由软变硬的旋翼——新型共轴反桨直升机解析

由软变硬的旋翼——新型共轴反桨直升机解析
由软变硬的旋翼——新型共轴反桨直升机解析

由软变硬的旋翼——新型共轴反桨直升机解析

在最近的报道中可以发现,美俄的先进直升机验证机纷纷采用了“共轴反桨+推进型尾桨”技术,但此共轴反桨并非俄罗斯“卡”系列和其他常见直升机的“软”桨,而是“硬”桨,尾桨也并非一般的抵消偏转力矩的作用,而是直接推进了,这究竟是为什么呢?

————————————————

众所周知,当功率和转速达到某种瓶颈,就要看螺旋桨的效率了。因为螺旋桨转速很高,即使在机身飞行速度不是很高,螺旋桨尖端就已经遇到了“音障”问题,并且面临“失速”困扰,还受限于空气密度等因素,而发生“空转不做功”的问题。飞机螺旋桨因为空气动力学和重量限制,不可能做的太大太长太密,这就让螺旋桨飞机的速度遇到了瓶颈。

当时尝试了很多办法,比如在螺旋桨外包一个“整流罩”阻止气流外逸(显然,这个思路后来衍生出了“涡扇”发动机),或者试图优化螺旋桨的造型(最终成为先进螺旋桨运输机的“马刀”型旋桨,并影响到喷气发动机的叶片造型,但不论怎么优化,其最适范围较小),还有一个就是著名的“共轴反桨”技术。

所谓共轴反桨,就是双层桨叶共用一个传动轴,但转动方向相反,不仅平衡掉了单向转动偏转力矩,而且第一层为第二层提供了“预压缩”,第二级就有更大的“进/排气量”和“气流密度”,虽然达不到2倍的效果,但改善也是明显的。在喷火战斗机的末期改进型上就已得到了验证。

但由于喷气发动机的飞跃式进步,战斗机淘汰了螺旋桨,但由于其经济性好,在不要求太高的速度的场合,比如大中型运输机,采用“共轴反桨+马刀型桨叶”就达到了螺旋桨的某种巅峰效率。

——————————————————

直升机可以简单看作发动机朝上的螺旋桨飞机,虽然直升机的螺旋桨还需为机身提供升力,但很多技术概念是可以通用的,比如共轴反桨技术,就是俄国卡系直升机的标志。

直升机的共轴反桨优点很多,在同样的输出功率(直升机对外部空气)时,就减小了旋翼长度/旋转面积,省掉了尾桨,非常适合于舰载的狭小空间使用。

但显然,共轴反桨直升机并没有被用于陆基大型直升机、小型直升机和武装直升机。这是因为共轴反桨的较为复杂,结构重量较大,可靠性就稍有降低。用于大型直升机的制造难度较大,对于小型直升机太重,对于武装直升机不太可靠,而多用于“海基中型直升机”。具体原因如下:

第一,海上气流较为稳定,至少也是在较大范围统一的,且没有高海拔降低功率的影响,虽然需执行反潜之类的武装行动,但绝大多数时候就是一架“飞行的起重机”,对于机动性没有太高要求。陆地地貌复杂、气流多变,武装直升机还需做高机动飞行,就很容易因飞行姿态和气流干扰损失掉两层选桨之间的“空气压缩区”,那么共轴反桨的重量就得不偿失了,而可靠性会进一步降低。

第二,在某些急骤的机动飞行中(突然上升/突然下降时,某层桨叶的弯曲会滞后于另一层;或者突然向桨叶交叠的方向急转时)极可能发生上下旋桨相交的恶性事故。常规单层旋翼直升机在发动机停止工作时还能以较低速度螺旋下滑,即使战损也往往只失去一片桨,对于多桨叶机还能有一定升力,但失去旋翼的直升机则只会做垂直落体了……

第三,为了保证安全性和控制压缩区,共轴反桨的高度较高,结构复杂,难以装顶置雷达,它想看到别人,就得先探出头来,这就丧失了直升机最大隐蔽接敌优势。

第四,共轴反桨虽然可以无需尾桨平衡,但机动性也受到了影响,庞大的双层旋翼变

换角度时显然不如单层容易,同时由于上述局限,往往对飞行姿态、机动过载作出很多限制。从某杂志的某篇海航访谈中也可以佐证,飞行员说直9非常“灵活”,而卡28很“笨重”。

知道了这些,就能清楚为何貌似集先进技术和革命性创新于一身卡-50/52在俄罗斯武装直升机竞标中败给米-28的原因了。可能有朋友会引用卡-50在车臣的使用报告来证明其机动性不低,但恰恰是同一篇报告指出,要禁止其向某方向(左还是右,俺忘记了)急转。

共轴反桨并未在卡50/52上体现出什么决定性优势:

虽然省了尾桨但为了保证操作力矩,机尾长度并未短多少;

虽然螺旋桨长度缩短,但双层桨的重量、可靠性的缺陷足以抵消它,陆地机场也不差那点空间,作战时的差异也可忽略不计;

虽然共轴反桨有效率优势,但仅仅体现在“稳定前飞/悬停”姿态时,高机动作战时的“剩余空压”和“结构重量”相比是否合算很难说;

虽然共轴反桨理论上通过对两层螺旋桨的差别控制可以作出匪夷所思的机动,但也更易发生事故,操作将非常复杂,而俄罗斯的自动控制技术又落后美国甚多;

共轴反桨形成的“高压帽”,更易受复杂地形形成的局部高速风变影响(峭壁转折处、峡谷出口处,非垂直侧壁等等),就是说,可能维持姿态就够飞行员忙活了,没空去完成战斗任务。

——————————————————

俺这么一说,大家可能对共轴反桨丧失信心了,但需要注意的是,现有的共轴反桨的主要缺陷——环境适应能力、高机动飞行能力——的根源都是螺旋桨太“软”,用于战斗机、运输机的“纯推进式”螺旋桨就没这些问题。

因为软,就容易损失掉中间的空气压缩区;

因为软,两层螺旋桨就容易打架;

因为软,两层螺旋桨就要保证足够的间距,加大了高度,也更易让压缩空气逃逸。

所以,美国和俄罗斯纷纷研发了刚性很大的“硬”桨,来去弊存利,并且,硬桨的好处还在于“功率传递效率”很高,或者减小发动机重量或者增加飞行速度。

但为啥不早这么干呢?

需知,对于运输机那种纯推进式的较短的螺旋桨是容易做硬的,但想要让直升机的螺旋桨“又长又硬”还得“又轻”,就需要在材料、工艺、结构三方面下大功夫了。

为了进一步增加直升机得飞行速度,美国X2验证机还在尾部增加了推进式螺旋桨,实际上,由于推进气流得增加,也可大大提高可操作性和机动性。

升力桨和推进桨由一台发动机提供动力,按飞行需要分配不同得功率(类似越野车对前后桥的分动原理),虽然这能让直升机作出更加匪夷所思的机动动作,但无疑也增加了操作难度(比较可靠的做法是先固定几个分配功率比值(比如10:0、2:8、5:5、4:6),然后做严格的试飞验证,得出各个状态的允许范围,存入飞行电脑中)。

可能有朋友要说了,这么折腾还不如搞成V22鱼鹰那种呢~~

需知,在发动机体积重量仍较大时,V22那种旋转发动机而非改变“排气流”方向(矢量喷嘴或多喷嘴)的做法的可靠性和实用性实在有点得不偿失,现适用范围仅针对“双发”“中轻型”“运输机”,其结构本身也难以用于作战机动。它的主要目的就是给美国海军陆战队提供中近程的高速的无机场局限的运输支援或者反潜,不能想象用螺旋桨机去和喷气战斗机作战,也无直升机的近地高灵活性和可靠性。

总之,一种先进概念能够得意实现,是来自材料、工艺、结构的基础研发的支撑,更需要进行大量的工程实践验证,这也恰恰是中国近几十年所缺少的了。

谢谢看完!欢迎转帖!

共轴双旋翼直升机悬停方向的控制

共轴双旋翼直升机悬停方向的控制 姓名:张鲲鹏班号:02020802 学号:2008300596 摘要 本文主要目的是设计共轴双旋翼直升机悬停方向的控制系统。文中主要介绍了此控制系统的设计方案,在时域和频域中详细地分析了系统的稳定性、稳态性能和 动态性能。并且,为达到设计指标,对系统进行了串联校正,使系统能够较好地达 到了指标要求。在控制系统的设计过程中,利用了Scilab和Matlab软件进行仿真 分析,动态直观地反映了系统的性能。 关键字共轴双旋翼直升机串联校正稳定性稳态性能动态性能 引言 研究背景 20世纪40年代初,航空爱好者开始对共轴双旋翼直升机产生浓厚的兴趣。然而,由于当时人们对共轴双旋翼气动特性认识的缺乏以及在结构设计方面遇到的困难,许多设计者最终放弃了努力,而在很长一段时间对共轴式直升机的探讨只停留在实验阶段。1932 年,单旋翼带尾桨直升机研制成功,成为世界上第一架可实用的直升机。从此,单旋翼带尾桨直升机以其简单、实用的操纵系统和相对成熟的单旋翼空气动力学理论成为半个多世纪来世界直升机发展的主流。然而,人们对共轴双旋翼直升机的研究和研制一直没有停止。俄罗斯1945 年研制成功了卡-8 共轴式直升机,至今发展了一系列共轴双旋翼直升机,在型号研制、理论实验研究方面均走在世界前列。美国也于50 年代研制了QH-50 共轴式遥控直升机作为军用反潜的飞行平台,并先后交付美国海军700 多架。从20 世纪60 年代开始,由于军事上的需要,一些国家开始研制无人驾驶共轴双旋翼形式直升机。在实验方面,从20 世纪50 年代起,美国、日本、俄罗斯等相继对共轴双旋翼的气动特性、旋翼间的气动干扰进行了大量风洞实验研究。经过半个多世纪的发展,共轴双旋翼的旋翼理论得到不断的发展和完善,这种构形的直升机以它固有的优势越来越受到业内人士的重视。 研究对象特点分析 共轴双旋翼直升机有两副完全相同的旋翼,一上一下安装在同一根旋翼轴上,两旋翼间有一定间距。两副旋翼的旋转方向相反,它们的反扭矩可以互相抵消。这样,就用不着再装尾桨了。直升机的航向操纵靠上下两旋翼总距的差动变化来完成。 共轴双旋翼直升机主要优点是结构紧凑,外形尺寸小。这种直升机无尾桨,机身长度大大缩短。有两副旋翼产生升力,每副旋翼的直径也可以缩短。机体部件可以紧凑地安排在直

直升机原理详解真实完整版

发一套最完整的直升机原理(绝对完整,绝对精华) 这是我找到的最完整,最系统介绍直升机的原理及发展史的文章。转到这里,送给论坛里喜欢飞行,向往蓝天的朋友!! 自从莱特兄弟发明飞机以来,人们一直为能够飞翔蓝天而激动不已,同时又受起飞、着落所需的滑跑所困扰。在莱特兄弟时代,飞机只要一片草地或缓坡就可以起飞、着陆。不列颠之战和巴巴罗萨作战中,当时最高性能的“ 喷火 ”战斗机和 Me 109 战斗机也只需要一片平整的草地就可以起飞,除了重轰炸机,很少有必须用“正规”的混凝土跑道起飞、着陆的。今天的飞机的性能早已不能为这些飞机所比,但飞机的滑跑速度、重量和对跑道的冲击,使对起飞、着陆的跑道的要求有增无减,连简易跑道也是高速公路等级的。现代战斗机和其他高性能军用飞机对平整、坚固的长跑道的依赖,日益成为现代空军的致命的软肋。为了摆脱这一困境,从航空先驱的时代开始,人们就在孜孜不倦地研制能够象鸟儿一样腾飞的具有垂直/短距起落能力的飞机。 自从人们跳出模仿飞鸟拍翅飞行的谜思之后,依据贝努力原理的空气动力升力就成为除气球和火箭外所有动力飞行器的基本原理。机翼前行时,上下翼面之间的气流速度差造成上下翼面之间的压力差,这就是升力。所谓“机翼前行”,实际上就是机翼和空气形成相对速度。既然如此,和机身一起前行时,机翼可以造成升力,机身不动而机翼像风车叶一样打转转,和空气形成相对速度,也可以形成升力,这样旋转的“机翼”就成为旋翼,旋翼产生升力就是直升机可以垂直起落的基本原理。

中国小孩竹蜻蜓玩了有2,000 年了,流传到西方后,成为现代直升机的灵感/ 达·芬奇设计的直升机,到底能不能飞起来,很是可疑 旋翼产生升力的概念并不新鲜,中国儿童玩竹蜻蜓已经有2,000 多年了,西方也承认流传到西方的中国竹蜻蜓是直升机最初的启示。多才多艺的达·芬奇在15 世纪设计了一个垂直的螺杆一样的直升机,不过没有超越纸上谈兵的地步。1796 年,英国人George C ayley 设计了第一架用发条作动力、能够飞起来的直升机,50 年后的1842 年,英国人W.H. Philips 用蒸气机作动力,设计了一架只有9 公斤重的模型直升机。1878 年,意大利人Enrico Forlanini 用蒸气机制作了一架只有3.5 公斤重的模型直升机。1880 年,美国发明家托马斯·爱迪生着手研制用电动机驱动的直升机,但最后放弃了。法国人Paul C ornu 在1907 年制成第一架载人的直升机,旋翼转速每分钟90 转,发动机是一台24 马力的汽油机。Cornu 用旋翼下的“舵面”控制飞行方向和产生前进的推力,但Cornu 的直升机的速度和飞行控制能力很可怜。

最新共轴双旋翼直升机悬停方向的控制

共轴双旋翼直升机悬停方向的控制

共轴双旋翼直升机悬停方向的控制 姓名:张鲲鹏班号:02020802 学号:2008300596 摘要 本文主要目的是设计共轴双旋翼直升机悬停方向的控制系统。文中主要介绍了此控制系统的设计方案,在时域和频域中详细地分析了 系统的稳定性、稳态性能和动态性能。并且,为达到设计指标,对系 统进行了串联校正,使系统能够较好地达到了指标要求。在控制系统 的设计过程中,利用了Scilab和Matlab软件进行仿真分析,动态直 观地反映了系统的性能。 关键字共轴双旋翼直升机串联校正稳定性稳态性能动态性能 引言 研究背景 20世纪40年代初,航空爱好者开始对共轴双旋翼直升机产生浓厚的兴趣。然而,由于当时人们对共轴双旋翼气动特性认识的缺乏以及在结构设计方面遇到的困难,许多设计者最终放弃了努力,而在很长一段时间对共轴式直升机的探讨只停留在实验阶段。1932 年,单旋翼带尾桨直升机研制成功,成为世界上第一架可实用的直升机。从此,单旋翼带尾桨直升机以其简单、实用的操纵系统和相对成熟的单旋翼空气动力学理论成为半个多世纪来世界直升机发展的主流。然而,人们对共轴双旋翼直升机的研究和研制一直没有停止。俄罗斯1945 年研制成功了卡-8 共轴式直升机,至今发展了一系列共轴双旋翼直升机,在型号研制、理论实验研究方面均走在世界前列。美国也于50 年代研制了QH-50 共轴式遥控直升机作为军用反潜的飞行平台,并先后交付美国海军700 多架。从20 世纪60 年代开始,由于军事上的需要,一些国家开始研制无人驾驶共轴双旋翼形式直升机。在实验方面,从20 世纪50 年代起,美国、日本、俄罗斯等相继对共轴双旋翼的气动特性、旋翼间的气动干扰进行了大量风

螺旋桨计算公式

直升机螺旋桨升力计算公式 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。 有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样, 空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨) 旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。 平衡时,就悬停在空中。直升机的升力大小,不但决定于旋翼的转速, 而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大; 随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中, 桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前. 后仰, 左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行, 不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有: a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高, 但直径往往受到吃水和输出转速等的限制; b.桨叶数N; c.转速n——每分钟螺旋桨的转数; d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距; e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比; f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小; g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。通常,高转速的螺旋桨所取的比值小,低速、大推力的螺旋桨所取的比值大。例如,拖轮的螺旋桨盘面比大于1.2甚至更大的情况也不少见; 机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。

FH-1共轴式无人直升机

“FH FH--1” 无人无人直升直升直升机系统机系统机系统 北方天途航空技术发展北方天途航空技术发展((北京北京))有限公司有限公司 2010年9月

一、用途及功能 用途: “FH-1”无人直升机是经多年科研攻关,自主研发的具有国内先进水平的小型无人直升机。该机采用共轴双旋翼形式,目前在国内,该技术居领先或独有的地位。该机具有尺寸小、结构紧凑、悬停效率高的特点。可在较小的陆地和甲板上起飞和降落,陆地和海上运载方便,可广泛应用于图像传输、对地观测、电子对抗、数据通讯、海上作战、中继转发、空中监测、电力巡线、高压架线、航空摄影等领域。 功能: 1.可以对任务侦察区域在不同高度进行侦察摄像,将图像实时下传。 2.夜间对任务侦察区域,在不同高度进行红外摄像。 3.可以利用无线电测控系统进行自主程序飞行,减轻操作手的负担,又可提高飞行航线精度和目标定位准确性。

二、主要特点 自动起飞 定位降落 稳定悬停 空中任意回转 有效载荷大 续航时间长 飞行稳定性强 低速近距拍摄 抗风能力强 该机采用了独创专利技术:共轴式直升机机械增稳系统。该系统显著增加了无人直升机的飞行稳定性和操纵性。 该机机身采用了独特的金属盒形结构, 机身既是承力结构又是油箱和机载设备舱,结构紧凑,空间利用率高。 该机在国内外首次采用左右对置安装2台活塞发动机的布局形式,改善了发动机的维护性和工作环境,减小了发动机对设备的干扰。在一台发动机出现故障时,另一台发动机可保证飞行器安全降落,提高了飞行器的安全性。 三、主要技术指标 几何参数几何参数::

旋翼直径 2.6 米 桨叶片数 2×2 起落架跨度 0.8 米 机高 1.3 米 发动机功率 2×15 马力 重量重量:: 空机重量 50 公 斤 任务载重+ 燃油 40 公斤 最大起飞重量 90 公斤 飞行性能飞行性能:: 海平面最大平飞速度 100 公 里/小时 海平面巡航速度 60 ~70公里/小时 风力(飞行时) 60 公里/小时 (阵风70公里/小时) 风力(起降时) 36 公里/小时(无阵风) 悬停升限 1500 米 动升限 2500 米 续航时间(速度为60公里/小时) 2 小时(15升油) 2.6 小时 (20升油) 3.3 小时(25升油) 最大航程(速度为60公里/小时) 120 公 里(15升油) 150 公里(20升油); 190 公里(25升油)

共轴机

?共轴双旋翼直升机具有绕同一理论轴线一正一反旋转的上下两副旋翼,由于转向相反,两副旋翼产生的扭矩在航向不变的飞行状态下相互平衡,通过所谓的上下旋翼总距差动产生不平衡扭矩可实现航向操纵,共轴双旋翼在直升机的飞行中,既是升力面又是纵横向和航向的操纵面。 共轴双旋翼直升机的上述特征决定了它与传统的单旋翼带尾桨直升机相比有着自身的特点。20世纪40年代初,这种构形引起了航空爱好者极大的兴趣,并试图将其变成可实用的飞行器,然而,由于当时人们对共轴双旋翼气动特性认识的缺乏以及在结构设计方面遇到的困难,许多设计者最终放弃了努力,而在很长一段时间对共轴式直升机的探讨只停留在实验阶段。1932年,西科斯基研制成功了单旋翼带尾桨直升机VS-300,成为世界上第一架可实用的直升机。从此,单旋翼带尾桨直升机以其简单、实用的操纵系统和相对成熟的单旋翼空气动力学理论成为半个多世纪来世界直升机发展的主流。 [ 转自铁血社区https://www.360docs.net/doc/9c10283103.html,/ ] 然而,人们对共轴双旋翼直升机的研究和研制一直没有停止。 俄罗斯卡莫夫设计局从1945年研制成功卡-8共轴式直升机到90年代研制成功被西方誉为现代世界最先进的武装攻击直升机卡-50;发展了一系列共轴双旋翼直升机,在型号研制、理论实验研究方面均走在世界前列。美国也于50 年代研制了QH-50共轴式遥控直升机作为军用反潜的飞行平台,并先后交付美国海军700 多架。美国西科斯基公司在70年代发展了一种前行桨叶方案(A B C)直升机,该机采用共轴式旋翼,刚性桨毂,上下旋翼的间距较小。它利用上下两旋翼的前行桨叶边左右对称来克服单旋翼在前飞时由于后行桨叶失速带来的升力不平衡力矩,从而提高旋翼的升力和前进比,其验证机XH-59A于1973年进行试飞,并先后进行大量的风洞实验。 从20 世纪60 年代开始,由于军事上的需要,一些国家开始研制无人驾驶直升机。近年来,无人直升机已成为国内外航空领域内的研究热点。比较成熟的有:加拿大的CLL227,德国的“Seamos”, 美国的“QH50”。这些无人直升机的共同特点是均采用了共轴双旋翼形式。 在实验方面,从20 世纪50 年代起,美国、日本、俄罗斯等相继对共轴双旋翼的气动特性、旋翼间的气动干扰进行了大量风洞实验研究。经过半个多世纪的发展,共轴双旋翼的旋翼理论得到不断的发展和完善,这种构形的直升机以它固有的优势越来越受到业内人士的重视。 北京航空航天大学于上世纪80年代开始研制共轴式直升机,并先后研制了“海鸥”共轴式无人直升机、M16 单座共轴式直升机、M22、FH-1小型共轴式无人直升机。其中FH-1小型共轴式无人直升机已在电力部门、科研院所等单位应用。该机目前已实现了从起飞到降落的无人驾驶自主飞行,可载20kg任务载荷,飞行1.5h。 [ 转自铁血社区https://www.360docs.net/doc/9c10283103.html,/ ] 共轴式直升机的总体结构特点 共轴式直升机与单旋翼带尾桨直升机的主要区别是采用上下共轴反转的两组旋翼用来平衡旋

直升机旋翼挥舞摆振分析

直升机旋翼会挥舞摆振分析 利用已给的旋转梁单元质量和刚度矩阵计算旋翼桨叶的前三阶挥舞,前二阶摆振,前一阶扭转的频率及对应振型,并各画出共振图; 1.旋翼转速、桨叶几何尺寸、剖面特性等参数可根据查阅的文献、资料等自行 给定,并在提交的报告中给出以上参数; 所使用的单元矩阵中的符号说明列于下表 EIy 挥舞刚度(N· m2) EIz 摆振刚度(N· m2) GJ 扭转刚度(N· m2) EA 拉伸刚度(N· m2) Imy 剖面绕y轴惯量(kg ·m2) Imz 剖面绕z轴惯量(kg ·m2) Lm 单元段长度(m) LLm 单元段局部坐标系径向位置(m) mm 线密度(kg/ m) SPm 单元段局部坐标系绕径向坐标轴转动角度的正弦值 CPm 单元段局部坐标系绕径向坐标轴转动角度的余弦值 Ω旋翼转速(rad

/s) CFm 当前单元段外端的离心力(N) *表中所有单位均采用国际单位 目录 第一章问题描述 (1) 1.1原问题重述 (1) 1.2本文参数选取 (1) 第二章Mathematica程序的建立 (3) 2.1相关参数的输入 (3) 2.2基本程序的建立 (3) 第三章结果与分析 (5) 3.1摆振、挥舞频率和振型 (5) 3.2扭转频率、振型 (7) 3.3画共振图 (7) 3.4结果分析 (8) 第四章结束语 (9) 致谢 (10)

第一章问题描述 1.1原问题重述 1.、利用已给的旋转梁单元质量和刚度矩阵计算旋翼桨叶的前三阶挥舞,前二阶 摆振,前一阶扭转的频率及对应振型,并各画出共振图; 2、旋翼转速、桨叶几何尺寸、剖面特性等参数可根据查阅的文献、资料等自行 给定,并在提交的作业中给出以上参数; 所使用的单元矩阵中的符号说明列于下表 EIy 挥舞刚度(N·m2) EIz 摆振刚度(N·m2) GJ 扭转刚度(N·m2) EA 拉伸刚度(N·m2) Imy 剖面绕y轴惯量(kg·m2) Imz 剖面绕z轴惯量(kg·m2) Lm 单元段长度(m) LLm 单元段局部坐标系径向位置(m) mm 线密度(kg/m) SPm 单元段局部坐标系绕径向坐标轴转动角度的正弦值 CPm 单元段局部坐标系绕径向坐标轴转动角度的余弦值 Ω旋翼转速(rad/s) CFm 当前单元段外端的离心力(N) *表中所有单位均采用国际单位 1.2本文参数选取 本文选取旋翼半径R=2m,弦长C=0.121m,翼型剖面为BO105翼型的均匀桨叶,为无铰式旋翼,额定转速为Ω=109.22rad/s(1043r/min),忽略桨叶负扭转。

16横列式双旋翼直升机旋翼对机翼的干扰分析-孙浩(8)

第二十八届(2012)全国直升机年会论文 横列式双旋翼直升机旋翼对机翼的干扰分析 孙 浩 夏品奇 (南京航空航天大学航空宇航学院,南京 210016) 摘 要:本文针对横列式双旋翼直升机旋翼下洗流对机翼的气动干扰影响,建立了旋翼对机翼的干扰计算模型。该模型首先基于万向铰旋翼建立了挥舞运动方程,以得到桨叶挥舞角,然后对桨叶采用非定常Beddoes 翼型模型计算气动力和力矩,以考虑桨叶大负扭转带来的失速影响,接着引入动力入流模型获得旋翼处的诱导速度。最后运用经典方法,以XV-15倾转旋翼机为算例,计算了配平状态下旋翼对机翼的向下载荷,并与GTRS 模型数据进行了对比,验证了计算模型的合理性。 关键词:万向铰旋翼; 机翼; 非定常翼型; 动力入流; 向下载荷 0 引言 横列式独特的旋翼、机翼构型,使其在悬停、低速前飞时,旋翼的下洗流会直接冲击机翼表面,产生较大的额外向下载荷,直接影响横列式直升机的有效载重,从而影响其总体性能。横列式直升机旋翼的桨毂结构、桨叶的大扭转及尖削几何形状,使其下洗速度特征与传统直升机旋翼也有较大不同。笔者在Felker [1-2]等人的工作基础上,引入万向铰旋翼挥舞运动方程及非定常翼型模型,并集成到横列式直升机飞行动力学模型中配平,计算旋翼对机翼的气动干扰。 1 旋翼结构模型和挥舞运动方程 本横列式直升机采用万向铰旋翼桨毂,即四片桨叶通过各自的轴向铰和桨毂壳体相连,没有挥舞铰和摆振铰,桨毂用万向联轴节或万向接头装到旋翼轴上,旋翼在桨毂处通过滑环与桨毂橡胶弹簧相联接,桨毂滑环下设置了旋翼倾斜角限动装置,限制桨毂的过大运动,桨叶较一般旋翼桨叶短并采用很大的负扭转,倾转旋翼飞行器也常采用这种形式桨毂。 本文假设桨叶为刚性,只考虑桨毂相对于旋翼轴的倾斜运动,不考虑桨叶的弹性变形。则万向铰旋翼桨毂相对于旋翼轴运动的两个自由度GC β和GS β(俯仰运动和滚转运动)就相当于旋翼周期挥舞而形成的桨尖轨迹平面后倒角1c β和侧倾角1s β。而在桨叶形成锥度角为0β的锥体过程中,桨叶的性能就像在无铰旋翼上一样。对于挥舞运动二阶以上的谐波,忽略其影响。 于是刚性桨叶万向铰式旋翼第m 片桨叶的挥舞角可表示为: ()011cos sin cos sin m c m s m p GC m GS m βββψβψββψβψ=--=-- (1) p β 为预锥角。旋翼最大倾斜角max p ββ=不能超过限动角,一般为11。 m ψ表示第m 片桨叶所处的方位角,定义为: 2()(-1) t m t dt m K π ψ=Ω+? (2) 作用在旋翼第m 片桨叶上绕桨根的力矩有桨叶的惯性力矩、离心力矩和气动力矩:

直升机旋翼结构

直升机旋翼结构 直升机的飞行原理 1. 概况 与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。桨叶片的数量随着直升机的起飞重量而有所不同。重型直升机的起飞重量在20t以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在1.5t以下,一般只有两片桨叶。 直升机飞行的特点是: (1) 它能垂直起降,对起降场地要求较低; (2) 能够在空中悬停。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势; (3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。 2. 直升机旋翼的工作原理 直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个

机翼。旋翼的截面形状是一个翼型,如图2.5.1所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂 旋转平面)之间的夹角称为桨叶的安装角,以?表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2o~14o。 气流V 与翼弦之间的夹角即为该剖面的迎角α。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。 旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头 图2.5.1 直升机的旋翼 (a) (b)

螺旋桨计算公式

) 直升机螺旋桨升力计算公式 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。 有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样, 空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量这个问题就是直升机的飞行原理: (以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨) 旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。 平衡时,就悬停在空中。直升机的升力大小,不但决定于旋翼的转速, 而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大; 随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中, 桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前. 后仰, 左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行, 不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有: a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高, 但直径往往受到吃水和输出转速等的限制; b.桨叶数N; c.转速n——每分钟螺旋桨的转数; d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距; e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比; f.螺距比——螺距与直径的比(P/D),一般在~之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小; g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。通常,高转速的螺旋桨所取的比值小,低速、大推力的螺旋桨所取的比值大。例如,拖轮的螺旋桨盘面比大于1.2甚至更大的情况也不少见; 机翼升力计算公式

完整版 直升飞机单翼和共轴双翼自动倾斜器结构图解析分解

直升飞机单翼和共轴双翼自动倾斜器结构图解析 河南巩义市王有备编辑整理 直升机上用以操纵旋翼实现升降、前后、左右运动的特殊装置,又称自动倾斜仪。1911年由俄国人H.尤里耶夫发明,后为所有直升机采用。自动倾斜器一般由类似轴承的旋转(外)环和不旋转(内)环组成(图1),它通过万向接头或球铰套在旋翼轴上,不旋转环通过操纵拉杆与驾驶舱中的驾驶杆和总距杆相连,旋转环通过变距拉杆与桨叶相连。自动倾斜器无倾斜时,各片桨叶在旋转时桨距保持恒定;当它被操纵倾斜时,则每片桨叶在旋转中周期性地改变桨距。变距拉杆转至倾斜器上位时桨距加大,桨叶向上挥舞;转至下位时桨距减小,桨叶向下挥舞。这样

就形成旋翼旋转面的倾斜,使旋翼合力倾斜,产生一水平分力(图2)。直升机的前后和左右方向的飞行运动就是通过这种操纵实现的,称为周期变距操纵。飞行员操纵(提或压)总距杆使自动倾斜器沿旋翼轴平行向上或向下滑动。各片桨叶的桨距将同时增大或减小,使旋翼的升力增大或减小,直升机随之上升或下降。这种操纵称为总距操纵。 自动倾斜器,直升机上用以操纵旋翼实现升降、前后、左右运动的特殊装置,又称自动倾斜仪。自动倾斜器一般由类似轴承的旋转(外)环和不旋转(内)环组成。

共轴双旋翼直升机机倾斜器结构组成图示 比起单旋翼直升机而言,共轴双旋翼直升机省略了尾桨,具有更好的悬停稳定性,作为核心部位,当然它的倾斜器结构也要比但旋翼直升机复杂许多,这是我最着迷的飞行器,这里我把以前收集的一些共轴双旋翼直升机机倾斜器结构图提供给大家,希望有共轴机爱好者喜欢。 这个是最经典的K-50倾斜器图片 这张是模型版本的

这是美国早期的QH-50倾斜器部分照片

直升机旋翼的工作原理

直升机旋翼的工作原理 旋翼既是产生升力的部件,又是产生拉力的部件。旋翼的桨叶剖面由翼形构成,每个叶片的平面形状细而长(相当于一个大展弦比的梯形直翼)。桨叶片的数目随直升机的起飞重量而有所不同。 直升机飞行的特点是: 直升机在悬停飞行中,直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同一个机翼。旋转旋翼桨叶所产生的拉力和需要克服阻力产生的阻力力矩的力矩大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距φ。但是拉力的改变主要靠调节桨叶桨距来实现。但是,桨距变化将引起阻力力矩变化,所以在调节桨距的同时还要调节发动机油门,保持转速尽量靠近最有利转速工作。 通过与操纵系统的连接,旋翼叶片的桨距调节变化可以按两种方式进行。第一种方式是各叶片同时增大或减小桨距(简称总距操纵),从而产生直升机起飞、悬停、垂直上升或下降飞行所需要的拉力。第二种方式是周期性调节各个叶片的桨距(简称周期性桨距操纵)比如打算前飞,就将驾驶杆向前推,通过旋转斜盘将使各个叶片的桨距作周期变化。每个叶片转到前进方向时,它的桨距减小,产生的拉力也跟着下降,该桨叶向上挥舞的高度也减小;反之,当叶片转到后方时,它的桨距增大,产生的拉力也跟着增加,该桨叶向上挥舞的高度也增大。结果,各个叶片梢(叶端)运动轨迹构成的叶端轨迹平面或旋翼锥体,将向飞行前方倾斜,旋翼产生的总拉力也跟着向前倾斜,旋翼总拉力的一个分量就成为向前飞行的拉力,从而实现了向前飞行。 旋翼旋转时将产生一个反作用力矩,迫使直升机机身向旋翼旋转的反方向旋转,因此需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。

直升机旋翼桨毂静载荷计算

直升机旋翼桨毂静载荷计算 第十九届(2003)全国直升机年会论文 张亚军1 杨延滨1向锦武2 (1哈尔滨飞机工业集团 2北京航空航天大学) 摘要:本文给出了直升机旋翼桨毂静载荷的一种计算方法,该方法关 键在于确定与旋翼静载荷相对应的直升机的状态,同时采用通用做法推 出旋翼桨叶运动方程,并对桨叶进行有限元离散。利用这种方法对Z9A 型直升机旋翼桨毂静载荷进行了计算,通过与国外同类机型的计算结果 进行了对比分析,发现原计算模型的几个缺陷和计算结果中的几个难以 解释之处。 一、引言 与结构强度有关的载荷有两个:限制载荷和极限载荷,限制载荷为在使用中可能遇到的最大载荷。对于飞机结构,限制载荷乘以,.,的安全系数得到极限载荷。结构必须满足以下要求:在极限载荷下不发生破坏,在限制载荷下不出现永久变形。本文所论及的载荷均为限制载荷。 ——————————————————————————————————————————————— 旋翼载荷分为静载荷和动载荷两部分,旋翼静载荷是在服役期内旋翼可能遇到的载荷的最大平均值,而动载荷是在服役期内旋翼可能遇到的载荷的最大波动量。在校核旋翼结构强度时,静载荷和动载荷一并考虑。 直升机旋翼载荷的确定是直升机旋翼结构设计的关键技术之一,既要保证结738

构安全,又要使结构的安全裕度不至于过大。国外各大直升机公司都有一套自己的旋翼载荷确定方法,我们在这方面还有待深入研究。本文给出了旋翼静载荷的一种确定方法,该方法包括两个部分:状态方程的建立和旋翼桨叶的有限元模拟,状态方程是根据规范导出的,旋翼桨叶的有限元模拟则是很通用的做法,这种做法可以充分计入直升机旋翼结构复杂性。 文献1给出了Z9A直升机旋翼桨叶静载荷的计算结果,这里给出桨毂静载荷的计算结果。 二、静载分析模型 《运输类直升机适航性要求(CCAR29)》2 第547条主旋翼结构中规定:极限扭矩必须均等地和合理地分配给每片桨叶。我们的理解是,极限扭矩平均分到每片桨叶的根部,并合理地分配到桨叶的展向上。基于这一理解,在给定旋翼转速和过载的条件下,求出满足拉力和扭矩限制MLimit 的总距操纵输入?0和下沉速度Vz。 其中: ?M?mb?Nb??g?Nz?FzMLimit?Mz?0?0 Fz 旋翼拉力 ——————————————————————————————————————————————— g 重力加速度 M 直升机总质量 MLimit 极限扭矩 Mz 旋翼扭矩 mb 单片桨叶的质量 Nb 桨叶片数 Nz 过载 旋翼拉力Fz和旋翼扭矩Mz均为总距?0和下沉速度Vz的函数,这是对直升机旋翼受 739

直升机油门及螺距曲线的调整

直升机油门及螺距曲线的调整

直升机的曲线调整可分为油门曲线及螺距曲线,二者相辅相成,密不可分。每种飞行模式都有其独特的曲线,影响曲线的主要因素有:机种、级数、主旋翼翼形、天候状况及个人的飞行习惯。一般的八动遥控器对於油门及螺距曲线都提供5个控制点,分别对应0%(L)、25%(1)、50% (2)、75%(3)及100%(H)。以下列出的数值仅供叁考,您必须依照实际的需要作调整。 Normal 适用於停悬及静态飞行,重点是要使机体沈稳柔顺。调整时先决定停悬点(油门摇杆在?的位置)的螺距及主旋翼转速,转速的快慢依您自己的习惯而定。若您的经验未能以目视的方式来判断转速,可以请有经验的同好在旁协助,或购买一种可安装在尾管上的转速计。 调整停悬点:螺距约在+6 o,主旋翼转速约在1,400rpm。 若停悬时油门摇杆低於?的位置:请降低油门或螺距曲线第2点的数值。 若停悬时油门摇杆高於?的位置:请增加油门或螺距曲线第2点的数值。

若停悬时主旋翼转速过快:请降低油门曲线第2点的数值,并且增加螺距曲线第2点的数值。 若停悬时主旋翼转速过慢:请增加油门曲线第2点的数值,并且降低螺距曲线第2点的数值。 调整最高点:螺距约在+10o 先保持停悬的状况,然後把油门摇杆推到最高点。若机体上升快速但主旋翼转速变慢:高速螺距过大,请降低螺距曲线H点的数值。 若机体上升缓慢且主旋翼转速变快:高速螺距过小,请增加螺距曲线H点的数值。 调整至机体上升速度适中,且主旋翼转速变化不大即可。 调整最低点:螺距约在-2 o 先将直升机保持停悬在适当的高度,然後把油门摇杆拉到最低点。 若机体下降速度过快:负螺距过大,请增加螺距曲线L点的数值。 若机体下降速度缓慢:负螺距过小,请降低螺距曲线L点的数值。 调整至机体下降速度适中即可。 调整?及?点

交叉式双旋翼直升机

交叉式双旋翼直升机,以前有类似机型在美军服役过。 旋翼布局对直升机的影响很大,不同的布局形式,结构也不同,会使直升机的性能发生很大变化。直升机的旋翼布局主要有单旋翼尾桨式、双旋翼纵列式、双旋翼横列式、双旋翼共轴式、双旋翼交叉式等 双旋翼交叉式又称“交叉式”。“交叉式”与“横列式”一样,两副旋翼完全相同,沿机体横向左、右排列,但其轴线呈“v”型交叉,反向旋转。其明鲜的特点是两旋翼不平行,分别向外倾斜。这种结构的最大优点是稳定性好,适宜执行起重、吊挂作业。研制“交叉式”埴升机的公司主要是美国的卡曼公司。其最广为人知的作品就是在20世纪50年代,卡曼公司研制的“交叉式”直升机H-43 Huskie “爱斯基摩”,在美国空军和海军陆战队都有使用,越战时主要执行搜救任务。它也就是很多人认为的唯一一种交叉式双旋翼直升机。 美国空军的HH-43 Huskie

美国海军陆战队的OH-43 Huskie 美国海军陆战队的UH-43 Huskie 在以后漫长的40年中,“交叉式双旋翼”直升机似乎销声匿迹。直到20世纪90年代初,卡曼公司瞧准了民用直升机缺少专门用于吊挂作业的直升机,于是又研制了一种“交叉式双旋翼”直升机:K-1200 K-MAX“空中卡车”。可能有些人不知道它的出现的主要原因是K-1200“空中卡车”基本上是在民间使用,但也有一个国家的军队有装备,那就是-哥伦比亚陆军(Colombia - Army)

哥伦比亚陆军的K-1200 K-MAX 恭喜!本帖被贝壳航母@-7UhX 推荐。 ?管理 ?举报 ?修改 ?回复?推荐置顶迁移加锁精华删除加黑限制luo_5128 ? ? ?积分:143 2楼 2008-07-07 14:44:18 Kaman K-1200 K-MAX“空中卡车”

简述常见的共轴双旋翼直升机

简述常见的共轴双旋翼直升机 卡-50/52 双旋翼布局有很多优点,体现在飞行品质上的就是整体升力系统效率高,比其它旋翼布局,同等旋翼直径的直升机升力大12%。由于没有尾桨,因此全机尺寸紧凑,发动机的全部功率都用来驱动旋翼,提高了直升机贴地飞行的安全性。由于允许重心移动距离较大,机动性有所增加。且操纵简单,安定性好。具体到卡-50/52,这一优势更明显。卡-50/52采用了苏联中央流体动力研究院研制成功的新旋翼翼型,桨尖处后掠30°角。这种设计降低了旋翼高速旋转时空气压缩性对旋翼的不良作用。悬停时,卡-50旋翼的效率高达80%,属于世界先进水平。卡-50/52能够从高速飞行状态中突然进入悬停,且位置准确,稳定性好。这样就能使卡-50/52以近乎静止的状态中使用机载武器。这对于卡-50/52的火力发挥无疑具有重要意义。双旋翼在空气动力上是对称的,消除了偏航的动力来源,直升机可以轻易地保持高度,而且不容易受横风的影响。由于共轴的两具旋翼可以使其直径较一般单旋翼/尾桨配置的直径小,所以,卡-50/52有良好的爬升率和较小的转弯半径,超低空飞行时可以轻松地规避树梢等障碍物。俄国一级试飞员帕帕伊说,卡-50/52很适合在山区和城市等地形复杂的地区作战。 卡-28 双旋翼共轴式直升机主要优点是结构紧凑,外形尺寸小。这种直升机因无尾桨,所以也就不露要装长长的尾梁,机身长度也可以大大缩短。有两副旋翼产生升力,每副旋翼的直径也可以缩短。机体部件可以紧凑地安排在直升机重心处,所以飞行稳定性好,也便于操纵(这一点对于舰载直升机很重要)。与单旋翼带尾桨直升机相比,其操纵效率明显有所提高。此外。共轴式直升机气动力对称,其悬停效率也比较高。但是双旋翼共轴式直升机的主要缺点是操纵机构复杂,而且无法进行某些单旋翼直升机可以进行的机动。(上边这句应该是指当直升机作剧烈的左滑跃升机动时两旋翼很容易相碰,据说这个问题已经解决。)

共轴直升机技术

共轴直升机技术 共轴双旋翼直升机具有绕同一理论轴线一正一反旋转的上下两副旋翼,由 于转向相反,两副旋翼产生的扭矩在航向不变的飞行状态下相互平衡,通过所 谓的上下旋翼总距差动产生不平衡扭矩可实现航向操纵,共轴双旋翼在直升机 的飞行中,既是升力面又是纵横向和航向的操纵面。 共轴双旋翼直升机的上述特征决定了它与传统的单旋翼带尾桨直升机相比 有着自身的特点。20世纪40年代初,这种构形引起了航空爱好者极大的兴趣,并试图将其变成可实用的飞行器,然而,由于当时人们对共轴双旋翼气动特性 认识的缺乏以及在结构设计方面遇到的困难,许多设计者最终放弃了努力,而 在很长一段时间对共轴式直升机的探讨只停留在实验阶段。1932年,西科斯基 研制成功了单旋翼带尾桨直升机VS-300,成为世界上第一架可实用的直升机。从此,单旋翼带尾桨直升机以其简单、实用的操纵系统和相对成熟的单旋翼空 气动力学理论成为半个多世纪来世界直升机发展的主流。 然而,人们对共轴双旋翼直升机的研究和研制一直没有停止。 俄罗斯卡莫夫设计局从1945年研制成功卡-8共轴式直升机到90年代研制 成功被西方誉为现代世界最先进的武装攻击直升机卡-50;发展了一系列共轴双 旋翼直升机,在型号研制、理论实验研究方面均走在世界前列。美国也于50 年代研制了QH-50共轴式遥控直升机作为军用反潜的飞行平台,并先后交付美 国海军700 多架。美国西科斯基公司在70年代发展了一种前行桨叶方案(A B C)直升机,该机采用共轴式旋翼,刚性桨毂,上下旋翼的间距较小。它利用 上下两旋翼的前行桨叶边左右对称来克服单旋翼在前飞时由于后行桨叶失速带 来的升力不平衡力矩,从而提高旋翼的升力和前进比,其验证机XH-59A于1973年进行试飞,并先后进行大量的风洞实验。 从20 世纪60 年代开始,由于军事上的需要,一些国家开始研制无人驾驶 直升机。近年来,无人直升机已成为国内外航空领域内的研究热点。比较成熟 的有:加拿大的CLL227,德国的“Seamos”, 美国的“QH50”。这些无人直升机 的共同特点是均采用了共轴双旋翼形式。 在实验方面,从20 世纪50 年代起,美国、日本、俄罗斯等相继对共轴双 旋翼的气动特性、旋翼间的气动干扰进行了大量风洞实验研究。经过半个多世 纪的发展,共轴双旋翼的旋翼理论得到不断的发展和完善,这种构形的直升机 以它固有的优势越来越受到业内人士的重视。 北京航空航天大学于上世纪80年代开始研制共轴式直升机,并先后研制了“海鸥”共轴式无人直升机、M16 单座共轴式直升机、M22、FH-1小型共轴式无 人直升机。其中FH-1小型共轴式无人直升机已在电力部门、科研院所等单位

螺旋桨计算公式

直升机螺旋桨升力计算公式 欧阳学文 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样,空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨)旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。平衡时,就悬停在空

中。直升机的升力大小,不但决定于旋翼的转速,而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大;随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中,桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前.后仰,左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行,不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有:a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高,但直径往往受到吃水和输出转速等的限制;b.桨叶数N;c.转速n——每分钟螺旋桨的转数;d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距;e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比;f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般

直升机动力学基础 习题集..

1桨叶的平面形状主要有哪几种? 2确定桨叶平面形状的参数主要有哪些? 3桨叶的切面形状主要有哪些? 4确定桨叶的切面形状的主要参数有哪些? 5什么是桨叶的切面迎角?其正负是如何确定的? 6什么是桨叶角?其方向如何确定? 7什么是桨距和总距? 8什么是来流角? 9用作用与反作用定律来说明升力产生的原理?(论述题) 10详细说明曲面附面层为什么会产生气流分离现象?(论述题)11影响升力的主要因素有哪些? 12什么叫做临界迎角? 13低速运动中,桨叶的阻力主要有哪些?桨叶产生阻力的根本原因是什么? 14什么是附面层? 15附面层形成的主要原因是什么? 16附面层的流态主要有哪几种? 17影响压差阻力的因素主要有哪些? 18什么是桨叶的展长和弦长? 19什么是桨叶的展弦比和根尖比?

20什么是桨叶的翼型,其常见的形状有哪几种? 21桨叶翼型的特点,一般用哪些参数来说明? 22什么是翼弦的相对厚度? 23什么是翼型的最大厚度位置? 24什么是翼型的中弧线? 25什么是翼型的后缘角? 26什么是翼型最大弯度和相对弯度? 27桨叶各切面的相对气流情况尽管十分复杂,但总是包含哪些部分? 28垂直于桨毂旋转平面的桨叶垂直相对气流速度,其大小决定于哪些因素? 29桨叶上挥时,挥舞速度和上升速度是如何取值的? 30不可压缩气流的连续方程的表达式;不考虑摩擦损失的情况下,低速气流的伯努利方程的表达式? 31流动空气中共包含哪几种形式的能量? 32翼型前缘附近,气流流速为零的点称为什么,有什么特点?在流管最细的地方,称为什么,有什么特点? 33桨叶与空气发生相对运动时,作用在其上的空气动力有哪两部分? 34升力作用线与翼弦的交点即是升力的作用点,称之为什么?

相关文档
最新文档