kent-park混凝土模型

kent-park混凝土模型
kent-park混凝土模型

OpenSees 材料模型库中的Concrete02 Material 。

它基于Scott 、Park 等修正后的Kent-Park 单轴混凝土本构模型。该模型通过考虑混凝土受压段的峰值应力、峰值应变、下降段的软化曲率等来反应箍筋的约束情况,并可考虑混凝土剩余强度。总体来说,Concrete02 混凝土模型是一个既简便又有相当精确性的混凝土模型。其卸载的应力-应变关系由Karsan-Jirsa 卸载规则确定。其受压段应力-应变关系如图所示。

Kent-Park 混凝土模型

混凝土的极限应力出现在应变为0.002K 的时候,应力-应变表达式为: 上升段,即0.002C K ε≤时

22[

()]0.0020.002c c

c c f Kf K K

εε'=- (1)

下降段,即0.002C K ε>时

[1(0.002)]c c m c f Kf Z K ε'=-- (2)

且0.2c c f Kf '≥。 其中:

1s yh

c f K f ρ=+

'

(3)

m Z =

(4)

上述公式中:

K —— 考虑箍筋约束所引起的混凝土强度增强系数;

m Z —— 应变软化段斜率;

c

f'——混凝土圆柱体抗压强度(MPa);

yh

f——箍筋的屈服强度(MPa);

s

ρ——试件的体积配箍率;

h''——从箍筋外边缘算起的核心混凝土宽度。

Scott等将核心混凝土的极限压应变相对保守的取为首根约束箍筋断裂时的混凝土应变,将保护层混凝土脱落失效时的应变取为0.004,约束混凝土的极限压应变按下式确定:

max 0.0040.9()

300

yh

s

f

ερ

=+(5)

其中,

yh

f的单位取为MPa。

钢筋混凝土结构中的钢筋有哪几种

钢筋的分类和用途 钢筋种类很多,通常按化学成分、生产工艺、轧制外形、供应形式、直径大小,以及在结构中的用途进行分类: 1.按化学成分分 碳素钢钢筋和普通低合金钢筋。碳素钢钢筋按碳量多少,又分为低碳钢钢筋(含碳量低于0.25%,如I级钢筋),中碳钢钢筋(含碳量0.25%~0.7%,如IV级钢筋),高碳钢钢筋(含碳量0.70%~1.4%,如碳素钢丝),碳素钢中除含有铁和碳元素外,还有少量在冶炼过程中带有的硅、锰、磷、硫等杂质。普通低合金钢钢筋是在低碳钢和中碳钢中加入少量合金元素,获得强度高和综合性能好的钢种,在钢筋中常用的合金元素有硅、锰、钒、钛等,普通低合金钢钢筋主要品种有:20MnSi、40Si2MnV、45SiMnTi等。 各种化学成分含量的多少,对钢筋机械性能和可焊性的影响极大。一般建筑用钢筋在正常情况下不作化学成分的检验,但在选用钢筋时,仍需注意钢筋的化学成分。下面介绍钢筋中主要的五种元素对其性能的影响。 碳(C):碳与铁形成化合物渗碳体(Fe3C),材性硬且脆,钢中含碳量增加渗碳体量就大,钢的硬度和强度也提高,而塑性和韧性则下降,材性变脆,其焊接性也随之变差。 锰(Mn):它是炼钢时作为脱氧剂加入钢中的,可使钢的塑性及韧性下降,因此含量要合适,一般含量在1.5%以下。

硅(Si):它也是作为脱氧剂加入钢中的,可使钢的强度和硬度增加。有时特意加入一些使其含量大于0.4%,但不能超过0.6%,因为它含量大时与碳(C)含量大时的作用一样。硫(S):它是一种导致钢热脆性、使钢在焊接时出现热裂纹的有害杂质。它在钢中的存在使钢的塑性和韧性下降。一般要求其含量不得超过0.045%。 磷(P):它也是一种有害物质。磷使钢容易发生冷脆并恶化钢的焊接性能,尤其在200℃时,它可使钢材或焊缝出现冷裂纹。一般要求其含量低于0.045%,即使有些低合金钢也必须控制在0.050%~0.120%之间。 2.按轧制外形分 (1)光面钢筋:I级钢筋(Q235钢钢筋)均轧制为光面圆形截面,供应形式有盘圆,直径不大于10mm,长度为6m~12m。 (2)变形钢筋/带肋钢筋:有螺旋形、人字形和月牙形三种,一般Ⅱ、Ⅲ级钢筋轧制成人字形,Ⅳ级钢筋轧制成螺旋形及月牙形。 3.按直径大小分 钢丝(直径3~5mm)、细钢筋(直径6~10mm)、粗钢筋(直径大于22mm)。 4.按力学性能分 Ⅰ级钢筋(235/370级);Ⅱ级钢筋(335/510级);Ⅲ级钢筋

第三节钢筋和混凝土粘结强度对比试验.

第三节钢筋和混凝土粘结强度对比试验 第10.3.1条本节适用于直径大于10mm的各类非预应力钢筋的粘结强度对比试验,并根据对比试验结果评价钢筋和混凝土粘结性能。 第10.3.2条钢筋和混凝土的粘结强度应采用无横向钢筋的立方体中心拔出试件(简称拔出试件)确定。拔出试件应符合下列要求: 一、拔出试件应采用边长为10倍钢筋直径的混凝土立方体试件(图10.3.2)。钢筋放置在立方体的中轴线上,埋入部分长度和无粘结部分长度各为5d。钢筋伸出混凝土试件表面的长度:自由端为20mm,加载端应根据垫板厚度、穿孔球铰高度及加载装置的夹具长度确定,但不宜小于300mm; 二、钢筋表面不应有锈蚀、油污及不正常的横肋轧制标记,安装百分表的钢筋端面应加工成垂直于钢筋轴的平滑表面; 在混凝土中无粘结部分的钢筋应套上硬质的光滑塑料套管,套管末端与钢筋之间空隙应封闭; 三、试件的混凝土应采用普通骨料,粗骨料最大颗粒粒径不得大于1.25倍钢筋直径; 试件的混凝土强度等级为C30,混凝土立方体抗压强度允许偏差应为 ±3MPa。 四、拔出试件数量每组应制作六个。应同时制作混凝土立方体试件,每组三个,其振捣方法与养护条件应与拔出试件一致; 五、试件应在钢模或不变形的试模中成型。模板上应预留钢筋位置孔。宜用振动台振捣;

试件的浇注面应与钢筋纵轴平行。钢筋应与混凝土承压面垂直,并水平设置在模板内。钢筋的两纵肋平面应放置在水平面上; 六、试件应在标准养护室内进行养护。在试件龄期为28d时进行试验。 第10.3.3条试验装置承压垫板的边长不应小于拔出试件的边长,其厚度不应小于15mm。垫板中心孔径应为2倍钢筋直径(图10.3.3)。 第10.3.4条加载速度应根据各种钢筋的直径确定,每种钢筋施加荷载的速度应按下式计算: 式中V F——加载速度(kN/min); d——钢筋直径(mm)。 加载速度应均匀,不应施加冲击荷载。

钢筋混凝土结构中的钢筋有哪几种

钢筋的分类和用途钢筋种类很多,通常按化学成分、生产工艺、 轧制外形、供应形式、直径大小,以及在结构中的用途进行分类:1.按化学成分分碳素钢钢筋和普通低合金钢筋。碳素钢钢筋按碳量多少,又分为低碳钢钢筋(含碳量低于0.25%,如I 级钢筋),中碳钢钢筋(含碳量0.25%?0.7%,如IV级钢筋),高碳钢钢筋(含碳量0.70%?1.4%,如碳素钢丝),碳素钢中除含有铁和碳元素外,还有少量在冶炼过程中带有的硅、锰、磷、硫等杂质。普通低合金钢钢筋是在低碳钢和中碳钢中加入少量合金元素,获得强度高和综合性能好的钢种,在钢筋中常用的合金元素有硅、锰、钒、钛等,普通低合金钢钢筋主要品种有: 20MnSi、40Si2MnV 、4 5SiMnTi 等。各种化学成分含量的多少,对钢筋机械性能和可焊性的影响极大。一般建筑用钢筋在正常情况下不作化学成分的检验,但在选用钢筋时,仍需注意钢筋的化学成分。下面介绍钢筋中主要的五种元素对其性能的影响。碳(C):碳与铁形成化合物渗碳体(Fe3C),材性硬且脆,钢中含碳量增加渗碳体量就大,钢的硬度和强度也提高,而塑性和韧性则下降,材性变脆,其焊接性也随之变差。 锰(Mn):它是炼钢时作为脱氧剂加入钢中的,可使钢的塑性及 韧性下降,因此含量要合适,一般含量在1.5%以下。 硅(Si):它也是作为脱氧剂加入钢中的,可使钢的强度和硬 度增加。有时特意加入一些使其含量大于0.4%,但不能超 过0.6%,因为它含量大时与碳(C)含量大时的作用一样。硫

(S):它是一种导致钢热脆性、使钢在焊接时出现热裂纹的有害杂质。它在钢中的存在使钢的塑性和韧性下降。一般要求其含量不得超过0.045%。 磷(P):它也是一种有害物质。磷使钢容易发生冷脆并恶化钢的焊接性能,尤其在200 C时,它可使钢材或焊缝出现冷 裂纹。一般要求其含量低于0.045%,即使有些低合金钢也 必须控制在0.050%?0.120%之间。 2.按轧制外形分 (1 )光面钢筋:I 级钢筋(Q235 钢钢筋)均轧制为光面圆形截面,供应形式有盘圆,直径不大于10mm ,长度为6m~12m 。 (2)变形钢筋/带肋钢筋:有螺旋形、人字形和月牙形三种,一般□、川级钢筋轧制成人字形,W级钢筋轧制成螺旋形及月牙形。 3.按直径大小分 钢丝(直径3~5mm )、细钢筋(直径6?10mm )、粗钢筋(直径大于22mm)。 4.按力学性能分 I级钢筋(235/370级);H级钢筋(335/510级);川级钢筋

钢筋与混凝土的粘结

钢筋与混凝土的粘结 随着社会的发展,技术的进步,钢筋混凝土材料在住房、建筑、交通、军事、水利等领域被广泛应用,钢筋混凝土结构就是利用了钢筋的高抗拉强度和混凝土的高抗压强度,而钢筋和混凝土之间的足够粘结是保证两者共同受力的前提。目前,两者完美的结合,造就了许多建筑奇迹,满足了结构的高强性、耐久性、抗灾性、抗震性等实用要求,保证了结构的使用寿命和使用安全。同时,也给人们的生产生活带来了翻天覆地的变化,让人们享受到安全舒适的生存环境。由此可见,钢筋和混凝土的粘结非常重要,下面从以下几个方面加以论述。 一、粘结力的作用 粘结力是指粘结剂与被粘结物体界面上分子间的结合力,粘结力使得钢筋和混凝土两种性质不同的材料在一起共同受力、共同工作,并承受构件因受荷在两种材料之间产生的剪应力,两者不至于发生滑移。如果粘结力失效,钢筋混凝土构件就会发生破坏。可见,粘结力的大小,直接影响着构件的稳定性和使用寿命。 二、粘结力的组成及粘结机理 钢筋和混凝土的粘结力由三部分组成: 1、化学胶结力 混凝土在硬化过程中,水泥胶体与钢筋之间产生的吸附

胶着作用,这种吸附作用力来自浇筑时水泥浆体对钢筋表面氧化层的渗透,以及水化过程中水泥晶体的生长和硬化,这种作用力一般比较小,仅在受力阶段的局部无滑移区域起作用,当接触面发生相对滑移时,该力即消失。 2、摩阻力 由于混凝土凝固时的收缩,使钢筋周围的混凝土握裹在钢筋上,当钢筋和混凝土之间出现相对滑移的趋势,则此接触面上将产生摩阻力。 对于光圆钢筋表面轻度锈蚀有利于增加摩阻力,但摩阻作用也很有限;对于光面钢筋表面的自然凹凸程度很小,机械咬合也不大,因此,光面钢筋与混凝土的粘结强度是较低的,为保证光面钢筋的锚固,通常需要在钢筋端部弯钩、弯折或焊短钢筋,以阻止钢筋与混凝土间产生较大的相对滑动。 3、机械咬合力 即钢筋表面凹凸不平与混凝土之间产生的机械咬合力作用力,对于光圆钢筋这种咬合力来自表面的粗糙不平。将钢筋表面轧制出肋形成带肋钢筋,即变形钢筋,可显著增加钢筋与混凝土的机械咬合作用,从而大大增加了粘结强度。 三、粘结问题的分类及相应的试验方法

混凝土、基础

建筑结构基础知识(混凝土结构) 1.建筑按主要承重结构的材料分,没有( C ) A.砖混结构 B.钢筋混凝土结构 C.框架结构 D.钢结构2.结构的功能概括为( A ) A.安全性、适用性和耐久性 B.实用、经济、美观C.强度、变形、稳定 D.可靠、经济 3.下列( A )状态被认为超过正常使用极限状态 A.影响正常使用的变形 B.因过度的塑性变形而不适合于继续承载 C.结构或构件丧失稳定 D.连续梁中间支座产生塑性铰 4.如果混凝土的强度等级为C50,则以下说法正确的是( C ) A.抗压强度设计值f c=50MP a B.抗压强度标准值f ck=50MP a C.立方体抗压强度标准值f cu,k=50MP a D.抗拉强度标准值f tk=50MP a 5.混凝土在荷载长期持续作用下,应力不变,变形会( B ) A.随时间而减小 B.随时间而增大 C.随时间而增大 D.随时间先增长,而后降低 6.钢筋与混凝土这材料能有效共同工作的主要原因是( D ) A.混凝土能够承受压力,钢筋能够承受拉力 B.两者温度线膨系数接近 C.混凝土对钢筋的保护 D.混凝土硬化后,钢筋与混凝土之间产生了良好的粘结力,且两者温度线膨系数接近 7.混凝土保护层厚度的说法正确的是( B ) A.梁、柱构件中纵向受力钢筋的外边缘至混凝土表面的垂直距离

B.梁、柱构件中箍筋外表面至混凝土表面的垂直距离 C.受力钢筋形心至混凝土表面的垂直距离 D.受力钢筋合力点至混凝土表面的垂直距离 8.在正常条件下,室内与室外分属不同的环境类别,室内裂缝宽度限制值可以大些,梁柱保护层厚度可小些,原因是( C ) A.室外条件差,混凝土易碳化 且容易碳化,但钢筋不易生锈 B.室内虽有CO 2 C.室外温差大,易开裂 D.室内墙面保护措施更好 9.梁的下部纵向受力钢筋净距不应小于( B )(d为钢筋的最大直径) A 30mm和 B 25mm和d C 30mm和d D 25mm和 10.适量配筋的钢筋混凝土梁与素混凝土梁相比,其承载力和抵抗开裂的能力( C ) A.均提高很多 B.承载力提高不多,抗裂提高很多 C.承载力提高很多,抗裂提高不多 D.相同 11.钢筋用量适中的梁受弯破坏时呈现出( B )的破坏特征 A.脆性破坏 B.塑性破坏 C.先脆后塑 D.先塑后脆 12.正截面承载力计算中,不考虑受拉混凝土作用是因为( C ) A.中和轴以下混凝土全部裂开 B.混凝土抗拉强度低 C.中和轴附近部分受拉混凝土范围小且产生力矩很小 D.混凝土退出工作 13.对钢筋混凝土单筋T形截面梁进行正截面设计时,当满足条件( B )时,可判为第二类T形截面

钢筋混凝土梁步骤

1、menu>preferences>选structural 2、定义单元类型。Menu>preprocessor>element type>add/edit/delete,1号单元定义 SOLID65,为混凝土模型,2号单元为PILE20,为钢筋模型,3号单元为PLANE42。 3、定义实常数,Menu>preprocessor>real constants> add/edit/delete,选PIPE20, OK,输入OD=18,WTHK=8.99定义受拉钢筋定义,单击OK。再定义受压钢筋和箍筋实常数OD=8,WTHK=3.99。再选SOLID65单元,单击OK,不填入数值,单击OK。 4、定义材料属性。 Menu>preprocessor>material props>material models 在对话框中选MATERIAL,并两次单击NEW MODEL1,增加两个材料模型,选material models number1,Material models available >structural >linear>elastic>isotropic,设置弹性模量2.4e4,泊松比0.2,OK。material models available>structural>nonlinear>inelastic>non-metal plasticity>concrete,,前四个位置输入0.4,1.0,3,-1数值,OK。 选material models number2, 执行Material models available >structural >linear>elastic>isotropic,设置弹性模量2e5, 泊松比0.3, 执行material models available>structural>nonlinear>inelastic>rate independent>kinematic hardening plasticity>bilinear,在yield stss中输入350,OK。选material models number3, Material models available >structural >linear>elastic>isotropic,设置弹性模量2e5, 泊松比0.,25,执行material models available>structural>nonlinear>inelastic>rate independent>kinematic hardening plasticity>bilinear, 在yield stss中输入200,OK。退出材料属性定义框。 5、建立半个模型的所有节点 执行Main menu>preprocessor>modeling>create>nodes>in actives cs,建节点1(0,0,0),节点9(150,0,0) 执行Main menu>preprocessor>modeling>create>nodes>fill between nds,选择1和9号节点,在弹出对话框中单击OK。 执行Main menu>preprocessor>modeling>copy>nodes>copy 选择所有节点,单击OK,在copy nodes框中,itime=11,dy=30,inc=9,OK. 执行Main menu>preprocessor>modeling>copy>nodes>copy ,选所有节点,单击OK,itime=19,dz=-75,inc=1000,OK,得到半个模型节点。6、创建受压钢筋和箍筋单元, type,2 real,2 mat,3 建立水平箍筋模型 *do,ii.11.16,1 e ,ii,ii+1 *enddo *do,ii,83,88.1 e , ii,ii+1 *enddo

钢筋和混凝土的力学性能

钢筋和混凝土的力学性能 问答题参考答案 1.软钢和硬钢的区别是什么?应力一应变曲线有什么不同?设计时分别采用什么值作为依据? 答:有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。 软钢的应力应变曲线如图2-1所示,曲线可分为四个阶段:弹性阶段、屈服阶段、强化阶段和破坏阶段。 有明显流幅的钢筋有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增 f作为钢筋的强度极限。另一个强度指标是加以致无法使用,所以在设计中采用屈服强度 y f,一般用作钢筋的实际破坏强度。 钢筋极限强度 u 图2-1 软钢应力应变曲线 硬钢拉伸时的典型应力应变曲线如图2-2。钢筋应力达到比例极限点之前,应力应变按直线变化,钢筋具有明显的弹性性质,超过比例极限点以后,钢筋表现出越来越明显的塑性性质,但应力应变均持续增长,应力应变曲线上没有明显的屈服点。到达极限抗拉强度b 点后,同样由于钢筋的颈缩现象出现下降段,至钢筋被拉断。 设计中极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb,其中σb为无明显流幅钢筋的极限抗拉强度。

图2-2硬钢拉伸试验的应力应变曲线 2. 我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级? 答:目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。 HPB235(Q235,符号Φ,Ⅰ级)、热轧带肋钢筋HRB335(20MnSi ,符号,Ⅱ级)、热轧带肋钢筋HRB400(20MnSiV 、20MnSiNb 、20MnTi ,符号,Ⅲ级)、余热处理钢筋RRB400(K 20MnSi ,符号,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。 3. 钢筋冷加工的目的是什么?冷加工方法有哪几种?简述冷拉方法? 答:钢筋冷加工目的是为了提高钢筋的强度,以节约钢材。除冷拉钢筋仍具有明显的屈服点外,其余冷加工钢筋无屈服点或屈服台阶,冷加工钢筋的设计强度提高,而延性大幅度下降。 冷加工方法有冷拨、冷拉、冷轧、冷扭。 冷拉钢筋由热轧钢筋在常温下经机械拉伸而成,冷拉应力值应超过钢筋的屈服强度。钢筋经冷拉后,屈服强度提高,但塑性降低,这种现象称为冷拉强化。冷拉后,经过一段时间钢筋的屈服点比原来的屈服点有所提高,这种现象称为时效硬化。时效硬化和温度有很大关系,温度过高(450℃以上)强度反而有所降低而塑性性能却有所增加,温度超过700℃,钢材会恢复到冷拉前的力学性能,不会发生时效硬化。为了避免冷拉钢筋在焊接时高温软化,要先焊好后再进行冷拉。钢筋经过冷拉和时效硬化以后,能提高屈服强度、节约钢材,但冷拉后钢筋的塑性(伸长率)有所降低。为了保证钢筋在强度提高的同时又具有一定的塑性,冷拉时应同时控制应力和控制应变。 4. 什么是钢筋的均匀伸长率?均匀伸长率反映了钢筋的什么性质? 答:均匀伸长率δgt 为非颈缩断口区域标距的残余应变与恢复的弹性应变组成。 s b gt E l l l 000'σδ+-= 0l ——不包含颈缩区拉伸前的测量标距;'l ——拉伸断裂后不包含颈缩区的测量标距;0b σ——实测钢筋拉断强度;s E ——钢筋弹性模量。 均匀伸长率δgt 比延伸率更真实反映了钢筋在拉断前的平均(非局部区域)伸长率,客观反映钢筋的变形能力,是比较科学的指标。 5. 什么是钢筋的包兴格效应? 答:钢筋混凝土结构或构件在反复荷载作用下,钢筋的力学性能与单向受拉或受压时的力学性能不同。1887年德国人包兴格对钢材进行拉压试验时发现的,所以将这种当受拉(或受压)超过弹性极限而产生塑性变形后,其反向受压(或受拉)的弹性极限将显著降低的软化现象,称为包兴格效应。 6. 在钢筋混凝土结构中,宜采用哪些钢筋? 答:钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。 7. 试述钢筋混凝土结构对钢筋的性能有哪些要求。 答:(1)对钢筋强度方面的要求 普通钢筋是钢筋混凝土结构中和预应力混凝土结构中的非预应力钢筋,主要是

钢筋混凝土结构复习题

钢筋混凝土结构复习题 一、单项选择题 1.对于两跨连续梁( D )。 A.活荷载两跨满布时,各跨跨中正弯矩最大 B.活荷载两跨满布时,各跨跨中负弯矩最大 C.活荷载单跨布置时,中间支座处负弯矩最大 D.活荷载单跨布置时,另一跨跨中负弯矩最大 2.屋盖垂直支撑的作用有( B )。 A.保证屋架在吊装阶段的强度 B.传递纵向水平荷载 C.防止屋架下弦的侧向颤动 D.传递竖向荷载 3.等高排架在荷载的作用下,各柱的( C )均相等。 A.柱高 B.内力 C.柱顶侧移 D.剪力 4.水平荷载作用下每根框架柱所分配到的剪力与( B )直接有关。 A.矩形梁截面惯性矩 B.柱的抗侧移刚度 C.梁柱线刚度比 D.柱的转动刚度 5.超静定结构考虑塑性内力重分布计算时,必须满足 ( A )。 A.变形连续条件B.静力平衡条件 C.采用热处理钢筋的限制D.采用高强度混凝土 6.在横向荷载作用下,厂房空间作用的影响因素不包括 ...( A )。 A.柱间支撑的设置B.山墙间距 C.山墙刚度D.屋盖刚度 7.公式中,的物理意义是( C )。 A.矩形梁截面惯性矩B.柱的抗侧移刚度 C.梁柱线刚度比 D.T形梁截面惯性矩 8.按D值法对框架进行近似计算时,各柱反弯点高度的变化规律是 (C )。 A.其他参数不变时,随上层框架梁刚度减小而降低 B.其他参数不变时,随上层框架梁刚度减小而升高 C.其他参数不变时,随上层层高增大而降低

D.其他参数不变时,随下层层高增大而升高 9.单层厂房排架柱内力组合时,一般不属于 ...控制截面的是( A )。 A.上柱柱顶截面 B.上柱柱底截面墙 C.下柱柱顶截面 D.下柱柱底截面 10.在对框架柱进行正截面设计时,需要考虑的最不利组合一般不包括 ...(B )。 A、及相应的N B、及相应的N C、及相应的M D、及相应的M 11、伸缩缝的设置主要取决于( D )。 A、结构承受荷载大小 B、结构高度 C、建筑平面形状 D、结构长度 12.钢筋混凝土柱下独立基础的高度主要是由( C )。 A、地基抗压承载力确定 B、地基抗剪承载力确定 C、基础抗冲切承载力确定 D、基础底板抗弯承载力确定 13.一般情况下,在初选框架梁的截面高度时,主要考虑的因素是( B )。 A. 层高 B. 梁的跨度 C. 结构的总高度 D. 梁的混凝土强度等级 14.我国规范对高层建筑的定义是( D )。 A. 8层以上建筑物 B. 8层及8层以上或高度超过26m的建筑物 C. 10层以上建筑物 D. 10层及10层以上或高度超过28m的建筑物 15. 多层多跨框架在水平荷载作用下的侧移,可近似地看做由( B )。 A.梁柱弯曲变形与梁柱剪切变形所引起的侧移的叠加 B.梁柱弯曲变形与柱轴向变形所引起的侧移的叠加 C.梁弯曲变形与柱剪切变形所引起的侧移的叠加 D.梁弯曲变形与柱轴向变形所引起的侧移的叠加 16. 多跨连续梁(板)按弹性理论计算,为求得某跨跨中最大负弯矩,活荷载应布置在( A )。 A.该跨,然后隔跨布置 B.该跨及相邻跨 C. 所有跨 D.该跨左右相邻各跨,然后隔跨布置 17.计算风荷载时,基本风压应(A )。 A、采用50年一遇的风压,但不得小于0.3KN/mm2 B、采用100年一遇的风压,但不得小于0.3KN/mm2

钢筋混凝土建模参考

!建模 finish$/clear$/prep7 ET,1,SOLID65 ET,2,LINK8 k,,60,210,0 k,,-60,210,0 k,,-60,-210,0 k,,-20,-210,0 k,,20,-210,0 k,,60,-210,0 k,,60,210,50 k,,-60,210,50 k,,-60,-210,50 k,,-20,-210,50 k,,20,-210,50 k,,60,-210,50 *do,j,0,58,1 *do,i,7+j*6,12+j*6,1 kgen,2,i,,,,,100,,, *enddo *enddo k,,60,210,6000 k,,-60,210,6000 k,,-60,-210,6000 k,,-20,-210,6000 k,,20,-210,6000 k,,60,-210,6000 *do,i,1,367,6 l,i,i+1 l,i+1,i+2 l,i+2,i+3 l,i+3,i+4 l,i+4,i+5 l,i+5,i *enddo *do,i,1,6,1 *do,j,i,i+360,6 l,j,j+6 *enddo *enddo !附加点 k,,100,250,0 k,,-100,250,0

k,,-100,-250,0 k,,100,-250,0 k,,60,250,0 k,,-60,250,0 k,,-60,-250,0 k,,60,-250,0 k,,100,250,6000 k,,-100,250,6000 k,,-100,-250,6000 k,,100,-250,6000 k,,60,250,6000 k,,-60,250,6000 k,,-60,-250,6000 k,,60,-250,6000 !粘体 v,1,2,3,6,367,368,369,372 v,373,377,380,376,381,385,388,384 v,378,374,375,379,386,382,383,387 v,377,378,2,1,385,386,368,367 v,6,3,379,380,372,369,387,388 vglue,all NUMMRG,KP, , , ,LOW !参数 R,1,1256, R,2,113.04,0, MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,1.8145e10 MPDATA,PRXY,1,,0.2 TB,kinh,1,1,13,0 TBTEMP,0 TBPT,,0.0002 , 3629000 TBPT,,0.0004 , 6876000 TBPT,,0.0006, 9741000 TBPT,,0.0008, 12224000 TBPT,,0.001, 14325000 TBPT,,0.0012, 16044000 TBPT,,0.0014, 17831000 TBPT,,0.0016, 18336000 TBPT,,0.0018, 18909000 TBPT,,0.002, 19100000 TBPT,,0.0024, 19063032

有限元分析在钢筋混凝土结构中的应用

论文题目:钢筋混凝土有限元分析技术在结构工程中的应用 学生姓名:刘畅 学号:2014105110 学院:建筑与工程学院 2015年06月30日

有限元分析在钢筋混凝土结构中的应用【摘要】在国内外的土木工程中,钢筋混凝土结构因具有普遍性、可靠性良好、操作简单等优点,而得到了广泛的应用。钢筋混凝土结构是钢筋与混凝土两种性质截然不同的材料组合而成,由于其组合材料的性质较为复杂,同时存在非线性与几何线形的特征,应用传统的解析方法进行材料的分析与描述在受力复杂、外形复杂等情况下较为困难,往往不能得到准确的数据,给工程安全带来隐患。而有限元分析方法则充分利用现代电子计算机技术,借助有限元模型有效解决了各种实际问题。 【关键词】有限元分析;钢筋混凝土结构;应用 随着计算机在工程设计领域中的广泛应用,以及非线性有限元理论研究的不断深入,有限元作为一个具有较强能力的专业数据分析工具,在钢筋混凝土结构中得到了广泛的应用。在现代建筑钢筋混凝土结构的分析中,有限元分析方法展现了较强的可行性、实用性与精确性。例如:在计算机上应用有限元分析法,对形状复杂、柱网复杂的基础筏板,转换厚板,体型复杂高层建筑侧向构件、楼盖,钢-混凝土组合构件等进行应力,应变分析,使设计人员更准确的掌握构件各部分内力与变形,进而进行设计,有效解决传统分析方法的不足,满足当前建筑体型日益复杂,工程材料多样化的实际情况。但是在有限元分析方法的应用中,必须结合钢筋混凝土结构工程的实际情况,选取作为合理的有限元模型,才能保证模拟与分析结果的真实性、精确性与可靠性。 在钢筋混凝土结构工程中,非线性有限元分析的基本理论可以概括为:1)通过分离钢筋混凝土结构中的钢筋、混凝土,使其成为有限单位、二维三角形单元,钢箍离散为一维杆单元,以利于分析模型的构建;2)为了合理模拟钢筋、混凝土之间的粘结滑移关系,以及

钢筋混凝土结构基本原理

第二章 一、填空题 1、结构包括素混凝土结构、(钢筋混凝土结构)、(预应力混凝土结构)和其他形式加筋混凝土结构。 2 钢筋混凝土结构由很多受力构件组合而成,主要受力构件有楼板(梁)、(柱)、墙、基础等。 3. 在测定混凝土的立方体抗压强度时,我国通常采用的立方体标准试件的尺寸为(150mm×150mm×150mm)。 4.长期荷载作用下,混凝土的应力保持不变,它的应变随着时间的增长而增大的现象称为混凝土的(徐变)。 5.混凝土在凝结过程中,体积会发生变化。在空气中结硬时,体积要(缩小);在水中结硬时,则体积(膨胀)。 6.在钢筋混凝土结构的设计中,(屈服强度)和(延伸率)是选择钢筋的重要指标。 7.在浇筑混凝土之前,构件中的钢筋由单根钢筋按设计位置构成空间受力骨架,构成骨架的方法主要有两种:(绑扎骨架)与(焊接骨架)。 8.当构件上作用轴向拉力,且拉力作用于构件截面的形心时,称为(轴心受拉)构件。 9、轴心受拉构件的受拉承载力公式为(N≤fyAs或Nu=fyAs )。 10.钢筋混凝土轴心受压柱根据箍筋配置方式和受力特点可分为(普通钢箍)柱和(螺旋钢箍)柱两种。 11.钢筋混凝土轴心受压柱的稳定系数为(长柱)承载力与(短柱)承载力的比值。 12.长柱轴心受压时的承载力(小于)具有相同材料,截面尺寸及配筋的短柱轴心受压时的承载力。 13.钢筋混凝土轴心受压构件,稳定性系数是考虑了(附加弯矩的影响)。 二:简答题 1.混凝土的强度等级是怎样划分的? 答:混凝土强度等级按立方体抗压强度标准值划分为C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75、C80等14个 2.钢筋混凝土结构对钢筋性能的要求。 答:1.采用高强度钢筋可以节约刚材,取得较好的经济效果;2.为了使钢筋在断裂前有足够的变形,要求钢材有一定的塑性;3.可焊性好;4满足结构或构件的耐火性要求;5.为了保证钢筋与混凝土共同工作,钢筋与混凝土之间必须有足够的粘结力。 3徐变定义;减少徐变的方法。 答:长期荷载作用下,混凝土的应力保持不变,它的应变随着时间的增长而增大的现象称为混凝土的徐变。 4.钢筋混凝土共同工作的基础。 1).二者具有相近的线膨胀系数; 2).在混凝土硬化后,二者之间产生了良好的粘结力,包括a. 钢筋与混凝土接触面上的化学吸附作用力; b混凝土收缩握裹钢筋而产生摩阻力; c 钢筋表面凹凸不平与混凝土之间产生的机械咬合作用力 3). 钢筋至构件边缘之间的混凝土保护层,起着防止钢筋发生锈蚀的作用,保证结构的耐久性。

钢筋混凝土框架结构文献综述

前言 随着社会的发展,钢筋混凝土框架结构的建筑物越来越普遍。由于钢筋混凝土结构与砌体结构相比较具有承载力大、结构自重轻、抗震性能好、建造的工业化程度高等优点;与钢结构相比又具有造价低、材料来源广泛、耐火性好、结构刚度大、使用维修费用低等优点。因此,在我国钢筋混凝土结构是多层框架最常用的结构型式。近年来,世界各地的钢筋混凝土多层框架结构的发展很快,应用很多。一般框架结构是由楼板、梁、柱及基础4种承重构件组成的,由主梁、柱与基础构成平面框架,各平面框架再由连续梁连接起来而形成的空间结构体系。在合理的高度和层数的情况下,框架结构能够提供较大的建筑空间,其平面布置比较的灵活,可适合多种工艺与使用功能的要求。下面介绍下框架结构的基本信息及一些常见的问题[1]。 1.文献综述正文 钢筋混凝土框架结构是由楼板、梁、柱及基础四种承重构件组成的。由主梁、柱与基础构成平面框架,各平面框架再由连续梁连接起来形成空间结构体系。高层建筑采用框架结构体系时,框架梁应纵横向布置,形成双向抗侧力构件,使之具有较强的空间整体性,以承受任意方向的侧向力。框架结构具有建筑平面布置灵活、造型活泼等优点,可以形成较大的使用空间,易于满足多功能的使用要求。在结构受力性能方面,框架结构属于柔性结构,自振周期较长,地震反应较小,经过合理的结构设计,可以具有较好的延性性能[2]。其缺点就是整体侧向刚度较小,在强烈地震作用下侧向变形较大,容易使填充墙产生裂缝,并引起建筑装修、玻璃幕墙等非结构构件的破坏。不仅地震中危及人身安全和财产损失,而且震后的修复工作和费用也很大[3]。同时当建筑层数较多或荷载较大时,要求框架柱截面尺寸较大,既减少了建筑使用面积,又会给室内办公用品或家具的布置带来不便,因此这种结构一般用于非地震区或层数较少的低烈度高层建筑。另外框架结构的承载力较低,它的受力特点类似于竖向悬臂剪切梁,楼层越高,水平位移越慢,高层框架在纵横两个方向都承受很大的水平力,这时,现浇楼面也作为梁共同工作的构件,装配整体式楼面的作用则不考虑,框架结构的墙体是填充墙,起围护和分隔作用。

混凝土模型

PQ-Fiber 概述 PQ-Fiber是清华大学土木工程系结构工程研究所基于大型通用有限元程序ABAQUS开发的一组材料单轴滞回本构模型的集合。主要用于在钢筋混凝土结构、钢结构等的弹塑性时程分析中定义杆系结构的材料本构,同时可用于任何只需要定义材料单轴滞回本构模型的情况。 作者以FORTRAN编译文件.obj的形式在网上免费发布PQ-Fiber的最新版本,以供广大科研与工程设计人员使用,发布的版本没有功能限制。请使用者尊重知识产权。 版本信息:v1.3 (下载-单击右键“另存为”) 包含的材料模型(详细介绍见第三节): UConcrete01,UConcrete02,USteel01,USteel02,USteel03 使用过程中如有问题,请与作者联系: 潘鹏(Email: panpeng@https://www.360docs.net/doc/9411247628.html,)

曲哲(Email: qz@https://www.360docs.net/doc/9411247628.html,) 通信地址:北京清华大学土木工程系,100084 相关下载: 在ABAQUS中使用 1. 在ABAQUS中使用本模型 (1)定义材料 在Properties模块中定义User Material,如图1所示。材料名的前几个字母必须与第三节中定义的某一个材料名相一致。需要分别选择General选项卡中的User Material和Depvar两个选项。 在User Material选项中定义该材料所需要的所有材料属性,如图2所示。在Depvar选项中定义该材料所需的状态变量的个数,如图3所示。

也可以在.inp文件中直接添加用户自定义材料,下面给出了一个例子。 *Material, name=UConcrete01 *Depvar 5, *User Material, constants=4 30., 0.002, 10., 0.005 材料名,短横线之前的字母必须与第三节中的定义相一致。 状态变量选项 用户自定义材料选项

钢筋与混凝土粘结——滑移关系

钢筋与混凝土粘结——滑移关系 混凝土与钢筋间粘结滑移性能向来作为钢筋混凝土结构的重要使用参考依据 ,它是钢筋与混凝土共同协调工作的基础和前提,正因为他们之间的界面存在相互的粘结力 ,促使两种材料能够实现应力的传递 ,从而实现承受外部荷载的作用,这足以显示它对钢筋混凝土结构的重要性。目前关于普通混凝土与钢筋间的粘结滑移性能进行了大量的研究,并已出台了相应的国家规范标准,而再生混凝土作为一种新型的绿色环保材料 ,其应用于实际工程前,还有许多性能有待研究解决,再生混凝土与钢筋间的粘结滑移性能就是其中亟待解决的问题之一。且再生混凝土区别于普通骨料混凝土之处在于其骨料采用废弃混凝土破碎产生,再生骨料与水泥砂浆的界面情况远远复杂于普通骨料 ,然而粘结滑移性能恰恰是钢筋与再生混凝土两种材料界面之间的相作用,由于骨料界面的差异导致它们之间粘结界面的差异是必然的,这就更增加了对两种材料间粘结滑移性能研究的必要。钢筋与混凝土间粘结锚固性能是混凝土结构工作的前提和基础 ,目前关于再生骨料混凝土与钢筋间的粘结性能,国内外仅仅进行了一些简单的拉拔试验研究。在对再生骨料混凝土与钢筋之间的粘结强度进行了试验研究,得出的结论认为与普通混凝土的差异不大;通过试验发现再生骨料混凝土与纵向钢筋的粘结强度远大于与横向钢筋的粘结强度与其他试验结论较为接近,认为再生骨料混凝土与钢筋间的粘结强度较普通混凝土稍低。 考虑不同再生粗骨料取代率、再生细骨料取代率、强度、保护层厚度等因素对再生混凝土一钢筋间的粘结滑移进行试验,发现随着再生粗骨料取代率的增加,粘结性能有所提高,且在60%达到最大;相反,随着再生细骨料取代率的增加,粘结性能有所降低。但以上试验研究均统一采用基于平均粘结应力假设的简单拉拔试验进行试探性研究,即假设认为钢筋在再生混凝土中锚固段内的粘结应力处处相等 ,显然这并不完全符合实际钢筋受力状况。通过钢筋内贴片试验方法,完成了18个锈前钢筋—再生混凝土试块的拉拔试验,分别研究了再生骨料取代率、钢筋种类、混凝土抗压强度对其粘结滑移性能的影响,同时对钢筋在再生混凝土中长锚和短锚两种情况下其粘结应力分布的差异进行了研究分析,最后通过量测的钢筋应力理论推导钢筋在再生混凝土中的粘结位置函数,从而确定其粘结一滑移本构关系。并得出以下结论:

钢筋混凝土结构习题及答案教学内容

钢筋混凝土结构习题 及答案

钢筋混凝土结构习题及答案 一、填空题 1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生的 超过了混凝土的极限抗拉强度而开裂的。 2、随着纵向配筋率的提高,其斜截面承载力。 3、弯起筋应同时满足、、,当设置弯起筋仅用于充当支座负弯矩时,弯起筋应同时满足、,当允许弯起的跨中纵筋不足以承担支座负弯矩时,应增设支座负直筋。 4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A、I;B、 I a;C、II;D、II a;E、III;F、III a。①抗裂度计算以阶段为依据;②使用阶段裂缝宽度和挠度计算以阶段为依据;③承载能力计算以阶段为依据。 5、界限相对受压区高度b 需要根据等假定求出。 6、钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在 弯矩范围内,假定其刚度为常数,并按截面处的刚度进行计算。 7、结构构件正常使用极限状态的要求主要是指在各种作用下 和 不超过规定的限值。

8、受弯构件的正截面破坏发生在梁的 ,受弯构件的斜截面破坏发生在梁的 ,受弯构件内配置足够的受力纵筋是为了防止梁发生 破坏,配置足够的腹筋是为了防止梁发生 破坏。 9、当梁上作用的剪力满足:V ≤ 时,可不必计算抗剪腹筋用量,直接按构造配置箍筋满足max min ,S S d d ≤≥;当梁上作用的剪力 满足:V ≤ 时,仍可不必计算抗剪腹筋用量,除满足max min ,S S d d ≤≥以外,还应满足最小配箍率的要求;当梁上作用的剪 力满足:V ≥ 时,则必须计算抗剪腹筋用量。 10、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。 11、由于纵向受拉钢筋配筋率百分率的不同,受弯构件正截面受弯破坏形态有 、 和 。 12、斜截面受剪破坏的三种破坏形态包括 、 和 13、钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度的增大而 。用带肋变形钢筋时的平均裂缝间距比用光面钢筋时的平均裂缝间距_______(大、小)些。 14、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 答案: 1、复合主拉应力;

《钢筋混凝土结构》课程教学大纲

《钢筋混凝土结构》课程教学大纲 华南理工大学东莞东阳教学中心 课程名称:钢筋混凝土结构(英文)Reinforced concrete structure 课程性质:必修课适用专业:专升本 学时:72 学分:4.5 一、课程的作用、地位和任务 本课程属土木工程专业必修的专业基础课。是一门实践性很强、与现行的规范、规程等有关的专业基础课。通过本课程的学习,使学生掌握混凝土结构学科的基本理论及基本知识,为以后在混凝土结构学科领域继续学习及毕业设计打下基础。 二、课程内容和要求: (一)绪论 1.了解混凝土的一般概念 2、深刻理解和掌握钢筋和混凝土共同工作的条件(重点) 3、充分认识钢筋与混凝土的优缺点(重点) 4、了解钢筋混凝土结构在土木工程中的应及发展前景 5、做好学习本课课程的准备。 (二)钢筋混凝土材料的主要力学性能 内容:钢筋和混凝土材料的力学性能以及混凝土与钢筋粘结协同工作的特性直接影响结构和构件的受力性能,也是混凝土结构的计算理论、计算公式建立的基础。 要求: 1.熟悉建筑工程中所用钢筋的品种、级别及其性能 2、掌握钢筋的强度指标和变形,重点理解钢筋的应力应变曲线 3、熟悉混凝土在各种受力状态下的强度与变形性能,掌握混凝土各项强度指 标、弹性模量以及变形模量等(重点)

4、了解钢筋与混凝土的粘结(第六章有展开) 5、了解混凝土的时随变形——收缩和徐变。 (三)梁的受弯性能的试验研究、分析 内容:通过对典型试验梁的挠度曲线、截面应变分布及破坏过程的分析,说明混凝土和钢筋的力学性能对梁的受力阶段、应力状态、破坏特征的影响,以及如何在试验研究的基础上建立起钢筋混凝土的应力分析和极限弯矩的计算公式。 要求: 1、掌握试验梁、梁的挠度曲线、梁受力的三个阶段以及相应的截面应力分布 (重点) 2、掌握适筋梁及其破坏特征(重点) 3、熟悉混凝土梁的受力特点 4、熟悉配筋率对梁的破坏特征的影响 5、掌握梁截面应力分析的基本假定——平截面假定、材料的应力-应变物理 关系、基本方法(重点) 6、熟悉《规范》采用的极限弯矩计算方法,具有实际意义。 (四)结构设计原理、设计方法 内容:现行规范和法规是混凝土结构设计的遵守的基本原则,本章结合现行《混凝土结构设计规范》(GB50010-2002)介绍了结构设计原理——结构极限状态的基本概念、近似概率的极限状态设计法及其极限状态使用设计表达式。 要求: 1、熟悉结构设计的要求 2、掌握工程结构极限状态的基本概念。包括结构的作用、对结构的功能要求、 两类极限状态等(重点) 3、了解结构可靠度的基本原理 4、熟悉近似概率极限状态设计法在混凝土结构设计中的应用 (五)受弯构件正截面承载力计算 内容:本章在第二章的试验分析和第三章的理论分析的基础上,突出问题的主要特性,推导出受弯构件正截面承载力计算的基本公式和适用条,并注意构造要求。 要求:

基于abaqus中cohesive element 对钢筋混凝土粘结性能的研究[整理]

基于abaqus中cohesive element 对钢筋混凝土粘结性能 的研究[整理] 基于abaqus中cohesive element 对钢筋混凝土粘结性能的研究 摘要:考虑到钢筋与混凝土界面受力的复杂性,基于用来模拟三种裂缝和失效的零厚度界面单元,采用分离式模型,引入内聚力黏结模型,并以文献中的拉拔试验结果为参照,利用abaqus中cohesive element单元建立起钢筋拉拔试验的计算模型。通过与文献中试验结果的比较,结果符合较好,验证了该计算模型的合理性。关键词:钢筋混凝土粘结;拉拔试验;黏结单元;数值模拟 0.引言 混凝土结构中,钢筋与混凝土这两种材料之所以能够共同作用、承担外荷载,其中一个很重要的原因是混凝土硬化后与钢筋之间形成了良好的粘结。尽管对粘结试验的研究已有一百多年的历史,国内外的学者发表了为数众多的试验和理论资料,但是由于影响粘结的因素很多破坏的机理复杂,以及试验技术方面的原因等,目前粘结问题还没有得到很好的解决。关于粘结的机理还不能提出一套比较完整的、有充分论据的粘结滑移理论。由于试验中存在诸多不确定性,数值模拟在钢筋混凝土粘结性能分析中也逐渐重视起来,自上世纪六十年代美国学者把有限元引入钢筋混凝土结构的分析以来,有限元已经成为对混凝土问题进行研究的一种典型的数值模拟方法,目前有限元模拟主要有以下三种分析模型:l)分离式模型;2)组合式模型;3)整体式模型。 由于整体式模型不能反映钢筋混凝土这种非均质材料的微观受力机理,而组合式模型假定钢筋与混凝土粘结可靠而不产生相对位移,这又与实际的微观机理不符,因此对粘结性能的研究只能采用分离式模型。

相关文档
最新文档