非线性延迟波动方程的两类差分格式

非线性延迟波动方程的两类差分格式
非线性延迟波动方程的两类差分格式

(完整版)大连理工大学高等数值分析抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。

现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是 自然数, jh x x j ==, ()N j ,,1,0Λ=; τ k y y k ==, ()M k ,,1,0Λ= 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表 示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。 注意到在节点()k i t x ,处的微商和差商之间的下列关系 ((,)k j k j u u x t t t ????≡ ? ????): ()() ()ττ O t u t x u t x u k j k j k j +??? ????=-+,,1 ()() ()2112,,ττ O t u t x u t x u k j k j k j +??? ????=--+ ()()()h O x u h t x u t x u k j k j k j +??? ????=-+,,1 ()() ()h O x u h t x u t x u k j k j k j +??? ????=--,,1 ()() ()2112,,h O x u h t x u t x u k j k j k j +??? ????=--+ ()()() ()2 222 11,,2,h O x u h t x u t x u t x u k j k j k j k j +???? ????=+--+ 可得到以下几种最简差分格式

一维热传导方程

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h Γ=h G --h G 是网格界点集合。 三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,221 11j k j k j k j k j k j f h u u u a u u ++-=--++τ

差分方程的解法

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: n m m n c n c c λ)...(121----+++

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ?βαρarctan ,22=+=,则(9)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成 项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征 根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如 果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系 数即可。

Poisson方程九点差分格式_米瑞琪

数值实验报告I 实验名称Poisson方程九点差分格式实验时间2016年 4 月 15 日姓名米瑞琪班级信息1303学号04成绩 一、实验目的,内容 1、理解Poisson方程九点差分格式的构造原理; 2、理解因为网格点的不同排序方式造成的系数矩阵格式的差异; 3、学会利用matlab的spdiags(),kron()函数生成系数矩阵; 二、算法描述 针对一个Poisson方程问题: 在Poisson方程五点差分格式的基础上,采用Taylor展开分析五点差分算子的截断误差,可以得到: 为了提高算子截断误差的精度,在(1)式中配凑出了差分算子的形式,将原Poisson方程代入(1)式有: 考虑,有:

将(3)代回(2)可得 得到Poisson方程的九点差分格式: 在计算机上实现(4)式,需要在五点差分格式 的基础上在等式两端分别增加一部分,将等式左侧新增的部分写成紧凑格式,有: 对于该矩阵,可以看成是两个矩阵的组合:

以及 则生成这两个矩阵可以采用Kroncker生成,方法类似于五点差分格式。 对于右端添加的关于f(x,y)的二阶导数,可以采用中心差分格式进行近似代替,即: 写成相应的紧凑格式有:

该式中的矩阵又可以分解为两个矩阵的和:

%计算误差 u_real=@(x,y)exp(pi*(x+y))*sin(pi*x).*sin(pi*y); for i=1:N1-1 u_m((i-1)*(N2-1)+1:i*(N2-1))=u_real(x(i),y); end u_v=u_m'; err_d=max(abs(u_d-u_v)); sol=reshape(u_d,N2-1,N1-1); mesh(X,Y,sol) 四. 数值结果 针对课本P93给出的问题,分别采用步长,将计算出的误差列表如下: 步长五点差分格式误差九点差分格式误差 可见采用九点差分格式可以进一步缩小误差,达到更高阶的精度。 五. 计算中出现的问题,解决方法及体会 在生成九点差分格式的时候,等号右端涉及到了对f的二阶偏导,我最初利用符号函数定义了f,随后求出其二阶偏导(仍然是符号函数)之后带入网格点,求f二阶偏导的精确解,但是代入过程相当繁琐,运行速度非常慢,最终我改变策略,选用f关于x,y的二阶中心差分格式替代精确值,最终得到了相对满意的结果。 教 师 评 语 指导教师:年月日

热传导方程向后差分格式的MATLAB程序

向后差分格式MATLAB编程: c lear;clc; format short e a=input('请输入系数a的值'); l=input('请输入长度l的值'); M=input('请输入将区间[0,1]等分的个数M '); ot=input('请输入时间增量ot的值'); n=input('请输入运行次数n的值'); ox=1/M; x0=zeros(M+1,1) for ii=1:M x0(ii+1)=ii*ox; end u=sin(pi*x0/l); r=a*ot/(ox)^2; for ii=1:n %数据的输入 B=zeros(M-1,1); A=zeros(M-2,1); C=zeros(M-2,1); S=zeros(M-1,1); for ii=1:M-2 B(ii)=1+2*r;A(ii)=-r;C(ii)=-r; S(ii)=u(ii+1,1); end B(M-1,1)=1+2*r;S(M-1,1)=u(M,1);u(1,2)=0;u(M+1,2)=0; S(1,1)=S(1,1)+r*u(1,2);S(M-1,1)=S(M-1,1)+r*u(M+1,2); %追赶法 S(1)=S(1)/B(1);T=B(1);k=2; while k~=M B(k-1)=C(k-1)/T; T=B(k)-A(k-1)*B(k-1); S(k)=(S(k)-A(k-1)*S(k-1))/T; k=k+1 end k=1; while k~=M-1 S(M-1-k)=S(M-1-k)-B(M-1-k)*S(M-k); k=k+1; end u(2:M,2)=S; u(:,1)=u(:,2); end %计算精确解 for x=0:M

差分方程模型的理论和方法

差分方程模型的理论和方法 第一节 差分 一、 基本概念 1、差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向 前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为: ))((1n k n k x x -??=? 2、差分算子 、不变算子、平移算子 记n n n n x Ix x Ex ==+,1,称E 为平移算子,I 为不变算子 。 则有:n n n n x I E Ix Ex x )(-=-=? I E -=?∴ 由上述关系可得: i n k i i k i k n i k i i k i k n k n k x C x E C x I E x +=-=-∑∑-=-=-=?00)1()1()( (1) 这表明n x 在n 处的k 阶差分由n x 在k n n n ++....1,,处的取值所线性决定。 反之, 由 n n n x x x -=?+1 得 n n n x x x ?+=+1: n n n n x x x x +-=?++1222,得:n n n n x x x x 2122?++-=++, 这个关系表明:第n+2项可以用前两项以及相邻三项增量的增量来表现和计算。即一个数列的任意一项都可以用其前面的k 项和包括这项在内的k+1 项增量的增量的增量……..第k 层增量所构成。 …….. ,)1(1 0k n i n k i i k i k n k x x C x ++-=-+-=?∑得: n k i n k i i k i k k n x x C x ?+--=+-=-+∑1 0)1( (2)

差分方程的解法

1、常系数线性差分方程的解 方程 a 0x n k a 1x n k 1 ... a k x n b(n) 其中 a 0 , a 1,..., a k 为常数,称方程( 8)为常系数线性方程。 又称方程 a 0x n k a 1x n k 1 ... a k x n 为方程( 8)对应的齐次方程。 第三节 差分方程常用解法与性质分析 9) n 如果( 9)有形如 x n 的解, 带入方程中可得: k k 1 a 0 a 1 ... a k 1 a k 0 10) 称方程( 10)为方程( 8)、 9)的特征方程。

n n n c 1 1 c 2 2 ... c k k , 若(10) 有 m 重根 ,则通解中有构成项: (c 1 m 1 n c 2 n ... c m n ) 显然, 如果能求出( 10)的根,则可以得到( 9)的解。 基本结果如下: 1) 若(10) 有 k 个不同的实根,则( 9)有通解:

(3)若(10)有一对单复根 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:X n 如果能得到方程(8)的一个特解:X n ,则(8)必有通解: * X n X n + 焉 (11) (1)的特解可通过待定系数法来确定。 例如:如果b (n )bk m (n ), pMn )为门的多项式,则当b 不是特征 根 时,可设成形如 bq m (n ) 形式的特解,其中 q m (n ) 为m 次多项式;如 果b 是 r 重根时,可设特解:b n n r q m (n ) ,将其代入(8)中确定出系 数即可。 arcta n — ,则(9) 的通解中有构成项: C l n . cos n C 2 sin (4)若有 m 重复根: i e ,则 (9)的通项中有成 项: cos n (C m 1 C m 2 n m 1 、 n ? c 2m n ) sin n

热传导方程向前差分格式的MATLAB程序

向前差分格式MATLAB编程: c lear;clc; format short e a=input('请输入系数a的值'); l=input('请输入长度l的值'); M=input('请输入将区间[0,1]等分的个数M '); ot=input('请输入时间增量ot的值'); n=input('请输入运行次数n的值'); ox=1/M; x0=zeros(M+1,1) for ii=1:M x0(ii+1)=ii*ox; end u=sin(pi*x0/l); r=a*ot/(ox)^2; for ii=1:n %数据的输入 B=zeros(M-1,1); A=zeros(M-2,1); C=zeros(M-2,1); S=zeros(M-1,1); for ii=1:M-2 B(ii)=1+2*r;A(ii)=-r;C(ii)=-r; S(ii)=u(ii+1,1); end B(M-1,1)=1+2*r;S(M-1,1)=u(M,1);u(1,2)=0;u(M+1,2)=0; S(1,1)=S(1,1)+r*u(1,2);S(M-1,1)=S(M-1,1)+r*u(M+1,2); %追赶法 S(1)=S(1)/B(1);T=B(1);k=2; while k~=M B(k-1)=C(k-1)/T; T=B(k)-A(k-1)*B(k-1); S(k)=(S(k)-A(k-1)*S(k-1))/T; k=k+1 end k=1; while k~=M-1 S(M-1-k)=S(M-1-k)-B(M-1-k)*S(M-k); k=k+1; end D=(1-2*r)*eye(M-1); temp=r*linspace(1,1,M-2); D=D+diag(temp,1)+diag(temp,-1); S=D*S

差分方程的解法

差分方程常用解法 1、 常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ (1) 其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (2) 为方程(1)对应的齐次方程。 如果(2)有形如n n x λ=的解,代入方程中可得: 0...1110=++++--k k k k a a a a λλλ (3) 称方程(3)为方程(1)、(2)的特征方程。 显然,如果能求出方程(3)的根,则可以得到方程(2)的解。 基本结果如下: (1) 若(3)有k 个不同的实根,则(2)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(3)有m 重根λ(即m 个根均为λ),则通解中有构成项: n m m n c n c c λ)...(121----+++

(3)若(3)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ ?βαρarctan ,22=+=,则(2)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21- -+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(2)的通项中有构 成项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(3)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(1)的一个特解:*n x ,则(1)必有通解: =n x -n x +* n x (4) 方程(4) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的m 次多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为n 的m 次多 项式;如果b 是r 重特征根时,可设特解:r n n b )(n q m ,将其代入(1) 中确定出系数即可。

对流扩散方程有限差分方法.

对流扩散方程有限差分方法 求解对流扩散方程的差分格式有很多种,在本节中将介绍以下3种有限差分格式:中心差分格式、Samarskii 格式、Crank-Nicolson 型隐式差分格式。 3.1 中心差分格式 时间导数用向前差商、空间导数用中心差商来逼近,那么就得到了(1)式的中心差分格式]6[ 2 1 11 1122h u u u v h u u a u u n j n j n j n j n j n j n j -+-+++-=-+-τ (3) 若令 h a τ λ=,2h v τ μ=,则(3)式可改写为 )2()(2 111111 n j n j n j n j n j n j n j u u u u u u u -+-+++-+--=μλ (4) 从上式我们看到,在新的时间层1+n 上只包含了一个未知量1 +n j u ,它可以由时间层n 上的值n j u 1-,n j u ,n j u 1+直接计算出来。因此,中心差分格式是求解对 流扩散方程的显示格式。 假定),(t x u 是定解问题的充分光滑的解,将1 +n j u ,n j u 1+,n j u 1-分别在),(n j t x 处 进行Taylor 展开: )(),(),(211ττO t u t x u t x u u n j n j n j n j +??? ?????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????+==++ )(2),(),(3 22211 h O x u h x u h t x u t x u u n j n j n j n j n j +????????+????????-==-- 代入(4)式,有 2 111 1122),(h u u u v h u u a u u t x T n j n j n j n j n j n j n j n j -+-+++---+-= τ )()()(2222 h O v x u v h O a x u a O t u n j n j n j ?-????????-?+????????++????????=τ )()()(222h O v a O x u v x u a t u n j n j n j ?-++????????-??? ?????+????????=τ

【文献综述】热传导方程差分格式的收敛性和稳定性

文献综述 信息与计算科学 热传导方程差分格式的收敛性和稳定性在实际研究物理问题过程中, 往往能给出问题相应的数学表达式, 但是由于实际物理问题的复杂性, 它的解却一般不容易求出. 由此计算物理应运而生, 计算物理是以计算机为工具, 应用数学的方法解决物理问题的一门应用性学科, 是物理、数学和计算机三者结合的交叉性学科. 它产生于二战期间美国对核武器的研究, 伴随着计算机的发展而发展. 计算物理的目的不仅仅是计算, 而是要通过计算来解释和发现新的物理规律. 这一点它与传统的实验物理和理论物理并无差别, 所不同的只是使用的工具和方法. 计算物理早已与实验物理和理论物理形成三足鼎立之势, 甚至有人提出它将成为现代物理大厦的“栋梁”. 在一个物理问题中一个数值解往往比一个式子更直观, 更有价值. 在实际求解方程时, 除了一些特殊的情况下可以方便地求得其精确解外, 在一般情况下, 当方程或定解条件具有比较复杂的形式, 或求解区域具有比较复杂的形状时, 往往求不到, 或不易求到其精确解. 这就需要我们去寻找方程的近似解, 特别是数值近似解, 简称数值解. 这里主要研究的是热传导方程. 有限差分法是微分方程和积分微分方程数值解的方法. 其基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似, 于是原微分方程和定解条件就近似地代之以代数方程组, 即有限差分方程组, 解此方程组就可以得到原问题在离散点上的近似解. 然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解. 热传导的差分法是求解热传导方程的重要方法之一. 对于差分格式的的求解, 我们首先要关注差分格式的收敛性和稳定性. 对于一个微分方程建立的各种差分格式, 为了有实用意义, 一个基本要求是它们能够任意逼近微分方程, 即相容性要求. 一个差分格式是否有用, 就要看差分方程的精确解能否任意逼近微分方程的解, 即收敛性的概念. 此外, 还有一个重要的概念必须考虑, 即差分格式的稳定性. 因为差分格式的计

差分方程的解法(终审稿)

差分方程的解法 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ(10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项:

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ ?βαρarctan ,22=+=,则(9)的通解中有构成项: (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121-- -++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果 )(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如果b 是r 重根时, 可设特解:r n n b )(n q m ,将其代入(8)中确定出系数即可。 2、差分方程的z 变换解法

利用中心差分格式数值求解导数

利用中心差分格式数值求解导数 目录 一、问题描述 (2) 二、格式离散 (2) 二阶导数中心差格式离散 (2) 追赶法求解线性方程组简述 (3) 计算流程图 (5) 三、程序中主要符号和数组意义 (5) 四、计算结果与讨论 (6) 五、源程序 (9)

一、问题描述 利用中心差分格式近似导数22/dx y d ,数值求解 ()x dx y d 2sin 22= ()10≤≤x 1 /,0/10====x x y y 步长分别取 0001.0,001.0,01.0, 05.0=?x 二、格式离散 将x 轴上[0,1]之间的线段按上述步长,等步长的离散为n 个小段,包括端点,共n+1个网格节点,示意图如下: 线段上边的数字表示x 轴上的坐标值,线段下边的数字表示节点编号,从0到n 编号。 二阶导数中心差格式离散 211222)2sin(x y y y dx y d x i i i ?+-==+- 整理为线性方程形式 )2sin(2211x x y y y i i i ?=+-+- 其中,x ? 为空间离散步长;i=1,2,……,n-1 包括边界条件的线性方程组如下:

边界条件 边界条件0 ) *)1(*2sin(2......... ..........) **2sin(2..................) *1*2sin(20 21221122100=?-?=+-??=+-??=+-=--+-n n n n i i i y x n x y y y x i x y y y x x y y y y 改写成矩阵形式: f Ay = 其中,?????? ????????????????????----=1012112112112101 A ,??????????????????????=-n n i y y y y y y 110 ,??????????????????????=-n n i f f f f f f 110 系数矩阵A 中仅三对角线上的数值不全为0,其余位置上的数值全为0,是 典型的对角占优的三对角矩阵,列向量f 中,)2sin(2x i x f i ??=,且10==n f f ,作为边界条件。 追赶法求解线性方程组简述 ????? ?????????????????=??????????????????????????----=---n n n n n i i i b a c b a c b a c b a c b A 1111110 01012112112112101

一维热传导方程

一维热传导方程Last revision on 21 December 2020

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;Γ=G --G 是网格界点集合。

三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,22111j k j k j k j k j k j f h u u u a u u ++-=--++τ )(j j x f f =, )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1。以2/h a r τ=表示网比。则方程(5)可以改写为: 易知向前差分格式是显格式。 2. 向后差分格式 (6) ,11111)21(j k j k j k j k j f u ru u u ru τ+=-++-+-+++ )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1,易知向前差分格式是显格式。 3. 六点对称格式(Grank-Nicolson 格式) 将向前差分格式和向后差分格式作算术平均,即得到六点对称格式: (7) 111112)1(2+-+++-++-k j k j k j u r u r u r =j k j k j k j f u r u r u r τ++-+-+112 )1(2 利用0j u 和边值便可逐层求到k j u 。六点对称格式是隐格式,由第k 层计算第k+1层时需解线性代数方程组(因系数矩阵严格对角占优,方程组可唯一求解)。

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

本科毕业设计--求解热传导方程的高精度隐式差分格式

新疆大学毕业论文(设计) 题目:求解热传导方程的高精度隐式差分格式所属院系:数学与系统科学学院 专业:信息与计算科学

声明 本人郑重声明该毕业论文(设计)是本人在开依沙尔老师指导下独立完成的,本人拥有自主知识产权,没有抄袭、剽窃他人成果,由此造成的知识产权纠纷由本人负责。 声明人(签名): 年月日 亚库甫江.买买提同学在指导老师的指导下,按照任务书的内容,独立完成了该毕业论文(设计),指导教师已经详细审阅该毕业论文(设计)。 指导教师(签名): 年月日

新疆大学 毕业论文(设计)任务书 班级:信计07-2 姓名:亚库甫江.买买提论文(设计)题目:求解热传导方程的高精度隐式差分格式 专题:毕业设计 论文(设计)来源:教师自拟 要求完成的内容:学习和掌握一维热传导方程已有的各种差分 格式的基础上,扩散方程对空间变量应用紧 致格式离散,对时间变量应用梯形方法,构 造热传导方程的精度为() 24 τ+数值格式, O h 讨论格式的稳定性,最后数值例子来验证。发题日期:2012 年12月25日完成日期:2012 年5月28 日实习实训单位:数学学院地点:数学学院 论文页数:19页;图纸张数:4 指导教师:开依沙尔老师 教研室主任 院长(系主任)

摘要 本文首先对热传导方程经典差分格式进行复习和讨论,然后热传导方程对空间变量四阶紧致格式进行离散,时间变量保持不变,把一维热传导方程转化为常微分方程组的初值问题, 再利用梯形方法构造热传导方程方程的时间二阶空间四阶精度的一种差分格式,并稳定性进行分析,数值结果与Crank-Nicholson 格式进行比较,数值结果表明, 该方法是有效求解热传导方程的数值计算. 关键词: 热传导方程,高精度紧致格式; 梯形方法;两层隐格式; Crank-Nicolson格式 ABSTRACT This paper first study on some classical finite difference for the heat conduction equation, secondely secondely we apply compact finite difference approximation of fourth order for discretizing spatial derivatives but leave the time variable Continuous. This approach results in a system of ODEs, which can then be used trapezodial formula derived fourth order in space and second order in time unconditionally stable implicit scheme .the stability and local truncation error of the obtained method are analysied. Numerical experiments shows that this method Useful, efficient method for solving diffusion equation Keywords: Heat conduction eqution;Higher- oder compact scheme; Trapezodial formula ;Two- level implict scheme; Crank- Nicolson scheme

第四章 差分方程方法

第四章 差分方程方法 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等等,但是,往往都需要用计算机求数值解。这就需要将连续变量在一定条件下进行离散化,从而将连续型模型转化为离散型模型,因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 下面就不同类型的差分方程进行讨论。所谓的差分方程是指:对于一个数列{}n x ,把数列中的前1+n 项()n i x i ,2,1,0=关联起来所得到的方程。 4.1常系数线性差分方程 4.1.1 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=+?+++---k n k n n n x a x a x a x (4.1) 其中k 为差分方程的阶数,()k i a i ,,2,1 =为差分方程的系数,且()n k a k ≤≠0。对应的代数方程 02211=++++--k k k k a a a λλλ (4.2) 称为差分方程的(4.1)的特征方程,其特征方程的根称为特征根。 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出差分方程解的形式。 1. 特征根为单根 设差分方程(4.1)有k 个单特征根 k λλλλ,,,,321 ,则差分方程(4.1)的通解为 n k k n n n c c c x λλλ+++= 2211, 其中k c c c ,,,21 为任意常数,且当给定初始条件 ()0i i x x = ()k i ,,2,1 = (4.3) 时,可以惟一确定一个特解。 2. 特征根为重根 设差分方程(4.1)有l 个相异的特征根()k l l ≤≤1,,,,321λλλλ ,重数分别为 l m m m ,,,21 且k m l i i =∑=1 则差分方程(4.1)的通解为

系数非线性常微分方程的特解表达式

万方数据

万方数据

万方数据

万方数据

三类常系数非线性常微分方程的特解表达式 作者:陈友朋, 钱明忠, 黄娟娟 作者单位:江苏省盐城师范学院数学科学学院,江苏盐城,224051 刊名: 高等数学研究 英文刊名:STUDIES IN COLLEGE MATHEMATICS 年,卷(期):2009,12(4) 被引用次数:0次 参考文献(3条) 1.张建梅.孙志田.崔宁关于y″+py'+qy=Aeαx的特解[期刊论文]-高等数学研究 2005(03) 2.曾菊华.胡小英关于常系数线性微分方程的特解表达式[期刊论文]-高等数学研究 2006(04) 3.Π Э 艾利斯哥尔兹.南开大学数学系编译中队.崔士英微分方程 1959 相似文献(10条) 1.期刊论文刘琳琳非齐次常系数常微分方程特解形式的一个推导-喀什师范学院学报2002,23(3) 考虑n阶非齐次常系数线性常微分方程y(n)+Pn-1y(n-1)+…+p1y1+poy=f(x),当它的右端项f(x)=eλχPm(x)时,给出它的特解形式的推导. 2.期刊论文张学凌.王志伟求一类常微分方程特解的程序化方法-天中学刊2008,23(5) 通过对常微分方程常规解法的进一步探讨,推导出一类三阶常系数非齐次线性微分方程求特解的统一表达式,并通过C++语言编程,利用计算机直接输出结果,提高了求解的速度和准确性. 3.期刊论文沈彻明.SHEN Che-ming求非齐次高阶常系数线性常微分方程的特解的一般公式-数学的实践与认识2000,30(4) 本文提出了高阶常系数线性常微分方程的第二类特征代数方程,并利用它获得了求非齐次方程的特解的一般公式. 4.期刊论文赵苏串一类常系数非齐次常微分方程的特解的求法-上海大学学报(自然科学版)1999,5(6) 讨论了形如u+αu=f(x),u(4)+αu.+βu=f(x),其中f(x)=(sinωx)2k或(cosωx)2k(k∈Z+),ω≠0ε,α,β均为常数的特解的求法. 5.期刊论文龚东山.刘岳巍.贾筱景.GONG Dong-shan.LIU Yue-wei.JIA Xiao-jing计算一类常微分方程特解的新方法-河北北方学院学报(自然科学版)2008,24(6) 目的 计算高阶常微分方程特解的方法有待定系数法、常数变易法、拉普拉斯变换法、积分法等,它们的计算工作量一般较大,为弥补上述方法的不足,有必要探究另一种简便实用的新方法--特征函数法.方法 先定义该类高阶常微分方程的对应齐次方程的特征函数,再利用特征函数的导数,可得到非齐次项为特殊函数情形时方程的一个特解.结果 只需求出特征方程的根,就可得到该类高阶常微分方程的一个特解.结论 利用特征函数法可以得到一类常微分方程的一个特解,该方法使用简单,所得特解形式直观. 6.期刊论文龚东山.刘岳巍.牛富俊.GONG Dong-shan.LIU Yue-wei.NIU Fu-jun特征函数在高阶常微分方程特解计算中的应用-吉林师范大学学报(自然科学版)2008,29(4) 通过借助特征函数的导数,得到了非齐次项为特殊函数情形的一类高阶常微分方程的一个特解的一种新的计算方法.运用该方法,还得到了非齐次项为常见情形时方程的一个特解. 7.期刊论文陈新一一类二阶常微分方程的特解 -高等数学研究2010,13(1) 研究一类二阶实常系数非齐次微分方程y″+py′+q=(a0+a1x)eαxsinβx的解法,应用叠加原理和Euler公式,将其化为二阶线性非齐次方程,并利用对应的特征方程给出了这一类方程特解的一般公式,简化这一类微分方程的求解过程. 8.期刊论文张学凌二阶非齐次线性常微分方程特解的算法模型-许昌学院学报2003,22(2) 用迭代算法求二阶非齐次线性常微分方程y"+py'+qy=pn(x)eax=(AnXn+…+Aixi+…+Ao)eax的特解是一种新的尝试,借助C++BUILDER编译器成功地实现了该算法,较圆满地解决了此类微分方程求特解时实际计算上的问题. 9.期刊论文王欣欣.郑秉文用微分算子求常微分方程特解的注记-吉林师范大学学报(自然科学版)2003,24(3) 本文给出常系数线性微分方程最简特解的定义,论证了常系数线性微分方程最简特解的形式,同时给出了用微分算子求常系数线性微分方程最简特解的方法. 10.期刊论文陈新一.唐文玲.CHEN Xin-yi.TANG Wen-ling一类三阶常微分方程的特解公式-甘肃联合大学学报(自然科学版)2007,21(1) 利用比较系数法,推导出三阶常系数微分方程y"'+py"+qy'+ry=(a0+a1x+a2x2)eλx的特解的一般公式.利用这个公式可直接得到此类微分方程的特解. 本文链接:https://www.360docs.net/doc/9b10971857.html,/Periodical_gdsxyj200904014.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:0494467a-5728-47be-9cc4-9dcf0154b484 下载时间:2010年8月11日

相关文档
最新文档