronomical time scale.Stratigra-phy4,239–251.

Hou,D.J.,Li,M.W.,Huang,Q.H.,2000.Marine transgressional events in the gigantic freshwater lake Songliao:paleontological and geochemical https://www.360docs.net/doc/909542160.html,.Geo-chem.31,763–768.

Hou,D.J.,Feng,Z.H.,Huang,Q.H.,2003.Geological and geochemical evidences of anoxic event in the Songliao Basin.Geoscience17,311–317(in Chinese with English abstract).

Huang,Q.H.,2007.Cretaceous stratigraphy and micropalaeontology of Songliao Basin.

Unpublished PhD thesis,Chinese Academy of Geologcal Sciences,Beijing,China,1–122(in Chinese with English abstract).

Huang,Q.H.,Chen,C.R.,Wang,P.Z.,Han,M.X.,Li,X.J.,Wu,D.Q.,1998.The late Cretaceous bio-evolution and anoxic events in the ancient lake in the Songliao Basin.Acta Micropalaeontol.Sin.15,417–425(in Chinese with English abstract).

Huang,Q.H.,Liang,W.L.,Ye,D.Q.,Gao,W.F.,2007.The characteristics of Cretaceous microbiotas and formation of hydrocarbon-rich source rocks in Songliao Basin.Acta Palaeontol.Sin.46,380–386(in Chinese with English abstract).

Kerr,A.C.,1998.Oceanic plateau formation:a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary.J.Geol.Soc.Lond.155,619–626. Kuhnt,W.,Luderer,F.,Nederbragt,S.,Thurow,J.,Wagner,T.,2005.Orbital-scale record of the late Cenomanian–Turonian oceanic anoxic event(OAE-2)in the Tarfaya Basin (Morocco).Int.J.Earth Sci.(Geol.Rundsch.)94,147–159.

Laskar,J.,Robutel,P.,Joutel,F.,Gastineau,M.,Correia,A.C.M.,Levrard,B.,2004.A long-term numerical solution for the insolation quantities of the Earth.Astron.

Astrophys.428,261–285.

Li,D.S.,1995.Hydrocarbon habitat in the Songliao Rift Basin,China.In:Lambiase,J.J.

(Ed.),Hydrocarbon Habitat in Rift Basins.Geological Society,London,Special Publications,vol.80,pp.317–329.

Li,W.B.,2001.Palyno?ora from the Quantou Formation of Songliao Basin,NE China and its bearing on the Upper–Lower Cretaceous boundary.Acta Palaeontol.Sin.40, 153–176(in Chinese with English abstract).

Li,W.B.,Li,J.G.,2005.Albian palynological assemblage from the borehole Yu2302in Yushu—with focus on the age of the Denglouku Formation in Songliao Basin.Acta Palaeontol.Sin.44,209–228(in Chinese with English abstract).

Li,M.W.,Pang,X.Q.,2004.Contentious petroleum geochemical issues in China's sedimentary basins.Pet.Sci.1,4–22.

Li,Y.X.,Bralower,T.J.,Monta?ez,I.P.,Osleger,D.A.,Arthur,M.A.,Bice,D.M.,Herbert,T.D., Erba,E.,Silva,I.P.,2008.Toward an orbital chronology for the early Aptian Oceanic Anoxic Event(OAE1a,120Ma).Earth Planet.Sci.Lett.doi:10.1016/j.epsl.2008.03.055. Locklair,R.E.,Sageman,B.B.,2008.Cyclostratigraphy of the Upper Cretaceous Niobrara Formation,western interior,U.S.A.:a Coniacian–Santonian orbital timescale.Earth Planet.Sci.Lett.doi:10.1016/j.epsl.2008.03.021.

Mitchell,R.N.,Bice,D.M.,Montanari,A.,Cleaveland,L.C.,Christianson,K.T.,Coccioni,R., Hinnov,L.A.,2008.Oceanic anoxic cycles?Orbital prelude to the Bonarelli Level (OAE2).Earth Planet.Sci.Lett.267,1–16.

Olsen,P.E.,Kent,D.V.,1999.Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of Eastern North America and their implications for the Calibration of the Early Mesozoic time-scale and the long-term behaviour of the planets.Philos.

Trans.Math.Phys.Eng.Sci.357,1761–1786.

Paillard,D.,Labeyrie,L.,Yiou,P.,1996.Macintosh program performs time-series analysis.

Eos77,379.

Pei,F.P.,Xu,W.L.,Yang,D.B.,Zhao,Q.G.,Liu,X.M.,Hu,Z.C.,2007.Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin.Chin.Sci.Bull.52,942–948. Prokoph,A.,Agterberg,F.P.,1999.Detection of sedimentary cyclicity and stratigraphic completeness by wavelet analysis:an application to Late Albian Cyclostratigraphy of the Western Canada Sedimentary Basin.J.Sediment.Res.60,862–875. Prokoph,A.,Agterberg,F.P.,2000.Wavelet analysis of well-logging data from oil source rock,Egret Member,offshore eastern Canada.AAPG Bulletin84,1617–1632. Prokoph,A.,Thurow,J.,2000.Diachronous pattern of Milankovitch cyclicity in late Albian pelagic marlstones of the North German Basin.Sediment.geol.134,287–303.

322H.Wu et al./Earth and Planetary Science Letters278(2009)308–323

Prokoph,A.,Villeneuve,M.,Agterberg,F.P.,2001.Geochronology and calibration of global Milankovitch cyclicity at the Cenomanian–Turonian boundary.Geology29, 523–526.

Sageman,B.B.,Meyers,S.R.,Arthur,M.A.,2006.Orbital time scale and new C-isotope record for Cenomanian–Turonian boundary stratotype.Geology34(2),125–128. Schlanger,S.O.,Jenkyns,H.C.,1976.Cretaceous anoxic events:causes and consequences.

Geol.Mijnb.55,179–184.

Schlanger,S.O.,Arthur,M.A.,Jenkyns,H.C.,Scholle,P.A.,1987.The Cenomanian–Turonian Oceanic Anoxic Event I,stratigraphy and distribution of organic carbon-rich beds and the marineδ13C excursion.Geological Society,London,Special Publications,vol.26,pp.371–399.

Schulz,M.,Mudelsee,M.,2002.REDFIT:estimating red-noise spectra directly from unevenly spaced paleoclimatic time https://www.360docs.net/doc/909542160.html,put.Geosci.28,421–426.

Serra,O.,1984.Fundamentals of well-log interpretation.1.The acquisition of logging data.Amsterdam,Elsevier.Dev.Pet.Sci.15A,1–423.

Sha,J.G.,2007.Cretaceous stratigraphy of northeast China:non-marine and marine correlation.Cretac.Res.28,146–170.

Sinton,C.W.,Duncan,R.A.,1997.Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian–Turonian boundary.Econ.Geol.92,836–842. Stratigraphy Committee of China,2002.Introduction to the regional chronostratigraphic (geological time)chart of China.Geological Publishing House,Beijing,pp.1–72(in Chinese).

Sun,S.W.,Shu,L.S.,Zeng,Y.W.,Cao,J.,Feng,Z.Q.,2007.Porosity–permeability and textural heterogeneity of reservoir sandstones from the Lower Cretaceous Putaohua member of Yaojia Formation,Weixing Oil?eld,Songliao Basin,Northeast China.

Mar.Pet.Geol.24,109–127.

Torrence,C.,Compo,G.P.,1998.A practical guide to wavelet analysis.Bull.Am.Meteorol.

Soc.79,61–78.

Turgeon,S.C.,Creaser,R.A.,2008.Cretaceous oceanic anoxic event2triggered by a massive magmatic episode.Nature454.doi:10.1038/nature07076.

Wan,X.Q.,Li,G.,Chen,P.J.,Yu,T.,Ye,D.Q.,2005.Isotope stratigraphy of the Cretaceous Qingshankou Formation in Songliao Basin and its correlation with marine Cenomanian stage.Acta Geol.Sin.79,150–156(in Chinese with English abstract). Wan,X.Q.,Chen,P.J.,Wei,M.J.,2007.The Cretaceous system in China.Acta Geol.Sin.81, 957–983.Wang,P.J.,Liu,W.Z.,Shan,X.L.,Bian,W.H.,Ren,Y.G.,Du,X.D.,Wan,C.B.,Cheng,R.H., 2001.Depositional Events:Introduction,Example,Application.Jilin Science and Technology Press,Changchun,pp.1–182(in Chinese with English abstract). Wang,P.J.,Liu,W.Z.,Wang,S.X.,Song,W.H.,2002.40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao basin,NE China:constraints on stratigraphy and basin dynamics.Int.J.Earth Sci.(Geol.Rundsch.)91,331–340.

Wang,Y.,Zhang,F.Q.,Zhang,D.W.,Miao,L.C.,Li,T.S.,Jie,W.Q.,Meng,Q.R.,Liu,D.Y.,2006.

Zircon SHRIMP U-Pb dating of meta-diorite from the basement of the Songliao Basin and its geological signi?cance.Chin.Sci.Bull.51,1877–1883.

Wang,P.J.,Xie,X.A.,Frank,M.,Ren,Y.G.,Zhu,D.F.,Sun,X.M.,2007.The Cretaceous Songliao Basin:valcanogenic succession,sedimentary sequence and tectonic evolution,NE China.Acta Geol.Sin.81,1002–1011.

Weedon,G.,2003.Time-Series Analysis and Cyclostratigraphy.Cambridge University Press,Cambridge,pp.1–259.

Westerhold,T.,R?hl,U.,Laskar,J.,Raf?,I.,Bowles,J.,Lourens,L.J.,Zachos,J.C.,2007.On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events:implications from the Ocean Drilling Program Leg208Walvis Ridge depth transect.Paleoceanography22,PA2201.doi:10.1029/2006PA001322. Wu,H.C.,Zhang,S.H.,Sui,S.W.,Huang,Q.H.,2007.Recognition of Milankovitch Cycles in the natural gamma-ray logging of Upper Cretaceous terrestrial strata in the Songliao Basin.Acta Geol.Sin.81,996–1001.

Ye,D.Q.,Huang,Q.H.,Zhang,Y.,Chen,C.R.,2002.Cretaeeous Osrracoda Biostratigraphy in Songliao Basin.Petroleum Industry Press,Beijing,pp.11–144(in Chinese with English abstract).

Zhang,F.Q.,Pang,Y.M.,Yang,S.F.,Dong,C.W.,Chen,H.L.,Su,P.,2007a.Geochronology of zircon SHRIMP,geochemistry and its implication of the volcanic rocks from Yingcheng Formation in depression Area,north of Songliao Basin.Acta Geol.Sin.81, 1248–1258(in Chinese with English abstract).

Zhang,Z.L.,Liu,Z.W.,Wang,B.C.,Zhang,Y.,Ye,D.Q.,2007b.Ostracod biostratigraphy of the Late Cretaceous Qingshankou formation in the Songliao Basin.Acta Geol.Sin.81, 727–738.

Zhao,X.,Coe,R.S.,Zhou,Y.,Wu,H.,Wang,J.,1990.New paleomagnetic results from Northern China:collision and suturing with Siberia and Kazakhstan.Tectonophysics 181,43–81.

323

H.Wu et al./Earth and Planetary Science Letters278(2009)308–323

中国梦我的梦演讲稿范文5篇

中国梦我的梦演讲稿范文5篇 篇一 亲爱的老师、同学们:一个人梦想的追寻和实现,成就了中国的腾飞和光荣,这就是“中国梦”。 比如:神州五号载人飞船的发射成功,嫦娥三号圆满发射,都是中国富强的表现。曾经,邓小平说过:”我要让中国富起来!“还有周恩来总理:”我要让中国强大起来!“后来他们都实现了自己的中国梦。然而,我的中国梦就是——让中国变成绿色。 现在,因为伐木工过度砍伐树木,水泥厂越来越多,沙漠化越来越厉害,还有农业污水越来越多,把蓝色的小溪都变成了灰色和黑色。中国的环境越来越差,全是灰色和黄色。我实在是太心疼了,不忍心看下去,所以我逐渐的开始保护环境。在过年的时候,我会对爸爸妈妈亲戚朋友分别说:”今年不要放烟花爆竹了,您看那灰色的天空,还有电视上说的雾霾天气,环境多差呀!“有空的时候,我还会出去打扫卫生,甚至植几株草和花。植树节,我还会去植树。我还会有空的时候去贴几张”告示“,让大家不要破坏花草树木等。每个普通中国人的普通中国梦,都可以汇聚成一个伟大的中国梦!如果每个人都实现了自己的中国梦,那么我们的中国会越来越强大。如果每个人都嘴上说说,却不去实现,口是心非,那又有什么用呢? 篇二 亲爱的老师、同学们:每个人都有梦想,老师有希望学生成绩出色的梦,军人有希望国家繁荣富强的梦,医生有希望病人早日康复的梦,宇航员有希望发星球更

多秘密的梦…… 同样,我也有一个美好的梦。我梦想长大以后当一位能歌善舞的舞蹈家,代表国家四处比赛,为祖国争光。为了实现这个梦想,每周,我都要去文化馆上舞蹈课,上课前,我们都会自己拉拉腰、压压腿,做好课前准备,以免上课时把身体拉伤。虽然做了课前准备,可在练习时,总会清晰地听到自己骨头咔咔响的音。有时把一只腿放在厚厚的毯子上,另一只腿放在地上,摆成竖叉,大腿贴地,然后用手拉住后面那只脚,倒数二十秒,就可以了。可是,在这过程中,总会感到疼痛难忍,有时,我会疼得哭起来,有时,会疼得坐不稳,每当这时候,只要心里一想到那个美丽又美的梦,我就不觉得那么痛了,也轻松多了。有时在排练舞时,有的动作很难,练了很多次,可还是没做好。每当我相放弃不练了的时侯,只要一闭上眼睛,脑海里就会浮现出我在台上表演,台下的观众个个鼓掌叫好的场景。这些景象让我一次又一次地从摔倒的地方重新站了起来,完成了一个又一个困难却好看的舞姿。每当我们表演完节目,崔老师总不忘鼓励我们一句‘你们今天表现得真棒!’虽然这话在别人听起来十分平淡,可我听起这话总能让我紧张不以的心平静下来,感受到温暖。通过自己的努力,我参加了许多比赛,每次拿到奖时,我都十分激动,心里像吃了蜜一样甜甜的,希望自己更上一层楼。 也许,在不久的将来,我的梦想会成为现实,我一定要好好学习,天天向上,努力实现我美好的理想。 篇三 亲爱的老师、同学们:梦想是什么?相信每个人都有自己的理解,是卖火柴的小女孩渴望点燃一根火柴来取得温暖,还是丑小鸭幻想自己有一天可以脱去丑陋的

最新版中国梦我的梦演讲稿10篇

最新版中国梦我的梦演讲稿10篇 忆往昔峥嵘岁月,看今朝锦绣河山。回味改革开放的三十年,华夏神洲留下了太多的梦想奇迹。1997年7月1日,香港正式回归祖国,举国欢庆,“统一梦”迈出了坚定的第一步;2001年12月11日,中国正式成为世界贸易组织成员,从此,国家经济快速、平稳、健康的发展,“小康梦”已不再是一个遥不可及的目标;2013年6月12日,神十问天,璀璨的星河中留下了炎黄子孙的身影,编织了千年的“飞天梦”也终于迎风远航……一个个梦想的实现,一份份成就的辉煌无不昭示着“中国梦”——“复兴之梦”必将在党的领航下乘风破浪、直挂风帆。 走过历史的长廊,回顾百年的沧桑,“中国梦”一词在岁月的书卷中熠熠生辉。作为一种最为朴素、浓烈的民族情感,它的萌发、形成之于耻深痛极的近代百年,有着深刻的时代烙印。无论是谭嗣同“四万万人齐天下泪,天涯何处是神洲”的哀恸,还是秋瑾“拼将十万头颅血,誓把乾坤力挽回”的决绝,所体现的都是对国家前途命运的关切与焦虑。而今,随着时代的变迁,“中国梦”也从“救亡图存”变为了“强国富民”。然而我坚信有一点却始终不会改变,那就是坚定的民族自信,国人始终坚信有着五千年优秀历史文化的中华民族,无论面临怎样严峻的考验,终将转危为安、再

造辉煌,实现百年的“复兴之梦”。 俗话说:“聚沙成塔,集腋成裘”。“中国梦”既承载着国家的强国之梦、民族的复兴之梦,也包涵着亿万国人同胞千千万万个小小的梦想。有“富裕梦”,有“健康梦”、有“求学梦”……正是由于这些如涓涓细流般的梦想汇聚成河,才会让“中国梦”愈发的凝实。大学毕业之初,怀揣着对未来的憧憬,我选择了公务员考试。最终,经过重重选拔、层层考验我来到了隆化这个美丽的小城。抛弃了国企的高薪,远离了父母的怀抱,背离了自己的故乡,踏上一个陌生城市的土地,在这里去拼搏、去奋斗,这样的生活真的是我想要的吗我也曾无数次的扪心自问。时至今日,月余的法庭生活给了我一个满意的答复。这里也许没有车水马龙的的喧闹,却有着一份乡村独有的宁静;这里也许没有灯火通明的高楼,却能映照出一张张质朴的面容;这里也许没有频繁的人际交往,却有着一句句真诚的关怀。在这片广袤无垠的大地上,我找到了追寻梦想的原动力。 选择了到基层工作就意味着选择着艰苦;选择了公务员这个职业就意味着肩负着责任;选择了到法院任职就意味着守护着公正。在过去的一个月里,我体验到了从一个懵懂的书生向一名法院工作者转变的酸甜苦辣。现实和理想尽管错位不断,但热情和动力却与日俱增。基层法庭是法院工作的前沿阵地,直接面向农村,密切联系群众,受理的案件虽不

为实现中国梦做贡献 小学生征文

向着中国梦,前进! 绥芬河市北寒小学四年级李鸣 梦,通常指人们的理想。每个人都会做梦,每个人都会有自己的梦想。美羊羊的梦想是能够在青青草原上尽情地玩耍,光头强的梦想是把大森林里的树木都砍光。我的梦想,可以是一个漂亮的发卡,一盒可口的点心,是考试后的100分,妈妈对我夸奖的笑容……可今天,老师说,我们每个人不但要有自己的梦,还要有中国梦。 那么,什么是中国梦呢?中国梦是建立在祖国发展基础上的,是对祖国有利的梦,每个人的中国梦都不相同,有大有小,但它们又都有相同之处,那就是都怀着一颗为祖国作出贡献的心,对人民有功利的心。我想中国梦还应该是国家富强,小朋友们都有新衣服穿,有变形金刚、芭比娃娃;民族团结,不会有战争与饥饿;大人们高高兴兴地上班,孩子们能够一块儿在草地上做游戏。但我觉得,最重要的是要建设一个美丽、洁净的家园,那就是天蓝、地绿、水清、气爽的美丽中国。没有地沟油,没有沙尘暴,没有禽流感…… 建设美丽中国,就要从小事做起。在学校,看到地上有纸屑,我会主动弯腰捡起;看到水龙头滴水,我要主动上前把它关紧;看到有人说脏话,我会及时上前制止。春天来了,我拉着爸爸妈妈买树苗,到附近山坡上植树,因为我知道,绿化造林是防治大气污染的一种有效方法。我还要宣传环保知识,动员更多的人加入环保队伍,让天变得更蓝,水变得更绿。我还会在村里钉上一块“爱护环境、人人有责”的警示牌,让全村的人跟我一起行动起来,保护我们的环境、净化我们的环境。我知道我一个人,一家人的力量很微薄,但是如果全中国的孩子都能行动起来,每个中国家庭都行动起来,那就会汇成强大的环保能量,才能建设好美丽中国。 每个中国人都有着自己的中国梦,只要每个人能为这伟大的梦想贡献出自己的力量,哪怕是微不足道,但当所有的贡献汇集到一起,将会是一股多么强大的力量,这股力量会把中国推向更美好的明天,只要人人行动起来,我相信建设美丽祖国这个中国梦将会很快实现。

中国梦-我的梦演讲稿

中国梦我的梦 有一种东西,它承载着人们的希望,虽然他看不见,摸不着,却能在人们心中产生巨大的力量。它,就叫梦想。上帝没有赐予我们翅膀,却赐予了我们会飞的心灵和能够梦想的大脑,使我们有了一双“隐形的翅膀”,带着我们在人生辽阔的天空里自由地翱翔。 今年三月,全国人大和全国政协会议在北京召开,关于“中国梦”的话题也进行过热烈的讨论。每个人或多或少也在思考“中国梦”的问题。 那么,中国梦是什么呢?习近平总书记说“每个人都有理想和追求,都有自己的梦想。实现中华民族的伟大复兴,就是中华民族近代以来最伟大的梦想。这个梦想,凝聚了几代中国人的夙愿,体现了中华民族和中国人民的整体利益,是每一个中华儿女的共同期盼。”是的,每个人都有自己的梦,梦想能够照亮生活,亦能成就未来。而有一个梦,它既是你的梦,也是我的梦,它是万千中华儿女共同的心愿,那就是实现中华民族伟大复兴的中国梦。 每个人的梦都是中国梦的组成部分,我的梦亦如此。都说学生的主业是学习,的确如此,我的梦来自学习。我喜欢在午休时一个人独自读书的静谧;喜欢在难题前不停运用各种公式演算的执着;也喜欢与同学一起为一道题目争执不休的吵吵闹闹。这样所诠释的梦是理想之梦。 梦也来自家庭,对于我的成长,它最有发言权。平日里与父母相处的时间虽然不多,但是一起吃饭时,父亲在饭桌上的高谈阔论;

坐在同一书桌前各自忙碌时,偶尔抬头与母亲随意交谈的闲话,都在影响着我对生活的态度。 有了梦,便要去追寻。三年前,在懵懂的状态下,在家长的引导下选好了脚下的路—上高中、考大学。渐渐地,考大学也真正成为了我的梦。清晰地记得,老师在中考前说“我们将做出人生第一次重大选择”,面对众多的学校,我固执地选择了朝中,心中似乎在坚守着什么。后来,随着一个个目标的制定,无数次为“自己的事”的奋斗,我逐渐明白,我是在坚守着自己的梦,并且开始懂得为了理想和追求而努力拼搏。其实走到现在,蓦然回首,才发现人生是一个条件从句,梦的方向并无过多区别,而我们最终选择的那个梦,正是因为被自己选择,被自己填充,才显得与众不同,才显得适合自己。 我相信,只要坚持不懈,努力拼搏,梦想就一定能够成真。我的梦,我们的梦,铸就了实现国富民强的中国梦。可以想想,如果中国民族实现了伟大复兴,那么世界梦一定会更加流光溢彩。

中国梦我的梦演讲稿

演讲稿一 尊敬的各位领导、敬爱的老师、亲爱的同学们: 大家好!今天我演讲的题目是《中国梦,我的梦》。 在发言前我想问同学们一个问题就是:你们有梦吗?假如有梦的同学请大声的回答我。很好!我想你们的梦一定是绚烂的、美丽的、丰富的、美好的。生命因责任而美丽,人生因梦想而精彩。假如还在犹豫自己真正的的梦是什么?请认真听我们中国所共同的梦——中国梦 人生如梦,梦想是帆,每个人都有一个只属于自己的梦,但我们同属一个国家,所以每个人的梦又与国家的兴衰荣辱紧密相连。先哲顾炎武曾说:“天下兴亡,匹夫有责。”只有国家好,大家才能好。 有梦才能使中国富强! 我依然清楚的记得: 当甲午战争战败,日寇无礼踏破中国的门户;当八国联军侵入北京,无情掠夺中国的财产;当七七事变发生,中国的老人、妇孺被残忍杀害的时候,我在想那时中国的梦是怎样的! 我虽不曾亲眼看到,但那却是铁一般的事实。因为从老人们那深邃的眼神中可以感到无尽的愤懑;从他们干瘪的脸颊可以看到深情的泪水,从他们嘹亮的军歌中可以想到那奋勇杀敌时的豪迈;从他们激昂话语中听到那誓要捍卫家园振兴中华的誓言。作为新一代青年的我们难道不应该树立远大的理想,付之以踏实的行动,去继承先辈们的使命。去实现中华民族的伟大崛起和复兴吗? 有梦才能使中国繁荣! 在改革开放以来中国取得了一系列的可以载入中国史册的成就。香港、澳门的回归,经济特区的建立,使中国成为发展国家中的经济大国,科技先进国和军事强国。当中国成功举办奥运的时候,当神九飞天的时候,当蛟龙入海的时候,当航母下水的时候,当莫言荣获诺贝尔文学奖的时候。我相信每个人都感觉到了无比的自豪。但是现在的中国与其他发达国家还有很大差距。作为新一代的我们,难道不应该志存高远吗? 我想有的人会说,我们的力量是有限的。的确个人的力量很渺小,但是中国梦就是因一个个微不足道的个人的梦一直汇集、汇集,然后凝聚成的一个巨大的梦。冯至在《十四行诗》中写道,我们准备着,深深领受,那些意想不到的奇迹,在漫长的岁月里,忽然有彗星的出现,狂风乍起。 梦想是美丽的,它是最美的期望;梦想是阳光的,它使人由浮躁走向踏实;梦想是充满力量的,它可以激发人身体里无限的潜能。我们期盼的是国泰民安、经济发展、政治清明、文化繁荣、社会和谐、生态良好、公平正义。这才是中国人最伟大的梦。

2018年工信财务处我为实现中国梦做贡献演讲稿

2018年工信财务处我为实现中国梦做贡献演讲稿 梦想在前路在脚下 梦想,是每个人希望的开始。中华民族五千年历史传承着一个长长的梦,几经辗转,几经沉浮。时至今日,汇聚成了一个梦,中国梦。 一个人不能没有梦想。因为有梦想,我们才经历坎坷依然前行,因为有梦想,我们才经历沧桑信心不改。有梦想才会有希望;有希望才会有激情;有激情才会有事业;有事业才会有未来。中华民族是一个命运共同体,只有民族、国家全面科学发展,个人才能实现梦想。同样,只有每个人都充满激情和梦想,“中国梦”才够美丽,才够坚实。 工信人同样承担着实现中国梦的使命,一代一代在工业和电子、信息产业的人们前仆后继,奋勇拼搏,为了这个梦想奉献着自己的青春。 “疾风知劲草,岁寒见后凋”在财务处工作这段时间以来,我有过艰辛的汗水、也有过收获时的喜悦;有过扬帆起航时的热忱与豪情、也有过风雨骤来时的动摇与退却;有过风平浪静时的欢喜与惬意、也有过漫漫征途的寂寞与煎熬!财务工作赋予我人生新的意义和追求,它为我带来了淳朴的友谊,让我品尝到工作的无限快乐。在梦开始的这片热土上,我们平凡的财务人员在平凡的岗位上,默默无闻,奉献青春;我们用坚定的信念,用点滴的小事,书写着一幕幕爱岗敬业的篇章。 我们财务处就是这样一个群体,整日跟毫无生气的数字凭证、账簿打交道,整理核算杂乱的原始票据和凭证,日复一日,与数字相伴,与票据为友,但这一切都磨灭不了我们对财务工作的饱满热情,我们无怨无悔。既然扎根于工信财务工作,那么确保数字核算的准确无误,各项财务制度执行的缜密就是我们的责任,按时、顺利、高效地完成会计核算工作,为领导及时提供准确数据,为各部门提供最好服务,为厅机关及厅系统各项工作的顺利开展提供有力的保障是我们每个财务人员最大的心愿和使命! 梦想不是说说而已……我有一个大大的梦想,那么这个大大的梦想要从现在小小

关于我的梦中国梦主题演讲稿800字

关于我的梦中国梦主题演讲稿800字 尊敬的各位老师: 你们好!今天我演讲的题目是《我的梦中国梦》。 我有一个梦想,深深扎根于我的心中。那就是长大后,我要成为一个科学家。 尽管我没有过人的才智,没有严密的思维,也没有特别准确的判断力,但是我仍不会放弃努力。尽管这个梦想距我很遥远,但我仍 不会停止追求。尽管在实现梦想的过程中,会有很多挫折和无数的 磨难,但我仍不会灰心丧气。因为我相信,只有经历地狱般的磨练,才能练出创造天堂的力量;只有流过血的手指,才能弹出世间的绝唱;只有经历困难和挫折,才能实现自己的梦想。 以前,每当我看到科学家们令人瞩目的成就时,总会感到羡慕和敬佩。是他们,推动了社会的发展;是他们,使人民生活水平得到提高;更是他们,为祖国的发展赢来了一个崭新的明天。 因此,我想成为一个科学家,成为一个对国家有贡献的人,成为这个国家的栋梁。每当我看到浪费时间的人时,我会为他们感到惋惜;每当我看到灰心丧气的人时,会为他们感到悲哀;每当我看到不 务正业的人时,我会感到愤恨。因为他们没有看到自己的价值,没 有属于自己的梦想。这样的人生,是没有意义的人生。 而我,至少有一个梦想,一个目标。有了这个梦想,我就会一直努力下去,永不放弃。有了这个梦想,就等于把握了自己的人生航向,不会再迷失方向。有了这个梦想,就好象一盏明灯,照亮了我 前进的道路。一直通往胜利的顶峰。 我有梦,中国也有梦。我的梦想,用自己的智慧站在时代的顶峰,中国的梦,用自己的勤劳,自立于世界之上!为了这个梦想,他发奋,他图强,他忍受无法言语的苦难,只为自己可以挺起胸膛!地震来了,

不怕,他有的是铁一般的脊骨,洪水来了,不怕,他有的是山一般 的胸膛!奥运会来了,不怕,他有的是腾飞的翅膀!有梦的人,才是 真正的人,有梦的国,才是真正的国!我的梦就是国的梦,我的梦, 成为科学家,为国家尽力,国的梦,繁荣富强,让我们幸福! 我的中国梦演讲到此结束,谢谢大家! 中国梦也是我的梦。我生在中国,长在中国,读过中华几千年的历史,曾为之激动,忧伤,悲愤,骄傲,曾为之食不能安,夜不能寐,,中国已与我紧密的联系在了一起,我为中国伤心,为中国欢乐。我还记忆犹新那句话:犯我大汉天威者,虽远必诛。它深刻的 体现出我中华民族,我大汉的骄傲与荣耀,或许很狂妄,或许很嚣张,但它却让我深深为之感动,为了中华的荣耀,我可以吃苦,可 以受累,甚至我可以献上我微不足道的生命,可就是这份愿意,让 我为中国喝彩,让我对中华民族更加钦佩,对中华历史更加热衷。 或许,我说的对;或许,我说的不对,但是我想认同我的人总是有的,我想这么做的人总是有的! 中国梦,到底是什么,我仔细地思考过一番,我想中国梦应该是振兴中华的梦想。虽说我们消沉过几百年,但是我们也荣耀过几千年,所以我们中华民族最不缺少的便是一种资质,一种让我们曾经 荣耀过几千年的资质,所以我不认为我们与其他民族相比有任何的 不如之处,所以我相信认清现实之后的我们必将会取得成功,必将 会实现我们近年来振兴中华的梦想。 霍去病将军匈奴未灭,何以为家。诸葛亮鞠躬尽瘁,死而后已。周恩来为中华崛起而读书...... 这些历史上让人怀念的伟人们,都有一个和中国梦一样的梦。霍去病将军将自己的一切都献给了中华民族的安危与荣耀,虽说他并 不完美,但瑕不掩瑜,他守护大汉,永不后悔,留下了封狼居胥的 佳话。至于诸葛亮很多资料认为罗贯中是亲蜀派将蜀国的人物进行 了美化,比如历史上根本没有他三气周瑜的事情。但是罗贯中为什 么这么写,我个人认为除了刘备得民心之外,还有一点,那就是蜀 汉一称,正因为蜀国在后面加上了一个“汉”,赢得了更多人的偏

为实现中国梦做贡献_小学生征文

向着中国梦,前进! 学校:南召中心校务滋小学班级:五年级 学生:李斯言 指导教师:屈海川

向着中国梦,前进! 梦,通常指人们的理想。每个人都会做梦,每个人都会有自己的梦想。美羊羊的梦想是能够在青青草原上尽情地玩耍,光头强的梦想是把大森林里的树木都砍光。我的梦想,可以是一个漂亮的发卡,一盒可口的点心,是考试后的100分,妈妈对我夸奖的笑容……可今天,老师说,我们每个人不但要有自己的梦,还要有中国梦。 那么,什么是中国梦呢?中国梦是建立在祖国发展基础上的,是对祖国有利的梦,每个人的中国梦都不相同,有大有小,但它们又都有相同之处,那就是都怀着一颗为祖国作出贡献的心,对人民有功利的心。我想中国梦还应该是国家富强,小朋友们都有新衣服穿,有变形金刚、芭比娃娃;民族团结,不会有战争与饥饿;大人们高高兴兴地上班,孩子们能够一块儿在草地上做游戏。但我觉得,最重要的是要建设一个美丽、洁净的家园,那就是天蓝、地绿、水清、气爽的美丽中国。没有地沟油,没有沙尘暴,没有禽流感…… 建设美丽中国,就要从小事做起。在学校,看到地上有纸屑,我会主动弯腰捡起;看到水龙头滴水,我要主动上前把它关紧;看到有人说脏话,我会及时上前制止。春天来了,我拉着爸爸妈妈买树苗,到附近山坡上植树,因为我知道,绿化造林是防治大气污染的一种有效方法。我还要宣传环保知识,动员更多的人加入环保队伍,让天变得更蓝,水变得更绿。我还会在村里钉上一块“爱护环境、人人有责”的警示牌,让全村的人跟我一起行动起来,保护我们的环境、净化我们的环境。我知道我一个人,一家人的力量很微薄,但是如果全中国的孩子都能行动起来,每个中国家庭都行动起来,那就会汇成强大的环保能量,才能建设好美丽中国。 每个中国人都有着自己的中国梦,只要每个人能为这伟大的梦想贡献出自己的力量,哪怕是微不足道,但当所有的贡献汇集到一起,将会是一股多么强大的力量,这股力量会把中国推向更美好的明天,只要人人行动起来,我相信建设美丽祖国这个中国梦将会很快实现。 建设美丽祖国——这个伟大而又现实的中国梦,我会行动起来的,爱护环境、节约用水……,我要向着中国梦,前进!

中国梦我的梦主题演讲稿

中国梦我的梦 每当听着国歌,看着鲜艳的五星红旗冉冉升起,我总是热血沸腾,梦想着为国家的富强贡献自己微薄的力量,纵然力量微薄,但只要大家一起为我们美丽的祖国做贡献,就可以使她变得更强更美。梁启超先生说过:“少年富则国富,少年强则国强”,我们年轻人的命运与国家的命运息息相关,同样,强国梦与我们的梦想荣辱与共,实现中国梦,就是我的梦。 实现中国梦就需要我们紧握梦想的缰绳。 实现中国梦需要有正确的方向,找到了方向,勤加努力就会成功;找不到梦想的希望,或者妄自堕落,或者碌碌无为,都会抱憾终生。如果说梦想是马,那么我们就需要抓住梦想的缰绳,找到方向,加速驰骋。爱国和报国的信念就是我们梦想的缰绳,古往今来,多少仁人志士为了爱国报国前仆后继,他们用生命铸成了中华民族的不倒长城,他们用热血染成了中华民族的鲜红旗帜。想起爱国报国,我们仿佛看到岳飞在战场上高举精忠,文天祥在狱中延续丹青,仿佛看到张自忠横刀立马,杨靖宇挥斥峥嵘;先烈们为我们指明了中国梦的方向,我们更应该延续我们的梦想,紧握梦想的缰绳,让爱国之心长存,让报国之心长青,才能让梦想之门长开。 实现中国梦就需要我们握紧梦想的双桨。 实现我们的梦想就需要坚强的意志和毅力,任何道路都会有坎坷和挫折,实现理想的道路更不是一帆风顺,无数的困难和险阻会阻挠

我们的梦想,无数的选择和诱惑会改变我们的梦想,而无数的打击和失败会气馁我们的梦想。要想成功实现梦想,就需要我们紧握梦想的双桨,齐心协力,奔向成功。如果说梦想是船,那么意志和毅力就是船的双桨,握桨快行,可以接近梦想;搁桨不走,只能望洋兴叹。邓小平为了改革开放历经经三上三下,仍然矢志不渝地坚定梦想,终于取得了改革的成功;邓稼先为了强国之梦历经艰苦卓绝,仍然矢志不渝地坚定梦想,终于实现了我国自有核技术的成就。所以说梦想需要坚强的意志和毅力,“不弛于空想,不鹜于虚声”,一切尽在行动中。 实现中国梦就需要我们补充文化的能量。 邓小平同志说:“科学技术是第一生产力”,当今世界,任何事业没有先进的科学技术做支撑都很难取得进步,我们年轻人的梦想更是如此,如果没有始终不断地吸收先进的科学知识,在实现成功的道路上,我们就显得力不从心;而有了知识储备,就可以如借东风。如果说梦想是车,那么科学和文化就是能量,有了能量,梦想之车全速前行,失去能量,梦想之车不再启动。历史上我中华民族闭关锁国,导致科学技术得不到学习和推广,在同列强的斗争中,屡战屡败深受凌辱;后来我们站起来了,尊重知识尊重科学,有了自己的火箭卫星和自己的导弹核弹,我们才站直腰板,成了自己的主人。可见,梦想需要知识,需要我们不断地学习和创新。 每个年轻人的梦想就是报效国家,所有年轻人的梦想合起来就是我们民族复兴的中国梦,不知不觉中我发现我的梦想早已同国家的梦想联系起来,而且紧密不可分离。我们经历了辉煌的古代文明,屈辱

中国梦我的梦演讲稿400字

中国梦我的梦演讲稿400字 篇一 尊敬的各位评委,亲爱的同学们: 大家上午好!我是来自祁县中学校高一年级的参赛选手李沁,今天我演讲的题目是《中国梦,我的梦》。 梦想,是一个人生活的动力,梦想,是一个人前进的方向。梦想,周而复始;梦想,锲而不舍。中华民族五千年的历史传承着一个长梦,几经沉浮,时至今日汇聚成了一个梦——中国梦。 翻看中国的历史,我们无一不对古老的中华民族感到骄傲,那一串串的科技之光在世界的各个角落熠熠发光;我们无一不对先贤青少年时期的中国梦去仰望:*"指点江山,激扬文字,粪土当年万户侯",*"面壁十年图破壁,难酬蹈海亦英雄",周树人"寄意寒星荃不察,我以我血荐轩辕";我们无一不对革命先烈的精神所打动,他们抛头颅,洒热血,不畏强敌,保家卫国,绝不容他人染指。

中国梦,我的梦。"墙角数枝梅,凌寒独自开",我想做一朵梅花,傲立雪中,不屈不挠,自强不息。曾经为了中考,操场上的挥汗如雨,考场上跃动的笔杆。今日站在这里,成为祁县中学实验班的一员,继续追逐我的大学梦。古人云:"行胜于言"。月已高悬,夜已人静,仍有挑灯苦读,思想之花穿行于夜空,几何图案填充星宿,梦的翅膀到我飞行。认真,勤奋,坚持,顽强,把握高中生活,珍惜一点一滴,是我的梦,也是我们的梦。我们用汗水浇灌梦想之花,让它开放,散发芳香。是的,我们正在一步一步的绘着中国梦。试问:少年无梦,国哪有梦?少年无志,国哪有志?少年不强,国哪能强? 地平线上冉冉升起的太阳,如我们;海上掀起的层层浪花,如我们;那愈燃愈旺的火焰,如我们,我们肩负着中华民族伟大复兴的历史重任。让梦如黑夜中的星星,指引我们前行;让梦如火,照亮前方的路;让梦如光,绽放无限魅力。 当今世界,经济全球化,科技高速发展,竞争力不断加强。中国梦,让中国强大,让中国发展,让中国雄鸡挺起胸膛,让亚洲雄风吹遍世界。为此,让我的梦,让我们的梦,共同点燃中国梦,让我们用知识开启圆梦引擎,用品格筑牢圆梦基石。

中国梦我的梦国旗下演讲稿范文

中国梦我的梦国旗下演讲稿800字范文篇一 亲爱的老师、同学们: 人类不能没有梦想,自古至今,从女娲造人到人类飞天。 梦想,是生活的航标;梦想,是美好的憧憬;梦想,是理想的翅膀。拥有梦想,才会拥有未来。我的梦想是——三尺讲台写春秋。 一根教鞭,指点江山,上下几千年,纵横几万里。一只粉笔,绘出大千世界,五彩纷呈,写不尽苦辣酸甜。一块黑板,倒映着历史的叱咤风云,显露着文字艺术的魅力。 是谁,用自己的汗水浇灌着祖国的花朵? 是谁,用自己的光芒指引少年前行的道路?是谁,用自己的言行引导我们,走向同样的一方讲台?是那辛勤的园丁,是那化为灰烬的蜡烛,是那人类灵魂的工程师,他们都有一个响亮而光辉名字:老师! 每每看到丁老师在讲台挥舞着教鞭,娓娓动听地讲着一篇篇美文,我的心都充满着一股莫名的激动。正是由于班主任丁老师的言传身教,我爱上了老师这个职业,爱上了这个“春蚕到死丝方尽,蜡炬成灰泪始干”的职业,爱上了这个

“化作春泥更护花”的职业。 假如有一天我的梦想实现,站在了讲台上,真正的成为一名老师。我会和同学们成为知心的朋友,走进他们的内心,倾听他们的喜怒哀乐,关注他们学习和心理健康。我会给同学们少布置一些作业,让他们有一定的休息和玩耍时间,第二天能够精神抖擞地听讲。 我会把全部的爱献给学生。我国古代教育学家孔子主张对学生施以“仁爱”,要做到“诲人不倦”,做到“随风潜入夜,润物细无声”。 我也要让同学们与书为伴,以书为侣,多读些对生活和学习有帮助的书,像名著、散文小说这类的。在书中认识斗酒诗百篇的李白,认识有感铁般意志的保尔.柯察金以及坚贞不屈、视死如归的革命先烈,体会我们幸福生活的来之不易,更加珍惜今天的美好生活。 写作离不开素材,我会带领同学们走出教室,去广阔的天地中寻找素材。春天,我会和同学们到野外踏青、放风筝。夏天,我会带同学们去欣赏出淤泥而不染的荷花,向荷花学习它们坚贞不屈的品质。秋天,我会带同学们去田野里,看雪白雪白的棉花,看高举红火把的高梁,看裂开嘴笑、露出

中国梦我的梦演讲稿范文3篇

中国梦我的梦演讲稿范文3篇 篇一:中国梦我的梦演讲稿 展翅高飞,是鸟儿的梦;自由奔放,是骏马的梦:百花盛开,是春 日的梦;教书育人,是我的梦。 梦伴随着我们每一个人。梦是美丽的,是我们每个心中最真实的 写照;梦是我们每个人前行的动力。中国梦,我的梦—教师梦。 清晨,当第一缕阳光照射着我的时候,我迎来了崭新的一天,在 这个天中,我和我的学生们一起经历吃饭、睡觉、学习。日复一日, 不知不觉我已和他们一起走过了365个日日夜夜。在这期间,我抱怨、埋怨过,试图想要放弃、逃脱过;可就在我真正想要放弃的那一霎那, 我才发现我不能,不能这样做。在心底的一个声音告诉我:要坚持, 为了梦想,再坚持一天、一个星期、一个月。逐步地,我意识到了我 已经放不下了,我深深的爱上了他们,爱上了这个职业。[莲山课件 ] 我所带的班级就是一个剧组,我就是导演。我想要导出充满时代 气息的连续剧:团结、紧张、严肃、活泼是它的主调;理解、友爱、开拓、创新是它的主色,爱这个集体和被爱这个集体是它的主要故事。 作为导演,我精心设计着生动的情节、典型的角色,动人的故事奉献 给63位演员。 想到自己培育的是祖国的花朵,祖国的未来,我怎么能够放弃, 应该引以为豪。想到自己要把知识的种子传播给孩子们,让他们学习 到知识,长大后去实现自己的梦想;想到将是用自己的知识灌溉祖国的 未来;将是用自己的心血去呵护明天的希望,使他们健康快乐地成长。 心中不免泛起幸福的涟漪。 老师就是奉献的代名词。作了老师的我才深深体会到了奉献的快乐。看到孩子们脸上洋溢着幸福的笑脸,听到家长们满意的答案,我 顿时感到自己身上所肩负的责任,任重而道远。为了祖国的未来,为

如何为实现中国梦做出自己的贡献

论青年大学生如何为实现中国梦做出自己的贡献 首先,作为一名青年学生,中国梦归根结底是全体中国人的梦,也是我们每一名青年学子的梦,要实现中华民族的伟大复兴这一中国梦,需要广大青年的接力奋斗。作为新时代的青年,不但心中要有梦,更要坚定这个梦,怀着坚定不移的信念,紧跟党的步伐,不断提高自身素质,勇于创新,艰苦奋斗,锤炼出高尚的品格,成为祖国栋梁。青年学生一定要坚定理想信念,勤奋学习练好本领,提升道德品格和人文素养,在实现中国梦的伟大实践中贡献青春和力量。吾辈青年应时刻铭记“少年强则国强”的警言,培养社会责任感、创新精神、实践能力,为实现中国梦而努力。 其次,明确个人目标,成就自身价值。作为年轻人,在基层工作,要满怀激情,敢于担当,敢于创造,用‘两个百年’的目标激励自己顽强奋斗、艰苦奋斗、不懈奋斗,奋勇投身中国特色社会主义事业伟大实践,才能为实现“中国梦”发挥生力军作用,用“青年梦”托起“中国梦”。 再有,努力学习,掌握本领,为实现中国梦而贡献青春,这是我们当代青年的历史使命 .我们这一代大学生是祖国的未来与民族 的希望,是社会上富有朝气、富有创造性、富有生命力的群体。实现建党建国“双百”目标的宏伟蓝图,进而实现中华民族的伟大复兴成为时代赋予当代青年的历史使命。 最后,勇于创新,在创新中发展。时代在变迁,社会在进步,陈旧的思想已经适应不了只要广大青年胸怀理想,只有创新才能实现我们的梦想,最终实现民族复兴。“天行健,君子以自强不息”, 每个人都有一个只属于自己的梦,中华民族是一个充满着朝气的民族,新时期的中国是我们实现梦想的时代,所以年轻人的梦想与国家民族兴衰荣辱紧密相连,要勇敢追求自己心中的梦想,并付诸行动,为实现“中国梦“增添新的活力。 忧患增人慧,艰难玉汝成。当代大学生要积极响应党的号召,把个人的前途命运与国家和民族的前途命运紧密联系起来,努力学习,掌握本领,艰苦奋斗,自觉磨练自己,积极投身中国特色社会主义伟大事业中,让我们的青春在为实现“中国梦”的过程中焕发出更加绚丽的光彩! 我们可以自信地说,在不久的将来,更多的人会实现他们的“中国梦”!在实现民族复兴的中国梦的征程上,只要我们坚定信心,一步一个脚印,实实在在做实事、做好事,我们的中国梦也终将会实现!

小学生我的梦中国梦演讲稿10篇

小学生我的梦中国梦演讲稿10篇 亲爱的老师、同学们: 大家好! “林花谢了春红。太匆匆,无奈朝来寒雨晚来风。胭脂泪,留人醉,几时重,自是人生长恨水长东。”感叹的是时光的流逝。岁月 的翩然轻檫,无可奈何。“人生若只如初见,何事秋风悲画扇。等 闲变却故人心,却道故人心易变。”是对人事沧桑的感概:“苟利 国家生死以,岂因祸福避趋之。”驾长车踏破。贺兰山缺。壮志饥 餐胡虏肉,笑谈渴饮奴血。这是林则徐和岳飞的爱国宣言,不算激 昂也不算壮阔,却表达了他们深深的爱国之情,在我心里。这些文 化的结晶代表了中国一代人的思想,有的是相思情,有的是人生叹。而有时。却是中国梦。 90后的我们奋发图强,乐以忘忧,青灯黄卷,宵衣肝食,是的,生应无所息。王维曾经在人间词话中说过三重境界;一是“衣带渐宽 终不悔,为伊消得人憔悴”;二是“昨夜西风凋碧树,独上高楼,望 尽天涯路;三是”众里寻他千百度,蓦然回首,那人却在,灯火阑珊处。’在我看来,我们的求学道路,我们的爱国道路,都需要经过 这三重境界,方能上善若水,泽万物而无言。一叶绽放一追寻,一 花盛开一世界。我们的中国梦,是和平,是暖,是希望。是燕在梁 间的呢喃,是人间的四月天。 亲爱的老师、同学们: 大家好! 很高兴能站在这里演讲,今天我演讲的题目是《我的中国梦》。 当浦江的浪花摇落满天繁星,点亮我们身后中国馆敞开的门窗,我们在流光异彩的世博园里,我的梦在长城上生长,这梦想的长城,正在延伸祖先的荣光,长城的脚下,是五千年文明的土壤,长城的

天界,是一个名叫未来的地方,下一个百年,我的梦,中国梦,花开何方,来吧!同学们!请打开心中最美丽的翅膀,这一刻让我们一起飞向北京,在那万里长城之上对话星空,和世界一起分享, 今夜当世博园的灯光相逢长城的目光,我们要在这里集合起所有属于未来的梦想,哪怕只是一道稍纵即逝的流星,也请关注它,也许哪一天就能触发出新世界的曙光,请未来登上长城吧!一起收获中国少年永无止尽的梦想,少年智则中国智,少年强则中国强,我的梦是中国梦,中国的梦是我们的梦,要实现梦想,不单单要靠自己的努力,更重要的需要同伴多给我鼓励,给我帮助,理解,支持,也就是这份理解,支持,最终会实现我们的梦想。坚持成就梦想。 人可有很多梦想,但是可能实现一个就足够了,只不过是刚刚才第一步跌到了,为什麽就不愿爬起来?明天总要面对,明天太阳还要升起,我们如果还想继续走下去的话,那只能换一条路。天空不留鸟飞的痕迹,但我已经飞过,如果我们尽力了,却依然抵达不了梦的彼岸,我们无悔,因为我们至少奋斗过,如果我们付出了,得到的却不成正比的收获,我们无悔,以为至少我们付出过,此刻,唯有向前,唯有向前 小时候,其实变换梦想没有关系,你需要的是不断的去想,不断地去想快乐的事情,其实梦想不必要很大,只需要觉得这很现实,这你能做得到,但第二个是梦想跟眼泪和汗水,是在一起的,假如梦想离开了汗水的眼泪,那就变成乱想,空想。 亲爱的老师、同学们: 大家好! 今天我演讲的题目是《中国梦,我的梦》。 什么是梦?什么是中国梦?历史的点点滴滴如散落在偌大沙滩上的沙石贝壳,我悄悄走过,贪婪地看着这些晶莹宝贵的财富,时而拾起一两颗打动心灵的贝壳,寄出一份梦想,蹲下投放。中国梦,流淌在岁月。

大学生为实现中国梦做出自己的贡献

论大学生为实现中国梦做贡献 随着社会主义经济体制的逐步建立和改革开放的不断深入,我国社会各个领域发生了巨大的变化,对当代大学生的人生价值取向也直接产生了影响。如何进一步加强对当代大学生的思想政治教育,营造积极向上的校园文化,为实现中国梦做出贡献,这成为当前高校思想政治工作的一项重要任务。 中共十七大报告中指出,要建设社会主义核心价值体系,增强社会主义意识形态的吸引力和凝聚力;要切实把社会主义核心价值体系融入国民教育和精神建设全过程,转化为人民的自觉追求。社会主义核心价值体系的提出,为大学生思想政治教育注入了新的血液。大学生作为充满理想、活力和激情的优秀群体,理应成为社会主义核心价值观学习和践行的“先行军”。 一、大学生应培养社会主义核心价值观 核心价值观是一个社会中居统治地位、起支配作用的核心理念,也是一个社会必须长期普遍遵循的基本价值准则,具有相对稳定的特点。社会主义价值观是对社会主义价值的总的看法和最根本观点。在党的十七大召开之前的十六届六中全会上,党第一次提出了社会主义核心价值体系这一科学命题,并对社会主义核心价值体系的科学内涵作了界定。社会主义核心价值体系包括四个方面的基本内容,即马克思主义指导思想、中国特色社会主义共同理想、以爱国主义为核心的民族精神和以改革创新为核心的时代精神、以“八荣八耻”为主要内容的社会主义荣辱观。 青年大学生正处于人生观、价值观形成的关键时期,他们思想观念逐渐趋于成型,但仍具有较大的可塑性;他们接受新鲜事物的能力很强,但鉴别力明显欠缺。赢得青年就赢得未来,我们以社会主义核心价值观加强大学生思想教育,具有鲜明的时代意义和现实意义。应从以下几个方面进行社会主义核心价值观教育: 1.夯实思想政治理论课教学基础。高校思想政治理论课是大学生思想政治教育的主渠道,加强大学生思想政治理论课教育教学,首先科学的课程设置是其基本环节。应充分体现当代中国马克思主义发展的最新成果,全面反映党领导人民建设中国特色社会主义的生动实践和基本经验,全面反映在毛泽东思想、邓小平理论和“三个代表”重要思想、科学发展观指导下哲学社会科学研究的最新进展。 2.提高教师素养,通过教师的言传身教感化学生 教师承担着培育社会主义事业的建设者和接班人的历史重任,对大学生进行社会主义核心价值观教育,高校教师不论是思想政治课教师还是专业课教师要在提高专业知识素质的同时,还要加强政治学习提高政治素质。专业素质是“才”,政治素质是“德”,是教师职业道德中的思想品德。这两个方面是相辅相成,相互促进的。教师加强和提高自身“德”方面的修养,不仅使自己成为一个道德高尚的人和合格的教育者,重要的是通过自己的教育活动和良好的思想、道德、品质、人格把学生培育和感化成德才兼备的人才。 3.树立优秀大学生典型,通过学生感化学生 心理学家认为,人的行为往往被其内在动机和需要所驱动。树立典型,塑造榜样就是为了提供行为参照,确立行为目标。学习者有了目标参照,进而努力使自己的行为与榜样的行为一致。大学生身边的优秀典型,他们的精神比较容易为大学生们所接受。对校园中在思想品德方面涌现的优秀大学生典型要及时大力宣传,使良好的风气在大学校园中弘扬,成为大学校园中主导地位的风尚,使大学生们的行为有可仿效的行为作参照,从而见贤思齐。 二、营造积极向上的校园文化 党的十七大在关于党的建设的部署中,明确提出在党的基层组织和党员中深入开展创先争优活动。探索如何加强校园文化建设以推动创先争优显得尤为重要。校园文化建设是学校稳步发展的保证。校园文化建设的出发点和落脚点是学生。学生是校园文化建设的主体,加强

中国梦我的梦(大学生中国梦演讲稿)

中国梦我的梦(大学生中国梦演讲稿)中国梦我的梦(大学生中国梦演讲稿) 时玉婷 梦是什么? 从心理学的角度回答,弗洛伊德认为,梦是有意识看无意识的一扇窗子。从医学的角度回答,梦是脑在作资讯处理与巩固长期记忆时所释放出的一些神经脉冲,它是被意识脑解读成光怪陆离的视、听觉所造成的。从梦学的角度回答,梦是人睡眠时的一种心理活动,梦中离奇的梦境是因人睡眠大脑意识不清时对客观事物的刺激产生的错觉引起的。总之,梦是一种主体经验,是人在睡眠时产生的影像、声音、思考或感觉,通常是非自愿的。 那么梦想是什么? 有人说,梦想等于理想;有人说,梦想就是空想、幻想;还有人说,梦想是期望达到的一种高度。而我说,梦想是心灵的思想,是对美好事物的憧憬和渴望。因此,梦想不是梦。 陈信宏曾说:“如果我不在梦想里,就是在通往梦想的路上。”是啊,谁不是这样呢?每个人都有理想和追求,有人向往自由自在的日子,也有人喜欢平平淡淡的幸福,还有人追求富贵奢华的生活。这些不都是美好的理想吗?或许有一天,他们过上了曾经梦想的生活,那么在通往梦想的这条路上,他们已经到达了终点。一路上,有阳光的照耀,亦有风雨的陪伴,他们该是不孤单的吧?或许有的人还在路上艰难的行走着,他们该是充满力量的吧?又或许这条路根本没有尽

头,但路上的风景确实是美丽的吧? 我也有梦想,而且我有很多梦想。 小时候我喜欢看电视,每当看到英雄侠客的出现,顿时肃然起敬,好想成为他们那样的人,可以无拘无束,浪迹天涯,该是多么自在啊!每当看到那些英姿飒爽的士兵在战场上冲锋陷阵的身影,就好渴望将来能够像他们一样保家卫国,做国家的坚强捍卫者。每当看到那些威武严肃的警察,又会以他们为榜样,憧憬未来如他们一般一身正气,为社会惩恶扬善,向人们弘扬正义。那时的想法真的好单纯,只是想想,就会觉得幸福。 后来我上小学了,认识了很多小朋友,我们一起玩耍,一起做作业,他们陪伴我度过了快乐的童年。但唯一令我遗憾的是,父母没能看着我一点点长大。因为农村人唯一的生活来源就是那点微薄的耕地收入,然而家里开销大,经常入不敷出,所以父母只好去外地打工挣钱来填补家用。至此,父母踏上了漫漫的打工之旅。那时的我还不明白父母背着包裹要干嘛,直到思念的滋味冒上心头,我才开始慌张,才哭着着急寻找他们。为此,爷爷奶奶花了好多时间来哄我,他们对我说,爸妈是出去挣钱了,只要你乖乖的,他们就会很快回来,并且会给你买好多礼物。我渐渐接受他们的说法,不嚷嚷着找他们了,但心里却更渴望见到他们,想着他们回来时带的礼物是什么。就这样盼着盼着,终于要过年了,父母该回来了,那段时间的我就会特别高兴。而每次爸妈归来时,都给我买了好多吃的和玩的礼物,有时还有漂亮的衣裳,看着爸妈脸上的笑容,我也幸福地笑了。所以,在小学的时

大学生为中国梦可以做什么

青年大学生如何为实现中国梦作出贡献 大学生是“中国梦”的寄托者,“中国梦”的本质内涵是实现国家富强、民族复兴、人民幸福,而青年学生是祖国的未来、民族的希望,是党和人民事业发展朝气蓬勃的推动力量。我们中 国人,几千年来,做了三个梦:天下梦,国家梦,个人梦。天下梦就是大同梦,国家梦就是强 国梦,个人梦就是幸福梦。这些梦是互为前提,彼此成全的。中国的道路,不是理论问题,是 实践问题。这是易中天教授在北大的演讲中所提到的中国梦!现在大家都在讨论中国梦。我 认为,实现中华民族伟大复兴,就是中华民族近代以来最伟大的梦想。这个梦想凝聚了几代 中国人的夙愿,体现了中华民族和中国人民的整体利益,是每一个中华儿女的共同期盼。当 代大学生承担历史的重任,是社会上富有朝气、充满生命力的群体。良好的形象不仅是大学生 成才的一个重要方面,也是社会对大学生的要求。同学们要适应时代要求,自觉地塑造积极健 康向上的崭新形象。所以,必须要做到以下几点:第一,大学生应培养社会主义核心价值观。核心价值观是一个社会中居统治地位、起支配作用的核心理念,也是一个社会必须长期普遍 遵循的基本价值准则,具有相对稳定的特点。社会主义价值观是对社会主义价值的总的看法 和最根本观点。在党的十七大召开之前的十六届六中全会上,党第一次提出了社会主义核心 价值体系这一科学命题,并对社会主义核心价值体系的科学内涵作了界定。社会主义核心价值 体系包括四个方面的基本内容,即马克思主义指导思想、中国特色社会主义共同理想、以爱 国主义为核心的民族精神和以改革创新为核心的时代精神、以“八荣八耻”为主要内容的社会主 义荣辱观。大学生正处于人生观、价值观形成的关键时期,他们思想观念逐渐趋于成型,但仍 具有较大的可塑性;他们接受新鲜事物的能力很强,但鉴别力明显欠缺。赢得青年就赢得未来,我们以社会主义核心价值观加强大学生思想教育,具有鲜明的时代意义和现实意义。第二, 当代大学生应该努力学习勤奋刻苦,善于合理利用学习时间,在学习中起表率作用。这是我 作为一名学生党员首先应该做到的,在努力让自己做到优秀的同时,和大家共同进步,经常 交流学习经验,不保留,乐于帮助后进的同学。另外,提高自己在知识的摄取方面的宽度和 深度,在学好专业知识的同时还要注意个人文化修养的培养,增加自己的知识面,丰富自己 的文化底蕴。与此同时,也应该学好理论,提高素质,在政治上带动同学进步。第三,增强 党性修养,增强党性修养。要有坚定的马克思主义信仰,要讲政治道德,要自觉提高政治道 德修养。要讲大局,在认真学习和积极宣传党的先进思想、政治理论的基础上,要从实际出发、发挥带头作用,勇于实践“三个代表”重要思想,积极参加社会实践,在实践中检验所学 的理论知识,并不断提高自己的思想修养和理论水平。 第四,追求真理、善于创新。当代大学生应当发挥朝气蓬勃、思维敏捷、敢为人先、最少 陈旧观念、最多创造活力的诸多优势,坚持追求真理的精神,不断夯实科学文化知识基础,掌 握善于创新的技能,努力提高持续创新能力,使自己成为祖国和人民需要的、富有创新精神 的高素质人才。要善于从马克思主义理论中汲取营养,树立科学的世界观,把握正确的方法论,努力做科学探索和创新的先锋。第五、德才兼备、全面发展。当代大学生要掌握扎实的专业 基础知识和最前沿的科学文化知识,以造福国家人民。没有坚实的科学知识,就不能发展经济,更谈不上建设社会主义现代化。同时,要坚持以德为先,德才兼备。中目前社会上出现的社会 腐败和高科技犯罪等现象,为人们敲响了正确把握德才关系的警钟。对当代大学生来说,“德” 绝不是可有可无的。德才兼备是衡量大学生全面发展的一个重要标准。第六、知行统一、脚 踏实地。当代大学生要努力将书本知识和实际行动密切联系起来,塑造“知行统一、脚踏实地” 的良好形象。“知行统一”式和道德人格紧密结合在一起的。一个人能否做到言行一致,是他能否在立身处世等方面取得成功的重要条件。我们在日常的学习和生活中,要时时提醒自己,比 如应该做的事情,认识到了,但是是否做到了;应该改正的错误,认识到了,但是否改正了。一个大学生如果能够从身边的事情做起,做到言行一致,老老实实做人,踏踏实实做事,他的 道德人格必然会不断完善。我们应该从现在做起,从我作起,在平时生活中严格按照共产党 员的标准要求自己,多关注国家大事,刻苦学习,努力奋斗,争取成为国家的有用之才,将 来为祖国的社会主义现代化建设作出自己应有的贡献,为全面建成小康社会,实现中华民族的 伟大复兴贡献积极力量。

相关文档
最新文档