关于图论课堂教学的一些探讨

关于图论课堂教学的一些探讨
关于图论课堂教学的一些探讨

图论作业(1)

第三章 1.证明: 必要性: v 是连通图G 的割边, 则 , 至少有两个连通 分支。设其中一个连通分支顶点集合为V1,另外连通分支顶点集合为V2,即V1与V2构成V 的划分。 对于任意的u ∈V1, v ∈V2,如果割边e 不在某一条(u ,v )路上,那么,该路也是连接G-e 中的u 与v 的路,这与u,v 处于G-v 的不同分支矛盾。 “充分性” 若e 不是图G 的割边,那么G-v 连通,因此在G-v 中存在u,v 路,当然也是G 中一条没有经过边e 的u,v 路。矛盾。 7.证明: v 是单图G 的割点,则G-v 至少两个连通分支。现任取 , 如果x,y 在G-v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,通过u ,可说明,x 与y 在G-v 的补图中连通。若x,y 在G-v 的不同分支中,则它们在G-v 的补图中邻接。所以,若v 是G 的割点,则v 不是其补图的割点。 9.连通图G 的一个子图B 称为是G 的一个块,如果(1), 它本身是块;(2), 若没有真包含B 的G 的块存在。 又由于对于阶数至少是3的 ()()G e G ωω->

图G是块当且仅当G无环并且任意两点都位于同一圈上。根据题意,对于阶数至少是3的图G,由于G没有偶圈,所以G的每个块的点可以在奇圈上,如果不在奇圈上,则块只能是K2,否则如果不是K2的话,该子图将存在割点,该子图就不是块。得证。 16.(1) (2) (3)

第四章3. (1)既是欧拉闭迹又是哈密尔顿圈 (2) (3)

(4) 7.由于图没有奇度顶点,所以是欧拉图,又定理1可得,图G的边集可以划分为圈C1,C2,。。。。Cm,所以E(G)可以表示成C1,C2.。。Cm的并。 10.若图不是二连通,则存在割点,由于哈密尔顿图不存在割点,因而G是非哈密尔顿图。 若G是具有二分类(X,Y)的偶图,且|X|不等于|Y|,设X中所有点为x1,x2.。。。。xm,Y中的所有点为y1,y2.。。。。yn,若存在哈密尔顿图,则在哈密尔顿圈中必然存在X中的点与Y中的点相互交替出现,但是|X|不等于|Y|,则必然出现某两个点同属于|X|或者|Y|,但是G是偶图,属于同一集合的这样的两个点不可以相连,所以存在哈密尔顿圈矛盾,因而不存在哈密尔顿圈。 12. 证明:在G之外加上一个新点v,把它和G的其余各点连接得图G1

电大离散数学作业答案(图论部分)

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2018年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是15. 2.设给定图G (如右由图所示),则图G 的点割集是 {f}. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点度数之和等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且等于出度. 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于n-1,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为W(G-V1)≤∣V 1∣. 7.设完全图K n 有n 个结点(n ≥2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足e=v-1关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i =5. 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回

图论大作业

《图论及其应用》大作业 指导老师郝荣霞 知行1503 徐鹏宇 15291200

2.1.9证明:若G是森林且恰有2k个奇点,则在G中有k条边不重的路P1,P2......P K,使得E(G)=E(P1) E(P2) ...... E(P K)。 证明: 对奇点数k使用数学归纳法。 ①当k=1时,G是森林,且有且只有2个奇点 ?G只能为一颗树,且G的所有奇度顶点为两个1度顶点 ?G是一条路 ?满足题设 ②假设当k=t时,结论成立。接下来考虑k=t + 1时的情况。 在G中一个分支中取两个叶子点u与v,令P是连接该两个顶点的唯一路。 由于P上除u,v以外的点均被P经过两次,即G-P后除u,v以外的点奇偶性不变。 ?则G–P是有2t个奇度顶点的森林 ?由归纳假设知,G–P可以分解为t条边不重合的路之并,即E(G-P)=E(P1) E(P2) ...... E(P t)。 ?则G可分解为t+1条边不重合的路之并,即E(G)=E(P1) E(P2) ...... E(P t) E(P)。 ?即证。

2.4.4证明:若e 是K n 的边,则τ(K n -e )=(n-2)n n-3 证明: 由定理2.9:τ(K n )=n n-2 由于τ(K n -e )=τ(K n )-τ(含有e 的生成树棵树) 现在需要求含有e 的生成树棵树, τ(含有e 的生成树棵树)=)1(2 1n 1-n 2-n n n )(=2n n-3 τ(K n -e )=τ(K n )-τ(含有e 的生成树棵树)=(n-2)n n-3

3.2.4证明:不是块的连通图至少有两个块,其中每个恰有一个割点。 证明: 设G 为不是块的连通图,由于G 连通且不是块 ?G 有割点 ①当G 只有1个割点v 时,延割点分开,G1,G2内无割点,且连通,由块的定义知?G1,G2是块,且分别含一个割点v 。 ②当G 含有2个及2个以上割点时,取相距距离最远的两个割点u 和v ,此时分G 为三部分G1,G2,G3 。 由于u ,v 是相距最远的两割点?G1和G3不含割点。 又由于G 连通,G1,G3为G 的一部分?故G1,G3连通。 ?G1,G3内无割点,且连通。 ?G1,G3是块,且分别含割点u ,v 。 ?即证

电子科技大学-图论第一次作业

课本习题一: ● 。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对"v i v j ? E ((a)),有f (v i v j,),=,u i,u j,?,E,((b)) (1£ i £ 10, 1£j £ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 ● 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 ● 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 非负整数组12121(,,,),,2n n n i i d d d d d d d m π==≥≥≥=∑L L 是图序列的充要条件是: ? 11 12312(1,1,,1,,,)d d n d d d d d π++=---L L 是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若δ≥2,则G 包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干个连通的情形来证明。设V (G )={V 1,V 2,V 3,?V n },对于G 中的路V 1,V 2,V 3,?V n 若V k 与V 1邻接,则构成一个圈。若V i1,V i2,V i3,?V in 是一条路,由于δ≥2,因此,对于V in ,存在V ik 与之邻接,则V ik ,,?V in V ik 构成一个圈。 ● 17.证明:若G 不连通,则G ?连通。 证明:对于任意的u,v ∈(G ?),若u 与v 属于G 的不同连通分支,显然u 与v 在G ?中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点, 则u 与w ,v 与w 分别在G ?中连通,因此,u 与v 在G ?中连通。 ● 18.证明:若e ∈E(G),则w (G )≤w (G ?e )≤w (G )+1. 证明:若e 为G 的割边,则w (G ?e )= w (G )+1,若e 为G 的非割边,则w (G ?e )=w (G ),

建立数学模型的方法步骤特点及分类

§16.3 建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理 性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份

图论第二次作业

第四章 3(1).有欧拉闭迹和H圈 (2).有欧拉闭迹但没有H圈 (3).有H圈无欧拉闭迹 (4).无欧拉闭迹且没有H圈 4:证:若G不是H图,由chvatal定理知,G度弱于某个图,故: = 这与题目已知条件相矛盾,故G是H图。 8:证:不失一般性,设G是连通图,是G的2k个奇点,连接,得到,则得到图,则是欧拉图,设C是中 的欧拉闭迹,删除C中的,即可得到k条边不重复的迹,使得 . 10(1)若G不是二连通图,那么G不连通或者有割点u,则w,故G是

非H图。 (2). 若G是具有二分类的偶图,且,若假设则,故 G是非H图。 11:设R是G中的H路,则对于每个真子集S,有w,又: w w,故w. 12:设u是G外一点,将u和G中的每个点连接得到图,则G的度序列为 ,故有题意知,不存在小于的正整数m,使得 ,故由Chvatal定理知,图是H图,则G有 H路。 15:(1)由图的闭包定义可知,构作一个图的闭包,可以通过不断在度和大于等于n的非邻接顶点加边得到。故图的闭包算法如下: 第一步:令; 第二步:在中求顶点,使得: 第三步:如果,则转到第四步;否则,停止,则可得到G 的闭包。 第四步:令,转到第二步。 复杂性分析:由其算法我们可得出其总运算量为: 故该算法能够在多项式时间内被解决,故该算法是一个好算法。 (2).设计算法如下: 第一步:在闭包构造中,将加入的边依次加入次序记为 ,在中任意取出一个H圈,令k=N;

第二步:若不在中,令;否则转到第三步。 第三步:设,令;求中两个相邻点u和v使得, u,v依序排列在上,且有:,令: 第四步:若k=1,转到第五步;否则,令k=k-1,转第二步; 第五步:停止。为G的H圈。 算法的复杂性分析:因为该算法进行了N次循环,每次循环中找到满足要求的邻接顶点u和v至多需要n-3次判断,所以总的运算量:N(n-3)。是一个好算法。 第五章 1:(1)证:k方体有2k个顶点,每个顶点可以用长度为k的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。 若划分k方体的2k个顶点,把坐标之和为偶数的顶点归入X,否则归入Y。显然,X中顶点互不邻接,Y中顶点也如此。所以k方体是偶图。又k方体的每个顶点度数为k,所以k方体是k正则偶图。所以由推论可知:k方体存在完美匹配。 (2).解K 2n 的任意一个顶点有2n-1中不同的方法被匹配。所以K 2n 的不同完美匹 配个数等于(2n-1)K 2n-2,如此推下去,可以归纳出K 2n 的不同完美匹配个数为: (2n-1)!!。同理,K n, n 的不同完美匹配个数为:(n)!。 2:若不然,设M 1与M 2 是树T的两个不同的完美匹配,那么M 1 ΔM 2 ≠Φ,且T[M 1 ΔM 2 ] 每个顶点度数为2,即它存在圈,于是推出T中有圈,矛盾。故一棵树中最多只有一个完美匹配。 7:解:设 作如下四条路: 故其四个生成圈如下:

图论第二次作业

图论第二次作业Newly compiled on November 23, 2020

图论第二次作业 一、 第四章 (1)画一个有Euler 闭迹和Hamilton 圈的图; (2)画一个有Euler 闭迹但没有Hamilton 圈的图; (3)画一个有Hamilton 圈但没有Euler 闭迹的图; (4)画一个既没有Euler 闭迹也没有Hamilton 圈的图; 解:(1)一个有Euler 闭迹和Hamilton 圈的图形如下: (2)一个有Euler 闭迹但没有Hamilton 圈的图形如下: (3)一个有Hamilton 圈但没有Euler 闭迹的图形如下: (4)一个既没有Euler 闭迹也没有Hamilton 圈的图形如下: 证明:若G 没有奇点,则存在边不重的圈C 1,C 1,···,C m ,使得 )()()()(21m C E C E C E G E ???=。 证明:将G 中孤立点除去后的图记为1G ,则1G 也没有奇点,且2)(1≥G δ,则1G 含圈1C ,在去掉)(11C E G -的孤立点后,得图2G ,显然2G 仍无奇度点,且2)(2≥G δ,从而2G 含圈2C ,如此重复下去,直到圈m C ,且)(m m C E G -全为孤立点为止,于是得到)()()()(21m C E C E C E G E ???=。 证明:若 (1)G 不是二连通图,或者 (2)G 是具有二分类),(Y X 的偶图,这里Y X ≠, 则G 是非Hamilton 图。 证明:(1)因为G 不是二连通图,则G 不连通或者存在割点v ,有2)(≥-v G w ,由相关定理得:若G 是Hamilton 图,则对于v(G)的任意非空顶点集S ,有:S S G w ≤-)(,则该定理得逆否命题也成立,所以可得:若G 不是二连通图,则G 是非Hamilton 图。 (2)因为G 是具有二分类),(Y X 的偶图,又因为Y X ≠,在这里假设Y X ≤,则有X Y X G w >=-)(,也就是说:对于v(G)的非空顶点集S ,有:S S G w >-)(成立,则可以得出G 是非Hamilton 图。 设G 是有度序列),,,(21n d d d ???的非平凡简单图,这里n d d d ≤???≤≤21,证明:若不存在小于2 )1(+n 的正整数m ,使得m d m <且m n d m n -<+-1,则G 有Hamliton 路。 证明:在G 之外加上一个新点v ,把它和G 的其余各点连接,得图G 1:

图论及应用第一章完整作业

习 题 1 1. 证明在n 阶连通图中 (1) 至少有n -1条边。 (2) 如果边数大于n -1,则至少有一条闭通道。 (3) 如恰有n -1条边,则至少有一个奇度点。 证明 (1) 若对?v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ? m ≥n >n-1,矛盾! 若G 中有1度顶点,对顶点数n 作数学归纳。 当n=2时,G 显然至少有一条边,结论成立。 设当n=k 时,结论成立, 当n=k+1时,设d(v)=1,则G-v 是k 阶连通图,因此至少有k-1条边,所以G 至少有k 条边。 (2) 考虑v 1→v 2→?→v n 的途径,若该途径是一条路,则长为n-1,但图G 的边数大于n-1,因此存在v i ,v j ,使得v i adgv j ,这样,v i →v i+1→?→v j 并上v i v j 构成一条闭通道;若该途径是一条非路,易知,图G 有闭通道。 (3) 若不然,对?v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ? m ≥n >n-1,与已知矛盾! 2. 设G 是n 阶完全图,试问 (1) 有多少条闭通道? (2) 包含G 中某边e 的闭通道有多少? (3) 任意两点间有多少条路? 答 (1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n -2)…1. 3. 证明图1-27中的两图不同构: 证明 容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。 4. 证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图 图 1-27 图1-28

电子科技大学-图论第二次作业

习题四: 3.(1)画一个有Euler 闭迹和Hamilton圈的图; (2)画一个有Euler闭迹但没有Hamilton圈的图; (3)画一个有Hamilton圈但没有Euler闭迹的图; (4)画一个即没有Hamilton圈也没有Euler闭迹的图; 解:找到的图如下: (1)一个有Euler 闭迹和Hamilton圈的图; (2)一个有Euler闭迹但没有Hamilton圈的图; (3) 一个有Hamilton圈但没有Euler闭迹的图; (4)一个即没有Hamilton圈也没有Euler闭迹的图. 4.设n阶无向简单图G有m条边,证明:若,则是图。证明: G是H图。 若不然,因为G是无向简单图,则,由定理1:若G是的非单图,则G 度弱于某个.于是有:

2,1()()(2)(1)(1)2 11 1(1)(2)(1)(21)221 1.2m n E G E C m n m n m m m n m m m n m n ??≤= +---+-??-??=+------- ? ?? -??≤+ ??? 这与条件矛盾!所以G 是H 图。 8.证明:若G 有 个奇点,则存在条边不重的迹 ,使得 . 证明:不失一般性,只就G 是连通图进行证明。设G=(n, m)是连通图。令v l ,v 2,…,v k ,v k+1,…,v 2k 是G 的所有奇度点。在v i 与v i+k 间连新边e i 得图G*(1≦i ≦k).则G*是欧拉图,因此,由Fleury 算法得欧拉环游C.在C 中删去e i (1≦i ≦k).得k 条边不重的迹Q i (1≦i ≦k): 12()() () ()k E G E Q E Q E Q = 10.证明:若: (1)不是二连通图,或者 (2)是具有二分类的偶图,这里 , 则是非Hamilton 图。 证明:(1)不是二连通图,则不连通或者存在割点,有,由于课本 上的相关定理:若是Hamilton 图,则对于 的任意非空顶点集,有: ,则该定理的逆否命题也成立,所以可以得出:若不是二连通图, 则是非Hamilton 图 (2)因为是具有二分类 的偶图,又因为 ,在这里假设 ,则有,也就是说:对于 的非空顶点集,有: 成 立,则可以得出则是非Hamilton 图。 11.证明:若有Hamilton 路,则对于V 的每个真子集S ,有 .

图论及应用第一章完整作业

习题 1 1. 证明在n阶连通图中 (1)至少有n-1条边。 (2)如果边数大于n-1,则至少有一条闭通道。 (3)如恰有n-1条边,则至少有一个奇度点。 证明(1) 若对v V(G),有d(v)2,则:2m=d(v)2n m n n-1,矛盾! 若G中有1度顶点,对顶点数n作数学归纳。 当n=2时,G显然至少有一条边,结论成立。 设当n=k时,结论成立, 当n=k+1时,设d(v)=1,则G-v是k阶连通图,因此至少有k-1条边,所以G至少有k条边。 (2) 考虑v 1v 2v n的途径,若该途径是一条路,则长为n-1,但图G的边数 大于n-1,因此存在v i,v j,使得v i adgv j,这样,v i v i+1v j并上v i v j构成一条闭通道; 若该途径是一条非路,易知,图G有闭通道。 (3) 若不然,对v V(G),有d(v)2,则:2m=d(v)2n m n n-1,与 已知矛盾! 2.设G是n阶完全图,试问 (1)有多少条闭通道? (2)包含G中某边e的闭通道有多少? (3)任意两点间有多少条路? 答(1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n-2)…1. 3.证明图1-27中的两图不同构: 图1-27 证明容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。 4.证明图1-28中的两图是同构的 图1-28 证明将图1-28的两图顶点标号为如下的(a)与(b)图

作映射f : f(v i )u i (1 i 10) 容易证明,对v i v j E((a)),有f(v i v j )u i u j E((b)) (1 i 10, 1j 10 ) 由图的同构定义知,图1-27的两个图是同构的。 5. 证明:四个顶点的非同构简单图有11个。 证明 m=0 1 2 3 4 5 6 由于四个顶点的简单图至多6条边,因此上表已经穷举了所有情形,由上表知:四个顶点的非同构简单图有11个。 6. 设G 是具有m 条边的n 阶简单图。证明:m =??? ? ??2n 当且仅当G 是完全图。 证明 必要性 若G 为非完全图,则 v V(G),有d(v) n-1 d(v) n(n-1) 2m n(n-1) m n(n-1)/2=??? ? ??2n , 与已知矛盾! 充分性 若G 为完全图,则 2m= d(v) =n(n-1) m= ??? ? ??2n 。 7. 证明:(1)m (K l ,n ) = ln , (a) v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 (b)

离散数学形考1

01任务 试卷总分:100 测试时间:-- 一、单项选择题(共 8 道试题,共 80 分。) 1. 本课程的教学内容分为三个单元,其中第三单元的名称是(). A. 数理逻辑 B. 集合论 C. 图论 D. 谓词逻辑 满分:10 分 2. 本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其 中第2章关系与函数中的第3个知识点的名称是(). A. 函数 B. 关系的概念及其运算 C. 关系的性质与闭包运算 D. 几个重要关系 满分:10 分 3. 本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版 块中共有()讲. A. 18 B. 20 C. 19 D. 17 满分:10 分 4. 本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是(). A. 集合恒等式与等价关系的判定 B. 图论部分书面作业 C. 集合论部分书面作业 D. 网上学习问答

满分:10 分 5. 课程学习平台左侧第1个版块名称是:(). A. 课程导学 B. 课程公告 C. 课程信息 D. 使用帮助 满分:10 分 6. 课程学习平台右侧第5个版块名称是:(). A. 典型例题 B. 视频课堂 C. VOD点播 D. 常见问题 满分:10 分 7. “教学活动资料”版块是课程学习平台右侧的第()个版块. A. 6 B. 7 C. 8 D. 9 满分:10 分 8. 课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称 是:(). A. 复习指导 B. 视频 C. 课件 D. 自测 满分:10 分 答案:1-5ADBCC 6-8DAD

电子科大图论答案

图论第三次作业 一、第六章 2.证明: 根据欧拉公式的推论,有m ≦l*(n-2)/(l-2), (1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4; (2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10; (3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6. 3.证明: ∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6; 又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4. 4.证明: (1)∵G 是极大平面图,∴每个面的次数为3, 由次数公式:2m==3φ, 由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6. (2)又∵m=n+φ-2,∴φ=2n-4. (3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者

子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。 5.证明: 假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。 6.证明: (1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5. (2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5. 二、第七章 2.证明: 设n=2k+1,∵G 是Δ正则单图,且Δ>0, ∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.

图论第二次作业

图论第二次作业 一、第四章 4.3(1)画一个有Euler闭迹和Hamilton圈的图; (2)画一个有Euler闭迹但没有Hamilton圈的图; (3)画一个有Hamilton圈但没有Euler闭迹的图; (4)画一个既没有Euler闭迹也没有Hamilton圈的图;解:(1)一个有Euler闭迹和Hamilton圈的图形如下: (2)一个有Euler闭迹但没有Hamilton圈的图形如下: (3)一个有Hamilton圈但没有Euler闭迹的图形如下: (4)一个既没有Euler闭迹也没有Hamilton圈的图形如下:

4.7 证明:若G 没有奇点,则存在边不重的圈C 1,C 1,···,C m ,使得 )()()()(21m C E C E C E G E ???=。 证明:将G 中孤立点除去后的图记为1G ,则1G 也没有奇点,且2)(1≥G δ,则1G 含圈1C ,在去掉)(11C E G -的孤立点后,得图2G ,显然2G 仍无奇度点,且2)(2≥G δ,从而2G 含圈2C ,如此重复下去,直到圈m C ,且)(m m C E G -全为孤立点为止,于是得到)()()()(21m C E C E C E G E ???=。 4.10 证明:若 (1)G 不是二连通图,或者 (2)G 是具有二分类),(Y X 的偶图,这里Y X ≠, 则G 是非Hamilton 图。 证明:(1)因为G 不是二连通图,则G 不连通或者存在割点v ,有2)(≥-v G w ,由相关定理得:若G 是Hamilton 图,则对于v(G)的任意非空顶点集S ,有:S S G w ≤-)(,则该定理得逆否命题也成立,所以可得:若G 不是二连通图,则G 是非Hamilton 图。 (2)因为G 是具有二分类),(Y X 的偶图,又因为Y X ≠,在这里假设Y X ≤,则有X Y X G w >=-)(,也就是说:对于v(G)的非空顶点集S ,有:S S G w >-)(成立,则可以得出G 是非Hamilton 图。 4.12 设G 是有度序列),,,(21n d d d ???的非平凡简单图,这里n d d d ≤???≤≤21,证明:若不存在小于 2 )1(+n 的正整数m ,使得m d m <且m n d m n -<+-1,则G 有Hamliton 路。 证明:在G 之外加上一个新点v ,把它和G 的其余各点连接,得图G 1: G 1的度序列为:),1,,1,1(21n d d d n +???++,由已知:不存在小于2 )1(+n 的正整数

图论 王树禾 答案

图论第一次作业 By byh

|E(G)|,2|E(G)|2G υυ??≤ ??? ?? ??? 1.1 举出两个可以化成图论模型的实际问题 略 1.2 证明其中是单图 证明:(思路)根据单图无环无重边的特点,所以 最大的情形为任意两个顶点间有一条边相连,即极 端情况为。

?1.4 画出不同构的一切四顶单图 ?0条边:1条边: ?2条边:3条边: ?4条边:5条边:?6条边:

1.10G?H当且仅当存在可逆映射θ:V G→V H,使得uv∈E G?θuθv∈E H,其中G和H是单图。(证明充分性和必要性) ?必要性 ?若G?H,由定义可得,存在可逆映射θ:V G→V Hφ:E G→E(H)当且仅当ψ G e=uv时,ψHφe=θuθ(v),所以uv∈E G? θuθv∈E H ?充分性 ?定义?:E G→E(H),使得uv∈E G和θuθv∈E(H)一一对应,于是?可逆,且ψ e=uv的充要条件是ψHφe=θuθv,得G?H G

1.12求证(a)?K m ,n =mn,(b)G是完全二分图,则?G≤1 4 v G2 ?(a)对于K m ,n ,将顶集分为X和Y,使得X∪Y=V K m,n, X∩Y= ?,X=m,Y=n,对于X中的每一顶点,都和Y中所有顶点相连,所以?K m,n =mn ?(b)设G的顶划分为X,Y,X=m,Y=v?m,则?G≤ ??K m ,v-m =v?m m≤v2 4

?证明: ?(a)第一个序列考虑度数7,第二个序列考虑6,6,1 ?(b)将顶点v分成两部分v’和v’’ ?v’ = {v|v= v i, 1≤ i≤ k}, ?v’’ = {v|v= v i, k< i≤ n} ?以v’点为顶的原图的导出子图度数之和小于 ?然后考虑剩下的点贡献给这k个点的度数之和最大可能为

图论模型的建立与转化

图论模型的建立与转化 关键字:图论模型、建立、转化 摘要 本文主要写图论模型的建立与转化,共分四部分: 第一部分引言说明了图论建模在整个信息学竞赛中的地位,以及图论模型与其它数学模型的异同,并指出很有研究总结图论建模的思想、方法及技巧的必要。 第二部分提出了图论模型建立中的两个要点:对原型中的要素进行适当的取舍和选择合适的理论体系,并分别举例加以详细分析,然后从中总结出了图论建模的总的原则:准确、清晰、简明。 第三部分主要讨论了在图论模型的转化中,应用得较为广泛的两种方法:拆分转化和补集转化,并着重分析了前者。文中把前者分为三类:点→边、点→点、边→边,其中详细分析了第二类。 第四部分总结了全文,并指出了进一步研究图论模型的必要性 目录 一.引言 (2) 二.图论模型的建立 (2) I.要素的取舍 (2) II.选择合适的理论体系 (4) 三.图论模型的转化 (7) I.拆分转化 (7) II.补集转化 (10) 四.结语 (11)

正文 一.引言 信息学竞赛以解题为主,整个解题过程中一个重要的步骤就是数学建模,本文要讨论的就是数学建模的一个分支——图论建模。 图论建模是指对一些客观事物进行抽象、化简,并用图1来描述事物特征及内在联系的过程。 建立图论模型的目的和建立其它的数学模型一样,都是为了简化问题,突出要点,以便更深入地研究问题的本质;它的求解目标可以是最优化问题,也可以是存在性或是构造性问题;并且,和几何模型、运筹学模型一样,在建立图论模型的过程中,也需要用到集合、映射、函数等基本的数学概念和工具; 但图论模型和其它模型在它们的研究方法上又有着很大的不同,例如我们可以运用典型的图论算法来对图论模型进行求解,或是根据图论的基本理论来分析图论模型的性质,这些特殊的算法和理论都是其它模型所不具备的,而且在其它模型中,能用类似于图这种直观的结构来描述的也很少。 我们学习图论,一般都是通过书籍,但书上介绍的往往只限于图论模型的基本要素、一些图论的相关理论和经典算法等,至于如何建立图论模型、如何运用这些理论和算法、如何研究图论问题,都只有靠自己来理解、来领会,并通过实践来验证这些理解,通过摸索总结来提高自己的能力。 在建立图论模型的过程中,我们常常会遇到一些困难,例如难以建立点、边、权关系,或是原型中的一些重要因素无法纳入现有模型,或是现有模型虽能表示原型,却无法求解等等。为了克服这些困难,就需要用到某些独特的思想、方法和技巧,本文要写的正是我在学习、实践中得出的这方面的一点认识。 二.图论模型的建立 在建立模型之前,我们首先要对研究对象进行全面的调查,将原型理想化、简单化(对于竞赛题而言,这一步大部分已经由出题人完成了);然后对原型进行初步的分析,分清其中的各个要素及求解目标,理出它们之间的联系;下一步就是用恰当的模型来描述这些要素及联系。 I.要素的取舍 在用图论模型描述研究对象时,为了更突出与求解目标息息相关的要素,降低思考的复杂度,就不可避免地要舍去部分要素。下面我们就通过例1来分析一下。 【例1】导线排布Line[7]: 题目(文档附件:导线排布.doc)中蓝色的一段是问题描述的重点,其中涉及的要素有圆圈、N根导线、2N个端点、编号规则、导线的交叉等,求解目标是构造一种符合所给的导线交叉情况的导线排布方案。 起先,我们对题目描述的导线排布并不熟悉,或许我们能够画出几个无解或是多解的1在本文中,“图”专指由若干不同顶点与连接其中某些顶点的边所组成的图形[6],不包括一般的示意图。

离散数学图论部分形成性考核书面作业4答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {f} . 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 等于出度 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W(G-V1) ≤∣V 1∣ . 7.设完全图K n 有n 个结点(n ≥2),m 条边,当 n 为奇数 时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e=v-1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 5 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. (1) 不正确,缺了一个条件,图G 应该是连通图,可以找出一个反例,比如图G 是一个有孤立结点的图。

图论作业3

图论作业3 一、填空题 1. 完全图K2n共有个不同的完美匹配。 2. 图K60,62的最小覆盖包含的点数为。 3. 完全图K60能分解为个边不重的一因子之并。 4. 完全图K2n+1能分解为个边不重的二因子之并。 5. 图G是由3个连通分支K1, K2, K4组成的平面图,则其共有个面。 6. 设图G与K5同胚,则至少从G中删掉条边才可能使其成为可平面图。 7. 设连通平面图G具有5个顶点,9条边,则其面数为。 8. 若图G是10阶极大平面图,则其面数等于。 9. 若图G是10阶极大外平面图,其内部面共有个。 二、不定项选择题 1. 关于非平凡树T,下面说法错误的是( ) (A) T至少包含一个完美匹配; (B) T的荫度大于1; (C) T是只有一个面的平面图; (D) T的对偶图是简单图。 2. 下列说法正确的是( ) (A) 三正则的偶图存在完美匹配; (B) 无割边的三正则图一定存在完美匹配; (C) 有完美匹配的三正则图一定没有割边; (D) 三正则哈密尔顿图存在完美匹配。 3. 下列说法错误的是( ) (A) 在偶图中,最大匹配包含的边数等于最小覆盖包含的点数; (B) 任一非平凡正则偶图可以1-因子分解; (C) 奇数阶的哈密尔顿图可能是偶图; (D) 非平凡偶图的最大匹配是唯一的。 4. 下列说法中正确的是( ) (A) 完全图K101包含1-因子; (B) 完全图K102包含2-因子; (C) 图G的一个完美匹配实际上就是它的一个1因子; (D) 图G的一个2-因子实际上就是它的一个哈密尔顿圈。 5. 下列说法正确的是( ) (A) n方体可以1-因子分解; (B) 非平凡树可以1-因子分解; (C) 无割边的3正则图可以1-因子分解; (D) 有割边的3正则图一定不可以1-因子分解; (E) 可1-因子分解的3正则图一定是哈密尔顿图。 6. 下列说法正确的是( ) (A) 完全图K2n是2n-1个完美匹配的并; (B) 完全图K2n是n个哈密尔顿圈的并; (C) 完全图K2n是1个完美匹配与n-1个哈密尔顿圈的并;

图论1班 作业1

姚玉锦 201621050124 光电信息学院图论1班 习题一 4.证明图1-28中的两图是同构的。 图 1-28 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?vi v j ∈E ((a)),有f (v i v j,),=, u i , u j ,∈,E,((b)) (1<=i <=10, 1<=j <=10)由图的同构定义知,图(a)和图(b)是同构的。 5.证明:四个顶点的非同构简单图有11个。 证明:按边的条数采取枚举法,如下表所示:

四个顶点的简单图至多只能有6条边,因此上表已穷举了所有 情况,因此四个顶点的非同构简单图只有11个,原题得证。 11. 证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:①对于第一个序列(7,6,5,4,3,3,2),考察非负整数组 П=(5,4,3,2,2,1) П1=(3,2,1,1,0) П2=(1,0,0,0) 显然П2不是图序列,因此序列(7,6,5,4,3,3,2)不是图序列; ②对于第二个序列(6,6,5,4,3,3,1),考察非负整数组 П=(5,4,3,2,2,0) 由于П不是图序列,因此原序列(6,6,5,4,3,3,1)也不是图序列。 17.证明:若G不连通,则G的补图是连通的。 证明:对?u,v∈V G,若u与v属于G的不同连通分支,显然u 与v在G的补图中连通;若u与v属于G的同一连通分支,设w为 G的另一个连通分支中的一个顶点,则u与w,v与w分别在u与v 在G的补图中是连通的。 18. 证明:若e∈E G,则ωG≤ωG?e≤ωG +1。

建立数学模型方法步骤 特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法

为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

相关文档
最新文档