大学物理复习第七章

大学物理复习第七章
大学物理复习第七章

第七章 静电场中的导体和电介质

一、静电感应:导体内自由电子在外电场作用下作定向运动,引起导体内正负电荷重新分布,

在导体两端出现等量异号电荷的现象

由静电感应产生的电荷称为感应电荷,感应电荷产生的电场称为附加电场。

二、静电平衡:导体内部和表面的电荷不做定向运动,从而电场分布不随时间变化时,该导

体达到了静电平衡。

均匀导体的静电平衡条件:(均匀指导体的质料和温度均匀)导体内场强处处为零。

0=+=感外内E E E

三、根据导体静电平衡条件,得到的推论:

①导体是个等势体,导体表面是个等势面;

设P 、Q 是导体上任意两点

0 =?=-?Q

p Q P l

d E U U

Q P U U =∴

②导体表面附近的场强处处与表面垂直。

静电平衡时,导体表面的电场强度可能不等于零,但导体表面是等势面,而电场线与等势面处处正交,所以导体表面的电场强度必与它的表面垂直。

四、静电平衡时导体上的电荷分布

①当导体处于静电平衡时,其电荷只能分布在导体的表面,导体内部处处内有净电荷存在:

1.实心导体:

导体处于静电平衡时,导体内部处处没有净电荷存在,其电荷只能分布在导体表面

证明:由导体的静电平衡条件和静电场的基本性质,可以得出导体上的电荷分布。 在导体内任取体积元V ? 010==

?∑?i i S q S d E ε

0==

∴?∑?V i i dV q ρ

体积元任取

导体内部)( 0=ρ

2.空腔导体

1)腔内没有电荷:

腔内无电荷的空腔导体其电荷只能分布在导体的外表面

2)腔内有电荷

电荷分布:

q Q -=腔内表面 )1(

Q q Q +=腔外表面 )2(

+

+ + + + + + +

+ + + + + + +

+ 0

=E

静电屏蔽原理:一个接地的导体空腔可屏蔽内外电场的相互影响

②处于静电平衡的导体,其表面上各处的电荷密度与该处紧邻处地电场强度大小成正比。 0

d εσS S E S ?=?? 0

εσS S E ?=? 0

εσ=E 0εσ=

E ③孤立的导体处于静电平衡时,它的表面各处的面电荷密度与各处表面的曲率有关,曲率越大的地方,面电荷也越大。

a.在表面凸出的尖锐部分(曲率为正值且较大)σ 较大,E 也较大。

b.在比较平坦部分(曲率较小)σ 较小,E 也较小。

c.在表面凹进(曲率为负值)部分σ 最小,E 也最小。

例题:两块大导体平板,面积为S ,分别带电q1和q2,两极板间距远小于平板的线度。求平板各表面的电荷密度。

电荷守恒:121q S S =+σσ

243q S S =+σσ

由静电平衡条件,导体板内E=0。

022224321=---=

o

o o o A E εσεσεσεσ

41σσ=S q q 221+= 022224321=-++=

o

o O O B E εσεσεσεσ 32σσ-=S q q 221-=

4 q 1 q 2

B A

特例:当两平板带等量的相反电荷时,

Q q q ≡-=21

41σσ=0=

32σσ-=σ==S

Q 电荷只分布在两个平板的内表面! 由此可知:两平板外侧电场强度为零,内侧0

εσ=E -------这就是平板电容器。 五、孤立导体:与其他物体距离足够远的导体。

六、C 是与导体的尺寸和形状有关,与u q ,无关,与两导体的尺寸、形状和相对位置有关

的常数

七、电容的计算

1.利用电容器的串并联公式: 串联:n

C C C C 111121+++= 总 并联:n C C C C +++= 21总

八、三种真空电容器的电容

1. 平行板的电容

d S C 0ε=

2. 同心球形的电容

A

B B A R R R R

C -=04πε

4

q 1 q 2

B A σ+σ

-

3. 同轴柱形的电容

)

ln(20A B R R l C πε= 九、.:导电能力很差的物质

电介质 发现极板间注入电介质,r U U ε0

= r E E ε0= U Q C 0=0

0U Q r ε= 0C C r ε=∴ .,是一个纯数介质的相对电容率 r ε1≥r ε

十、:电介质的主要特征

:它的原子或分子中的电子和原子核的结合能力很强,电子处于束缚状态

十一、正电荷“重心”:这些电荷离分子较远处所产生的电场时,或者考虑一个分子受外

电场的作用时,都可以认为其中正电荷集中于一点。

无极分子:每个分子的正、负电荷重心在没有外电场时彼此重合,因此与这分子等

效的电偶极子的偶极矩为零。 例如:氢、甲烷、石蜡

有极分子:每个分子的正、负电荷重心在没有外电场时彼此不重合,因此与这分子

等效的电偶极子的偶极矩不为零。 例如:水、纤维素、聚氯乙烯

十二、电介质的极化 :.,荷的现象电介质表面出现束缚电在外电场作用下

()无极分子的位移极化

1:在外电场的作用下,无极分子的正负电荷的“重心”相对位移而引起的极化。

()有极分子的取向极化2:在外电场的作用下,有极分子等效的电偶极子转向外电场

的方向,称为取向极化

在有极分子电介质中,两种极化机制都存在,但取向极化是主要的。

十三、

E E E '+= 0 000εσ=E 0εσ'='E

+ 0σ+0σ- -

E E E '-=0 000εσεσ'-= r E E ε0= r

εεσ00= 代入上式可得 011σεσ???

? ??-='r

十四、有介质时的高斯定理

)(0S 底面积为作如图高斯面

∑?=?0/εi s

q S d E ()00S q i ∑'-=σσ

011σεσ???? ?

?-='r

00S q r

i ∑=∴εσ ==?∑?0/εi s

q S d E 即 r S εεσ000 00q S d E s r

∑?=? εε E D r εε0=令 0q S d D s ∑?=? :

上式表明.

代数和面所包围的自由电荷的位移通量等于该闭合曲通过任意闭合曲面的电十五、D

电位移矢量 E D r εε0= r εεε0=

E D ε= 电介质的电容率 ε 电介质的相对电容率 r ε

0σ0σ-

十六、电容器电场能量:QU CU C Q W 2

121222=== Ed ,U = d S C /ε= ∴Sd E W 221ε= V E 22

1ε= 22

1E V W εω== DE 21= ,对于不均匀电场 dV dW ω=

dV E dW W V 22

1ε??== 例: 一平行板电容器极板面积为S ,间距为d ,其中平行放置一层厚度为L 的电介质,其相对电容率为r ε,介质两边都是相对电容率为1的空气。已知电容器两极板接在电势差为U

的恒压电源的两端,并忽略平行板电容器的边缘效应。求两极板间的电位移D 和场强E 的

分布,并求出极板上的电量Q 和电容C 。

2S D S d D ?=??? 2S S

Q ?= S Q D =∴ 01εεr D

E =∴ S Q r 0εε= 02εD

E = S

Q 0ε= ()t d E t E U -+=∴21 ()??????--=

r r d t S Qd εεε110 U Q C =∴ ()()r r r r o d t C d t d S εεεεε11110--=??

????--= 特例:0C C d t r ε==时,当

Q +Q

-

大学物理复习提纲

《大学物理》上册复习纲要 第一章 质点运动学 一、基本要求: 1、 熟悉掌握描述质点运动的四个物理量——位置矢量、位移、速度和加速度。会处理两类问题:(1)已知运动方程求速度和加速度;(2)已知加速度和初始条件求速度和运动方程。 2、 掌握圆周运动的角速度、角加速度、切向加速度和法向加速度。 二、内容提要: 1、 位置矢量: k z j y i x r ++= 位置矢量大小: 2 22z y x ++= 2、 运动方程:位置随时间变化的函数关系 k t z j t y i t x t r )()()()(++= 3、 位移?: z y x ?+?+?=? r s z y x ?≠?≠?+?+?=222)()()( 无限小位移:dr ds k dz j dy i dx r d ≠=++=???? 4、 瞬时速度: dt r d v = dt ds = = 5、 瞬时加速度: k dt z d j dt y d i dt x d k dt dv j dt dv i dt dv a z y x 222222++=++= 6、 圆周运动: 角速度dt d θω= 角加速度 22 dt d dt d θωα== 法向加速度速度方向的变化)(2 n n e r v a = 切向加速度速度大小的变化)(t αr e dt dv a t ==

例题:1.质点运动学(一):2,4,5,8;2.质点运动学(二):1,2,3,5; 第二章 牛顿定律 一、 基本要求: 1、 理解牛顿定律的基本内容; 2、 熟练掌握应用牛顿定律分析问题的思路和解决问题的方法。能以微积分为工具,求解一维变力作用下的简单动力学问题。 二、 内容提要: 1、 牛顿第二定律: a m F = 指合外力 合外力产生的加速度 在直角坐标系中: x x ma F = y y ma F = z z ma F = 在曲线运动中应用自然坐标系: r v m ma F n n 2 == dt dv m ma F t t == 例题:3、牛顿定律 2,3,5,8,9 第三章 动量守恒定律和能量守恒定律 一、 基本要求: 1、 理解动量、冲量概念,掌握动量定理和动量守恒定律,并能熟练应用。 2、 掌握功的概念,能计算变力作功,理解保守力作功的特点及势能的概念。 3、 掌握动能定理、功能原理和机械能守恒定律并能熟练应用。 二、 内容提要 (一) 冲量 1、 冲量: )212 1 t t dt F I t t -?=? 2、 动量: m = 3、 质点的动量定理: 12 2 1 m m dt t t -=?? 4、 动量守恒定律 条件:系统所受合外力为零或合外力在某方向上的分量为零; ∑-==n i i i m 1 恒矢量

高中物理必修二第七章知识点总结

第七章机械能知识点总结 一、功 1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物 体做了功。功是能量转化的量度。 2条件:. 力和力的方向上位移的乘积 3公式:W=F S cos θ W ——某力功,单位为焦耳(J ) F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m ) θ——力与位移的夹角 4功是标量,但它有正功、负功。 某力对物体做负功,也可说成“物体克服某力做功”。 当)2 ,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2 πθ=时,即力与位移垂直功为零,力不做功; 当],2 (ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。 6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。 7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。 即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ 8 合外力的功的求法: 方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。 方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。

二、功率 1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。 2公式:t W P =(平均功率) θυc o s F P =(平均功率或瞬时功率) 3单位:瓦特W 4分类: 额定功率:指发动机正常工作时最大输出功率 实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。 5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma 6 应用: (1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值max υ,则f P /max =υ。 (2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因 此机车速度继续增大,直至f F =时,汽车便达到最大速度max υ,则f P /max =υ。 三、重力势能 1定义:物体由于被举高而具有的能,叫做重力势能。 2公式:mgh E P = h ——物体具参考面的竖直高度 3参考面 a 重力势能为零的平面称为参考面; b 选取:原则是任意选取,但通常以地面为参考面

大学物理第十四章相对论习题解答

§14.1 ~14. 3 14.1 狭义相对论的两条基本原理为相对性原理;光速不变原理。 14.2 s ′系相对s 系以速率v=0.8c ( c 为真空中的光速)作匀速直线运动,在S 中观测一事件发生在m x s t 8103,1×==处,在s ′系中测得该事件的时空坐标分别为 t =′x 1×108 m 。 分析:洛伦兹变换公式:)t x (x v ?=′γ,)x c t (t 2v ?=′γ其中γ=,v =β。 14.3 两个电子沿相反方向飞离一个放射性样品,每个电子相对于样品的速度大小为0.67c , 则两个电子的相对速度大小为:【C 】 (A )0.67c (B )1.34c (C )0.92c (D )c 分析:设两电子分别为a 、b ,如图所示:令样品为相对静止参考系S , 则电子a 相对于S 系的速度为v a = -0.67c (注意负号)。令电子b 的参考系为 动系S '(电子b 相对于参考系S '静止),则S '系相对于S 系的速度v =0.67c 。 求两个电子的相对速度即为求S '系中观察电子a 的速度v'a 的大小。 根据洛伦兹速度变换公式可以得到:a a a v c v v 21v v ??=′,代入已知量可求v'a ,取|v'a |得答案C 。 本题主要考察两个惯性系的选取,并注意速度的方向(正负) 。本题还可选择电子a 为相对静止参考系S ,令样品为动系S '(此时,电子b 相对于参考系S '的速度为v'b = 0.67c )。那么S '系相对于S 系的速度v =0.67c ,求两个电子的相对速度即为求S 系中观察电子b 的速度v b 的大小。 14.4 两个惯性系存在接近光速的相对运动,相对速率为u (其中u 为正值) ,根据狭义相对论,在相对运动方向上的坐标满足洛仑兹变换,下列不可能的是:【D 】 (A )221c u /)ut x (x ??=′; (B )22 1c u /)ut x (x ?+=′ (C )221c u /)t u x (x ?′+′=; (D )ut x x +=′ 分析:既然坐标满足洛仑兹变换(接近光速的运动),则公式中必然含有22 11c v ?=γ,很明显答案A 、B 、C 均为洛仑兹坐标变换的公式,答案D 为伽利略变换的公式。此题的迷惑性在于(B ),因为S '和S 系的选取是相对的,只是习惯上将动系选为S ',仅仅是字母符号的不同。 14.5 设想从某一惯性系K 系的坐标原点O 沿X 方向发射一光波,在K 系中测得光速u x =c ,则光对另一个惯性系K'系的速度u'x 应为【D 】

大学物理习题复习资料第二章

[习题解答] 2-1 处于一斜面上的物体,在沿斜面方向的力F作用下,向上滑动。已知斜面长为5.6m,顶端的高度为3.2m,F的大小为100N,物体的质量为12kg,物体沿斜面向上滑动的距离为4.0 m,物体与斜面之间的摩擦系数为0.24。求物体在滑动过程中,力F、摩擦力、重力和斜面对物体支撑力各作了多少功?这些力的合力作了多少功?将这些力所作功的代数和与这些力的合力所作的功进行比较,可以得到什么结论? 解物体受力情形如图2-3所示。力F所作的功 ; 摩擦力 图2-3 ,摩擦力所作的功 ; 重力所作的功 ; 支撑力N与物体的位移相垂直,不作功,即 ; 这些功的代数和为 .

物体所受合力为 , 合力的功为 . 这表明,物体所受诸力的合力所作的功必定等于各分力所作功的代数和。 2-3物体在一机械手的推动下沿水平地面作匀加速运动,加速度为0.49 m?s-2 。若动力机械的功率有50%用于克服摩擦力,有50%用于增加速度,求物体与地面的摩擦系数。 解设机械手的推力为F沿水平方向,地面对物体的摩擦力为f,在这些力的作用下物体的加速度为a,根据牛顿第二定律,在水平方向上可以列出下面的方程式 , 在上式两边同乘以v,得 , 上式左边第一项是推力的功率()。按题意,推力的功率P是摩擦力功率fv的二倍,于是有 . 由上式得 , 又有

, 故可解得 . 2-4有一斜面长5.0 m、顶端高3.0 m,今有一机械手将一个质量为1000 kg的物体以匀速从斜面底部推到顶部,如果机械手推动物体的方向与斜面成30 ,斜面与物体的摩擦系数为0.20,求机械手的推力和它对物体所作的功。 解物体受力情况如图2-4所示。取x轴沿斜面向上,y轴垂直于斜面向上。可以列出下面的方程 ,(1) ,(2) . (3) 根据已知条件 , . 由式(2)得 图2-4 . 将上式代入式(3),得 . 将上式代入式(1)得

人教版高一物理必修二第七章功、功率复习知识点总结

第二节功 1.追寻守恒量 (1)伽利略的斜面实验探究如图所示。 ①过程:不计一切摩擦,将小球由斜面A上某位置滚落,它就要继续滚上另一个斜面B。 ②现象:无论斜面B比斜面A陡些或缓些,小球的速度最后总会在斜面上的某点变为0,这一点距斜面底端的竖直高度与它出发时的高度相同。 ③结论:这一事实说明某个量是守恒的。在物理学中我们把这个量叫做能量或能。 (2)势能:相互作用的物体凭借其位置而具有的能量。 (3)动能:物体由于运动而具有的能量。 (4)能量转化:小球从斜面A上下落的过程势能转化为动能;沿斜面B升高时,动能转化为势能。 2.功 (1)概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。 (2)做功的三个因素: A、作用在物体上的力; B、力的作用点以地面为参照物的位移(相对于地面静止的物体均可作为参考物); C、力和位移夹角的余弦值 说明:A、功和物体运动的快慢、运动的性质、接触面是否光滑、物体质量

的大小等都无关系。 B、功是一个过程量,功描述了力的作用效果在空间上的积累,它总与一个具体运动过程相对应。 (3)做功的公式:W=Fl cosα, (4)单位:国际单位制中,功的单位是焦耳,简称焦,符号是J。 (5)适用于恒力做功 3.正功和负功 功是标量,由W=Fl cosα可知: (1)当α=π 2时,W=0,力对物体不做功,力既不是阻力也不是动力。 (2)当0≤α<π 2时,W>0,力对物体做正功,做功的力是动力。 (3)当π 2<α≤π时,W<0,力对物体做负功,或说成物体克服这个力做功,做 功的力是阻力。 对功的理解 利用公式W=Fl cosα计算时F、l需要带表示方向的正负号吗? 提示:功是标量,没有方向,计算时力F和位移l都只要代入数值就行。 正功一定比负功大吗? 提示:功是标量,功的正负既不表示方向也不表示大小,比较功的大小,只需比较数值的大小,与正负号无关,所以正功不一定比负功大。 功的正负的意义是什么? 提示:当0°≤α<90°时,cosα为正,力F做正功,此时力为动力。同理,当90°<α≤180°时,力F做负功,此时力为阻力。故功的正负表示的是动力做功还是阻力做功。 负功的理解:一个力对物体做负功时,我们可以说成物体克服这个力做了功(正值)。如摩擦力对滑块做了-5 J的功,可以说成滑块克服摩擦力做了5 J的功。

大学物理学 (第3版.修订版) 北京邮电大学出版社 下册 第十四章习题14 答案

习题14 14.1 选择题 (1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ] (A) 对应的衍射角变小.(B) 对应的衍射角变大. (C) 对应的衍射角也不变.(D) 光强也不变. [答案:B] (2)波长λ=500 nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ] (A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m [答案:B] (3)波长为λ的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角θ 的公式可写成[ ] (A) N a sinθ=kλ.(B) a sinθ=kλ. (C) N d sinθ=kλ.(D) d sinθ=kλ. [答案:D] (4)设光栅平面、透镜均与屏幕平行。则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ] (A)变小。(B)变大。 (C)不变。(D)的改变无法确定。 [答案:B] (5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ] (A) a=0.5b(B) a=b (C) a=2b(D)a=3b [答案:B] 14.2 填空题 (1)将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于________________. λθ] [答案:/sin (2)波长为λ的单色光垂直入射在缝宽a=4 λ 的单缝上.对应于衍射角?=30°,单缝处的波面可划分为______________个半波带。 [答案:4] (3)在夫琅禾费单缝衍射实验中,当缝宽变窄,则衍射条纹变;当入射波长变长时,则衍射条纹变。(填疏或密) [答案:变疏,变疏]

(完整版)大学物理上册复习提纲

《大学物理》上册复习纲要 第一章 质点运动学 一、基本要求: 1、 熟悉掌握描述质点运动的四个物理量——位置矢量、位移、速度和加速度。会处理两类问题:(1)已知运动方程求速度和加速度;(2)已知加速度和初始条件求速度和运动方程。 2、 掌握圆周运动的角速度、角加速度、切向加速度和法向加速度。 二、内容提要: 1、 位置矢量: z y x ++= 位置矢量大小: 2 22z y x ++= 2、 运动方程:位置随时间变化的函数关系 t z t y t x t )()()()(++= 3、 位移?: z y x ?+?+?=? 无限小位移:k dz j dy i dx r d ++= 4、 速度: dt dz dt dy dt dx ++= 5、 加速度:瞬时加速度: k dt z d j dt y d i dt x d k dt dv j dt dv i dt dv a z y x 222222++=++= 6、 圆周运动: 角位置θ 角位移θ? 角速度dt d θω= 角加速度22dt d dt d θ ωα== 在自然坐标系中:t n t n e dt dv e r v a a +=+=2 三、 解题思路与方法: 质点运动学的第一类问题:已知运动方程通过求导得质点的速度和加速度,包括它沿各坐标轴的分量;

质点运动学的第二类问题:首先根据已知加速度作为时间和坐标的函数关系和必要的初始条件,通过积分的方法求速度和运动方程,积分时应注意上下限的确定。 第二章 牛顿定律 一、 基本要求: 1、 理解牛顿定律的基本内容; 2、 熟练掌握应用牛顿定律分析问题的思路和解决问题的方法。能以微积分为工具,求解一维变力作用下的简单动力学问题。 二、 内容提要: 1、 牛顿第二定律: a m F = 指合外力 a 合外力产生的加速度 在直角坐标系中: x x ma F = y y ma F = z z ma F = 在曲线运动中应用自然坐标系: r v m ma F n n 2 == dt dv m ma F t t == 三、 力学中常见的几种力 1、 重力: mg 2、 弹性力: 弹簧中的弹性力kx F -= 弹性力与位移成反向 3、 摩擦力:摩擦力指相互作用的物体之间,接触面上有滑动或相对滑动趋势产生的一种阻碍相对滑动的力,其方向总是与相对滑动或相对滑动的趋势的方向相反。 滑动摩擦力大小: N f F F μ= 静摩擦力的最大值为:N m f F F 00μ= 0μ静摩擦系数大于滑动摩擦系数μ 第三章 动量守恒定律和能量守恒定律 一、 基本要求: 1、 理解动量、冲量概念,掌握动量定理和动量守恒定律,并能熟练应用。 2、 掌握功的概念,能计算变力作功,理解保守力作功的特点及势能的概念。 3、 掌握动能定理、功能原理和机械能守恒定律并能熟练应用。 4、 了解完全弹性碰撞和完全非弹性碰撞的特点。 二、 内容提要 (一) 冲量

大学物理复习资料

1.将一点电荷q放在球形高斯面的中心处,试问在下列哪一种情况下,通过高斯面的电场强度通量会发生变化( B ) A、将另一带电体Q从远处移到高斯面外; B、将另一带电体Q从远处移到高斯面内; C、将高斯面内的点电荷q移离球心处,但仍在高斯面内; D、改边高斯面的大小形状,但依然只有点电荷q留在高斯面 2.根据高斯定理的数学表达式可知下述各种说法中,正确的是 (C G)。 A闭合高斯面内的电荷代数和为零时,闭合面上的各点电场强度一定为零 B闭合高斯面内的电荷代数和不为零时,闭合面上的各点电场强度一定处处不为零; C闭合高斯面内的电荷代数和为零时,闭合面上的各点电场强度不一定处处为零; D闭合高斯面上各点电场强度均为零时,闭合面内一定处处无电荷。 E如果闭合高斯面内无电荷分布,闭合面上的各点电场强度处处为零; F如果闭合高斯面上的电场强度处处不为零,则闭合面内必有电荷分布; G如果闭合高斯面内有净电荷,则通过闭合面的电通量必不为零; H高斯定理仅适用于具有高度对称性的电场。 3.一半径为R的“无线长”均匀带电圆柱面,其单位长度带电荷λ。该圆柱

面内、外电场强度分布为(r【矢量】表示垂直与圆柱面的平面上。从轴线处引出的矢径)E(r)【矢量】=????(rR),外部电场方向沿半径方向 4 5.把一个均匀带有电荷+Q的球形肥皂泡由半径r1吹胀到r2,则半径为R(r1<R<r2=的球面上任一点的场强大小E由______________变为______________;电势U由 __________________________变为 ________________(选无穷远处为电势零点). 6. 两个同心球面的半径分别为R1 和R2 ,各自带有电荷Q1 和Q2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?

大学物理答案第14章

第十四章 波 动 光 学 14-1 在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏 上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( ) (A ) 中央明纹向上移动,且条纹间距增大 (B ) 中央明纹向上移动,且条纹间距不变 (C ) 中央明纹向下移动,且条纹间距增大 (D ) 中央明纹向下移动,且条纹间距不变 分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.故选(B ). 题14-1 图 14-2 如图所示,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( ) ()()()()2222222D 2C 22B 2A n e n e n e n e n λ λλ --- 题14-2 图 分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上表面的反射光有半波损失,下表面的反射光没有半波损失,故它们的光程差

2 22λ ±=?e n ,这里λ是光在真空中的波长.因此正确答案为(B ). 14-3 如图(a )所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离L 变小,则在L 范围内干涉条纹的( ) (A ) 数目减小,间距变大 (B ) 数目减小,间距不变 (C ) 数目不变,间距变小 (D ) 数目增加,间距变小 题14-3图 分析与解 图(a )装置形成的劈尖等效图如图(b )所示.图中 d 为两滚柱的直径差,b 为两相邻明(或暗)条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为(C ) 14-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为( ) (A ) 3 个 (B ) 4 个 (C ) 5 个 (D ) 6 个 分析与解 根据单缝衍射公式 ()()(),...2,1 212 22sin =??? ????+±±=k λk λk θb 明条纹暗条纹 因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.故选(B ). 14-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b 1.0 ×10-4 cm 的光栅上,可能观察到的光谱线的最大级次为( ) (A ) 4 (B ) 3 (C ) 2 (D ) 1 分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为 ()82.1/2dsin max =≤ λπk 即只能看到第1 级明纹,正确答案为(D ).

大学物理学复习资料

大学物理学复习资料 第一章 质点运动学 主要公式: 1.笛卡尔直角坐标系位失r=x i +y j +z k , 质点运动方程(位矢方程):k t z j t y i t x t r )()()()(++= 参数方程:。t t z z t y y t x x 得轨迹方程消去→?? ?? ?===)()() ( 2.速度:dt r d v = 3.加速度:dt v d a = 4.平均速度:t r v ??= 5.平均加速度:t v a ??= 6.角速度:dt d θ ω= 7.角加速度:dt d ω α= 8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dt dv a == 10.法向加速度:R v R a n 2 2 ==ω 11.总加速度:2 2n a a a +=τ 第二章 牛顿定律 主要公式: 1.牛顿第一定律:当0=合外F 时,恒矢量=v 。 2.牛顿第二定律:dt P d dt v d m a m F = == 3.牛顿第三定律(作用力和反作用力定律):F F '-=

第三章 动量和能量守恒定律 主要公式: 1.动量定理:P v v m v m dt F I t t ?=-=?=?=?)(1221 2.动量守恒定律:0,0=?=P F 合外力当合外力 3. 动能定理:)(2 1212 22 1 v v m E dx F W x x k -= ?=?=? 合 4.机械能守恒定律:当只有保守内力做功时,0=?E 第五章 机械振动 主要公式: 1.)cos(?ω+=t A x T πω2= 弹簧振子:m k =ω,k m T π2= 单摆:l g = ω,g l T π2= 2.能量守恒: 动能:221 mv E k = 势能:2 2 1kx E p = 机械能:22 1 kA E E E P k =+= 3.两个同方向、同频率简谐振动的合成:仍为简谐振动:)cos(?ω+=t A x 其中: ? ? ???++=?++=22112211212221cos cos sin sin cos 2??????A A A A arctg A A A A A a. 同相,当相位差满足:π?k 2±=?时,振动加强,21A A A MAX +=; b. 反相,当相位差满足:π?)12(+±=?k 时,振动减弱,21A A A MIN -=。

高一物理必修二第七章--机械能守恒定律及答案

高一物理必修二第七章--机械能守恒定律及 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 第七章 机械能守恒定律 一、选择题 1.质量为m 的小物块在倾角为α的斜面上处于静止状态,如图所示。若斜面体和小物块一起以速度v 沿水平方向向右做匀速直线运动,通过一段位移x 。斜面体对物块的摩擦力和支持力的做功情况是( ) A .摩擦力做正功,支持力做正功 B .摩擦力做正功,支持力做负功 C .摩擦力做负功,支持力做正功 D .摩擦力做负功,支持力做负功 2.在粗糙水平面上运动着的物体,从A 点开始在大小不变的水平拉力F 作用下做直线运动到B 点,物体经过A 、B 点时的速度大小相等。则在此过程中( ) A .拉力的方向一定始终与滑动摩擦力方向相反 B .物体的运动一定不是匀速直线运动 C .拉力与滑动摩擦力做的总功一定为零 D .拉力与滑动摩擦力的合力一定始终为零 3.材料相同的A 、B 两块滑块质量m A >m B ,在同一个粗糙的水平面上以相同的初速度运动,则它们的滑行距离x A 和x B 的关系为( ) A .x A >x B B .x A = x B C .x A <x B D .无法确定 4.某人在高h 处抛出一个质量为m 的物体,不计空气阻力,物体落地时速度为 v ,该人对物体所做的功为( ) A .mgh B .22v m C .mgh +2 2 v m D .2 2 v m -mgh 5.如图所示的四个选项中,木块均在固定的斜面上运动,其中图A 、B 、C 中的斜面是光滑的,图D 中的斜面是粗糙的,图A 、B 中的F 为木块所受的外力,方向如图中箭头所示,图 A 、B 、D 中的木块向下运动,图C 中的木块向上运动,在这四个图所示的运动过程中机械能守恒的是 A B C D 6.在下面列举的各个实例中,哪些情况机械能是守恒的?( ) A .汽车在水平面上匀速运动 B .抛出的手榴弹或标枪在空中的运动(不计空气阻力) C .拉着物体沿光滑斜面匀速上升 D .如图所示,在光滑水平面上运动的小球碰到一个弹簧,把弹簧压缩后,又被弹回来 7.沿倾角不同、动摩擦因数 相同的斜面向上拉同一物体,若上升的高度相同,则( ) v v

大学物理2,14.第十四章思考题

1、在夫琅和费单缝衍射实验中,波长为的单色光垂直入射在宽度为4的单缝上, 对应的衍射角为30°,则单缝处的波阵面可以划分成多少个半波带 【答案:4】 详解:依题意,在衍射角为30°的方向上的最大光程差为 λλθ230sin 4sin ==οa 因此单缝处的波阵面可划分的半波带数目为 42 /sin =λθ a 2、一束波长为的平行单色光垂直入射在单缝AB 上,装置如图14-11所示。在屏幕E 上形成衍射图样,如果P 是中央亮纹一侧第一条暗纹的位置,则BC 的长度是波长的多少倍 【答案:1】 详解:由于P 是中央亮纹一侧第一条暗纹的位置,因此 λθ==sin a BC 即BC 的长度是波长的1倍。 3、在如图14-12所示的夫琅和费单缝衍射实验中,如果将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹间距如何变化 明暗条纹的位置是否发生变化 【答案:屏幕上的衍射条纹间距和明暗条纹的位置都不变】 详解:由于屏幕上的衍射条纹间距和明暗条纹的位置与单缝和透镜之间的距离无关,因此当单缝沿透镜光轴方向向透镜平移时,屏幕上的衍射条纹间距和明暗条纹的位置都不改变。 4、在夫琅和费单缝衍射实验中,波长为的单色光垂直入射到单缝上。在衍射角等于30°的方向上,单缝处的波面可以划分成4个半波带,则狭缝宽度a 等于的多少倍 【答案:4】 详解:依题意有 E 图14-11 P A B L f C E 图14-12 L f (移动方向)

42 /30sin =λο a 解之得 λ4=a 即此时狭缝宽度a 等于的4倍。 5、波长为500nm 的单色光垂直照射到宽度为0.25mm 的单缝上,单缝后面放置一块凸透镜,在凸透镜的焦平面上放置一个用来观测衍射条纹的屏幕。测得屏幕上中央明条纹两侧的第三条暗条纹之间的距离为12mm ,则凸透镜的焦距f 等于多少 【答案:1m 】 详解:中央明条纹两侧的第k 条暗条纹之间的距离为 λa f k x 2=? 由此解得凸透镜的焦距为 λ k x a f 2?=9 3 3105003210121025.0---??????= m)(1= 6、在如图14-13所示的夫琅和费单缝衍射实验中,中央明纹的衍射角范围很小。如果使单缝宽度a 变为原来的倍,同时使入射单色光的波长变为原来的倍,则屏幕E 上单缝衍射条纹中央明纹的宽度x 将变为原来的多少倍 【答案:】 详解:原来中央明条纹的宽度为 λa f x =? 单缝宽度、入射光波长改变之后中央明条纹的宽度为 λ75.05.1?= '?a f x λa f 5.0=x ?=5.0 即屏幕E 上单缝衍射条纹中央明纹的宽度将变为原来的倍。 7、在夫琅和费单缝衍射实验中,屏上第三级暗条纹对应的单缝处波面可划分为多少个半波带如果将缝宽缩小一半,原来的第三级暗纹处将是什么条纹 【答案:6;第一级明条纹】 详解:第三级暗条纹对应的最大光程差为 λθ3sin =a 因此单缝处的波阵面可划分的半波带数目为 E 图14-13 L f a

大学物理 复习

一、单选题 2.在物理学发展史上伽利略、开普勒等许多科学家为物理学的发展做出了巨大贡献。以下选项中不符合他们观点的是( ) A.伽利略认为:在忽略空气阻力情况下,羽毛和铁块下落速度一样快 B.伽利略认为:物体沿光滑斜面下滑后上升到另一光滑斜面,最终将回到原来的高度 C.开普勒认为:火星与太阳连线在相等时间内扫过的面积相同 D.开普勒认为:绕太阳公转的所有行星轨道半长轴长度跟它的公转周期的比值都相等 4.以下关于行星运动及万有引力的描述正确的是( ) A.卡文迪许利用扭秤实验测出了引力常量的数值 B.太阳对行星的引力与地球对月球的引力属于不同性质的力 C.牛顿提出的万有引力定律只适用于天体之间 D.开普勒认为行星绕太阳运行的轨道是椭圆,行星在轨道上各个地方的速率均相等 5.下列说法正确的是( ) A.伽利略认为物体越重,下落得越快 B.亚里士多德认为物体下落的快慢与物体的轻重无关 C.牛顿管实验说明没有空气阻力时,铁块和羽毛下落快慢相同 D.石头下落比树叶快,是因为树叶受到空气阻力,而石头没有受到空气阻力 6.下列说法中正确的是( ) A.牛顿首先提出理想实验,证实自由落体运动是匀变速直线运动 B.牛顿发现万有引力定律,认为物体之间普遍存在万有引力 C.牛顿利用扭秤最先测出了引力常量 D.为了纪念牛顿,将力的国际单位命名为牛顿,并将其作为基本单位 8.下列说法正确的是( ) A.曲线运动物体的速度可能不变 B.匀速圆周运动物体的合外力一定不为零 C.哥白尼发现了行星运动三大定律 D.经典力学适用于宏观高速物体 9.关于物理学史,下列说法中不正确的是( ) A.电荷量e的数值最早是由美国物理学家密立根测得的 B.法拉第不仅提出了场的概念,而且直观地描绘了场的清晰图像 C.法拉第通过实验研究确认了真空中两点电荷之间相互作用力的规律 D.库仑在前人工作的基础上,通过实验研究确认了真空中两个静止点电荷之间的相互作用力的规律 10.下列说法中符合物理史实的是( ) A.开普勒发现了万有引力定律 B.伽利略发现了行星的运动规律 C.牛顿首次在实验室里较准确地测出了万有引力常量 D.牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律 11.万有引力常量G=6.67× 10-11N·m2/kg2是由下述哪位物理学家测定的( ) A.卡文迪许 B.牛顿 C.胡克 D.开普勒 13.物理学家通过对实验的深入观察和研究,获得正确的科学认知,推动物理学的发展,下列说法符合事实的是( ) A.光电效应说明光具有粒子性,康普顿效应说明光具有波动性. B.卢瑟福用人工转变的方法,发现了质子并预言了中子的存在 C.玻尔的原子理论成功地解释了原子发光的规律 D.贝克勒尔通过对天然放射现象的研究,发现了原子中存在原子核

2020人教版物理必修二 第7章 第7节

第七章 第七节 基础夯实 一、选择题(1~4题为单选题,5、6题为多选题) 1.在水平路面上,有一辆以36 km/h 行驶的客车,在车厢后座有一位乘客甲,把一个质量为4 kg 的行李以相对客车5 m/s 的速度抛给前方座位的另一位乘客乙,则以地面为参考系行李的动能和以客车为参考系行李的动能分别是( B ) A .200 J 50 J B .450 J 50 J C .50 J 50 J D .450 J 450 J 解析:行李相对地面的速度v =v 车+v 相对=15 m/s ,所以行李的动能E k =1 2m v 2=450 J 。 行李相对客车的速度v ′=5 m/s , 所以行李的动能E k ′=1 2 m v ′2=50 J 2.如图所示,某人骑自行车下坡,坡长l =500 m ,坡高h =8 m ,人和车总质量为100 kg ,下坡时初速度为4 m/s ,人不踏车的情况下,到达坡底时车速为10 m/s ,g 取10 m/s 2,则下坡过程中阻力所做的功为( B ) A .-4 000 J B .-3 800 J C .-5 000 J D .-4 200 J 解析:由动能定理有 mgh +W f =12 m (v 2t -v 2 0),解得: W f =-mgh +12 m (v 2t -v 20)=-3 800 J ,故B 正确。 3.某同学用200 N 的力将质量为0.44 kg 的足球踢出,足球以10 m/s 的初速度沿水平草坪滚出60 m 后静止,则足球在水平草坪上滚动过程中克服阻力做的功是( B )

A.4.4 J B.22 J C.132 J D.12 000 J 解析:根据动能定理,W=1 2m v 2= 1 2×0.44×10 2 J=22 J。 4.(2018·河南省洛阳市高一下学期期中)如图所示,一物体以6 J的初动能从A点沿AB圆弧下滑,滑到B点时动能仍为6 J,若物体以8 J的初动能从A点沿同一路线滑到B点,则物体到B点时的动能是(A) A.小于8 J B.等于8 J C.大于8 J D.不能确定 解析:当物体以6J的初动能从A点沿AB圆弧下滑,滑到B点时动能仍为6 J,根据动能定理有:W G+W f=0,当以8 J的初动能从A点下滑时,由于物体沿圆弧下滑,指向圆心的合力提供向心力,由于速度变大,圆弧轨道给物体的弹力变大,根据滑动摩擦力大小的计算式:f=μF N,可得物体受到的摩擦力增大,在从A到B的过程中,物体通过的圆弧长度不变,所以物体在从A到B的过程中,克服摩擦力做功增大,重力做功不变,所以到达B 点时动能小于8 J,故A正确,BCD错误。 5.关于运动物体所受的合力、合力的功、运动物体动能的变化,下列说法正确的是(BCD) A.运动物体所受的合力不为零,合力必做功,物体的动能一定要变化 B.运动物体所受的合力为零,则物体的动能一定不变 C.运动物体的动能保持不变,则该物体所受合力不一定为零 D.运动物体所受合力不为零,则该物体一定做变速运动 解析:由功的公式W=Fl cosα知,合力不为零,但若α=90°,合力的功也为零,A错误。若合力为零,则合力的功也为零,由动能定理W总=E k2-E k1,合力做的总功必为零,则物体的动能不发生改变,B正确,另外,由牛顿第二定律,有合力作用,就一定会改变物体的运动状态,物体做变速运动。 6.物体沿直线运动的v-t图像如图所示,已知在第1 s内合力对物体做的功为W,则(CD)

大学物理复习题

8. 真空系统的容积为×10-3m 3,内部压强为×10-3Pa 。为提高真空度,可将容器加热,使附着在器壁的气体分子放出,然后抽出。设从室温(200C )加热到2200C ,容器内压强增为。则从器壁放出的气体分子的数量级为B (A )1016个; (B )1017个; (C )1018个; (D )1019个 13. 一理想气体系统起始温度是T ,体积是V ,由如下三个准静态过程构成一个循环:绝热膨胀2V ,经等体过程回到温度T ,再等温地压缩到体积V 。在些循环中,下述说法正确者是( A )。 (A )气体向外放出热量; (B )气体向外正作功; (C )气体的内能增加; (C )气体的内能减少。 19. 在SI 中,电场强度的量纲是 ( C ) (A )11--MLT I (B )21--MLT I (C )31--MLT I (D )3-IMLT 20. 在带电量为+q 的金属球的电场中,为测量某点的场强E ,在该点放一带电电为 、 的检验电荷,电荷受力大小为F ,则该点电场强度E 的大小满足 ( D ) (A ) (B ) (D ) (D )E 不确定 21. 在场强为E 的匀强电场中,有一个半径为R 的半球面,若电场强度E 的方向与半球面的对称轴平行,则通过这个半球面的电通量的大小为( A ) (A )πR 2E ; (B )2πR 2E ; (C );22 E R π (D ) E R 22 1π。 24. 两个载有相等电流I 的圆线圈,一个处于水平位置,一个处于竖直位置,如图所示。在圆心O 处的磁感强度的大小是 ( C ) (A ) 0 (B ) (C ) (D ) ] 25. 无限长载流直导线在P 处弯成以O 为圆心,R 为半径的圆,如图示。若所通电流为I ,缝P 极窄,则O 处的磁感强度B 的大小为 ( C ) (A ) (B ) (C ) (D ) 26. 如图所示,载流导线在圆 心O 处的磁感强度的大小为 ( D ) 3 q + q F E 3=q F E 3?q F E 3?R I u 20R I u 220R I u 0R I u π0R I u 0R I u 2110? ?? ? ?-πR I u 2110??? ? ?+π

大学物理第二章练习答案

第二章 运动的守恒量和守恒定律 练 习 一 一. 选择题 1. 关于质心,有以下几种说法,你认为正确的应该是( C ) (A ) 质心与重心总是重合的; (B ) 任何物体的质心都在该物体内部; (C ) 物体一定有质心,但不一定有重心; (D ) 质心是质量集中之处,质心处一定有质量分布。 2. 任何一个质点系,其质心的运动只决定于( D ) (A )该质点系所受到的内力和外力; (B) 该质点系所受到的外力; (C) 该质点系所受到的内力及初始条件; (D) 该质点系所受到的外力及初始条件。 3.从一个质量均匀分布的半径为R 的圆盘中挖出一个半径为2R 的小圆盘,两圆盘中心的距离恰好也为2R 。如以两圆盘中心的连线为x 轴,以大圆盘中心为坐标原点,则该圆盘质心位置的x 坐标应为( B ) (A ) R 4; (B) R 6; (C) R 8; (D R 12 。 4. 质量为10 kg 的物体,开始的速度为2m/s ,由于受到外力作用,经一段时间后速度变为6 m/s ,而且方向转过90度,则该物体在此段时间内受到的冲量大小为 ( B ) (A )s N ?820; (B) s N ?1020; (C) s N ?620; (D) s N ?520。 二、 填空题 1. 有一人造地球卫星,质量为m ,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示,则卫星的动量大小为R GM m 3。 2.三艘质量相等的小船在水平湖面上鱼贯而行,速度均等于0v ,如果从中间小船上同时以相对于地球的速度v 将两个质量均为m 的物体分别抛到前后两船上,设速度v 和0v 的方向在同一直线上,问中间小船在抛出物体前后的速度大小有什么变化:大小不变。 3. 如图1所示,两块并排的木块A 和B ,质量分别为m 1和m 2,静止地放在光滑的水平面上,一子弹水平地穿过两木块。设子弹穿过两木块所用的时间分别为?t 1和?t 2,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为 1A B F t m m ??+,木块 B 的速度大小为12F t A B B F t m m m ????++。 三、计算题 1. 一质量为m 、半径为R 的薄半圆盘,设质量均匀分布,试求薄半圆盘的质心位置。 图1

大学物理第二章 质点动力学习题解答

第二章 习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-=ρ(单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+==ρρ, j i a m F ?12?24+==ρρ 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为: j t b i t a r ?sin ?cos ωω+=ρ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a ρρρ2222)?sin ?cos (/ωωωω-=+-== r m a m F ρ ρρ2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可 伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律: ②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ ①+②可求得:g m m g m F a μμ-+-= 2 112 将a 代入①中,可求得:2 111) 2(m m g m F m T +-= μ 2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2 的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。 解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律: f 1 N 1 m 1 g T a F N 2 m 2g T a N 1 f 1 f 2 T' a T' a

相关文档
最新文档