关于市政道路沥青路面上面层混合料的配合比设计探讨

关于市政道路沥青路面上面层混合料的配合比设计探讨
关于市政道路沥青路面上面层混合料的配合比设计探讨

关于市政道路沥青路面上面层混合料的配合比设计探讨

摘要:面层施工质量的优劣是影响沥青路面使用寿命的重要因素之一。本文结合工作经验,对沥青路面上面层混合料的配合比进行了设计,提出了沥青路面上层施工的关键技术,供借鉴参考。

关键词:沥青路面;沥青混合料;配合比设计;施工技术

随着我国经济的快速发展,城镇化的日益加快,人口日益增加,城市发展对市政道路沥青路面的质量要求愈来愈高,配合比的设计与混合料的生产需要在实践中不断的发现问题、解决问题,及时收集资料并不断积累经验,以提高沥青路面的施工技术水平。

1沥青混合料的配合比设计

1.1原材料要求

1.1.1粗集料

用于沥青混合料面层的粗集料,宜采用碎石或碎砾石,其粒径规格和质量要求均应符合《城镇道路工程施工与质量验收规范》(CJJ1-2008)的规定。

(1)粗集料应洁净、干燥、无风化、无有害杂质,且具有一定硬度和强度。

(2)粗集料应具有良好的颗粒形状,破碎砾石用于快速路、主干路时,应采用大砾石破碎,并至少应有两个以上的破碎面。

(3)对于抗滑表层粗集料应选择硬质岩(中性或基性火成岩)。由于硬质岩石与沥青的粘接力存在着较大差异,粗集料与沥青的粘附性应不小于4级。对于3mm~5mm石屑部分由于含量较低,并且该部分对沥青混合料形成嵌接结构有一定的作用,建议用硬质岩石屑(玄武岩)。

1.1.2细集料

细集料包括人工砂、天然砂。沥青路面面层宜采用人工砂作为细集料,细集料应洁净、干燥、无风化、无有害杂质,有适当的颗粒组成,并与改性沥青有良好的粘附性,天然砂由于质量变化大(大部分为中粗砂),形状较圆滑,与沥青的粘附性差,对沥青混合料影响较大。对于快速路、主干路沥青混合料,天然砂的含量不宜超过20%,可用0mm~3mm的石屑粉代替天然砂。

1.1.3填充料

AC-13沥青混凝土配合比设计过程

热拌沥青混合料配合比设计方法 1.矿质混合料组成设计 (1)根据道路等级、路面结构层位及结构层厚度等方面要求,按照上述方法,选择适用的沥青混合料类型,并按照表8-22和表8-23(现行规范)或8-24和表8-25(新规范稿)的内容确定相应矿料级配范围,经技术经济论证后确定。 (2)矿质混合料配合比计算 1)组成材料的原始数据测定 按照规定方法对实际工程使用的材料进行取样,测试粗集料、细集料及矿粉的密度,并进行筛分试验,测定各种规格集料的粒径组成。 2)确定各档集料的用量比例 根据各档集料的筛分结果,采用计算法或图解法,确定各规格集料的用量比例,求得矿质混合料的合成级配。矿质混合料的合成级配曲线必须符合设计级配范围的要求,不得有过多的犬牙交错。当经过反复调整仍有两个以上的筛孔超出设计级配范围时,必须对原材料进行调整或更换原材料重新设计。 通常情况下,合成级配曲线宜尽量接近设计级配中限,尤其应使0.075mm、2.36mm、4.75mm等筛孔的通过量尽量接近设计级配范围的中限。对于交通量大、轴载重的道路,合成级配可以考虑偏向级配范围的下限,而对于中小交通量或人行道路等,合成级配宜偏向级配范围的上限。 2.沥青混合料马歇尔试验 沥青混合料马歇尔试验的主要目的是确定最佳沥青用量(以OAC表示)。沥青用量可以通过各种理论公式计算得到,但由于实际材料性质的差异,计算得到

的最佳沥青用量,仍然要通过试验进行修正,所以采用马歇尔试验是沥青混合料配合比设计的基本方法。 (1)制备试样 1)马歇尔试件制备过程是针对选定混合料类型,根据经验确定沥青大致用量或依据表4-10推荐的沥青用量范围,在该用量范围内制备一批沥青用量不同、且沥青用量等差变化的若干组(通常为五组)马歇尔试件,并要求每组试件数量不少于4个。 2)按已确定的矿质混合料级配类型,计算某个沥青用量条件下一个马歇尔试件或一组试件中各种规格集料的用量(实践中大多是一个标准马歇尔试件矿料总量1200g左右)。 3)确定一个或一组马歇尔试件的沥青用量(通常采用油石比),按要求将沥青和矿料拌制成沥青混合料,并按上节表8-7(现行规范要求)或表8-9(新规范要求)规定的击实次数和操作方法成型马歇尔试件。 (2)测定试件的物理力学指标 首先,测定沥青混合料试件的密度,并计算试件的理论最大密度、空隙率、沥青饱和度、矿料间隙率等参数。在测试沥青混合料密度时,应根据沥青混合料类型及密实程度选择测试方法。在工程中,吸水率小于0.5%的密实型沥青混合料试件应采用水中重法测定;较密实的沥青混合料试件应采用表干法测定;吸水率大于2%的沥青混合料、沥青碎石混合料等不能用表干法测定的试件应采用蜡封法测定;空隙率较大的沥青碎石混合料、开级配沥青混合料试件可采用体积法测定。 随后,在马歇尔试验仪上,按照标准方法测定沥青混合料试件的马歇尔稳定度和流值。 3.最佳沥青用量的确定

沥青路面设计计算案例及沥青路面课程设计

a沥青路面设计计算案例 一、新建路面结构设计流程 (1)根据设计要求,按弯沉或弯拉指标分别计算设计年限内一个车道的累计标准当量轴次,确定设计交通量与交通等级,拟定面层、基层类型,并计算设计弯沉值或容许拉应力。 (2)按路基土类与干湿类型及路基横断面形式,将路基划分为若干路段,确定各个路段土基回弹模量设计值。 (3)参考本地区的经验和规范拟定几种可行的路面结构组合与厚度方案,根据工程选用的材料进行配合比试验,测定各结构层材料的抗压回弹模量、劈裂强度等,确定各结构层的设计参数。 (4)根据设计指标采用多层弹性体系理论设计程序计算或验算路面厚度。如不满足要求,应调整路面结构层厚度,或变更路面结构组合,或调整材料配合比,提高材料极限抗拉强度,再重新计算。 (5)对于季节性冰冻地区应验算防冻厚度是否符合要求。 (6)进行技术经济比较,确定路面结构方案。 需要注意的是,完成结构组合设计后进行厚度计算,厚度计算应采用专业设计程序。有关公路新建及改建路面设计方法、程序及相关要求详见《沥青路面设计规范》。 二、计算示例 (一)基本资料 1.自然地理条件 新建双向四车道高速公路地处Ⅱ2区,拟采用沥青路面结构进行施工图设计,填方路基高1.8m,路基土为中液限黏性土,地下水位距路床表面2.4m,一般路基处于中湿状态。 2.土基回弹模量的确定 该设计路段路基处于中湿状态,路基土为中液限黏性土,根据室内试验法确定土基回弹模量设计值为40MPa。 3.预测交通量 预测竣工年初交通组成与交通量,见表9-11.预测交通量的年平均增长率为5.0%.

(二)根据交通量计算累计标准轴次Ne ,根据公路等级、面层、基层类型及Ne 计算设计弯沉值。 解:1.计算累计标准当量轴次 标准轴载及轴载换算。 路面设计采用双轮组单轴载100KN 为标准轴载,以BZZ-100表示,根据《沥青路面设计规范》规定,新建公路根据交通调查资料,主要以中客车、大客车、轻型货车、中型货车、大型货车、铰链挂车等的数量与轴重进行预测设计交通量,即除桑塔纳2000外均应进行换算。计算公司为: 35.4121)(∑==n i i i P P n C C N 对于北京BJ130型轻型货车 前轴:C1=1,C2=6.4,Pi=13.4KN ,ni=260 N=C1×C2×ni ×(Pi/P )4.35=1×6.4×260×(13.4/100)4.35=0.3(次/d) 后轴:C1=1,C2=1,Pi=27.4KN ,P=100KN,ni=260 N=C1×C2×ni ×(Pi/P )4.35=1×1×260×(27.4/100)4.35 =0.9(次/d) 对于东风EQ140型中型货车 前轴:N=7.9(次/d) 后轴:N=133.9(次/d) 对于东风SP9250型铰接挂车 前轴:N=110(次/d) 后轴:N=1704.3(次/d) 对于黄海DD680型大客车 前轴:N=129.3(次/d) 后轴:N=305.8(次/d) 对于黄河JN163型重型货车 前轴:543.3(次/d) 后轴:N=1534.8(次/d) 对于江淮AL6600型中客车 前轴:N=0.6(次/d) 后轴:N=0.7(次/d) 合计:N=4471.8(次/d) 累计标准当量轴次Ne 。 沥青路面高速公路设计使用年限以15年计,车道系数η=0.45,则累计当量轴次为:

水泥稳定碎石混合料配合比设计步骤教学资料

水泥稳定碎石混合料配合比设计步骤

1 原材料试验 1.1 水泥 用于水泥稳定碎石的水泥应进行常规的物理力学性能试验,包括:细度、标准稠度用水量、凝结时间、安定性及胶砂强度,其中初终凝时间应作为水泥稳定碎石层用水泥的主要控制指标,由于其受环境条件的影响较为明显,因此水泥试验室及水泥标准养护箱的温湿度一定要严格控制。 1.2 集料 用于水泥稳定碎石层的集料应进行的试验项目有:颗粒分析(级配)、碎石的压碎值、集料中0.5mm以下颗粒的液限及塑性指数等。碎石中细长扁平颗粒的含量试验,规范中没有要求,可根据具体工程项目的补充规定进行。另外,规范中对单粒级集料含泥量(<0.075mm颗粒含量)虽未做要求,但通过该项试验可以确定按一定比例合成后的混合料矿料中<0.075mm颗粒的含量是否超标。 2 水泥稳定碎石混合料试验 2.1 级配组成设计 根据各种规格集料的颗粒分析结果,通过调整不同规格集料的掺配比例组合出符合规范要求的级配,在满足规范要求的前提下,各种材料的比例应尽可能与碎石场生产的不同规格材料的比例协调,避免造成施工中某一规格的集料数量不足,而另一规格的集料又有大量的剩余。当混合料矿料中0.5mm以下颗粒的液限及塑性指数超标时,细集料(<4.75mm)部分可考虑采用石屑与洁净的天然砂掺合使用,以降低矿料中0.5mm以下颗粒的塑性指数,减少水泥稳定碎石层收缩裂缝的产生。

表1所列为京福福州段FB2标下湖路段采用不同的配合比铺筑的水泥稳定层试验段的比较情况,对应的水泥剂量为3.0%,比较得出,细集料30%石屑获得的7天平均无侧限抗压强度最高;但细集料采用10%石屑+20%闽江砂,养生7天和14天后结构层表面情况最佳。 表1 采用不同配合比铺筑水泥稳定层试验段比较情况 水泥稳定碎石混合料配合比设计步骤及注意事项(2) 时间:2010-08-01 00:57 来源:本站整理作者:周成銮阅读:2504次 2.2 标准击实试验

沥青混凝土配合比设计过程

热拌沥青混合料配合比设计方法 1 .矿质混合料组成设计 (1)根据道路等级、路面结构层位及结构层厚度等方面要求,按照上述方 法,选择适用的沥青混合料类型,并按照表8-22和表8-23 (现行规范)或8 -24和表8-25 (新规范稿)的内容确定相应矿料级配范围,经技术经济论证后确定。 (2)矿质混合料配合比计算 1)组成材料的原始数据测定 按照规定方法对实际工程使用的材料进行取样,测试粗集料、细集料及矿粉的密度,并进行筛分试验,测定各种规格集料的粒径组成。 2)确定各档集料的用量比例 根据各档集料的筛分结果,采用计算法或图解法,确定各规格集料的用量比例,求得矿质混合料的合成级配。矿质混合料的合成级配曲线必须符合设计级配范围的要求,不得有过多的犬牙交错。当经过反复调整仍有两个以上的筛孔超出设计级配范围时,必须对原材料进行调整或更换原材料重新设计。 通常情况下,合成级配曲线宜尽量接近设计级配中限,尤其应使0.075mm 2.36mm 4.75mm等筛孔的通过量尽量接近设计级配范围的中限。对于交通量大、轴载重的道路,合成级配可以考虑偏向级配范围的下限,而对于中小交通量或人 行道路等,合成级配宜偏向级配范围的上限。 2.沥青混合料马歇尔试验 沥青混合料马歇尔试验的主要目的是确定最佳沥青用量(以OAC表示)。沥青用量可以通过各种理论公式计算得到,但由于实际材料性质的差异,计算得到

的最佳沥青用量,仍然要通过试验进行修正,所以采用马歇尔试验是沥青混合料配 合比设计的基本方法。 (1)制备试样 1)马歇尔试件制备过程是针对选定混合料类型,根据经验确定沥青大致用量或依据表4-10 推荐的沥青用量范围,在该用量范围内制备一批沥青用量不同、且沥青用量等差变化的若干组(通常为五组)马歇尔试件,并要求每组试件 数量不少于 4 个。 2)按已确定的矿质混合料级配类型,计算某个沥青用量条件下一个马歇尔试件或一组试件中各种规格集料的用量(实践中大多是一个标准马歇尔试件矿料 总量1200g 左右)。 3)确定一个或一组马歇尔试件的沥青用量(通常采用油石比),按要求将沥青和矿料拌制成沥青混合料,并按上节表8-7(现行规范要求)或表8-9(新规范要求)规定的击实次数和操作方法成型马歇尔试件。 (2)测定试件的物理力学指标 首先,测定沥青混合料试件的密度,并计算试件的理论最大密度、空隙率、 沥青饱和度、矿料间隙率等参数。在测试沥青混合料密度时,应根据沥青混合料类型及密实程度选择测试方法。在工程中,吸水率小于0.5%的密实型沥青混合 料试件应采用水中重法测定;较密实的沥青混合料试件应采用表干法测定;吸水率大于2%的沥青混合料、沥青碎石混合料等不能用表干法测定的试件应采用蜡 封法测定;空隙率较大的沥青碎石混合料、开级配沥青混合料试件可采用体积法 测定。 随后,在马歇尔试验仪上,按照标准方法测定沥青混合料试件的马歇尔稳定 度和流值。 3.最佳沥青用量的确定

沥青混合料配合比设计方法

沥青混合料配合比设计 方法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

嘉兴市春秋建设工程检测中心有限责任公司 CQ/Q040530-2003沥青混合料配合比设计方法 批准人: 状态: 持有人: 分发号: 2003年11月1日批准 2003年11月25日实施 地址:浙江省嘉兴市南湖经济开发区春园路 电话:、2600330 传真: 沥青混合料配合比设计方法 1.沥青混合料配合比设计基本原则 对于高速公路和一级公路沥青路面的上面和中面层的沥青混凝土混合料进行配合比设计时,应通过车辙试验机对抗车辙能力进行检验。在温度60℃、轮压条件下进行车辙试验的动稳定度,对高速公路不小于800次/㎜,对一级公路应不小于600次/㎜ 沥青碎石混合料的配合比设计应根据实践经验和马歇尔试验的结果,经过试拌试铺论证确定。 高速公路和一级公路的热拌沥青混合料的配合比设计应遵照下列步骤进行: ±%等三个沥青用量进行马歇尔试验,确定生产配合比的最佳沥青用量。 2.矿质混合料的配合组成设计

矿质混合料配合组成设计的目的,是选配一个具有足够密实度、并且有较高内摩阻力的矿质混合料。可以根据级配理论,计算出需要的矿质混合料的级配范围;但是为了应用已有的研究成果和实践经验,通常是采用规范推荐的矿质混合料级配范围来确定。按现行规范《沥青路面施工及验收规范》(GB500092—96)中规定,按下列步骤进行; 确定沥青混合料类型 沥青混合料的类型,根据道路等级、路面类型及所处的结构层位,按表2选定。确定矿质混合料的级配范围 根据已确定的沥青混合料类型,查阅规范推荐的矿质混合料级配范围表即可确定所需的级配范围。 矿质混合料配合比计算 沥青混合料类型表2

现行公路沥青路面设计实例计算书汇总

现行公路沥青路面设计实例计算书汇总 内容提要配合《公路沥青路面设计规范》(JTG D50-2017)和已发行的《公路水泥混凝土路面设计规范》(JTG D40-2011)的有关内容,东南大学编制了《公路路面设计程序系统》(HPDS2017),本文仅对其中公路沥青混凝土路面设计的实例计算进行详细汇总,供设计人员参考。 关键词公路沥青混凝土路面设计实例计算汇总 0 前言 《公路沥青路面设计规范》(JTG D50-2017)的设计方法与前规范有很大不同,为使设计人员较快掌握与之配套的《公路路面设计程序系统》(HPDS2017),特编本实例计算详细汇总。 表1 现行公路沥青路面设计实例计算书汇总表 1 新建二级公路计算书 (1)新建二级公路计算书: 一、交通量计算 公路等级二级公路 目标可靠指标 初始年大型客车和货车双向年平均日交通量(辆/日) 900 路面设计使用年限(年) 12 通车至首次针对车辙维修的期限(年) 12 交通量年平均增长率%

方向系数 .55 车道系数 1 整体式货车比例 45 % 半挂式货车比例 25 % 车辆类型 2类 3类 4类 5类 6类 7类 8类 9类 10类 11类 满载车比例 .1 .41 .12 0 .38 .59 .32 .47 .41 .42 初始年设计车道大型客车和货车年平均日交通量(辆/日) 495 设计使用年限内设计车道累计大型客车和货车交通量(辆) 2960466 路面设计交通荷载等级为轻交通荷载等级 当验算沥青混合料层疲劳开裂时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 7500888 当验算无机结合料稳定层疲劳开裂时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 +08 当验算沥青混合料层永久变形量时: 通车至首次针对车辙维修的期限内设计车道上的当量设计轴载累计作用次数为 7500888 当验算路基顶面竖向压应变时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 +07 二、路面结构设计与验算 路面结构的层数 : 5 设计轴载 : 100 kN 路面设计层层位 : 4 设计层起始厚度 : 200 (mm) 层位结构层材料名称厚度模量泊松比无机结合料稳定类材沥青混合料车辙试验 (mm) (MPa) 料弯拉强度( MPa) 永久变形量( mm )

矿质混合料组成设计

1. 矿质混合料组成设计 有两种方法进行组成设计:试算法和图解法。 ?试算法 1. 试算法的基本原理 首先假设混合料中某种粒径的颗粒,是由对这一粒径占优势的一种集料组成,其他集料不含这一别试探各种级料的大致比例,不合适再进行调整,逐步接近,最终达到符合要求的集料的配合比 2. 步骤及方法 将A、B、C三种集料配成M级配的矿料:(表9.6.1) mai X+ mbi Y+ mci Z=Mi。Mi-混合料M在I粒级上的含量,mai, mbi, mci -A、B、C在Ⅰ粒级 ①求X:选取A料占优势的粒径Ⅰ(mm),令 mbi = mci =0,则 X= Mi / mai。 ②求Z:选取C料占优势的粒径j(mm),令mbi = mci =0,则X= Mi / mai。 ③求Y:Y=100-X-Z 。 ④核对:按 mai X+ mbi Y+ mci Z=M 逐级核对。不符合要求,应对X、Y、Z比例进行适当的调整 i 集料满足混合矿料的级配要求。 ?图解法 适用于多种集料组成的矿料配合比设计。 1. 基本原理: 把设计要求矿料的级配,按所采用各种集料的粒径范围分成几个区段,然后令各种集料的含量(求的级配中各相应区段的颗粒含量(%)。 2. 已知条件 ① 各种集料筛分析结果→各级料的通过百分率→级配曲线;

② 按技术规范要求的合成级配范围→合成级配的通过百分率中值。 3. 设计步骤 ①绘制坐标图:绘制长方形图框,坐标纵坐标为通过百分率。对角线作为合成级配中值。横坐横坐标确定方法:据合成级配中值要求的各筛孔通过百分率,从纵坐标引平行线,与对角线交点横坐标交点,为相应筛孔的孔径位置。 ②绘制级配曲线:将各集料的级配曲线绘制在上述坐标图上。 ③ 确定各相邻级配曲线的关系:相邻级配曲线重叠(A与B)、相邻级配曲线相接(B与C)、相离(C与D)。 ④确定各集料的用量。 2. 沥青最佳用量的确定 沥青最佳用量一般通过马歇尔试验确定。 根据规范推荐的沥青的用量范围,每隔0.5%为一组,选用5个以上的沥青用量,各制备马歇尔试 测试各组试件的技术指标 ( Sm(0), f, V v, S m)。 建立沥青用量-技术指标关系曲线。 根据标准要求,在各关系曲线上确定性能合格的沥青用量范围,取其中值为沥青最佳用量。 繁重交通中粒式沥青砼技术指标及试验结果如下表9.6.2所示。

SMA沥青混合料路面特点及配合比设计

SMA路面特点 沥青玛蹄脂碎石(SMA)是一种由沥青、纤维稳定剂、矿粉及少量的细集料组成的沥青玛蹄脂填充间断级配的粗集料骨架间隙组成一体的沥青混合料,其混合料具有以下特点: 1)粗集料多在SMA的组成中,矿料是间断级配,粗集料占到70%以上,粗集料颗料之间有良好的嵌挤作用。沥青混合料产生非常好的抵抗荷载变形的能力,即使在高温条件下,沥青玛蹄脂的粘度下降时,这种抵抗能力的影响也不会减小,因而有较强的高温抗车辙能力。AC-13 AC-16 SMA-13 SMA-16 4.75mm通过率38~68 34~62 20~34 20~322)矿粉和沥青用量高,采用纤维稳定剂SMA使用矿粉高达8%~12%,沥青用量高达5.7%~6.5%,比一般AC-13/AC-16高1%左右。同时要使用纤维作稳定剂,由此组成的沥青玛蹄脂包裹在粗集料表面,充分填充集料间隙,在温度下降、混合料收缩变形时,玛蹄脂有较好的粘结作用,它的韧性和柔性使混合料有较好的低温变形性能,低温抗裂性能得到大大提高。 2)AC-13 AC-16 SMA-13 SMA-16 0.075mm通过率4~8 4~8 8~12 8~123) 空隙率小SMA混合料的内部空隙率很小(3%~4%),混合料渗水很少或几乎不渗水,混合料内部的水属毛细水形态,不易成为大的动力水,再加上玛蹄脂与集料的粘结力好,混合料的水稳定性也有较多改善。同时由于密水性好,对下面的沥青层和基层有较强的保护作用和隔水作用,使路面能保持较高的整体强度和稳定性。 3) 路面表面粗糙,构造深度大SMA一方面要求采用坚硬的、耐磨的优质石料;另一方面矿料采用间断级配,粗集料含量高,路面压实后表面形成

沥青路面结构设计示例

7.2路面结构设计 7.2.1路面结构设计步骤 新建沥青路面按以下步骤进行路面结构设计: (1) 根据设计任务书和路面等级及面层类型,计算设计年限内一个车道的累计当量轴次和设计弯沉值。 (2) 按路基土类型和干湿状态,将路基划分为几个路段,确定路段回弹模量值。 (3) 根据已有经验和规范推荐的路面结构,拟定几中可能的路面结构组合及厚度方案,根据选用的材料进行配合比实验及测定结构层材料的抗压回弹模量、抗拉强度,确定各结构层材料设计参数。 (4) 根据设计弯沉值计算路面厚度。对二级公路沥青混凝土面层和半刚性基层材料的基层、底基层,应验算拉应力是否满足容许拉应力的要求。如不满足要求,或调整路面结构层厚度,或变更路面结构层组合,或调整材料配合比,提高材料极限抗拉强度,再重新计算。 7.2.2 路面结构层计算 该路位于中原黄河冲积平原区,地质条件一般为a)第一层:冲积土;b)第二层:粘质土;c)第三层:岩石。平原区二级汽车专用沥青混凝土公路,路面使用年限为12年,年预测平均增长率为6%。 (1)轴载分析 本设计的累计当量轴次的计算以双轮组单轴载100kN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表7-1确定。 表7-1标准轴载计算参数 表7-2起始年交通量表

1)以设计弯沉为指标及验算沥青层层底拉应力 ① 轴载换算 各级轴载换算采用如下计算公式: 4.35 1121( )k i i i p N c c n p ==∑ (7-1) 式中:N 1—标准轴载的当量轴次,次/日; n i —被换算车辆的各级轴载作用次数,次/日; P —标准轴载,kN ; P i —被换算车辆的各级轴载,kN ; k —被换算车辆类型; C 1—轴数系数,C 1=1+1.2(m -1),m 是轴数。当轴间距大于3m 时,按单独的一个轴载计算,当轴间距小于3m 时,应考虑轴系数; C 2—轮组系数,单轮组为6.4,双轮组为1.0,四轮组为0.38。 计算结果如下表7-3所示。 表7-3 轴载换算结果表(弯沉) 注:轴载小于25kN 的轴载作用不计。 ② 累计当量轴次为:

沥青混合料组成设计

沥青混合料组成设计 热拌沥青混合料的配合比设计包括3个阶段: 1、目标配合比设计阶段——确定所用材料、计算矿料配合比、据马歇尔试验确定最佳沥青用量,把这个结果作为目标配合比进行试拌,确定拌合机各冷料仓的供料比例、进料速度。 2、生产配合比设计阶段——从二次筛分后进入各热料仓的材料取样筛分,确定各热料仓的材料比例(供控制室使用)。同时调整冷料仓的进料速度,确定生产配合比得最佳沥青用量(目标配合比的最佳沥青、±0.3%)。 3、生产配合比验证阶段——用生产配合比进行试拌、铺试验段,做马歇尔试验进行检验,确定生产用的标准配合比。标准配合比是生产控制的依据和质量检验的标准。矿料级配至少0.075、2.36、4.75三档的筛孔通过率接近要求的中值。 沥青混合料目标配合比设计阶段如何根据马歇尔试验确定沥青最佳用量1).首先根据选用矿料颗粒组成确定各种矿料的比例,使混合的矿料级配符合设计或规范要求。 2).根据规范和经验估计适宜的沥青用量,以此沥青用量为中值、0.5%为间隔取5个不同的沥青用量,分别拌和沥青混合料,制备5组马歇尔试验试件。3).测定试件的密度,计算孔隙率和饱和度。并进行马歇尔试验,测定稳定度和流值等物理力学指标。 4).整理试验结果。以沥青用量为横坐标,以密度、孔隙率、稳定度、流值和饱和度指标为纵坐标,分别点出试验结果,并绘制关系曲线图。 5).在图中求取密度最大值对应的沥青用量为a1,稳定度最大值对应的沥青用量为a2,规定空隙率范围的中值对应的沥青用量为a3。计算出沥青最佳用量的初始值OAC1=(a1+a2+a3)/3。 6).求出符合规范或设计的沥青用量范围OACmin~OACmax,并求取中值OAC2=(OACmin+OACmax)/2。 7).按沥青最佳用量初始值OAC1在曲线图上求取相应的各项指标值,当各项指标均符合要求时,OAC1和OAC2综合决定沥青最佳用量。若不满足要求时,

某二级公路路面设计实例.doc

路面设计 路面结构设计的目的是提供在特定的使用期限内同所处环境相适应并能承受与其交通荷载适用的路面结构,同时设计路面结构,便于改变道路行驶条件,提高服务水平,满足汽车运输的要求,因此路面应起码具备三个方面的使用要求:平整、抗滑、承载能力。 路面设计采用双圆垂直均布荷载作用下的多层弹性连续体系理论,以设计弯沉值为路面整体刚度的设计指标,计算路面结构厚度,并对沥青混凝土面层和半刚性材料的基层、底基层进行层底拉应力的验算。 1路面等级与类型 规范规定:二级公路一般采用沥青混凝土路面,根据设计年限内累计当量标准轴载作用次数多少选用高级路面和次高级路面,高级路面一般适用于设计年限内累计标准轴次大于400万次的二级公路,设计年限为15年;次高级路面适用于设计年限内累计标准轴次大于200万次的二级公路,设计年限为12年。 本设计地区地质良好,无不良地况根据公路等级和交通量,确定路面等级为次高级,设计年限为12年。 2设计流程 1.根据设计要求,按弯沉或弯拉指标分别计算设计年限内一个车道的累计标准当量轴次,确定设计交通量与交通等级,拟定面层、基层类型,并计算设计弯沉值或容许弯拉应力。 2.按路基土类与干湿类型及路基横断面形式,将路基划分为若干路段,确定各个路段土基回弹模量设计值。 3.参与本地区的经验拟定几种可行的路面结构组合和厚度方案,根据工程选用的材料进行配合比试验,测定个结构层材料的抗压回弹模量、劈裂强度等,确定各结构层的设计参数。 4.根据设计指标采用多层弹性体系理论设计程序计算或验算路面厚度。 5.对于季节性冰冻地区应验算防冻厚度是否符合要求(本次设计不考虑冻害)。 3轴载分析 路面设计以双轮组单轴载100kN 为标准轴载。 1. 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 1)轴载换算 轴载换算的计算公式:N= 4.35121 ()k i i i P C C n P =∑ (7-1) 计算结果列于下表: 注:轴载小于25kN 2)累计当量轴次 根据设计规范,二级公路沥青路面的设计年限取12年,双车道的车道系数取0.6,年平均增长率=5.4%γ。 累计当量轴次:

AC-13沥青砼配合比设计

AC-13型沥青混凝土配合比设计报告(K691+000沥青混凝土拌合厂) 工程名称:G214线清水河至结古段二级公路路面工程 监理单位:内蒙古交通建设监理咨询有限责任公司 施工单位:青海省公路工程建设总公司 施工桩号:K675+000—K705+000 报告日期:2005—7—6

AC-13型沥青混凝土配合比设计报告 一.前言 本工程位于G214线清(水河)至结(古)段,地处规范规定的寒区。施工段落K675+000-K705+000段,共计30公里。面层设计厚度5㎝,规格采用AC-13型。 二.原材料 .沥青 沥青由业主统购,为新疆克拉玛依生产的重交A-130A石油沥青。沥青进场后即进行了抽检,经检验沥青三大指标符合规范要求,详细数据如表1。 表1 沥青质量试验结果 根据中国气象站1961-2000年气温统计资料显示,56034号区站(清水河地区)7天平均高气温为18℃,极端最低气温为-43℃。根据计算,该地区路面预计高温度T20㎜=℃,路面表面预计低温度T SURF=℃.该沥青经试验计算分析,属溶凝胶型沥青,当量软化点T800=℃,当量脆点=℃,当量脆点距路面表面预计低温度尚有℃的差值,只能在配合比设计中尽可能地提高沥青用量,尽最大限度地避免路面低温裂缝。 .粗集料 采用大型反击式联合破碎机破碎,破碎机生产三种矿料,S10碎石,S12碎石和S15石屑。10-15㎜碎石㎜筛上筛余量偏多,不符合S10规格,但不影响使用。5-10㎜碎石符合S12规格,0-5㎜石屑符合S15规格。各种材料筛分结果如表2。 表2 各种粗集料的筛分结果 按规范对碎石质量的检验结果如表3,各项指标均符合规范要求,可以使用。

高速公路沥青路面设计实例

高速公路沥青路面设计实例 一、设计资料: 本公路等级为高速公路,经调查得,近期交通量如下表所示。交通量年平均增长率为9.5%,设计年限为15年,该路段处于Ⅳ2区。 二、交通分析: 轴载分析路面设计以BZZ-100为标准轴载。 1、以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 (1)累计当量轴次 注:轴载小于25KN的轴载作用不计。 (2)累计当量轴次

根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。 2、验算半刚性基层层底拉应力中的累计当量轴次 (1)轴载换算 车型i P(KN) C1C2i N(次/日) 小客车 前轴16.5 1 18.5 6750 0.0686 后轴23.0 1 1 6750 0.05286 中客车 SH130 前轴25.55 1 18.5 2000 0.67194 后轴45.10 1 1 2000 3.42328 大客车 CA50 前轴28.70 1 18.5 1250 1.06448 后轴68.20 1 1 1250 58.5039 小货车 BJ130 前轴13.40 1 18.5 4250 0.00817 后轴27.40 1 1 4250 0.13502 中货车 CA50 前轴28.70 1 18.5 1500 1.27737 后轴68.20 1 1 1500 70.2047 中货车 EQ140 前轴23.70 1 18.5 2125 0.39131 后轴69.20 1 1 2125 111.74 大货车 JN150 前轴49.00 1 18.5 2125 130.647 后轴101.60 1 1 2125 2412.73 特大车日野 KB222 前轴50.20 1 18.5 1500 111.916 后轴104.30 1 1 1500 2100.71 拖挂车 五十铃 前轴60.00 1 18.5 187.5 58.2617 后轴100(3轴) 3 1 187.5 562.5 5624.304 注:轴载小于50KN的轴载作用不计 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,六车道的车道系数η取0.3~0.4,取0.3。交通量平均增长率为9.5%。 8 2 1 ? ? ? ? ? ' ' P P n C C i i 8 2 1 1 ? ? ? ? ? ' ' ='∑ = P P n C C N i i i i

沥青混合料配合比设计三阶段

沥青混合料配合比设计三 阶段 The latest revision on November 22, 2020

沥青混合料配合比设计 沥青混合料配合比设计包括目标配合比设计、生产配合比设计和生产配合比验证三个阶段。 第一阶段——目标配比设计阶段:目的是确定已有矿料的配合比,并通过试验确定最佳沥青用量;第二阶段——生产配比设计阶段:目地是确定各热料仓矿料进入拌和室的比例.并检验确定最佳沥青用量; 第三阶段——生产配比验证阶段:目的是为随后的正式生产提供经验和数据。 1、目标配合比 目标配合比设计基本上是在试验室内完成的,是混合料组成设计的基础性工作,包括原材料试验、混合料组成设计试验和验证试验,在此基础上提出的配合比例称为目标配合比。具体设计步骤: (1)混合料类型与级配范围的确定 (2)原材料的选择与确定 (3)矿料级配选用 (4)进行马歇尔试验 (6)路用性能检验 (5)最佳沥青用量确定 2、生产配合比 生产配合比调整要结合拌和楼进行,目前生产中使用的拌和楼有两种类型,一类是连续式拌和楼,对于连续式拌和楼生产配合比调整只要调整到冷料仓的流量满足目标配合比要求,就可以加热拌料了,不需要进行生产配合比设计;另一类是间歇式拌和楼,要对集料进行加热、筛分,而后在各热料仓称重、回配,回配的比例,就是生产配合比。由于各热料仓矿料的配合比例,与目标配合比各矿料的配合比例会有所不同,就需要通过试验确定各热料仓矿料的配合比例,现场称二次级配。生产配合比调整的目的是在目标配合比的基础上,通过调整各冷料仓的流量使之符合设计合成级配要求,对间歇式拌和楼则还要确定出各热料仓矿料的配合比例。具体设计步骤:(1)冷料仓流量的调整 (2)确定各热料仓矿料配合比例 (3)确定沥青用量 3、生产配合比验证 目标配合比是在试验室完成的,生产配合比虽然启动了拌和楼,但没有正式拌料,生产标准配合比设计阶段需要正式拌料,并铺筑试验路。同时对配合比作进一步的调整,并最终将配合比确定下来,作为生产控制和质量检验的依据,此配合比称为生产标准配合比。生产标准配合比是主要解决两方面的问题:确定拌和温度和进行混合料材料、性能分析。

沥青混合料组成及结构

第五章普通沥青混合料 本章着重阐述了热拌沥青兴混合料的组成结构、强度形成原理、沥青混合料的体积特征参数、应具有的技术性质、影响因素及评价方法,重点介绍了热拌沥青混合料的马歇尔设计方法,包括组成材料的选择和配合比设计方法,同时对Superpave与GTM沥青混合料设计方法进行了简要介绍。通过学习,要求掌握沥青混合料的组成结构、强度形成原理、技术性质和技术要求,并能按马歇尔法设计沥青混合料的配合组成,同时对Superpave与GTM设计法有一定了解。 5.1 沥青混合料组成及结构 ⑴沥青混合料 ⑵沥青混凝土混合料 ⑶沥青碎石混合料 ⑷沥青玛蹄脂碎石混合料 ⑴按结合料分类 石油沥青混合料煤沥青混合料 石油沥青混合料又包括粘稠石油沥青、乳化石油沥青及液体石油沥青混合料 ⑵按矿料的级配类型划分 ①连续级配沥青混合料 ②间断级配沥青混合料 ⑶按矿料级配组成及空隙率大小划分 ①密级配沥青混合料设计空隙率为3%~6% 密级配沥青混凝土混合料(AC) 密级配沥青稳定碎石混合料(ATB)

沥青玛蹄脂碎石混合料(SMA) ②半开级配沥青混合料剩余空隙率在6%~12% 沥青碎石(AM) ③开级配沥青混合料设计空隙率为18%的混合料 排水式沥青磨耗层(OGFC) 排水式沥青基层(ATPB) ⑷按矿料公称最大粒径划分 ①特粗式沥青混合料等于或大于31.5mm ②粗粒式沥青混合料公称最大粒径等于或大于26.5mm ③中粒式沥青混合料:集料公称最大粒径为16mm或19mm的沥青混合料。 ④细粒式沥青混合料:集料公称最大粒径为9.5mm或13.2mm的沥青混合料。 ⑸按制造工艺划分 ①热拌热铺沥青混合料 ②冷拌沥青混合料 ③再生沥青混合料 ⑴表面理论 ⑵胶浆理论 ①粗分散系。以粗集料为分散相,分散在沥青砂浆的介质中。 ②细分散系。以细集料为分散相,分散在沥青胶浆的介质中。 ③微分散系。以矿粉填料为分散相,分散在高稠度的沥青介质中。 图5-1 3种类型矿质混合料级配曲线 ⑴悬浮一密实结构 特点是粘聚力较高,混合料的密实性与耐久性较好,但内摩阻力较小,高温稳定性较差。我国传统的AC型沥青混凝土是典型的悬浮一密实结构。 ⑵骨架一空隙结构 特点:内摩擦角较高,高温稳定性较好,但粘聚力较低,耐久性差。沥青

普通沥青混合料路面配合比设计

普通沥青混合料路面配合比设计 戚锁海 【江苏省恒基路桥总公司常州213002】 摘要:沥青混合料的物理力学性质在很大程度上取决于组成材料之间的比例。文章对材料的性质、级配曲线和沥青用量的选择作详细阐述。 关键词:沥青混合料材料性质配合比设计 1 前言 随着交通量的不断增长,车辆对路面的要求也越来越高,不仅要求沥青路面坚实、平整,具有足够的力学强度和耐久性,同时还要求沥青路面能具有良好的高温稳定性、低温抗裂性和抗滑性能。而沥青混合料的物理力学性质在很大程度上取决于组成材料本身的性质及它们之间的配合比。 2原材料的选择 沥青路面中、下面层一般采用AC-25I和AC-20I这两种类型的密实型沥青混合料。原材料的质量直接影响到沥青混合料的质量。如何选取沥青路面用的原材料?一般可以通过以下试验确定所用的原材料是否符合要求。 2.1在调查原材料质量过程中了解材料的规格及检测原材料中含有方解石等软石的含量是否超过5%。由于方解石表面光滑,与沥青粘结能力不强,另外这种原材料的高温稳定性不好,经高温加热后易碎,材料强度不高,含量过多将会降低沥青混合料的稳定度及内部结构,因此应对材料供应商做出严格要求,从源头控制材料质量、规格。 2.2用铁锤敲开粗集料,通过观察粗集料的破裂面辨别其属于何种结构类型。如果该材料属于碱性砂岩,则尽量避免选用。虽然该种材料的常温压碎值一般为25~27%,视密度一般为2.72~2.74g/m3,吸水率小于1%,洛杉矶磨耗值一般为27~29%,符合现行试验规范要求,但是通过浸水马歇尔试验(将试件在60℃水浴中保持48h后进行试验)发现该种材料经高温加热后材料的性质有本质的变化,通过掰开浸水马歇尔试件发现该种石料已成粉末状,影响沥青混合料的残留稳定度,抗水损害能力不好,容易造成沥青路面的早期破坏。 2.3在对原材料各项试验检测合格后,通过残留稳定度试验和粘附性试验决定该沥青原材料是否需掺加抗剥落剂。以提高沥青混合料的抗水损害能力。例如:我们在浙江省杭宁高速公路长兴段施工时,发现当地石灰岩中含有5~10%的红色石料。该石料有一部分属于碱性石料,而有一部分则属于中性石料,粘附性只有2~3级左右。经研究决定在沥青混合料中掺占沥青的0.3%的抗剥落剂以提高矿料的粘附性。抗剥落剂是采用江苏扬中文盛牌TW-1型抗剥落剂。通过试验检验发现:矿料粘附性由原来的2~3级提高到4~5级,残留稳定度由78%提高到85%~90%左右,满足规范要求。 3沥青混合料配合比设计 3.1 目标配合比中集料的组成设计 沥青混合料配合比设计中级配的选择是一个非常重要的内容,直接决定着沥青路面的使用性能。本文介绍AC-20I沥青混合料施工过程中使用过的集料组成设计级配,见表1。其中级配1是江苏宁靖盐高速公路W标中面层普通沥青AC-20I设计级配,级配2是杭宁高速公路浙江长兴十六合同段中面层普通沥青AC-20I设计级配,级配3是江苏宁杭高速公路NH-LS-22标中面层国产改性沥青AC-20I(改进型)设计级配;三种级配的马歇尔指标和最佳油

AC-13沥青混合料配合比设计模板

控制编号:TJSZ—512—02 报告编号:2005—LQ0752 委托协议编号:2005—LQ0752 报告总页数:12 二赛一级公路二合同AC—13型改性 沥青混合料目标配合比设计报告 (GTM配合比设计方法) 委托单位:路桥集团一局内蒙古二赛项目二合同 天津市市政工程质量检测中心站 报告日期:2005年07月27日

报告批准: 报告审核: 负责人及报告编写: 参加人员: 注意事项:1.本报告无质检报告专用章无效。 2.报告涂改作废。 3.本报告结果只对来样负责。 地址:天津市河西区平山道39号邮编:300074 电话:(022)23351120

1. 任务来源 受路桥集团一局内蒙古二赛项目二合同委托,进行二赛一级公路二合同表面层AC-13型改性沥青混合料目标配合比设计。 2. 依据主要技术规范、试验规程 JTG F40-2004《公路沥青路面施工技术规范》 JTJ052—2000《公路工程沥青及沥青混合料试验规程》 JTJ058—2000《公路工程集料试验规程》 3. 原材料性质分析 二赛一级公路二合同表面层采用AC-13型改性沥青混合料。各原材料产地为:内蒙朱日和石料厂产玄武岩粗集料,朱日和石料厂产机制砂、天然砂,苏尼特右旗碱矿产石灰岩矿粉及生石灰粉;盘锦中油辽河沥青有限公司产SBS改性沥青。试验样品由委托方提供。 3.1 沥青 对石油沥青按JTG F40-2004《公路沥青路面施工技术规范》要求进行了规定项目的试验检测。试验检测结果见表1。检测结果表明该SBS改性沥青样品符合I-C级沥青技术要求。

3.2 矿料 沥青混合料中的矿料包括粗集料、细集料及矿粉和生石灰。 3.2.1 粗集料 粗集料规格为10mm~15mm、5mm~10mm、3mm~5mm,试验项目及试验结果见表2。试验结果表明,粗集料各项指标均符合JTG F40—2004《公路沥青路面施工技术规范》关于高速公路及一级公路沥青混合料用粗集料的技术要求。 3.2.2 细集料 细集料采用机制砂和天然砂,试验项目及试验结果见表3。试验结果表明,细集料各项指标符合JTG F40—2004《公路沥青路面施工技术规范》关于高速公路及一级公路沥青混合料用细集料的技术要求。

沥青混合料生产配合比组成设计

沥青混合料生产配合比组成设计 分项工程:SBS改性沥青下面层 级配类型:AC—25Ⅰ改进型 试验日期:二〇〇四年十二月 吉林省交通建设集团 盐通高速公路YT—YC21标

生产配合比设计说明 一、生产配合比组成设计依据 1、盐通YT-YC21标AC-25I改进型SBS改性沥青下面层目标配合比。 2、公路沥青路面施工技术规范(JTJ032—94) 3、公路改性沥青路面施工技术规范(JTJ036—98) 4、公路工程沥青及沥青混合料试验规程(JTJ052—2000) 5、公路工程集料试验规程(JTJ058—2000) 6、江苏省高速公路建设指挥部沥青路面施工技术指导意见汇编 二、原材料检测与确定 1、沥青:采用江阴宝利AH-90#SBS改性沥青,针入度为74(0.1mm),延度 为41cm,软化点为75℃。检测结果符合规范要求; 2、集料:采用镇江茅迪公司生产的石灰岩碎石,经过二次筛分,1仓(0-3mm) 2仓(3-6mm)3仓(6-11mm)4仓(11-24mm)5仓(24-34mm)共计5仓。 5仓毛体积相对密度为2.687,表观相对密度为2.721。4仓毛体积相对 密度为2.690,表观相对密度为2.722。3仓毛体积相对密度为2.691, 表观相对密度为2.727。2仓表观相对密度为2.714。1仓表观相对密度 为2.718。 3、填料:采用大丰市腾龙建材厂生产的石灰岩矿粉,矿粉表观相对密度为 2.711,含水量为0.39%,亲水系数为0.74。 三、沥青混合料试验 1、混合料级配试验:5仓:4仓:3仓:2仓:1仓:矿粉=8:28:22:16:

22.5:3.5 2、沥青混合料马歇尔试验:在确定目标配合比为4.2%基础上分别配制了 3.6%,3.9%, 4.2%,4.5%,4.8%五组油石比的混合料进行马歇尔试验。 3、沥青混合料最佳油石比选定:分别测定了五组试件的密度,稳定度,流 值。并计算空隙率,沥青体积百分率,粒料间隙率,饱和度。试验结 果整理如下: a1=4.4% a2=4.4% a3=3.8% OAC1=(a1+a2+a3)/3=4.2% OAC max=4.6% OAC min=4.0% OAC2=(OAC max+OAC min)/2=4.3% 且OAC min

沥青路面设计实例

【例11.1】新建路面设计实例 本例为安徽境内某条高速公路,整体式路基宽度为28.0m ,设计车速120km 。 ⑴设计交通量:设计使用年限15年,根据交通量预测资料,考虑车型发展趋势及经济发展对交通量增长的影响,交通量平均年增长率预测结果如表1-1。 表(1-1) 设计年限内交通量平均年增长率表 如下表(1-2)所示。 表(1-2) 代表车型及预测交通量表 根据预测交通量资料及代表车型,根据 4.351121 ( )K i i i p N C C n p ==∑=7068 Ne=[(1+r )t-1]×365×N1×η/r=2.×107 将各级轴载换算为标准轴载100KN ,15年内一个车道上的累计当量轴次为2494万次。 设计弯沉:Ld=600×Ne-0.2×Ac ×As ×Ab=19.4 (0.01mm ) 根据累计当量轴次,本项目设计交通等级为特重交通等级,路面设计弯沉19.4(0.01mm )。 若以半刚性层底拉应力为验算指标时 ''' 8121() K i i i p N C C n p ==∑1 =2494 Ne=[(1+r )t-1]×365×N1×η/r = ⑶路基土干湿类型: 根据项目所处地区已有的设计经验及查表综合考虑得出路基临界高度,参考外业中调查的地下水位,确定了路基的最小填土高度来保证路基在不利季节处于干燥或中湿状态。

⑷土基回弹模量: 根据规范,全线属于Ⅳ5自然区划,结合沿线地质情况确定土基回弹模量E0。经过清表回填、碾压,并根据《公路沥青路面设计规范》JTG D50-2006要求,保证上路床30cm,填料CBR值不小于8,下路床50cm填料CBR值不小于5,上路床压实度不小于96%;交通量等级为重型时应保证土基回弹模量>40MPa,故本条道路土基回弹模量取41.0MPa。施工过程中,应根据不同路段对路床土进行试验,若土基抗压回弹模量不符合设计要求时,可局部采用补压、固化处理、换填等措施,或调整底基层结构或厚度,以保证路基路面的强度和稳定性。 ⑸路面设计的结构参数:统一采用圆柱体试件测定抗压回弹模量和劈裂强度。沥青混凝土在弯沉指标计算中用20℃抗压模量,底层拉应力计算时采用15℃抗压模量,允许拉应力计算时采用15℃劈裂强度。半刚性材料的设计龄期:水泥稳定类为3个月。参照室内混合料实验结果,结合国内已建成路面调查情况,确定各层材料设计参数见表(1-3)。 表(1-3)结构设计参数 ⑹按设计弯沉计算路面厚度 初步结合以往施工及设计经验,拟定结构厚度: 表(1-4)主线路面结构

相关文档
最新文档