土壤有机质的重铬酸钾氧化测定方法述评和应 用

土壤有机质的重铬酸钾氧化测定方法述评和应 用
土壤有机质的重铬酸钾氧化测定方法述评和应 用

Metallurgical Engineering 冶金工程, 2017, 4(4), 251-259

Published Online December 2017 in Hans. https://www.360docs.net/doc/9411459137.html,/journal/meng

https://https://www.360docs.net/doc/9411459137.html,/10.12677/meng.2017.44036

Potassium Dichromate Oxidation Methods’ Review and Application for Determination

of Soil Organic Matter

Chaoqun Li, Liping Liu, Bin Guo, Jinhua Zhao, Yingjun Ren, Zhiyong Xiao

Hunan Province Geological Testing Institute, Changsha Hunan

Received: Dec. 4th, 2017; accepted: Dec. 19th, 2017; published: Dec. 29th, 2017

Abstract

The potassium dichromate oxidation methods are main methods for determination the content of soil organic matter. Their characteristics and application ranges were discussed and evaluated.

The influence of the above methods on the determination the content of soil organic matter was analyzed. The optimal method was chosen by the comparing the advantages and disadvantages of each method. The prospect of accurate, precise and rapid analytical method with less pollution for determining the soil organic matter in future was proposed.

Keywords

Potassium Dichromate Oxidation Method, Soil, Organic Matter, Determination Method,

Application

土壤有机质的重铬酸钾氧化测定方法述评和应用

李超群,刘立平,郭斌,赵锦华,任颖俊,肖志勇

湖南省地质测试研究院,湖南长沙

收稿日期:2017年12月4日;录用日期:2017年12月19日;发布日期:2017年12月29日

摘要

本文对重铬酸钾氧化法测定土壤有机质的方法和特点及应用范围进行了论述和评价,并分析不同测定方

李超群等

法对测定土壤有机质含量的影响,比较了各方法的优缺点以及研究中适宜选择的方法,并展望了土壤有机质准确、精密、快速、无污染测定方法的发展趋势。

关键词

重铬酸钾氧化法,土壤,有机质,测定方法,应用

Copyright ? 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.360docs.net/doc/9411459137.html,/licenses/by/4.0/

1. 引言

有机质作为土壤的重要组成部分,对土壤结构的形成和质量的改善具有决定作用,通过测定土壤中有机质的含量,可以了解土壤的理化性质,为土壤环境监控、有效利用和土壤改良提供数据支撑。当前测定有机质含量的方法主要包括干烧法、湿烧法、化学氧化法、灼烧法等,近年来,又相继开发了红外光谱、核磁共振和同位素示踪等一些先进方法对土壤有机质性质进行研究,并取得了引人注目的进展。

但重铬酸钾氧化法仍是土壤有机质测定中普遍使用的经典方法,快速、简便、不需要特殊的设备和操作技术,适用于大量样品的分析。本文综述了近十几年文献中报道的重铬酸钾氧化法测定土壤中有机质的方法,并且进行了分类描述,以便于人们了解有机质测定的现状和合理选择适宜的分析方法,提高测定结果的准确性与可靠性,为进一步研究有机质测定方法和揭示土壤有机质的性质提供参考。

2. 土壤有机质的重铬酸钾氧化测定方法

上世纪50年代以来,重铬酸钾氧化法成为世界各国在土壤有机质研究领域中广泛使用的经典方法。

虽然重铬酸钾的浓度或测定条件稍有差异,但其基本原理是相同的,用一定浓度的过量的K2Cr2O7-H2SO4溶液氧化土壤有机质后,再用标准硫酸亚铁溶液滴定剩余的重铬酸钾,测定消耗的K2Cr2O7的量或形成产物的量,从而计算出土壤中有机质含量。

重铬酸盐消解溶液中,有三种测量产物,过剩的2

Cr O?,形成的Cr3+和CO2,在湿烧法中,CO2被

27

收集来确定有机质的量;在重铬酸盐氧化法中,通过滴定法或比色法测定溶液中的2

Cr O?和Cr3+,以确

27定有机质的含量。

3. 土壤有机质的重铬酸钾氧化测定法分类及应用

重铬酸钾氧化法是我国测定有机质含量的权威方法,已发布多部国标和行业标准。根据加热方式不同,分为外加热法和水合热(稀释热)法。

3.1. 外加热重铬酸钾氧化法

外加热重铬酸钾氧化法测定土壤有机质过程中,加热介质有:植物油、甘油、石蜡、磷酸、水浴、砂浴,加热设备有:电炉、电烘箱、电热恒温箱、微波消解、高压密闭容器消解、远红外直接加热设备等。

3.1.1. 重铬酸钾氧化——油浴加热法

重铬酸钾氧化——油浴加热法是按照国家或行业标准要求对土壤有机质进行分析测定的通用的常规方法。该方法采用油浴介质(如石蜡、植物油或甘油)加热样品,氧化温度为170℃~180℃,溶液保持沸腾

李超群等

5 min左右,对有机质的氧化率可达90%~95%,因此计算有机质时要乘上校正系数,通常为1.08~1.1,外加热法不受室温干扰。

东明[1]采用重铬酸钾–硫酸消解体系对土壤有机质测定条件进行优化试验,结果表明,温度控制在170℃~180℃,反应时间控制在(5.0 ± 0.5) min,能保证试管内的液体处于微沸状态,得到标准样品GSB0745的测定结果在标准值范围内,加入一定量的硫酸银粉末消除氯化物的干扰。油浴温度为160℃~170℃时,反应不完全,结果明显偏低;油浴温度为180℃~190℃时,重铬酸钾部分分解,结果高出标准值范围。加热时间过短,反应不完全;时间过长,会因重铬酸钾分解等原因导致结果偏高。

夏清华等[2]研究了加热介质、空白替代物、加热温度和加热时间对标准物质GBW07414a、GBW07416a测定结果的影响,结果表明:选择石蜡作为加热介质,不用替代物作空白,加热温度选择170℃~190℃,加热时间控制在5~8 min,测定结果较为理想,有机质的氧化率在100%~105%,相对标准误差(RSD) ≤ 2%,测定结果的准确度和精密度高。

许金树等[3]研究了有机质测量过程中空白样的影响,用400℃~500℃灼烧的泥样为空白试样测出的有机质含量结果偏低,用海砂做空白试样也不够理想。用灼烧1000℃泥样做为空白试样,消化温度控制在170℃± 2℃、消化时间10~15 min为最优条件。对不同区域的沉积物样品进行了分析,在测定值为1.84%时,标准偏差为0.02%。

王纪忠等[4]通过改良重铬酸钾氧化法测定盐碱地土壤有机质,结果表明,油浴温度选定181℃~184℃,油浴时间选定4.5 min~5.0 min,得出的结果最为精确。

刘肖[5]用试剂减半法(加入0.4 mol/L的重铬酸钾–浓硫酸混合溶液5 mL)修订了土壤有机质含量较低的地区的测定方法,当有机质含量< 8.7 g/kg时,改进方法既节约了化学试剂,又节省了配置试剂和滴定所用的时间,提高了工作效率也不影响测定结果的准确性。

夏莺等[6]通过将0.8 N重铬酸钾标准溶液和浓硫酸单独使用改为0.4 N重铬酸钾–硫酸溶液,能消除浓硫酸放热而导致因浓硫酸加入秩序先后不同引起的各试管中温度不同、沸腾时间差异所带来的误差,结果重现性好,误差小,钱淑萍等[7]通过对比验证,将0.8 N重铬酸钾标准液5 mL + 浓硫酸5 mL,改为0.4 N重铬酸钾–硫酸溶液是可行的,缩短样品加液时间,重现性好,误差小,现已成为土壤有机质测定的标准方法(NY/T 1121.6-2006)。

不少研究者[8]-[17]应用油浴加热重铬酸钾氧化法对土壤有机质测定进行了全程质量控制,结果表明:标准样有机质测定含量和偏差均在允许不确定度内,结果稳定性好;用这种方法分别消解处理有机质含量高低不同的土壤样品,取得了较好的结果,说明油浴加热法具有较好的准确度,操作简便、方法快捷、不需特殊仪器设备、适于各类土壤样品有机质分析,并已编入国家标准分析方法。

3.1.2. 重铬酸钾氧化——磷酸浴加热法

磷酸沸点213℃,不易挥发,也不易分解。磷酸浴法温度稳定,易于控制,与油浴法比较起来操作更加环保、安全,不需要特殊的仪器设备。

邵敏[9]选用远红外控温消化炉加热磷酸浴消解土壤有机质,4种样品6次测试结果表明:磷酸浴法有机碳氧化率高,准确度与精密度高,RSD为0.43%~0.70%。它可避免因污染而造成的误差,测定不受碳酸盐的干扰。可以作为实验室分析土壤有机质的消解方法。

3.1.3. 重铬酸钾氧化——电沙浴加热法

GB9834-88规定了土壤有机质的电沙浴加热测定法,消解温度200℃~230℃,时间5 ± 0.5 min,有机碳的氧化率为100%。

邵敏[9]用电砂浴加热法测定了4种土样中有机质含量,6次平行测定的相对平均偏差为 1.35%~

李超群等

3.06%。沙浴中沙子的温度受室内环境温度影响较大,当室内温度比较低时,沙浴升温很慢,降温又快,

沙浴内沙子受热不均可能是造成测定值相对标准偏差大的原因之一。

3.1.

4. 重铬酸钾氧化——恒温电热板加热法

刘彬等[13]将加有土壤和重铬酸钾硫酸溶液的锥形瓶放置于170℃数控恒温电热板上微沸约1分钟,三种质控样GSS-19 (1.72 g/kg)、GSS-21 (0.59 g/kg)、GSS-256 (1.00 g/kg) 6次测量的结果平均值分别为1.70 g/kg、0.60 g/kg和1.00 g/kg,相对误差分别为1.16%、1.69%和0,测定值均在标准值不确定度范围内。

三个土样12次测量的结果偏差都只有0.01%。多次测定结果重现性好,波动性小,测定结果稳定,比油浴法消解的有机质测定结果更为准确,操作方便快捷,特别是样品数量大的情况下,使用电热板法可以大大提高效率。

张明怡[14]在可调式控温电热板上测定土样中有机质含量,选定消解温度220℃,沸腾5 min,3种样品试验结果表明,恒温电加热法与经典的油浴方法测定土壤标准物质的有机质含量差异不显著,且恒温电加热法测定速度快,操作简便,优于经典的油浴方法。

顾宇书等[18]将盛有试管(内装土样和消解溶液)的铁丝筐置于已预热好的电热板上,消解冷却后,直接滴定试管内溶液。这种方法在保证了试验结果的精密度和准确度的前提下,不仅减少了对环境的严重污染,而且节省甘油、试剂、能源,并提高了分析速度,减小了溶液转移带来的误差,提高了准确度。

3.1.5. 重铬酸钾氧化——烘箱加热法

栾忠平等[19]采用烘箱加热法测定东北地区暗棕色森林土壤有机质含量,通过加热温度、时间和重铬酸钾浓度试验,确定最佳消解条件为:加热时间为30 min,温度为150℃,重铬酸钾浓度为1.2 mol?L?1。

该方法可以准确测定有机质含量超过15%的土壤,解决了很久以来实验室没办法准确测定土壤中高有机质含量的问题,且烘箱容量大,可以大批量处理测定土壤试样,还具有精密度高、校正系数小、操作简便、快速的特点,在实践中有较大优势。

和振云等[20]采用干燥箱作加热源,在消煮温度180℃、消煮时间30 min条件下,分析了土壤国家标准物质GBW07406、GBW07427、GBW07428、GBW07430和自制二级土壤参考标准物质GRD40-13中有机质含量,测定值与标准值吻合。对GBW07402、GBW07424各进行12次测定,相对标准偏差分别为2.02%和0.73%,氧化校正系数为1,且准确度高、重现性好、无污染、操作简便,已成功应用于土壤样品分析中,结果完全能达到测试质量要求,适用于测定有机质含量在15%以下的土壤样品。他们还从消煮方式、消煮温度、消煮时间、干扰因子的去除等方面对土壤有机质的测定方法进行了改进和探讨。

烘箱加热法克服了在传统加热法中对有机质含量高的样品由于消煮温度较低,消煮时间短,造成有机质不能完全氧化,导致结果偏低的问题。

杨乐苏[21]在温度180℃~190℃的电热恒温干燥箱中消解GB7416、GB7417、GBW871204及本实验室自制土样(SBT),溶出时间5 min,7次测定有机质结果与标准值相对误差为0.52%~1.41%,测量值相对偏差为1.48%~3.37%。数据准确可靠,准确度与精密度均令人满意,且快速、方便,优于传统方法。

刘满昌[22]、夏莺[6]、卿玉和[23]和张明怡等[14]利用烘箱法与经典的油浴方法对土壤标准物质的多次测定数值的比对,两种分析方法测得的有机质含量的平均值,无显著性差异,检测的标准物质测出的含量都在标准值不确定度范围内,试验结果准确可靠,相对误差和相对标准偏差较小。烘箱法测定速度快、操作简便,优于经典的油浴方法。烘箱加热法基本能够准确地反映土壤中有机质含量,而且也避免了油浴法中石蜡和油污对人体的危害,样品测定管后期清洗较方便,是一种切实可行的简易方法。

3.1.6. 重铬酸钾氧化——专用消化炉加热法

1) 消化炉加热法

李超群等

杨乐苏[21]用Foss凯氏定氮20管消化炉加热消解标准土壤GB7416,GB7417,GBW871204及实验室自制土样(SBT),设置温度230℃和时间5 min,7次测定结果平均值与标准值相对误差是0.07%~1.35%,测量值偏差和相对偏差分别为0.11~0.35、0.81%~2.14%。证明方法的准确度和精密度均较高。

李优琴等[24]利用EHD20型智能样品消解炉加热样品反应液进行土壤有机质测定。经标准样品(GBW07412、GBW07415)测试,最适消解条件为:消解炉温度230℃,反应液微沸5 min。测定结果均在标准定值范围内,相对误差分别为1.98%、0.23%,7次重复测定的相对标准偏差分别为0.49%、0.20%。反应后溶液无需转移,直接在消化管滴定。结果表明,利用消解炉加热消解反应液测定土壤有机质方法简便可行,测定结果准确可靠,稳定性好,方法较国标法中的油浴加热法方便且易于控制。

王育灿等[11]控制LNK多功能快速消化器的温度为250℃、加热(5 ± 0.5) min,测定有机质含量为1.40%~1.56%的标准样品,14次平行测定有机质的平均值为1.47%,相对标准偏差为1.96%,测定结果在国家标准样品规定的范围内,测定方法具有较好的准确度和精密度,并且多功能快速消化器操作过程更加安全、快速,有机碳氧化率高,不要引入校正系数。

李婧[25]和张力等[26]用COD消解装置与油浴法测定的土样有机质结果具有很好的数据相关性和准确性。样品管取代锥形瓶进行直接滴定,可避免因转移样品所造成的损失,加快了分析速度。空气冷凝管能保证样品在消解过程中产生的水蒸汽不溢出瓶外,避免了铬酸的部分分解。该方法方便、快捷,减少了环境污染,减轻了操作者的劳动强度,提高了劳动效率。

刘爱叶等[27]用LWY-84B型远红外控温加热炉作为热源测定供试样品(标准物质GBW07412a、GBW07458和铁路岩土样品)有机质含量,通过试验温度、试验时间、结果准确性和重现性分析,确定最优试验温度和时间分别为240℃和10 min,在此条件下,两种标准物质的6次平行测定平均值与标准值相对偏差分别为0.01%和0.07%,测试结果均在标准误差范围之内,均小于标准规范所要求的0.05%和0.10%。利用重铬酸钾–控温式远红外消煮炉法和重铬酸钾–油浴法对随机土壤样品进行了平行测定,测定结果相对误差均在允许误差范围之内,两者具有较好的准确性。相关性良好,相关系数为0.9991。

2) 微波消解

邵敏[9]选用微波加热消解土壤有机质,确定30 min的消解时间、640 W的功率为最佳。4种土样6次平行测定值的相对标准偏差在0.42%~0.69%,具有很高的准确度与精密度,有机碳氧化率高。微波消解过程中,样品温度波动性小,受热均匀,不产生实验室二次污染,工作环境得到改善,缩短了分析时间,结果重现性好,可以作为土壤有机质测定的常用方法。

曹煊等人[28]用微波消解法测定了GBW07412 (1.82 ± 0.09 g/kg)和GBW07417 (1.48 ± 0.08 g/kg)土壤中有机质含量,6次测定平均值分别为1.81 g/kg、1.49 g/kg,相对误差分别为0.55%、0.68%,显示了较高的方法精密度。还测量了青岛周边土样,效果很好。

3.1.7. 重铬酸钾氧化——高压密闭容器法

常用的敞开式外加热容量分析法,均存在环保和安全性方面的缺陷,也易受外界环境影响,消解程度难以保障,分析稳定性不高。曹煊等人[28]在对比了多种土壤有机质测定方法的基础上,建立了基于高压密闭容器土壤有机质的外加热氧化法,并测定了GBW07412 (1.82 ± 0.09 g/kg)和GBW07417 (1.48 ± 0.08 g/kg)土壤中有机质含量,7次测定结果平均值分别为1.84 g/kg、1.50 g/kg,相对误差分别为1.09%、1.35%。结果表明这种方法的测定准确可靠,与传统方法比,加热过程中热量损失较小,加热效率高,在加压条件下,促进氧化剂与样品更有效的接触。

3.1.8. 外加热重铬酸钾氧化——水浴加热法

季天委[10]用100℃恒温水浴加热法测定了GBW07412,GBW07417和WT23样品分别消解30 min

李超群等

和60 min的氧化校正系数平均值分别为1.16和1.13。用油浴加热法和30 min、60 min恒温水浴加热法对3个土样5次测量的变异系数分别为1.21%、1.24%、1.21%;1.87%、0.57%、1.28%;0.78%、0.87%、0.95%,均小于2%。三种方法对2个标准土样5次测量的标准值偏差分别为0.02 g/kg、0.07 g/kg、?0.22 g/kg,和?0.14 g/kg、0.30 g/kg、0.47 g/kg,均在两个标准土样允许不确定度0.9 g/kg与0.8 g/kg范围内,说明两种恒温水浴加热法与油浴加热法一样具有较好的准确度。恒温水浴法还可以避免油浴加热法存在的环保和安全问题。

郭旭欣[15]在沸水浴中加热样品30 min,测定了5个国标土样(GBW07458、GBW07459、GBW07142a、GBW07414a和GBW07417a)的有机质含量,4次重复实验结果都在国标认定值范围内。15个随机土样沸水加热法的标准偏差在0.21%~1.48%;变异系数在1.20%~3.25%,与油浴法得到的结果无显著差异,精密度良好。与传统的油浴法相比,沸水浴加热法无油污,好清洗,操作方便,同时克服了水合热法受室温变化影响和加热不均匀的缺点,此方法适合批量检测有机质。

阎德仁[29]采用沸水浴法测定土壤有机质的回收率为99.68%,沸水浴法保持了丘林法快速准确的优点,也克服了丘林法氧化时间和氧化温度不易控制的不足。由于沸水浴消煮时间稍长,反应平稳,这就减少了消煮时间不一致给结果带来的误差。

3.2. 重铬酸钾氧化——水合热法

利用浓H2SO4加入到K2Cr2O7水溶液中所产生的热量(水合热、稀释热)来氧化土壤有机质。测定结果需要乘以氧化率校正系数1.32 (按平均回收率75.8%计算)。

水合热法是由walklye和Black于1934年首次提出的(简称w-B法)。我国第二次土壤普查技术规程将其作为测定有机质的方法之一。

钱宝等[30]采用水合热重铬酸钾氧化比色法,3次测定长江底沉积物标准物质(GBW07429,3.20%)中有机质含量,平均值为2.64%,相对误差?17.41%,标准偏差1.93%。对南京秦淮河5个断面沉积物干样进行测定,3次测定结果的标准偏差在1.3%~4.67%。水合热重铬酸钾氧化比色法实验重复性较好,但是此方法测得的结果明显偏低,相对误差较大.氧化校正系数为1.32。

霍晓婷[31]用改进的水合热法对采集的24个土壤样品进行了6次重复测定,测定的结果均低于外加热法,这主要是由于稀释热法的温度最高只能达到120℃,对有机质的氧化不及外加热法完全的缘故,但两种方法测定的结果之间存在着极显著的相关性(相关系数0.9865),氧化校正系数平均为1.094,这说明用该法测定的结果校正后与外加热法非常一致。改进后的方法简便、准确、快速,适合于大批样品的分析测定。

季天委[10]测定GBW07412,GBW07417和WT23 (委托土壤样品)三种土样的有机质时,使用的重铬酸钾溶液浓度为 1 mol/L,加入浓硫酸后30 min测量有机质含量,5次重复测量获得氧化校正系数为

1.33.对两种标样的误差分别为0.91 g/kg和1.08 g/kg,三种样品测量值的标准差分别为0.18 g/kg、0.19

g/kg、0.49 g/kg,变异系数分别为0.96%、1.19%、5.22%,试验结果表明,稀释水合热法的稳定性和准确性较差。

3.3. 重铬酸钾氧化――比色法

在一定条件下,用重铬酸钾氧化土壤中有机碳,部分Cr(Ⅵ)被还原成绿色Cr(Ⅲ),观察其反应后溶液的颜色,和标准色阶相比较,就可以计算土壤中有机质的含量。

李婧[25]和周建青等[12]用含碳0.36%的葡萄糖溶液配制成不同浓度系列,采用目视比色法测定标准物质GBW07415 (3.83 ± 0.12 g/kg)的有机质含量分别是3.52 g/kg和3.56 g/kg,结果表明:目视比色法虽

李超群等

然误差较大,但方便快捷、色阶色调变化明显,易于分辨,制作的标准色阶适用于各种土类,在条件艰苦和对实验结果精度要求不高的情况下使用,能快速得出分析结果。

3.4. 重铬酸钾氧化——分光光度法

在外加热条件下,土壤样品中的有机质被过量重铬酸钾–硫酸溶液氧化,重铬酸钾中的铬(Ⅵ)被还原为铬(Ⅲ),用分光光度计于585 nm波长处测定铬(Ⅲ)吸光度,在一定范围内,吸光度与样品中有机质的质量分数成正比,与葡萄糖标准溶液系列比较定量求得有机质质量分数。

辜忠春等[32]基于消解条件对测定结果的影响,确定最佳消解温度为135℃、消解时间为60 min、硫酸用量为6 mL,并用分光光度法测定标准土壤样品GBW 07458 (34.5 ± 1.3 g?kg?1)有机质质量分数在标准认定值范围内,相对标准偏差为1.3%,相对误差为?0.6%,加标回收率为95.2%~98.6%,方法检出限是0.5 g?kg?1,与现行林业行业标准方法的测定结果进行比较,经t检验,无显著性差异。还用该法与容量法比对测定了有机质含量低、中、高样品3个,表明2种方法测定值和测定精密度无显著性差异。

周建青等[12]和李婧[25]以硫酸亚铁为标准溶液,采用分光光度法测定了标准物质GBW07415 (3.83 ± 0.12 g/kg)的有机质含量分别为3.82 g/kg和3.77 g/kg,两者测定结果均在标准认定值范围内。对其它土壤的测定结果与油浴法等其它分析方法比较,分光光度法具有设备简单、操作简便,保证测定结果准确性的同时能够做到大批量的快速测定,既省时又省工。

胡小明等[33]发现有机碳浓度在1.60~68.00 mg/L范围内与溶液吸光度呈良好线性关系,相关系数达0.9995,检出限为0.190 mg/L,RSD为0.7%,表观摩尔吸光系数4.91 × 103 L/(mol?cm)。4次测定国标土壤样品GBW07403、GBW07405、GBW07310中有机质的含量,相对误差分别为3.7%、3.6%和?4.3%。

王屹等[34]选取135℃、30 min消解条件,通过分光光度法测定了标准葡萄糖溶液中有机碳,实验发现适当增加重铬酸钾溶液浓度,可提高分析方法的测定上限,更能适应土壤有机碳的测定。

杨贵明[35]用重铬酸钾氧化——分光光度法测定有机质含量时,得到溶液的最大波长为590 nm,与外热重铬酸钾氧化容量法测定结果相关性显著,氧化校正平均系数为 1.32,样品10次测量标准差为0.0097,变异系数为1.21%,方法精密度好,简便、准确、快速,适于大批量分析测定。

3.5. 重铬酸钾氧化——电位滴定法

电位滴定法是根据滴定过程中电极电位的变化以确定滴定的终点,进而计算待测物质含量的分析方法。

郝国辉等[36]使用长管消解系统(德国Velp42)消解土样,全自动电位滴定仪(瑞士万通809)滴定溶液,直接获得土壤的有机质含量。使用该方法测定的土壤标准样品(GBW07413)的有机质含量均在保证值以内,RSD为3.2%;同时对实际样品进行精密度测试,得到RSD为1.03%。该方法降低了土壤有机质含量检测的实验成本,减少了环境污染,同时提高了实验数据的准确度与精密度,值得推广。

采用电位滴定省去了指示剂变色带来的人为操作误差。长管消解系统的使用,将消解过程中的酸蒸汽进行了自动中和,降低了实验成本,减少了环境污染,降低了实验消解过程的危险性。全自动电位滴定仪的使用大大降低人工操作的工作量,提高了工作效率,同时提高了数据准确性。该方法所得数据完全符合实验室质量控制中精密度和准确度要求(CNY/T395-2012),是检测农田土壤中有机质含量较好的途径。

郝会军[37]的试验结果表明,加标回收率在98.43%~101.8%之间,RSD为0.693%~0.936%,可见自动电位滴定法有很好的准确度和重现性,是一种测定土壤有机质含量的好方法。

4. 土壤中杂质对测定有机质结果的影响

在重铬酸钾氧化测定法中,土壤中的碳酸盐并不影响有机质测定,但在测定石灰性土壤样品时,也

李超群 等

必须慢慢加入K 2Cr 2O 7-H 2SO 4溶液,以防止由于碳酸钙的分解而引起激烈发泡。

土壤中活性锰、亚铁以及氯离子对测定有干扰,土壤中如果含有低价铁和氯化物,则会过多消耗重铬酸钾导致结果偏高。

22332726Fe Cr O 14H 2Cr 6Fe 7H O +?+++++→++

2327226Cl Cr O 14H 2Cr 3Cl 7H O ??++++→++

若土壤中Cl ?含量较少时,可加少量的Ag 2SO 4,从而除去Cl ?离子,Ag 2SO 4的用量不能太多,约加0.1 g 左右,否则生成Ag 2Cr 2O 7沉淀,影响滴定。若土壤中还原性物质(Fe 2+、Mn 2+)较多时,可以让土样充分风干,使之彻底氧化。

活性的MnO 2存在将产生负误差,但大多数土壤中活性的氧化锰的量是很少的,因为仅新鲜沉淀的MnO 2参加氧化还原反应,即使锰含量较高的土壤,存在的MnO 2中很少部分能与K 2Cr 2O 7发生氧化还原作用,所以,对绝大多数土壤,MnO 2的干扰不致产生严重的误差。

5. 土壤有机质测定方法的比较分析

外加热重铬酸钾氧化法的优点是可以获得较为准确的分析结果,适用于大量样品的分析,但操作较为繁琐,实验条件控制要求严格,滴定终点观察、判断要求准确把握。此外由于高温油浴消解易引起环境污染,对人体会产生危害,试管上粘附的油污不易清洗,而且在清洗过程中如不慎会将管外油垢带入管内,导致测定结果偏高。对于滴定分析法,指示剂易被悬浮土粒吸附,使终点颜色变化不明显,不易于分辨。特别是当土壤颜色较深时,溶液颜色变化较为模糊。

水合热重铬酸钾氧化法省去了加热设备,但因温度低导致有机碳氧化不完全,受土壤类型和环境温度影响较大,结果不稳定,重现性差,浓硫酸使用量大,适于在室温20℃以上的条件下进行。氧化校正系数只对测定样品适用,不同类型的土壤之间,这个转化系数会有差异。水合热法准确度低,应用受到限制。

比色法在有一定准确度的情况下能够做到简单易行,快速得出分析结果,适合于在条件艰苦和对实验结果精度要求不高的地方使用。

重铬酸钾氧化——分光光度法,灵敏度高,选择性好,准确度高,分析成本低、操作简便、快速,结果准确度和精密度较好。

电位滴定法客观可靠,准确度和精密度高,不受溶液有色、浑浊的限制,易于自动化,可大大提高分析效率。

6. 结语

土壤有机质的重铬酸钾氧化分析法测定结果准确度和精密度高,不会受样品中碳酸盐的干扰,也不需要使用特殊仪器,特别是通过不断改进加热条件和设备后,方法日趋完善,在大量样品分析中显示出其重要的价值,成为我国国标和行业测定方法,也是现今实验室广泛使用的土壤有机质分析方法,因此重铬酸钾氧化测定法值得继续深入研究。

参考文献 (References)

[1] 东明. 土壤有机质测定条件的筛选与优化[J]. 现代农业科技, 2017(8): 194-194.

[2] 夏清华, 黄永东, 黄永川, 等. 土壤有机质重铬酸钾容量法最佳测定条件的探索[J]. 南方农业, 2014, 8(16): 3537.

[3] 许金树, 李亮歌. 海洋沉积物中有机质的测定方法——湿氧化法(重铬酸钾–硫酸法) [J]. 分析化学, 1984(5):

110- 113.

李超群等

[4]王纪忠, 姚海燕. 盐碱地土壤有机质测定方法改进研究[J]. 农业工程技术, 2017, 37(11): 21.

[5]刘肖. 初探土壤有机质测定方法的改进[J]. 中国农学通报, 2014, 30(12): 147-150.

[6]夏莺. 土壤有机质测定方法加热条件对比研究[J]. 现代农业科技, 2014(18): 221-222.

[7]钱淑萍, 武文津. 土壤有机质测定方法讨论[J]. 新疆农业科技, 1997(6): 19-20.

[8]张钧. 土壤有机质测定全程质量控制[J]. 四川环境, 2014, 33(2): 6-12.

[9]邵敏. 不同消解方法测定土壤有机质含量[J]. 辽宁农业职业技术学院学报, 2009, 11(1): 36-38.

[10]季天委. 重铬酸钾容量法中不同加热方式测定土壤有机质的比较研究[J]. 浙江农业学报, 2005, 17(5): 311-313.

[11]王育灿, 朱健萍, 孙惠婵, 等. 两种加热消解方法测定土壤有机质的对比分析[J]. 广东农业科学, 2009(4): 74-75.

[12]周建青, 徐爱列. 青海地区泥炭土壤中有机质含量测定方法的比较[J]. 安徽农业科学, 2010, 38(36): 20696-

20697.

[13]刘彬, 陈慧. 土壤中有机质的测定的方法对比[J]. 广东化工, 2017, 14(44): 238-240.

[14]张明怡, 杜庆伟, 刘颖, 等. 三种常用土壤有机质测定方法的比较[J]. 黑龙江农业科学, 2014(12): 163.

[15]郭旭欣. 容量法测定土壤有机质2种加热方法比较研究[J]. 现代农业科技, 2016(9): 206.

[16]楼希华, 毛晓慧, 陈秀云. 土工试验中有机质含量测定方法对比研究[J]. 科技通报, 2015(3): 112-114.

[17]张强. 土壤有机质含量测定方法——以丘林法为例[J]. 世界有色金属, 2016(3): 131-132.

[18]顾宇书, 孟康敏, 杨秀清. 森林土壤有机质测定方法的改进——电炉试管消化直接定滴[J]. 辽宁林业科技,

1987(1): 53-55.

[19]栾忠平, 段加玉, 陈媛媛, 等. 烘箱加热法测定森林土壤有机质的研究[J]. 吉林林业科技, 2017, 46(3): 17-19.

[20]和振云, 段九存, 张旺强, 等. 干燥箱烘焙加热法测定土壤有机质的方法改进[J]. 甘肃地质, 2013(3): 77-81.

[21]杨乐苏. 土壤有机质测定方法加热条件的改进[J]. 生态科学, 2006, 25(5): 459-461.

[22]刘满昌. 采用烘箱法测定土壤中有机质的含量[J]. 现代农业, 2012(3): 30-32.

[23]卿玉和. 创新加热方法提高土壤有机质测定质量[J]. 四川农业科技, 2011(10): 40.

[24]李优琴, 吕康. 土壤有机质测定方法中消解条件的优化[J]. 江苏农业科学, 2013, 41(9): 291-292.

[25]李婧. 土壤有机质测定方法综述[J]. 分析试验室, 2008, 27(s1): 154-156.

[26]张力, 李艳红, 宋申年, 等. 测定土壤有机质分析方法中油浴加热技术的改进[J]. 吉林化工学院学报, 2002,

19(1): 16-18.

[27]刘爱叶, 朱德余. 土中有机质含量测定方法的优化[J]. 中国勘察设计, 2015(4): 88-91.

[28]曹煊, 侯广利, 孙继昌, 等. 基于高压密闭容器消解的土壤中有机质测定方法[J]. 山东科学, 2010, 23(6): 48-51.

[29]阎德仁. 土壤有机质测定方法的改进——沸水浴法[J]. 内蒙古农业科技, 1988(2): 47-48.

[30]钱宝, 刘凌, 肖潇. 土壤有机质测定方法对比分析[J]. 河海大学学报自然科学版, 2011, 39(1): 34-38.

[31]霍晓婷, 王文亮. 土壤有机质含量测定方法改进的研究[J]. 河南农业大学学报, 1998(1): 86-89.

[32]辜忠春, 李光荣, 李军章, 等. 正交试验优化分光光度法测定森林土壤有机质[J]. 浙江农林大学学报, 2017,

34(2): 239-243.

[33]胡小明, 潘自红. 分光光度法测定土壤有机质的含量[J]. 应用化工, 2012, 41(4): 708-709.

[34]王屹, 李哲民. 重铬酸钾用量对硫铬氧化法测定土壤有机碳的影响[J]. 环境保护与循环经济, 2011, 31(6): 57-58.

[35]杨贵明. 土壤有机质的光度法测定[J]. 中国土壤与肥料, 1987(1): 43-44.

[36]郝国辉, 邵劲松. 土壤有机质含量测定方法的改进研究[J]. 农业资源与环境学报, 2014, 31(2): 202-204.

[37]郝会军, 杨俐苹, 金继运. 自动电位滴定法测定土壤有机质含量[J]. 中国土壤与肥料, 2011(1): 83-87.

知网检索的两种方式:

1. 打开知网页面https://www.360docs.net/doc/9411459137.html,/kns/brief/result.aspx?dbPrefix=WWJD

下拉列表框选择:[ISSN],输入期刊ISSN:2373-1478,即可查询2. 打开知网首页https://www.360docs.net/doc/9411459137.html,/

左侧“国际文献总库”进入,输入文章标题,即可查询

投稿请点击:https://www.360docs.net/doc/9411459137.html,/Submission.aspx

期刊邮箱:meng@https://www.360docs.net/doc/9411459137.html,

土壤有机质测定方法

土壤有机质的测定(重铬酸钾容量法) 土壤有机质既是植物矿质营养和有机营养的源泉,又是土壤中异养型微生物的能源物质,同时也是形成土壤结构的重要因素。测定土壤有机质含量的多少,在一定程度上可说明土壤的肥沃程度。因为土壤有机质直接影响着土壤的理化性状。 测定原理 在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O-27等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量。其反应式为: 重铬酸钾—硫酸溶液与有机质作用: 2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2O 硫酸亚铁滴定剩余重铬酸钾的反应: K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O 测定步骤: 1.在分析天平上准确称取通过60目筛子(<0.25mm)的土壤样品0.1—0.5g(精确到0.0001g),用长条腊光纸把称取的样品全部倒入干的硬质试管中,用移液管缓缓准确加入0.136mol/L重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液10ml,(在加入约3ml时,摇动试管,以使土壤分散),然后在试管口加一小漏斗。 2.预先将液体石蜡油或植物油浴锅加热至185—190℃,将试管放入铁丝笼中,然后将铁丝笼放入油浴锅中加热,放入后温度应控制在170—180℃,待试管中液体沸腾发生气泡时开始计时,煮沸5分钟,取出试管,稍冷,擦净试管外部油液。 3.冷却后,将试管内容物小心仔细地全部洗入250ml的三角瓶中,使瓶内总体积在60—70ml,保持其中硫酸浓度为1—1.5mol/l,此时溶液的颜色应为橙黄色或淡黄色。然后加邻啡罗啉指示剂3—4滴,用0.2mol/l的标准硫酸亚铁(FeSO4)溶液滴定,溶液由黄色经过绿色、淡绿色突变为棕红色即为终点。 4.在测定样品的同时必须做两个空白试验,取其平均值。可用石英砂代替样品,其他过程同上。 结果计算 在本反应中,有机质氧化率平均为90%,所以氧化校正常数为100/90,即为1.1。有机质中碳的含量为58%,故58g碳约等于100g有机质,1g碳约等于1.724g有机质。由前面的两个反应式可知:1mol的K2Cr2O7可氧化3/2mol的C,滴定1molK2Cr2O7,可消耗6mol FeSO4,则消耗1molFeSO4即氧化了3/2×1/6C=1/4C=3 计算公式为:

土壤有机质测定

土壤有机质测定 在环境质量越来越被重视的今天,我们除了需要对环境中的水、气、声、渣进行测定外,对土壤的测定也逐渐被提上议事日程。有机质是土壤中的重要组成成份,其含量水平是衡量土壤肥力的重要指标之一。 土壤有机质的测定方法中,“油浴法”是沿用多年的经典方法,但其存在着表面有机物挥发导致实验室空气的污染;温度波动性较大,不易调控;消解管外壁附着油污难以清洗等缺点。为此,笔者查阅了大量资料,找到了三个常见的测定方法,进行对比。 (一)目视比色法 1.测定原理 该法是通过以葡萄糖溶液为标准物质做参比,用重铬酸钾溶液氧化土壤有机质,氧化后的溶液颜色与有机质成直线相关,可直接目视比色得出结果。 2.试剂 C(1/6K2Cr2O7)=1 mol/L的重铬酸钾溶液;含碳0.36%的葡萄糖溶液:称取含1个结晶水的葡萄糖1. 000 g溶于水后,移入100 mL容量瓶中定容(每1.OmL 葡萄糖含碳为0.36%)。 3.测定方法 1)标准系列 在10支洁净的25 mL比色管中,分别加入含碳0. 36%的葡萄糖溶液0, 0.25,0. 50、0. 75、1.00、1.25、1.50、1.75、2. 00、2.25mL,用蒸 馏水定容到2. 25 mL,加入1 mol/L重铬酸钾溶液2. 5 mL,再加入5 mL 浓H2S04,摇匀,20min后用蒸馏水定溶至25mL。 2)样品测定 称取通过0. 25mm筛孔风干土样0. 25 ~ 1. 00 g于比色管中,加入1 mol 龙重铬酸钾溶液2. 5 mL,再加入5 mL浓H2S04,摇匀,20min后用蒸 馏水定溶至25 mL。静置2h,样品管上部溶液澄清后与标准系列对照比 色,查得样品相应的碳含量。 4.计算 土壤有机质%=查得的C%×1.724×倍数×(1+吸湿水含量)

土壤有机质含量测定

土壤有机质的测定 一重铬酸钾容量法——外热法 1原理: 用定量的重铬酸钾-硫酸溶液,在电加热条件下,使土壤中的有机质氧化,剩余的重铬酸钾用硫酸亚铁标准溶液滴定,并以二氧化硅为添加剂作实际空白标定,根据氧化前后氧化剂质量差值,计算出有机碳量,再乘以系数1.724,即为土壤有机质含量。 2 仪器设备: 1/10000的分析天平;电沙浴(石蜡浴); 大试管;弯颈漏斗;容量瓶 定时钟;滴定管: 5.00ml; 温度计:200~300℃; 铜丝筛:孔径0.25mm; 3 试剂 除特别注明外,所用试剂皆为分析纯。 3.1 硫酸银:研成粉末; 3.2 二氧化硅:粉末状; 3.3 邻菲啰啉指示剂:称取邻菲哆啉1.490g溶于含有0.700g硫酸亚铁的100ml水溶液中,此指示剂易 变质,应密封保存于棕色瓶中备用; 3.4 0.4mol·L-1(1/6 K2Cr2O7重铬酸钾)重铬酸钾-硫酸溶液:称取重铬酸钾40.0g,溶于600~800ml 蒸馏水中,待完全溶解后,加水稀释至1L,将溶液移入3L大烧杯中;另取1L比重为1.84的浓硫酸,慢慢的倒入重铬酸钾水溶液中,不断搅动,为避免急剧升温,每加约100ml硫酸后稍停片刻,并把大烧杯放在盛有冷水的盆内冷却,待溶液的温度降到不烫手时再加另一份硫酸,直到全部加完为止; 3.5 0.1 mol·L-1重铬酸钾标准溶液:称取经130℃烘2~3h的优级纯重铬酸钾 4.904g。先用少量水溶 解,然后移入1L容量瓶内,加水定容。 3.6 0.1 mol·L-1硫酸亚铁标准溶液:称取FeSO4·7H2O硫酸亚铁28g,溶于600~800ml水中,加浓硫 酸20ml,搅拌均匀,加水定容至1L(必要时过滤),贮于棕色瓶中保存。此溶液易受空气氧化,使用时必须每天标定一次标准浓度。 4 操作步骤: 4.1 选取有代表性风干土壤样品,用镊子挑除植物根叶等有机残体,然后用木棍把土块压细,使之通过 1mm筛。充分混匀后,从中取出试样10~20g,磨细,并全部通过0.25mm筛,装入磨口瓶中备用。 4.2 按照表1有机质含量的规定称取制备好的风干试样0.05~0.5g,精确到0.0001g。置入150ml三角 瓶中,加粉末状的硫酸银0.1g,准确加入0.4mol·L-1重铬酸钾-硫酸溶液10ml混匀。

土壤有机质测定

土壤有机质测定 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

土壤有机质测定 在外加热的条件下(油浴的温度为180,沸腾5分钟),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为~。 从表5—4中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=),2-羧基代二苯胺(E0=),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。 例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下: [(C12H8N2)3Fe]3++e [(C12H8N2)3Fe]2+ 淡蓝色红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。 但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终点时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。 从表5-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为、。指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。因此使终点后移,为此,在实际测定过程中加入NaF或H3PO4络合Fe3+,其反应如下:

土壤有机质测定(1)

土壤有机质测定 5.2.1重铬酸钾容量法——外加热法 5.2.1.1方法原理在外加热的条件下(油浴的温度为180,沸腾5分钟),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。 从表5—4中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=1.11V),2-羧基代二苯胺(E0=1.08V),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。 例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下: [(C12H8N2)3Fe]3++e [(C12H8N2)3Fe]2+ 淡蓝色红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。 但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终点时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。 从表5-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为0.76V、0.85V。指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。因此使终点后移,为此,在实际测定过程中加入NaF或H3PO4络合Fe3+,

土壤有机质测定实验报告

土壤实验报告 土壤有机质的测定 姓名:学号:实验日期: 一、方法原理: 土壤有机质是土壤的重要组成物质之一,是作为衡量土壤肥力高低的一个重要指标,土壤有机质含量也反映一定的成土过程。 测定土壤有机质方法很多,一般采用重铬酸钾硫酸法。此法操作简便,设备简单,速度快,再现性较好,适合大批样品分析和实验室用。 所谓重铬酸钾硫酸法就是在加热条件下,用一定量的标准重铬酸钾溶液,氧化土壤有机碳,多余的重铬酸钾则用硫酸亚铁溶液滴定,以实际消耗的重铬酸钾量计算出有机碳的含量,再乘以常数1.724,即为土壤有机质含量,其反应方程式如下: 2K2Cr2O7+3C+6H2SO4=2K2SO4+Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 二、操作步骤: (1)准确称取通过60号筛风干土样0.1~0.5克(精确到0.0001克),放入干的硬质试管中,用移液管加入5毫升重铬酸钾标准溶液,再用移液管(或加液器)加入5毫升浓硫酸,小心摇匀,在试管口上加一弯颈小漏斗。 (2)预先将植物油浴锅温度升到185~190度,将试管插入铁丝笼中,并将铁丝笼放入上述油锅中加热,此时温度控制在170~180度,使管内溶液保持沸腾5分钟,然后取出铁丝笼,待试管稍冷后,擦净外部油液。 (3)冷却后将试管内溶液洗入250毫升三角瓶中,使瓶内总体积在60~80毫升,此时酸度约为1.5mol/L,然后加邻啡罗啉指示剂3-5滴,用0.2mol/L硫酸亚铁溶液滴定,溶液颜色由黄色经过绿色突变到棕红色即为终点。 (4)在测定样品时必须做空白实验,可以用纯砂或灼烧土代替样品,以免溅出溶液。其他手续同上。 实验操作时注意事项: (1)此法要求有机质含量在2%以上者,相对误差不超过5%,有机质含量低于2%,绝对误差不超过0.05,因此,必须根据有机质含量多少决定称量,一是有机质在7~15%的土样可称0.1~0.5克。2~4%者可称0.5~0.2克少于2%可0.5克以上,以减少误差。 (2)消化煮沸的时间必须尽量准确一致,否则,对分析结果有较大影响,必须从

有机质的测定 重铬酸钾氧化外加热法

FHZDZTR0046 土壤 有机质的测定 重铬酸钾氧化外加热法 F-HZ-DZ-TR-0046 土壤—有机质的测定—重铬酸钾氧化外加热法 1 范围 本方法适用于土壤有机质的测定和土壤碳氮比的计算。 2 原理 土壤有机质包括各种动植物残体以及微生物及其生命活动的各种有机产物,它在土壤中的累积、移动和分解的过程是土壤形成作用中最主要的特征。土壤有机质不仅能为作物提供所需的各种营养元素,同时对土壤结构的形成和改善土壤物理性状有决定作用,因此是一项基础分析项目。土壤有机质的分析采用测定有机碳再乘以一定换算系数而求得。土样用重铬酸钾加热消煮,使有机质中的碳氧化成二氧化碳,而重铬酸离子被还原成三价铬离子,剩余的重铬酸钾用硫酸亚铁铵标准溶液滴定,然后根据有机碳被氧化前后重铬酸离子量的变化,就可算得有机碳和有机质的含量。 3 试剂 3.1 重铬酸钾标准溶液:0.8000mol/L ,称取经150℃烘干2h 的39.2248g 重铬酸钾(K 2Cr 2O 7) ,精确至0.0001g ,加400mL 水,加热溶解,冷却后,加水稀释至1000mL 。 3.2 硫酸亚铁铵标准溶液:0.2mol/L ,称取80g 硫酸亚铁铵[Fe(NH 4)2(SO 4)2·6H 2O],溶解于水,加15mL 硫酸(ρ1.84g/mL ),再加水稀释至1000mL 。 标定:吸取10.00mL 重铬酸钾标准溶液置于250mL 锥形瓶中,加入40mL 水和10mL 硫酸(1+1),再加3滴~4滴邻菲啰啉指示剂,用硫酸亚铁铵标准溶液滴定至溶液由橙黄色经蓝绿色至棕红色为终点。同时做空白试验。 硫酸亚铁铵标准溶液浓度按下式计算: 211V V V C C ?×= 式中: C ——硫酸亚铁铵标准溶液浓度,mol/L ; C 1——重铬酸钾标准溶液浓度,mol/L ; V 1——重铬酸钾标准溶液体积,mL ; V 2——硫酸亚铁铵标准溶液用量,mL ; V 0——空白试验消耗硫酸亚铁铵标准溶液体积,mL 。 3.3 N-苯基邻胺基苯甲酸指示剂:称取0.2g N-苯基邻胺基苯甲酸(C 13H 11O 2N ),溶于100mL 2g/L 碳酸钠溶液中,稍加热并不断搅拌,促使浮于表面的指示剂溶解。 3.4 邻菲啰啉指示剂:称取 1.485g 邻菲啰啉(C 12H 8N 2·H 2O )和0.695g 硫酸亚铁 (FeSO 4·7H 2O ) ,溶于100mL 水中,形成的红棕色络合物贮于棕色瓶中。 3.5 硫酸,(ρ 1.84g/mL )。 3.6 硫酸银,研成粉末。 4 仪器 4.1 硬质试管,25mm ×100mm 。 4.2 注射器,5mL 。 4.3 油浴锅,内装固体石蜡或植物油。 4.4 温度计,250℃。 4.5 铁丝笼架,形状与油浴锅配套,内设若干小格,每格内可插一支试管。 4.6 锥形瓶,250mL 。

土壤有机质含量的测定

土壤有机质含量的测定 一、目的要求 土壤有机质含量是衡量土壤肥力的重要指标,对了解土壤肥力状况,进行培肥、改土有一定的指导意义。 通过实验了解土壤有机质测定原理,初步掌握测定有机质含量的方法既注意事项。能比较准确地测出土壤有机质含量。 二、方法原理 在加热条件下,用稍过量得标准重铬酸钾—硫酸溶液,氧化土壤有机碳,剩余的重铬酸钾用标准硫酸亚铁(或硫酸亚铁铵)滴定,由所消耗标准硫酸亚铁的量计算出有机碳量,从而推算出有机质的含量,其反应式如下: 2K 2Cr 2 O 7 +3C+8H 2 SO 4 →K 2 SO 4 +2Cr 2 (SO 4 ) 3 +3CO 2 +8H 2 O K 2Cr 2 O 7 +6FeSO 4 +7H 2 SO 4 →K 2 SO 4 + Cr 2 (SO 4 ) 3 +3Fe 2 (SO 4 ) 3 +8H 2 O 用Fe2+滴定剩余的K 2Cr 2 O 7 2-时,以邻啡罗啉(C 2 H 8 N 2 )为氧化还原指示剂,在 滴定过程中指示剂的变色过程如下:开始时溶液以重铬酸钾的橙色为主,此时指示剂在氧化条件下,呈淡蓝色,被重铬酸钾的橙色掩盖,滴定时溶液逐渐呈绿色(Cr3+),至接近终点时变为灰绿色。当Fe2+溶液过量半滴时,溶液则变成棕红色,表示颜色已到终点。 三、仪器试剂 1. 仪器用具 硬质试管(18mm×180mm)、油浴锅、铁丝笼、电炉、温度计(0~200℃)、分析天平(感量0.0001g)、滴定管(25ml)、移液管(5ml)、漏斗(3~4cm),三角瓶(250ml)、量筒(10ml,100ml)、草纸或卫生纸。 2. 试剂配制 1.0.1333mol/L重铬酸钾标准溶液称取经过130℃烘烧3~4h的分析纯重铬酸钾39.216g,溶解于400ml蒸馏水中,必要时可加热溶解,冷却后架蒸馏水定容到1000ml,摇匀备用。 2.0.2mol/L硫酸亚铁(FeSO 4.7H 2 O)或硫酸亚铁铵溶液称取化学纯硫酸亚铁 55.60g或硫酸亚铁铵78.43g,溶于蒸馏水中,加6mol/L H 2SO 4 1.5ml,再加蒸馏 水定容到1000ml备用。

土壤有机质的测定2.0

实验报告 课程名称: 土壤学实验 指导老师: 谢晓梅 成绩:__________________ 实验名称: 土壤有机质的测定 同组学生姓名: 边舒萍 一、实验目的和要求 二、实验内容和原理 三、实验材料与试剂 四、实验器材与仪器 五、操作方法和实验步骤 六、实验数据记录和处理 七、实验结果与分析 八、讨论、心得 一、 实验目的和要求 1. 了解土壤有机质测定对于农业生产的意义; 2. 掌握土壤有机质含量的测定方法。 二、 实验内容和原理 有机质是土壤中重要组成成分,其含量水平是衡量土壤肥力的重要指标之一。本实验 采用重铬酸钾容量法——稀释热法,利用浓硫酸和重铬酸钾混合时产生的热氧化有机质中的碳,通过测定消耗的氧化剂的量来计算得出土壤有机质含量,从而分析该土壤肥力水平,并对此提出改良措施。 重铬酸钾容量法——稀释热法过程的化学反应式: 氧化过程:K 2Cr 2O 7+C+H 2SO 4→K 2SO 4+Cr 2(SO 4)3+CO 2+H 2O 滴定过程:K 2Cr 2O 7+FeSO 4+H 2SO 4→K 2SO 4+Cr 2(SO 4)3+Fe 2(SO 4)3+H 2O 土壤有机碳与有机质换算公式: 土壤有机质(g/Kg )=土壤有机碳(g/Kg )×1.724 三、 实验器材与仪器 土样(取于余杭塘路施工旁,风干研磨细后过100目筛);

250mL三角瓶×2,10mL量筒,100mL量筒,5mL移液管,5.00mL移液枪,棕色酸式滴定管; 1mol/L 1/6 K2Cr2O7标准溶液,浓硫酸,领啡啰啉指示剂,0.5021mol/L FeSO4标准溶液。 四、操作方法和实验步骤 1.在500mL三角瓶中加入m=0.5070g土样; 2.用移液管加入1mol/L 1/6 K2Cr2O7标准溶液10mL; 3.混匀后用移液枪移取浓硫酸20mL,旋转摇动1min,之后放置30mL,加水100mL; 4.滴入3滴指示剂后用0.5021mol/L FeSO4标准溶液滴定至溶液由绿色变暗绿色, 最终以瞬间变为砖红色为终点; 5.用相同方法作空白对照(不加土样)测定。 五、实验数据记录和处理 表1 FeSO4标准溶液消耗体积与土壤有机质(碳)含量 样品 滴定前读 数V1/mL 滴定后读 数V2/mL FeSO4消耗体积 V(V0)/mL 土壤有机碳么 m1(g/Kg) 土壤有机质 m2(g/Kg) 第一组0.00 18.70 18.70 5.255 9.060 空白组 3.32 23.35 20.03 注:m1={[c(V0-V)×10-3×3.0×1.33]/m}×1000;m2=m1×1.724 其中,1.33为氧化校正系数;m为所称量土样重。 六、实验结果与分析

土壤检测第6部分:土壤有机质的测定nyt1121.6-2006方法确认

土壤检测第6部分:土壤有机质的测定 NY/方法确认 1.目的 通过重复性测试和实验室内部人员对比来检测土壤中有机质,判断本实验室的检测方法是否合格。 2.适用范围 本方法适用于有机质含量在15%以下的土壤。 3.操作步骤 准确称取通过孔径筛风干样(精确到,称样量根据有机质含量范围而定),放入硬质试管中,然后从自动调零滴定管准确加入重铬酸钾-硫酸溶液,摇匀并在每一个试管口插入已玻璃漏斗。将试管逐个插入铁丝牢笼中,再将铁丝笼沉入已在电炉上加热至185摄氏度-190摄氏度的油浴锅内,使管中的液面低于油面,要求放入后油浴温度下降至170摄氏度-180摄氏度,等试管中的溶液沸腾时开始计时,此刻必须控制电炉温度,不使溶液剧烈沸腾,其间可轻轻提起铁丝笼在油浴锅晃动几次,以使液温均匀,并维持在170摄氏度-180摄氏度5min+后将铁丝笼从油浴锅内提出,冷却片刻,擦去试管外的油蜡液。把试管内的消毒液及土壤残渣无损的转入250ml三角瓶中,用水冲洗试管及小漏斗,洗液并入三角瓶中,使三角瓶内溶液的总体积控制在50ml-60ml。加3滴邻菲啰啉指示剂,用硫酸亚铁溶液滴定剩余的K2Cr2O7,溶液的变色过程室橙黄-蓝绿-棕红。 如果滴定所用硫酸亚铁溶液的毫升数不到下述空白实验所消耗

硫酸亚铁溶液毫升数的1/3,则应减少土壤称样量重测。 每批分析时,必须同时做2各空白试验,即取大约灼烧浮石粉或土壤代替土样,其他步骤与土样测定相同。 4.计算 =[c*(Vo-V)***]/m *1000 式中:——土壤有机质的质量分数,g/kg Vo——空白试验小号的硫酸亚铁溶液的体积,ml V——式样测定所消耗的硫酸亚铁的体积,ml C——硫酸亚铁溶液的浓度,mol/L ——1/4碳原子的毫摩尔质量,g ——由有机碳换算成有机质的系数 ——氧化校正系数 m——称取烘干式样的质量,g 1000——换算成每千克含量 平行测定结果用算术平均值表示,保留三位有效数字。 5.结果分析 重复性验证 选取一份水样,按上述步骤进行10次重复测试,计算10次测试结果的相对标准偏差,见附表。 由附表可知绝对相差

土壤有机质含量的测定(精)

实训六土壤有机质含量的测定 一、目的要求 土壤有机质含量是衡量土壤肥力的重要指标,对了解土壤肥力状况,进行培肥、改土有一定的指导意义。 通过实验了解土壤有机质测定原理,初步掌握测定有机质含量的方法既注意事项。能比较准确地测出土壤有机质含量。 二、方法原理 在加热条件下,用稍过量得标准重铬酸钾—硫酸溶液,氧化土壤有机碳,剩余的重铬酸钾用标准硫酸亚铁(或硫酸亚铁铵)滴定,由所消耗标准硫酸亚铁的量计算出有机碳量,从而推算出有机质的含量,其反应式如下:2K2Cr2O7+3C+8H2SO4→K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4+7H2SO4→K2SO4+ Cr2(SO4)3+3Fe2(SO4)3+8H2O 用Fe2+滴定剩余的K2Cr2O72-时,以邻啡罗啉(C2H8N2)为氧化还原指示剂,在滴定过程中指示剂的变色过程如下:开始时溶液以重铬酸钾的橙色为主,此时指示剂在氧化条件下,呈淡蓝色,被重铬酸钾的橙色掩盖,滴定时溶液逐渐呈绿色(Cr3+),至接近终点时变为灰绿色。当Fe2+溶液过量半滴时,溶液则变成棕红色,表示颜色已到终点。 三、仪器试剂 1. 仪器用具 硬质试管(18mm×180mm)、油浴锅、铁丝笼、电炉、温度计(0~200℃)、分析天平(感量0.0001g)、滴定管(25ml)、移液管(5ml)、漏斗(3~4cm),三角瓶(250ml)、量筒(10ml,100ml)、草纸或卫生纸。 2. 试剂配制 1.0.1333mol/L重铬酸钾标准溶液称取经过130℃烘烧3~4h的分析纯重铬酸钾39.216g,溶解于400ml蒸馏水中,必要时可加热溶解,冷却后架蒸馏水定容到1000ml,摇匀备用。 2.0.2mol/L硫酸亚铁(FeSO4.7H2O)或硫酸亚铁铵溶液称取化学纯硫酸亚铁55.60g或硫酸亚铁铵78.43g,溶于蒸馏水中,加6mol/L H2SO41.5ml,再加蒸馏水定容到1000ml备用。 3.硫酸亚铁溶液的标定准确吸取3份0.1333mol/L K2Cr2O7标准溶液各5.0ml 于250ml三角瓶中,各加5ml6mol/L H2SO4和15ml蒸馏水,再加入邻啡罗啉指示剂3~5滴,摇匀,然后用0.2mol/LFeSO4溶液滴定至棕红色为止,其浓度计算为: c= V 0.5 1333 .0 6? ? 式中:c——表示硫酸亚铁溶液摩尔浓度(mol/L); V——滴定用去硫酸亚铁的体积(mol);

土壤有机质测定方法

土壤有机质测定方法(参考土壤农化分析,南京农学院主编) 原理: 在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O7等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量试剂: 10.4N重铬酸钾—硫酸溶液:称取研细的化学纯的重铬酸钾(三级)40g,溶解子600ml蒸馏水中(必要时可加热),待完全溶解后加水稀释至1L(用容量瓶量取1L蒸馏水,以保证合适水酸比),将溶液移入2L大烧杯中。缓缓加入浓硫酸1000m1(未打开的浓硫酸2瓶)于K2Cr2O7溶液中,硫酸加入水中会大量放热,为避免溶液急剧升温,每加约100ml硫酸就稍停片刻,过程中不断搅动,并将大烧杯入在盛有冷水的盆内降温。配好的溶液冷却备用。冬天可以稍微多加50ml水,以防止重铬酸钾结晶。 2重铬酸钾的基准溶液,准确称取分析纯K2Cr2O7 (在130烘3小时)9.807g于600ml烧杯中,慢慢加入浓H2S04约100m1,搅拌溶解,将溶液全部洗入1000ml容量瓶中定容备用。此溶液浓度C(1/6 K2Cr2O7)0.2000mol/L。 30.2N硫酸亚铁溶液(C1):称取硫酸亚铁56g,溶解于600ml水中,加H2S04 20ml,搅拌均匀,然后加水定容至1L,贮存于棕色瓶中。 此溶液易受空气氧化,使用时必须每天标定一次准确浓度。标定方法:准确浓度以重铬酸钾基准溶液标定之,即准确分别吸取二份重铬酸钾基准溶液各20ml于250ml三角瓶中,加入邻啡罗琳指示剂4滴,然后用0.2N FeSO4滴定至终点,根据硫酸亚铁溶液的消耗量,计算出FeSO4的准确浓度C2,c2=C1*V1/V2(C1:重铬酸钾标准溶液浓度0.2;V1:吸取重格酸钾标准溶液浓度20;V2:滴定时所耗硫酸亚铁溶液体积)。 4. 邻啡罗琳指示剂。称取分析纯邻啡罗琳1.490g,硫酸亚铁0.7g,溶于100m1水中,(必要时可加热完全溶解)。此时试剂与FeSO4形成红棕色络合物,指示剂易变质贮于棕色滴瓶中。 操作步骤 准确称取通过100目筛的风干土样0.2g(植物0.02g)于消煮管, 用移液管准确加入0.4N 重铬酸钾硫酸溶液10ml,180度消煮7min,取出冷却。冷却后,将试管内容物用60-70ml蒸馏水(分3-4次)转入250ml三角瓶中,滴入邻啡罗琳指示剂4滴,用0.2N硫酸亚铁滴定,溶液的变色过程是橙黄,蓝绿,砖红色即为终点。酸式滴定管(架子) 每一批样品测定的同时,进行二个空白试验 计算 土壤有机碳()烘干土样重 V0:空白耗0.2N硫酸亚铁毫升数。V:滴定土样耗硫酸亚铁毫升数。0.003:为1个毫克当量碳的克数;1.1:为氧化校正系数; 土壤有机质%=土壤有机碳%×1.724(1.724:为有机碳换算成有机质的平均换算系数)。 土壤有机质测量时土壤称重参考值: TN 土壤称重有机质含量土壤称重 低于2mg/g 0.4-0.5g 2%以下0.4-0.5g 2-5mg/g 0.2g 2-7% 0.2-0.3 5-8mg/g 0.1 7-10% 0.1 8mg/g以上0.1g 10-15% 0.05 加20ml重铬酸钾的硫酸溶液 注意事项:1)此方法适用范围:土壤有机质含量在15%以下;2)如果试样滴定所用硫酸亚铁标准的亳升数不到空白标定所耗硫酸亚铁标准溶液毫升数的1/3,就应减少土壤称样量,重新做;3)误差:有机质含量小于1%,误差约0.05%;含量为1-4%时,误差约0.1%;含量4-7%时,误差约0.3%;含量10%以上,误差约0.5%.

第三章 土壤有机质的测定

土壤有机质是土壤中各种营养元素特别是氮、磷的重要来源。它还含有刺激植物生长的胡敏酸类等物质。由于它具有胶体特性,能吸附较多的阳离子,因而使土壤具有保肥力和缓冲性。它还能使土壤疏松和形成结构,从而可改善土壤的物理性状。它也是土壤微生物必不可少的碳源和能源。因此,除低洼地土壤外,一般来说,土壤有机质含量的多少,是土壤肥力高低的一个重要指标。 本章介绍了有机质的形态、含量与分布,土壤有机质测定各种方法的方法原理、适用范围、试剂的配制、操作步骤、结果计算、方法要点等内容。

3.1.1 土壤有机质含量及其在肥力上的意义 土壤有机质是土壤中各种营养元素特别是氮、磷的重要来源。它还含有刺激植物生长的胡敏酸类等物质。由于它具有胶体特性,能吸附较多的阳离子,因而使土壤具有保肥力和缓冲性。它还能使土壤疏松和形成结构,从而可改善土壤的物理性状。它也是土壤微生物必不可少的碳源和能源。因此,除低洼地土壤外,一般来说,土壤有机质含量的多少,是土壤肥力高低的一个重要指标。 华北地区不同肥力等级的土壤有机质含量约为:高肥力地>15.0g·kg-1 ,中等肥力地10~14g·kg-1,低肥力地5.0-10.0g·kg-1,薄砂地<5.0g·kg-1。 南方水稻土肥力高低与有机质含量也有密切关系。据浙江省农业科学院土壤肥料研究所水稻高产土壤研究组报道:浙江省高产水稻土的有机质含量大部分多在23.6~48g·kg-1,均较其邻近的一般田高。上海郊区高产水稻土的有机质含量也在25.0~40g·kg-1范围之内。 我国东北地区雨水充足,有利于植物生长,而气温较低有利土壤有机质的积累,因此东北的黑土有机质含量高达40~50g·kg-1以上。由此向西北,雨水减少,植物生长量逐渐减少,土壤有机质含量亦逐渐减少,如栗钙土为20~30g·kg-1,棕钙土为20g·kg-1 左右,灰钙土只有10~20g·kg-1。向南雨水多、温度高,虽然植物生长茂盛,但土壤中有机质的分解作用增强,黄壤和红壤有机质含量一般为20~30g·kg-1。对耕种土壤来讲,人为的耕作活动则起着更重要的影响,因此在同一地区耕种土壤有机质含量比未耕种土壤要低得多。影响土壤有机质含量的另一重要因素是土壤质地,砂土有机质含量低于粘土。 土壤有机质的组成很复杂,包括三类物质: 1.分解很少,仍保持原来形态学特徵的动植物残体。 2.动植物残体的半分解产物及微生物代谢产物。 3.有机质的分解和合成而形成的较稳定的高分子化合物——腐殖酸类物质。

土壤有机质的测定

土壤有机质的测定(重铬酸钾-硫酸氧化法) 1 实验方法 1.1 材料与试剂 狗牙根草坪土 1.2 器具 烘箱、消解炉、弯颈漏斗、消解管、分析天平、滴定管、150mL锥形瓶 1.3 实验步骤 1.3.1 加样准确称取0.1000g风干土(过100目筛,筛孔直径0.149mm),放入消解管中, 准确加入0.8000M重铬酸钾标准溶液5mL,浓硫酸5mL,小心摇匀。做2个重复土样。设空白对照1个,采用0.1000g粉状二氧化硅代替土样,其他与土样相同。 1.3.2 消解加弯颈小漏斗,放在消解炉上加热(180℃),待液体开始沸腾发生气泡时开始计时,使溶液沸腾5min,取出冷却。 1.3.3 滴定冷却后,将消解液倾入1个150mL锥形瓶中,用去离子水润洗消解管及漏斗(少 量多次),将润洗液也移至锥形瓶中,使锥形瓶内的溶液总体积为60~70mL。加邻菲罗啉指示剂2~3滴,用标准硫酸亚铁溶液滴定。溶液由黄绿色变为蓝绿色,再变为砖红色,即达终点,记录FeSO4滴定毫升数(V)。 1.3.4 计算有机质(g/kg)= () k m / - 1.724 1.1 3 5 0.8 ? ? ? ? ? ?V V V 式中:V0——表示5mL0.8000M标准重铬酸钾空白滴定用去的硫酸亚铁的毫升数; V——表示滴定待测液中过剩的0.8000M标准重铬酸钾用去的硫酸亚铁毫升数; m——表示风干土样质量(g); k——表示将风干土样换算成烘干土的系数; 0.8——表示标准重铬酸钾的浓度; 5——表示加入的重铬酸钾溶液体积; 3.0——表示1/4碳原子的摩尔质量(g/mol); 1.1——表示本样方法只能氧化90%的有机碳,因此乘以校正系数1.1; 1.724——表示土壤有机碳换算成有机质的经验常数。 2 结果与分析 2.1 狗牙根草坪土土壤有机质含量丰缺状况 据公式推算后得出,本次实验所取的狗牙根草坪土两个土样的有机质含量分别为34.92g/kg、36.05g/kg。根据我国第二次土壤普查有机质含量分级表,可知狗牙根的土壤有机质含量较高,属国家标准的二级,为高肥力土。 土壤有机质包括种类繁多的各种化合物,主要有碳水化合物、含氮化合物和腐殖质三大类。其他类别的化合物含量很少甚至极微。

土壤有机质测试方法

土壤有机质的测定 (重铬酸钾容量法-外加热法) 试剂准备: 1.0.8 mol·L-1(1/6K2Cr2O7):称取130℃烘干的重铬酸钾(分析纯)39.2245g溶于水,定容1000mL。 2. 0.2mol·L-1FeSO4溶液:称取硫酸亚铁(FeSO4·7H2O,化学纯)56.0g溶于水中,加入浓硫酸5mL,稀释至1L。(不稳定,现用现配) 3.邻菲罗啉指示剂:称取邻菲罗啉(分析纯)1.485g与FeSO4·7H2O 0.695g,定容至100mL。 4.浓硫酸 操作步骤: 称取通过0.149mm(100目)的风干土样(约0.2g,根据有机质含量确定,有机质含量越高,质量越少)于硬质试管中→加重铬酸钾8mL(根据有机质含量来确定)→浓硫酸5mL→摇匀→弯颈漏斗→消煮炉(设定到220℃~240℃)→试管内液体沸腾发生气泡时开始计时5min→冷却→转移至250mL三角瓶中,并用蒸馏水冲洗漏斗和试管壁,使三角瓶中液体总体积约60~70mL,加邻菲罗啉指示剂2~3滴,用0.2mol·L-1FeSO4滴定(橙黄→蓝绿→砖红色),记录FeSO4的体积。 每一批样品测定的同时,进行2-3个空白试验,即取少许二氧化硅颗粒代替土样,其他步骤相同。注:滴定时多滴入一滴,约0.05mL。

土壤有机碳(mg·kg-1)=c×V重铬酸钾×(V0-V1)×3×1.1/( V0×m) 式中:c——0.8 mol·L-1(1/6K2Cr2O7)标准溶液的浓度; V 重铬酸钾——重铬酸钾标准溶液加入的体积,mL; V0——滴定空白样时所消耗的FeSO4体积,mL; V1——滴定样品时所消耗的FeSO4体积,mL;3——1/4C原子的摩尔质量,g/mol; 1.1——氧化校正系数; m——为风干土质量,g。 土壤有机质(mg·kg-1)=土壤有机碳×1.724 式中:1.724——土壤有机碳换成土壤有机质的平均换算系数。

土壤有机质含量的测定

土壤有机质含量的测定 、目的要求 土壤有机质含量是衡量土壤肥力的重要指标,对了解土壤肥力状况,进行培肥、改土有一定的指导意义。 通过实验了解土壤有机质测定原理,初步掌握测定有机质含量的方法既注意事项。能比较准确地测出土壤有机质含量。 二、方法原理 在加热条件下,用稍过量得标准重铬酸钾—硫酸溶液,氧化土壤有机碳,剩余的重铬酸钾用标准硫酸亚铁(或硫酸亚铁铵)滴定,由所消耗标准硫酸亚铁的量计算出有机碳量,从而推算出有机质的含量,其反应式如下: 2K2Cr26+3C+8HSC4—K2SC4+2Cr2(SC h)3+3CO+8H2O K2Cr26+6FeSO+7H2SC4—?SC4+ Cr 2(SC h)3+3Fe2(SO)3+8H2O 用Fe2+滴定剩余的K2Cr2O72-时,以邻啡罗啉(C2H8N2)为氧化还原指示剂,在滴定过程中指示剂的变色过程如下:开始时溶液以重铬酸钾的橙色为主,此时指示剂在氧化条件下,呈淡蓝色,被重铬酸钾的橙色掩盖,滴定时溶液逐渐呈绿色(CF+),至接近终点时变为灰绿色。当Fe2+溶液过量半滴时,溶液则变成棕红色,表示颜色已到终点。 三、仪器试剂 1.仪器用具 硬质试管(18mm x 180mm)>油浴锅、铁丝笼、电炉、温度计(0~200C)、分析天平(感量O.OOOIg)、滴定管(25ml)、移液管(5ml)、漏斗(3~4cm),三角瓶(250ml)、量筒(10ml, 100ml)、草纸或卫生纸。 2.试剂配制 1.0.1333mol/L重铬酸钾标准溶液称取经过130 C烘烧3~4h的分析纯重铬酸钾39.216g,溶解于400ml蒸馏水中,必要时可加热溶解,冷却后架蒸馏水定容到 1000ml,摇匀备用。 2.0.2mol/L 硫酸亚铁(FeSQ7H2O)或硫酸亚铁铵溶液称取化学纯硫酸亚铁55.60g或硫酸亚铁铵78.43g,溶于蒸馏水中,力卩6mol/L H2SQ1.5ml,再加蒸馏水定容到1000ml 备用。 3.硫酸亚铁溶液的标定准确吸取3份0.1333mol/L ?Cr26标准溶液各5.0ml于

土壤有机质测定

实验报告 课程名称:土壤学实验指导老师:谢晓梅成绩:__________________ 实验名称:土壤有机质的测定 同组学生姓名:边舒萍 一、实验目的和要求二、实验内容和原理 三、实验材料与试剂四、实验器材与仪器 五、操作方法和实验步骤六、实验数据记录和处理 七、实验结果与分析八、讨论、心得 一、实验目的和要求 1.了解土壤有机质测定对于农业生产的意义; 2.掌握土壤有机质含量的测定方法。 二、实验内容和原理 有机质是土壤中重要组成成分,其含量水平是衡量土壤肥力的重要指标之一。本实验采用重铬酸钾容量法——稀释热法,利用浓硫酸和重铬酸钾混合时产生的热氧化有机质中的碳,通过测定消耗的氧化剂的量来计算得出土壤有机质含量,从而分析该土壤肥力水平,并对此提出改良措施。 重铬酸钾容量法——稀释热法过程的化学反应式: 氧化过程:K 2Cr 2 O 7 +C+H 2 SO 4 →K 2 SO 4 +Cr 2 (SO 4 ) 3 +CO 2 +H 2 O 滴定过程:K 2Cr 2 O 7 +FeSO 4 +H 2 SO 4 →K 2 SO 4 +Cr 2 (SO 4 ) 3 +Fe 2 (SO 4 ) 3 +H 2 O 土壤有机碳与有机质换算公式: 土壤有机质(g/Kg)=土壤有机碳(g/Kg)×1.724 三、实验器材与仪器 土样(取于余杭塘路施工旁,风干研磨细后过100目筛); 250mL三角瓶×2,10mL量筒,100mL量筒,5mL移液管,5.00mL移液枪,棕色酸式滴定管; 1mol/L 1/6 K 2Cr 2 O 7 标准溶液,浓硫酸,领啡啰啉指示剂,0.5021mol/L FeSO 4 标准溶 液。姓名:平帆 学号:52 日期:2014.4.1 地点:农生环B255 装订线

土壤有机质测定

土壤有机质测定 在外加热的条件下(油浴的温度为180,沸腾5分钟),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。 从表5—4中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=1.11V),2-羧基代二苯胺(E0=1.08V),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。 例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉 (C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下: [(C12H8N2)3Fe]3++e[(C12H8N2)3Fe]2+ 淡蓝色红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。 但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终点时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。 从表5-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为0.76V、0.85V。指示剂变色在重铬酸钾与亚铁滴定曲线突跃

土壤有机质测定方法 重铬酸钾容量法

实验三土壤有机质含量测定 一、目的和要求 土壤的有机质含量通常作为土壤肥力水平高低的一个重要指标。它不仅是土壤各种养分特别是氮、磷的重要来源,并对土壤理化性质如结构性、保肥性和缓冲性等有着积极的影响。测定土壤有机质的方法很多。本实验用重铬酸钾容量法。 二、内容与原理 在170—180℃条件下,用过量的标准重铬酸钾的硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾以硫酸亚铁溶液滴定,从所消耗的重铬酸钾量计算有机质含量。测定过程的化学反应式如下: 2K2Cr207+3C+8H2S04——→2K2S04十2Cr2(SO4)3+3CO2+8H20 K2Cr207+6FeSO4+7H2S04——→K2S04十Cr2(SO4)3+3Fe2(SO4)3+7H20 三、主要仪器及试剂配制 主要仪器设备:三角瓶、漏斗、恒温箱、酸式滴定管 试剂配制: (1)0.8000molL-1(1/6 K2Cr207)标准溶液,将K2Cr207(分析纯)先在130℃烘干3——4小时,称取39.2250克,在烧杯中加蒸馏水400毫升溶解(必要时加热促进溶解),冷却后,稀释定容到1升。 (2)0.1 molL-1FeS04溶液,称取化学纯FeSO4·7H20 56克或(NH4)2SO4·FeS04·6H2O 78.4克,加3molL-1硫酸30毫升溶解,加水稀释定容到1升,摇匀备用。 (3)邻啡罗林指示剂,称取硫酸亚铁0.695克和邻啡罗林1.485克溶于100毫升水中,此时试剂与硫酸亚铁形成棕红色络合物[Fe(C12H8N3)3]2+。 四、操作方法与实验步骤 1、准确称取通过0.25mm筛孔的风干土样0.100-0.500克,倒入150ml三角瓶中,加入0.8000molL-1(1/6 K2Cr207)5.00毫升,再用注射器注入5毫升浓硫酸,小心摇匀,管口放一小漏斗,以冷凝蒸出的水汽。 2、先将恒温箱的温度升至185℃,然后将待测样品放入温箱中加热,让溶液在170-180℃条件下沸腾5分钟。 3、取出三角瓶,待其冷却后用蒸馏水冲冼小漏斗和三角瓶内壁,洗入液的总体积应控制在50毫升左右,然后加入邻啡罗林指示剂3滴,用0.1molL-1FeSO4滴定,溶液先由黄变绿,再突变到棕红色时即为滴定终点(要求滴定终点时溶液中H2SO4的浓度为1-1.5molL-1)。 4、测定每批样品时,以灼烧过的土壤代替土样作二个空白试验。 注:若样品测定时消耗的FeSO4量低于空白的1/3,则应减少土壤称量。 五、作业 根据下列公式计算有机质含量 0.8000×5.00 ————-—--------(V0-V)×0.003×1.724×1.1 V0 土壤有机质(%)=————————————————————————--------————×100 烘干土重 式中:V0——滴定空白时所用FeS04毫升数; V——滴定土样时所用FeS04毫升数; 5.00——所用K2Cr2O7毫升数 0.8000———1/6 K2Cr207标准溶液的浓度; 0.003———碳毫摩尔质量0.012被反应中电子得失数4除得0.003;

相关文档
最新文档