横断面设计平曲线超高、加宽

横断面设计平曲线超高、加宽
横断面设计平曲线超高、加宽

(2)超高横坡度大于路拱坡度时,可分别采用以下三种方式:

图2—12 无中间分隔带公路的超高过渡

绕内边缘线旋转

先将外侧车道绕路面未加宽前的中心线旋转,待达到与内侧车道构成单向横坡后,整个断面绕路面未加宽前的内侧边缘线旋转,直至全超高横坡度值。

绕中线旋转

先将外侧车道绕路面未加宽前的路中心线旋转,待达到与内侧构成单向横坡后,整个断面一同绕路面未加宽前的路中心线旋转,直至全超高横坡度值。

绕外边缘线旋转

先将外侧车道绕路面外侧边缘旋转,与此同时,内侧车道随中线的降低而相应降低,待达到单向横坡后,整个断面仍绕外侧车道边缘旋转,直至超高横坡值。

一般新建公路多用绕内边缘线旋转方式;旧路改建工程多用绕中心线旋转方式;绕外侧边缘线旋转是一种比较特殊的设计,仅用于某些为改善路容的地点。

2.有中间分隔带公路的超高过渡

(1)绕中央分隔带的中心线旋转

先将外侧行车道绕中央分隔带的中心线旋转,待达到与内侧行车道构成单向横坡后,整个断面一同绕中央分隔带的中心线旋转,直至全超高横坡值。

(2)绕中央分隔带两侧边缘线旋转

将两侧行车道分别绕中央分隔带两侧边缘线旋转,使之各自成为独立的单向超高断面。此时中央分隔带维持原水平状态。

(3)绕各自行车道中线旋转

将两侧行车道分别绕各自的行车道中心线旋转,使之各自成为独立的单向超高断面,此时中央分隔带两边缘分别升高与降低而成为倾斜断面。

三种超高过渡方式各有优缺点,中间带宽度较窄时可采用绕中央分隔带的中心线旋转;各种中间带宽度的都可以采用绕中央分隔带的两侧边缘旋转;对于车道数大于4条的公路可采用绕各自行车道中心线旋转;

图2—13 有中间分隔带公路的超高过渡

(三)超高缓和段长度

为了行车的舒适、路容的美观和排水的通畅,必须设置一定长度的超高缓和段,超高的过渡则是在超高缓和段全长范围内进行的。

双车道公路超高缓和段长度按下式计算:(2—23)

式中:Lc —超高缓和段长度; B —旋转轴至行车道外侧边缘的宽度(m);

△i —超高旋转轴外侧的最大超高横坡度与原路拱横坡度的代数差;

p —超高渐变率(由于逐渐超高而引起外侧边缘纵坡与路线原设计纵坡的差值)。(四)横断面超高值计算

(绕内边轴旋转的超高缓和段图示)

绕内边轴旋转的超高值计算公式

超高值计算公式备注

0≤x≤L1 L1≤x≤Lc 各超高值均与设计

标高比较,

h"c 和h"cx为降低值

L1=

Bj x=

圆曲线

线段外缘hc a io+(a+b)ib

中线h'c a i0+ ib

内缘h"c a i0-( a + Bj ) ib

超高缓和

段外缘hc x a(i0-i1)+[ a i1+(a+b)ib]

或hcx=

中线

h'c x a i0+ i1 a i0+

内缘h"c x a i0-(a + Bj x )I 1 a i0-( a+Bj x )

绕中心线旋转的超高缓和段图示

绕中线旋转的超高值计算公式

超高值计算公式备注

0≤x≤L1 L1≤x≤LS 各超高值均与设计标高比较,

h"c和h"cx为降低值。

L1=

Bj x=

圆曲

线段外缘hc a( i0-i1 ) +(a+ )(i1+ib )

中线

h1c a i0+ i1

内缘

h"c ai0+ i1 -( a + + Bj ) ib

缓和

段段外缘hcx a(i0-i1)+(a+ )(i1 +ih )

或hc x= hc

中线

h1cx a i0 + i1

内缘

h"c x a i0-(a + Bj x )i 0 a i0+ i1-(a+ + Bjx )

式中:h c —路肩外边缘最大超高值;h'c —路中线最大超高值;

h"c —路基内边缘最大降低值;h c x—缓和段上任意断面处,外侧路肩的超高值;h'c x—缓和段上任意断面处,加宽前路中线的超高值;

h"c x—缓和段上任意断面处,加宽后路肩内边缘的降低值;

LS —缓和段长度全长;

L1 —双向坡路面过度到超高坡度为路拱坡度时所需的临界长度;

Bj —圆曲线部分路基的全加宽值;Bj x—缓和段上X 距离处路基加宽值;

a —路肩宽度;

b —路面宽度;

i0 —原路肩横坡度;i1 —原路拱横坡度;

ib —圆曲线超高横坡度;x —缓和段内任意点处距缓和段起点的距离。

4.2平曲线加宽

一、平曲线上设置加宽的原因和条件

平曲线加宽:汽车在曲线上行驶时需要比在直线上行车更宽的路面以利安全,这种适当拓宽的路面形式即称为平曲线加宽。

圆曲线上的全加宽值:汽车进入圆曲线后,其行驶的车轮转角保持不变时,其圆曲线起点至圆曲线终点的路面加宽值也保持一个定值,这个定值称为圆曲线上的全加宽值。

确定全加宽值的因素:会车时两辆汽车之间的距离;汽车与路面边缘之间的间距;圆曲线的半径、车型、行车速度。

(一)园曲线上设置加宽的原因

1.汽车在曲线上行驶时,后轴内侧车轮的行驶轨迹半径最小,前轴外侧车轮的行驶轨迹半径最大,因此,在车道内侧需要更宽一些的行车道以供后轴内侧车轮的行驶轨迹要求,所以需要加宽曲线上的行车道;

2.汽车在曲线上行驶时,前轴中心的轨迹并不完全符合理论轨迹而是有较大的摆动偏移,所以也需要加宽曲线上的行车道,以利车辆摆动偏移时的安全。

(二)园曲线上设置加宽的条件

我国《标准》规定,当平曲线半径小于或等于250 m 时,应在平曲线内侧设置加宽。

(三)全加宽值的确定

1.加宽值计算

根据汽车交会时相对位置所需的加宽值

设汽车后轴至前保险杠之距为,圆曲线半径R,有双车道上的加宽值为:根据不同车速摆动偏移所需的加宽值

根据试验和行车调查,行速引起的汽车摆动幅度的变化值为:

圆曲线上的全加宽值:

2.加宽的规定与要求

对于有半挂车的汽车,对行车道的加宽要求

由牵引车、拖车、汽车摆动幅度的变化值三部分组成,即:

其中:——牵引车后轴至保险杠前缘之距离;

——拖车后轴至牵引车后轴之距离。

1、当平曲线半径等于或小于250米时,应统一在平曲线内侧加宽;

2、四级公路和山岭重丘区的三级公路采用第一类加宽,其余各级公路采用第三类加宽值;对于不经常通行集装箱运输半挂车的公路,可采用第二类加宽值;

3、圆曲线的加宽应设置在圆曲线内侧且路面加宽时路基一般也同时加宽;

4、由三条以上车道构成的行车道,其加宽值应另行计算。

5、四级公路路基采用6.5m 以上宽度时,当路面加宽后剩余的路肩宽度不小于0.5m 时则路基可不予加宽;

6、小于0.5m 时则应加宽路基以保证路肩宽度不小于0.5m 。

二、加宽缓和段

(一)加宽缓和段设置原因

当圆曲线段设置全加宽时,为了使路面由直线段正常宽度断面过渡到圆曲线段全加宽断面,需要在直线和圆曲线之间设置加宽缓和段。如下图:

(二)加宽缓和段形式

1.比例过渡

1.比例过渡

对于二、三、四级公路,采用在加宽缓和段全长范围内按其长度成正比例增加的方法,即:

式中:——缓和段上加宽值;——缓和段上任意点至缓和段起点之间的距离;

——加宽缓和段长度;——全加宽值。

2.高次抛物线过渡

对于高等级公路,采用高次抛物线过渡形式,即:

式中:——加宽值参数,。

(三)加宽缓和段长度

1.对于设置有缓和曲线的平曲线,加宽缓和段应采用缓和曲线相同的长度。

2.对于不设缓和曲线的平曲线,但设置有超高缓和段的平曲线,可采用于超高缓和段相同的长度。

3.对于不设缓和曲线的平曲线,又不设置超高缓和段的平曲线时,其加宽和段长度应按渐变率为1:15 且长度不小于10 m 的要求设置.

汽车在曲线上行驶时,其四个车轮轨迹半径不同,其中前轴外轮半径最大,后轴内轮半径最小,因而需要比直线上更大的宽度。此外,汽车在曲线上行驶,其行驶轨迹并不完全与理论行驶轨迹相吻合,而是有一定的摆动偏移,故需要路面加宽来弥补,以策安全。这种在曲线上适当拓宽路面的形式称为平曲线加宽。

1.《公路工程技术标难》规定,当R≤250m时,应设置加宽,双车道路面的全加宽值见表1-2-10。单车道路面的全加宽值按表1-2-10值的1/2取用,三车道以上的路面其加宽值应另行计算。

2.四级公路和山岭重丘区的三级公路采用表1-2-10中的第一类加宽;其余各级公路采用第三类加宽值。对不经常通行集装箱运输半挂车的公路,可采用第二类加宽值;

3.圆曲线的加宽应设置在圆曲线的内侧,当路面加宽时路基一般也同时加宽;

第五章-高速公路纵断面设计复习课程

第五章高速公路纵断面设计 第一节概述 定义:沿着道路中线竖向剖面的展开图即为路线纵断面。 纵断面设计:在路线纵断面图上研究路线线位高度及坡度变化情况的过程。 任务:研究纵断面线形的几何构成及其大小与长度。 依据:汽车的动力特性、道路等级、当地的自然地理条件以及工程经济性等。 路线纵断面图构成: 地面线:它是根据中线上各桩点的高程而点绘的一条不规则的折线; 设计线:路线上各点路基设计高程的连续。 地面高程:中线上地面点高程。 设计高程:一般公路,路基未设加宽超高前的路肩边缘的高程。 设分隔带公路,一般为分隔带外边缘。 路基高度:横断面上设计高程与地面高程之高差。 路堤:设计高程大于地面高程。 路堑:设计高程小于地面高程。 纵断面设计内容:坡度及坡长、竖曲线 第二节纵坡及坡长设计 一、纵坡设计的一般要求 1.纵坡设计必须满足《标准》的各项规定。 2.为保证车辆能以一定速度安全顺适地行驶,纵坡应具有一定的平顺性,起伏不宜过大和过于频繁。 尽量避免采用极限纵坡值。 合理安排缓和坡段,不宜连续采用极限长度的陡坡夹最短长度的缓坡。 连续上坡或下坡路段,应避免设置反坡段。 越岭线哑口附近的纵坡应尽量缓一些。 3.纵坡设计应对沿线地面、地下管线、地质、水文、气候和排水等综合考虑,视具体情况加以处理,以保证道路的稳定与通畅 4.一般情况下山岭重丘区纵坡设计应考虑填挖平衡,尽量使挖方运作就近路段填方,以减少借方和废方,降低造价和节省用地。——即纵向填挖平衡设计。 5.平原微丘区地下水埋深较浅,或池塘、湖泊分布较广,纵坡除应满足最小纵坡要求外,还应满足最小填上高度要求,保证路基稳定。——即包线设计。 6.对连接段纵坡,如大、中桥引道及隧道两端接线等,纵坡应和缓、避免产生突变。交叉处前后的纵坡应平缓一些, 7.在实地调查基础上,充分考虑通道、农田水利等方面的要求。 二、最大纵坡 最大纵坡:是指在纵坡设计时各级道路允许使用的最大坡度值。 影响因素: 汽车的动力特性:汽车在规定速度下的爬坡能力。 道路等级:等级高,行驶速度大,要求坡度阻力尽量小。 自然条件:海拔高程、气候(积雪寒冷等)。 纵坡度大小的优劣: 坡度大:行车困难:上坡速度低,下坡较危险。

横断面设计超高设计

一、路拱及路肩、路侧带的横坡度 为了利于路面横向排水,将路面做成由中央向两侧倾斜的拱形,称为路拱。路拱对排水有利,但对行车不利。路拱坡度所产生的水平分力增加了行车的不平稳,同时也给乘客以不舒适的感觉。当车辆在潮湿或有水的路面上制动时,还会增加侧向滑移的危险。规定值见表5-7。 高速公路和一级公路由于路面较宽,迅速排除路面降水尤为重要,在降雨强度较大的地区,路拱坡度可适当增大。 分离式路基,每侧行车道可设置双向路拱,这样对排除路面积水有利。在降水量不大的地区也可采用单向横坡,并向路基外侧倾斜。 路拱的形式有抛物线形、直线接抛物线形、折线形等。 土路肩的排水性远低于路面,其横坡度较路面宜增大1.0~2.0% 。硬路肩视具体情况可与路面同一横坡,也可稍大。 人行道横坡宜采用单面坡,坡度为1%~2% 。路缘带横坡与路面相同。 二、曲线超高 (一)超高及其作用 为了抵消车辆在曲线路段行驶时所产生的离心力,将路面做成外侧高于内侧的单向横坡的形式,这就是曲线上的超高。 合理的设置超高,可以全部或部分抵消离心力,提高汽车行驶的稳定性和舒适性。汽车在圆曲线上行驶,离心力是常数;在回旋线上行驶,其离心力是变化的。因此,超高横坡度在原曲线上应是与圆曲线半径相适应的全超高,在缓和曲线上是逐渐变化的超高。 这段从直线上的双向横坡渐变到圆曲线上的单向横坡的路段,称作超高缓和段或超高过渡段。 (二)超高率的计算 1.最大超高和最小超高 对最大超高和最小超高的规定见表3-1和3-2。 2.计算公式 (1),由此计算得到超高,但是横向力系数μ不易确定。(2)取μ=0,

,ih>ih(max)后,离心力由f承担,V取设计速度。 (3)将(2)中的速度V取实际速度。 (4)以曲线的形式变化,在最大超高处,μ=0时的半径 见图5-16(张雨化版),令1/R=1/RA、ih=ih(max),所对应的点为B;令1/R=1/Rmin、ih=ih(max),所对应的点为D。将OB的中点A与BD的中点C相连接,然后分别在OAE和ECD两个转折处作与直线相切的两条二次抛物线,取抛物线上的纵坐标为各种R的设计超高值ih。 (三)超高的过渡 1.无中间带道路的超高过渡 无中间带的道路行车带,在直线路段的横断面均以中线为脊向两侧倾斜的路拱。当超高横坡等于路拱坡度时,行车道外侧绕中线旋转,直至与内侧横坡相等,如图5-19所示。

公路超高设置一览表

位于曲线上的行车道、硬路肩,均应根据设计速度、圆曲线半径、自然条件等按表7.5.3规定设置超高。 页脚内容4

页脚内容4

注:括号值为路拱大于2%时的不设超高最小半径 7.5.4 超高过渡段 由直线段的双向路拱横断面逐渐过渡到圆曲线段的全超高单向横断面,其间必须设置超高过渡段。 超高过渡段长度按公式(7.5.4)计算: B △i L C= (7.5.4) P 式中: L C—超高过渡段长度(m); B —旋转轴至行车道(设路缘带时为路缘带)外侧边缘的宽度(m); △i—超高坡度与路拱坡度的代数差(%); P—超高渐变率,即旋转轴与行车道(设路缘带时为路缘带) 外侧边缘线之间的相对坡度,其值如表7.5.4。 根据上式求得过渡段长度,应凑整成5m的倍数,并不小于20m的长度。 页脚内容4

7.5.5 超高过渡方式 1无中间带的公路 (1)超高横坡度等于路拱坡度时,将外侧车道绕路中线旋转,直至超高横坡度。 (2) 超高横坡度大于路拱坡度时,可分别采用以下三种过渡方式: 1) 绕车道内侧边缘旋转(见图7.5.5-1a) 先将外侧车道绕路中线旋转,待达到与内侧车道构成单向横坡后,整个断面再绕未加宽前的内侧车道边缘旋转,直至超高横坡度。一般新建工程应采用此种方式。 2) 绕路中线旋转(见图7.5.5-1b) 先将外侧车道绕路中线旋转,待达到与内侧车道构成单向横坡后,整个断面一同绕路中线旋转,直至超高横坡度。一般改建工程应采用此种方式。 3)绕车道外侧边缘旋转(见图7.5.5-1c) 页脚内容4

先将外侧车道绕车道外侧边缘旋转,与此同时,内侧车道随中线的降低而相应降坡,待达到单向横坡后,整个断面继续绕外侧车道边缘旋转,直至超高横坡度。此种方式可在特殊设计(如强调路容美观)时采用。 7.5.6 超高的过渡应在回旋线全长范围内进行。当回旋线较长时,应采取以下措施予以处理: 1超高过渡段设在回旋线的某一区段内,其超高起点宜设在曲率半径大于不设超高半径处,全超高断面宜设在缓圆点和圆缓点处。 2 超高过渡段的纵向渐变率不得小于1/330。 3 六车道以上的公路宜增设路拱线。 7.5.7 四级公路超高的过渡应在超高过渡段的全长范围内进行。 页脚内容4

高速公路设计

高速公路

高速公路设计 摘要:高速公路是一种高等级公路,车辆最高时速能达到120公里/小时或者更高的速度,路面有4个及以上车道的宽度。高速公路交通量大而且车速高,路面磨损和消耗相比于普通公路更大,作为最高等级公路,其等级和特点决定了其设计要求与普通公路的差异,选线是高速公路设计施工的关键,平纵横断面设计是高速公路设计的重要部分。在整个论证,选线,设计,施工等方面必须遵循更高要求的标准。 关键词:设计曲线断面高速公路 一:选线 (1)选线调查 在高速公路建设方案确定之前,选线是最为关键的一个环节。选线是指在路线起终点之间的大地表面上,根据计划任务书规定的使用任务和性质,结合当地自然条件,选定道路中线的位置的过程。影响选线的因素有许多,例如自然条件有地形,气候,水文地质等,经济社会政治条件要能够推动当地经济发展,与旅游景点,风景名胜的联系,尽可能缓解交通压力,或者能达到一定的政治目的。而且选线又要注意与其他已建网路相连,注意整体交通网络的构建。 (2)选线原则 高速公路选线非常重要,所以在选线时应遵循一定原则。应根据公路使用性质,综合经济发展情况与远景规划。合理选定路线方案,在能够保证行车安全、迅速前提下,使路线短捷。应该要适应当地地形、气候、土质、水文等自然情况,选线也应与环境保护相结合。并且能够充分利用地形、地势,尽量回避不利地带,正确运用技术标准。尽量使平面短捷舒顺,纵面平缓均匀,横面稳定经济。同时,选线应贯彻工程经济与运营经济结合的原则,也要考虑施工条件对选定路线的影响。 (3)选线步骤与方法 a)收集有关资料 在路线选择以前,首先要尽可能多地收集与方案有关的资料。比如:规划设计资料、交通资料、地形图、地质、水文、气象等资料。

第五章横断面设计

第五章横断面设计 一、填空题 1、高速公路和一级公路的路基横断面由()、()、()以及紧急停车带、爬坡车道、变速车道等组成。 2、二、三、四级公路的路基横断面由()、()以及错车道组成。 3、路基填土高度小于()米大于()米的路堤称为一般路堤。 4、路基挖方深度小于()米、一般地质条件下的路堑称为一般路堑。 5、路基边坡的坡度,习惯上用边坡的()与()的比值来表示。 6、为防止零星土石碎落物落入边沟,通常在路堑边坡坡脚与边沟外侧边缘之间,设置()。 7、若平均运距()免费运距时,可不计运费。 8、土石方纵向调配时,从()体积重心到()体积重心的距离称为平均运距。

9、计价土石方数量V计=()+()。 10、填方=本桩利用+();挖方=本桩利用+()。 11、填缺=远运利用+();挖余=远运利用+()。 12、本公里土石方调配完毕,应进行公里合计,总闭合核算式为:(跨公里调入方)+挖方+()=(跨公里调出方)+()+废方。 13、一般情况下,()路基和填土高度小于()米的矮路堤均应设置边沟。 14、中间带由()及两条左侧()组成。 15、取土坑分为()和()两种方式。 16、路基工程中的挖方按()体积计算,填方按()体积计算。

17、横断面设计成果主要是()和()。 二、选择题 1、()的横断面称为典型横断面。 A 特殊设计 B 经常采用 C 不常采用 2、一般路堤是指()。 A 填土高度在12m以下的路堤 B 填土高度在20m以内的路堤 C 边坡采用1:的路堤。 3、一般路堑是指()。 A 一般地质条件下挖方深度不大于20m的路基 B 一般情况下,挖方深度在10m左右的路基。 C 挖方深度小于20的路基 4、路基土石方的体积数量()。 A 应扣除桥涵,挡土墙的体积B不扣除桥涵体积

圆曲线超高加宽计算程序

圆曲线超高加宽计算程序 平曲线加宽类别分为:四级公路不设缓和曲线而用超高加宽缓和段代替及平曲线半径R≤250M时两种情形。 程序说明:能计算双圆复曲线ZY点与YZ点的加宽值,单圆曲线是双圆复曲线在R1=R2时的特例,”r”的输入:FUNCTION—5--2 程序名:YQXJK(圆曲线加宽) Deg:Fix 3:FreqOff←┚ “NEW(0),OLD(≠0)DATA=”?→O←┚ O≠0=》Goto 0:ClrStat←┚ “ZY K=”?Z:”YZ K=”?Y←┚ “R1=”?U:”R2=”?V←┚ “L=”?L←┚ “W=”?W:”+W=”?B←┚ 100→DimZ←┚ U-0.5W-B→Z[1]:U-0.5W→Z[2] ←┚ 厂(Z[2]2+L2-Z[1]2)→Z[3] ←┚ tan-1((Z[2]Z[3]-Z[1]L)÷(Z[1]Z[2]+Z[3]L))→Z[4] ←┚πZ[4]U÷180→Z[5] ←┚

V-0.5W-B→Z[11]:V-0.5W→Z[12] ←┚ 厂(Z[12]2+L2-Z[11]2)→Z[13] ←┚ tan-1((Z[12]Z[13]-Z[11]L)÷(Z[11]Z[12]+Z[13]L))→Z[14] ←┚ πZ[14]V÷180→Z[15] ←┚ Z-L→List X[1] ←┚ Z→List X[2]:Ltan(Z[4])→List Y[2] ←┚ Z+Z[5]→List X[3]:B→List Y[3] ←┚ Y-Z[15]→List X[4]:B→List Y[4] ←┚ Y→List X[5]:Ltan(Z[14])→List Y[5] ←┚ Y+L→List X[6] ←┚ “CAN SHU YES(1),NO(≠1)=”?C←┚ C≠1=>Goto 0←┚ “t1(DMS)=”:Z[4]▲DMS⊿ “t2(DMS)=”:Z[14]▲DMS⊿ “LJ1=”:Z[5]⊿ “LJ2=”:Z[15]⊿ “ZY+JIA KUAN=”:List Y[2]⊿ “YZ+JIA KUAN=”:List Y[5]⊿ Lbi 0:6→K←┚ Do:”+K,<0=>END=”?→F←┚ FBreak←┚

公路横断面组成

技术规范阅读报告(横断面) 公路中线上任意一点的法线方向剖面图构成公路的横断面图,它是由横断面设计线与横断面地面线所围成的图形。在横断面上的内容包括:行车道、中间带、路肩、碎落台、填方边坡、挖方边坡、边沟、排水沟、护坡道以及防护工程(如护坡、挡土墙)、安全设施与公路经绿化等设施,高速公路和一级公路上还有加(减)速车道、爬坡车道等。各部分的位置、名称如图3-1所示。 图3-1 路基横断面组成 横断面设计就是结合公路等级、交通量、通行能力以及公路沿线的地形、地质情况,公路平面设计和纵断面各个因素等经综合考虑后确定,设计时力分争使构成断面的各要素之间相互协调,做到组成合理、用地节省、工程经济和有利于环境保护。 横断面设计的主要内容是:确定标准横断面的车道数与路基宽度、断面构成与形式;结合公路沿线地形特点提出相应的典型横断面形式,各组成部分的形状、位置和尺寸;根据各桩号的横断面地面线情况绘制横断面设计线,计算各断面的填挖面积,然后进行全线的路基土石方数量和调配。

路基标准横断面是根据设计交通量、交通组成、设计车速、通行能力和满足交通安全的要求,按公路等级、断面的类型、路线所处地形规定的路基横断面各组成部分横向尺寸的技术标准。各级公路的路基标准横断面如图3-2所示。 (一)公路路基横断面的一般组成 1、行车道:公路上供各种车辆行驶部分的总称,包括快车行车道和慢车行车道。 2、路肩:位于行车道外缘至路基边缘,具有一定宽度的带状结构部分,路肩分土路肩和硬路肩两类。 3、中间带:高速、一级公路用于分隔对向车辆的路幅组成部分,通常设于车道中间。 (二)公路路基横断面的特殊组成 1、爬坡车道:设置在高速、一、二级公路的上坡路段,供慢速上坡车辆行驶用车道。 2、加减速车道:供车辆驶入(离)高速车流之前(后)加速(减速)用车道。 3、错车道:在单车道道路上,可通视的一定距离内,供车辆交错避让用的一段加宽车道。 4、紧急停车带:在高速、一级公路上,供车辆临时发生故障或其他原因紧急停车使用的临时停车地带。 5、避险车道:设置于连续长、陡下坡路段右侧弯道以避免车辆在行驶中速度失控而造成事故的路段,是在特殊路段设置的安全车道。 公路特殊组成仅在公路特殊路段才设置。

曲线轨距加宽

第四节曲线轨距加宽2010-08-02 14:52:46关键字:曲线轨距加宽 五、轨底坡 由于车轮踏面与钢轨顶面主要接触部分是1/20的斜坡,为了使钢轨轴心受力,钢轨也应有一个向内的倾斜度,因此轨底与轨道平面之间应形成一个横向坡度,称之为轨底坡。 钢轨设置轨底坡,可使其轮轨接触集中于轨顶中部,提高钢轨的横向稳定能力,减轻轨头不均匀磨耗。分析研究指出,轨头中部塑性变形底积累比之两侧较为缓慢,故而设置轨底坡也有利于减小轨头塑性变形,延长使用寿命。 我国铁路在1965年以前,轨底坡设定为1/20。但在机车车辆的动力作用下,轨道发生弹性挤开,轨枕产生挠曲和弹性压缩,加上垫板与轨枕不密贴,道钉的扣压力不足等原因,实际轨底坡与原设计轨底坡有较大的出入。另外车轮踏面经过一段时间的磨耗后原来1/20的斜面也接近1/40的坡度。所以1965年以后,我国铁路的轨底坡统一改为1/40。 曲线地段的外轨设有超高,轨枕处于倾斜状态。当其倾斜到一定程度时,内轨钢轨中心线将偏离垂直线而外傾,在车轮荷载作用下有可能推翻钢轨。因此,在曲线地段应视其外轨超高值而加大内轨的轨底坡。调整的范围见表2-3。 应当说明,以上所述轨底坡的大小是钢轨在不受列车荷载作用情况下的理论值。在复杂的列车动荷载作用下,轨道各部件将产生不同程度的弹性和塑性变形,静态条件下设置的1/40轨底坡在列车动荷载作用下不一定保持1/40。轨底坡设置是否正确,可根据钢轨顶面上由车轮碾磨形成的光带位置来看。如光带偏离轨顶中心向内,说明轨底坡不足;如光带偏离轨顶中心向外,说明轨底坡过大;如光带居中,说明轨底坡合适。线路养护工作中,可根据光带位置调整轨底坡的大小。 表2-3 内股钢轨轨底楔型或枕木砍削倾斜度 外缘超高(mm) 轨枕面最大倾斜铁垫板或承轨槽面倾斜度 0 1/20 1/40 0~75 1:20 1:20 0 1:40 80~125 1:12 1:12 1:30 1:17 概述 机车车辆进入曲线轨道时,仍然存在保持其原有形式方向的惯性,只是受到外轨的引导作用方才沿着曲线轨道行驶。在小半径曲线,为使机车车辆顺利通过曲线而不致被楔住或挤开轨道,减小轮轨间的横向作用力,以减少轮轨磨耗,轨距要适当加宽。加宽轨距,系将曲线轨道内轨向曲线中心方向移动,曲线外轨的位置则保持与轨道中心半个桂剧的距离不变。曲线轨道的加宽值与机车车辆转向架在曲线上的几何位置有关。 一、转向架的内接形式 由于轮轨游间的存在,机车车辆的车架或转向架通过曲线轨道时,可以占有不同的几何位置,即可以有不同的内接形式。随着轨距大小的不同,机车车辆在曲线上可呈现以下四种内接形式: 1. 斜接。机车车辆车架或转向架的外侧最前位车轮轮缘与外轨作用边接触,内侧最后位车轮轮缘与内轨作用边接触,如图2-7(a)所示。 2. 自由内接。机车车辆车架或转向架的外侧最前位车轮轮缘与外轨作用边接触其它各轮轮缘无接触地在轨道上自由行驶,如图2-7(b)所示。 3. 楔形内接。机车车辆车架或转向架的最前位和最后位外侧车轮轮缘同时与外轨作用边接触,内侧中间车轮的轮缘与内轨作用边接触,如图2-7(c)所示。 图2-7 机车通过曲线的内接形式

公路横断面的组成

第一节公路横断面的组成 公路中线的法线方向剖面图称为公路横断面图,简称横断面,它是由横断面设计线与横断面地面线所围成的图形。在横断面上的内容包括:行车道、中间带、路肩、边坡、边沟、截水沟、护坡道以及专门设计的取土坑、弃土堆、环境保护等设施,各部分的位置、名称如图1-4-1所示。 横断面设计是路线设计的重要组成部分,它和纵断面设计、平面设计相互影响,所以在设计中应对平、纵、横三个方面结合起来综合考虑,反复比较和调整后,才能达到各元素之间的协调一致,做到组成合理、用地节省、工程经济和有利于环境保护。 横断面设计的主要内容是:确定横断面的形式,各组成部分的位置和尺寸以及路基土石方的计算和调配。路拱、路面结构和厚度、路基的强度和稳定性以及超高、加宽、平面视距等在本教材的有关章节中介绍。 一、路基标准横断面 路基标准横断面是交通部根据设计交通量、交通组成、设计车速、通行能力和满足交通安全的要求,按公路等级、断面的类型、路线所处地形规定的路基横断面各组成部分横向尺寸的行业标准。各级公路的路基标准横断面如图1-4-2所示。

1.横断面分类。 高速公路和一级公路的路基横断面分为整体式和分离式两类。上下行的公路的横断面由一个路基形成称为整体式;由两个路基分别独立形成为分离式,整体式横断面上包括行车道、中间带、路肩、紧急停车带、爬坡车道、变速车道等;分离式的断面没有个中间带,其他部分和整体式断面相同。 二、三、四级公路采用整体式断面,不设中间带,它的组成包括行车道、路肩、错车道等,如图1-4-l所示。 2.路基宽度 路基宽度是指在一个横断面上两路肩外缘之间的宽度,一般是指行车道与路肩宽度之和,当没有中间带、紧急停车带、爬坡车道、变速车道、错车道时,应包括在路基宽度内,《公路工程技术标准》规定的各级公路的路基宽度如表1-4-1。 一般情况下应采用表1-4-1中的一般值,有条件时还可适当增加硬路肩和路基宽度,以利交通组织和日后交通量增加时拓宽行车道。只有在受地形或特困和其他特殊情况限制时,在局部路段才能使用变化值,且不宜太长,以免影响全路的使用质量。四级公路一般采用3.5m的行车道和6.5m 的路基;当交通量较大时,可采用6.0m的行车道和7.0m的路基;当交通量很小或工程特别艰巨的路段,可采用4.5m的路基和3.5m的单车道,但必须设置错车道。 3.行车道 (1)行车道的功能 行车道为车辆行驶提供通行条件,行车道的宽度和路面状况影响车辆行驶的安全性、舒适性和公路的通行能力,行车道过窄会使不同车道之间的横向间距不足,车辆的横向干扰增加,平均速度和通行能力下降: (2)车道数

(完整版)超高加宽例题

【例】某二级公路(V=60km/h )平面定线00.4506040+=K JD ,左α=45°20'00",选用180=R m ,路拱横坡%2=g i ,路肩横坡%4=j i 。试计算该曲线的超高和加宽。 【解】《公路工程技术标准》规定:二级公路V=60km/h ,极限最小平曲线半径min R =125m ,一般最小平曲线半径min R =200m ,不设超高的最小平曲线半径min R =1500m ,缓和曲线最小缓和段长度min h L =60m ,路基宽度B =10.0m ,行车道宽度b =7.0m ,路肩宽度a =1.5m 。 当选取R =180m 时,该曲线需要设置超高和加宽。 (1)超高横坡度c i 的计算 057.010.0180 127601272 2=-?=-=μR V i c , 《标准》规定:二级公路最大超高横坡不超过6%,故取c i =6%。 (2)超高缓和段长度c L 的计算 《标准》规定:()R V L s 3min 036.0==43.2m ()2.1min V L s = =50m ()p i B L s ?=min =52.5m 又根据故选取==h c L L 70(m)。 (3)超高起、终点桩号的计算 《标准》规定:二级公路超高起、终点桩号与缓和曲线起、终点桩号相同。 缓和曲线参数的计算: 本题中:R =180m ,h L =70m 圆曲线内移值:R L R h 242 =?=1.13(m), 切距增量:23 2402R L L q h h -==34.95(m), 缓和曲线中心角:R L h 6479.280=β=11°08'27", 02βα-=22°16'54"。

曲线轨距加宽

第四节曲线轨距加宽关键字:曲线轨距加宽 五、轨底坡 1/20的斜坡,为了使钢轨轴心受力,钢轨也应有一个向内的倾斜度,因此轨底与轨道平面之间应形成一个横向坡度,称之为轨底坡。 头不均匀磨耗。分析研究指出,轨头中部塑性变形底积累比之两侧较为缓慢,故而设置轨底坡也有利于减小轨头塑性变形,延长使用寿命。 1965年以前,轨底坡设定为1/20。但在机车车辆的动力作用下,轨道发生弹性挤开,轨枕产生挠曲和弹性压缩,加上垫板与轨枕不密贴,道钉的扣压力不足等原因,实际轨底坡与原设计轨底坡有较大的出入。另外车轮踏面经过一段时间的磨耗后原来1/20的斜面也接近1/40的坡度。所以1965年以后,我国铁路的轨底坡统一改为1/40。 轨钢轨中心线将偏离垂直线而外傾,在车轮荷载作用下有可能推翻钢轨。因此,在曲线地段应视其外轨超高值而加大内轨的轨底坡。调整的范围见表2-3。 作用情况下的理论值。在复杂的列车动荷载作用下,轨道各部件将产生不同程度的弹性和塑性变形,静态条件下设置的1/40轨底坡在列车动荷载作用下不一定保持1/40。轨底坡设置是否正确,可根据钢轨顶面上由车轮碾磨形成的光带位置来看。如光带偏离轨顶中心向内,说明轨底坡不足;如光带偏离轨顶中心向外,说明轨底坡过大;如光带居中,说明轨底坡合适。线路养护工作中,可根据光带位置调整轨底坡的大小。 表2-3 内股钢轨轨底楔型或枕木砍削倾斜度 外缘超高(mm) 轨枕面最大倾斜铁垫板或承轨槽面倾斜度 0 1/20 1/40 0~75 1:20 1:20 0 1:40 80~125 1:12 1:12 1:30 1:17 概述 作用方才沿着曲线轨道行驶。在小半径曲线,为使机车车辆顺利通过曲线而不致被楔住或挤开轨道,减小轮轨间的横向作用力,以减少轮轨磨耗,轨距要适当加宽。加宽轨距,系将曲线轨道内轨向曲线中心方向移动,曲线外轨的位置则保持与轨道中心半个桂剧的距离不变。曲线轨道的加宽值与机车车辆转向架在曲线上的几何位置有关。 一、转向架的内接形式 位置,即可以有不同的内接形式。随着轨距大小的不同,机车车辆在曲线上可呈现以下四种内接形式: 1. 斜接。机车车辆车架或转向架的外侧最前位车轮轮缘与外轨作用边接触,内侧最后位车轮轮缘与内轨作用边接触,如图2-7(a)所示。 2. 自由内接。机车车辆车架或转向架的外侧最前位车轮轮缘与外轨作用边接触其它各轮轮缘无接触地在轨道上自由行驶,如图2-7(b)所示。 3. 楔形内接。机车车辆车架或转向架的最前位和最后位外侧车轮轮缘同时与外轨作用边接触,内侧中间车轮的轮缘与内轨作用边接触,如图2-7(c)所示。 2-7 机车通过曲线的内接形式

完整横断面设计平曲线超高、加宽.docx

横断面设计——平曲线超高、加宽 4.1 平曲线超高 一、平曲线上设置超高的原因和条件 平曲线超高:为了抵消汽车在曲线路段上行驶时所产生的离心力,将路面做成外侧高内侧低 的单向横坡的形式。 平曲线设置超高的条件:圆曲线半径小于不设超高的最小半径时。 表 8.2.3-1 不设超高的圆曲线最小半径 设计速度 (km/h)1201008060403020 不设超路拱≤5500400025001500600350150 高的圆 2 % 曲线最 路拱>7500525033501900800450200 小半径 2% (m ) 平曲线设置超高的原因:将此弯道横断面做成向内倾斜的单向横坡形式,利用重力向内侧分力抵消一部分离心力,改善汽车的行驶条件。 平曲线设置超高的目的:让汽车在平曲线上行驶时能获得一个向圆曲线内侧的横向分力,用以克服离心力,减少横向力,从而保证汽车在圆曲线半径小于不设超高的最小半径时能安全、 稳定、满足计算行车速度和经济、舒适地通过圆曲线。 二、圆曲线上全超高横坡度的确定(专供汽车行驶的高速公路,一级公路的超高横坡度不超 过 10%,其他各级公路不超过8%。在积雪寒冷地区,最大超高横坡度不超过6%。)(一)圆曲线上全超高横坡度的确定 超高横坡度:将圆曲线部分的路面做成向内侧倾斜的单向坡。 全超高:圆曲线起点至圆曲线终点的曲线段超高横坡度值保持定值。 圆曲线超高横坡度:应按公路等级、计算行车速度、圆曲线半径、路面类型、自然条件和车 辆组成等情况确定。 超高横坡度值的计算:由得 (二)圆曲线上的超高横坡度的最大值: 为了保证慢车特别是停在弯道上的车辆,不产生向内侧滑移现象,超高横坡度不能太大。我国《标准》限制了各级公路圆曲线最大全超高值。 (三)圆曲线上的超高横坡度的最小值: 各级公路圆曲线部分的最小超高横坡度应是该级公路直线部分的路拱坡度 三、超高缓和段 (一)超高缓和段设置条件和原因: 汽车从双向横坡的直线段进入设有单向横坡全超高的圆曲线段是一个突变,不能顺利行车; 从立面来看,这个突变也影响美观,所以在直线和圆曲线之间必须设置超高缓和段,完成从直线双向横坡逐渐过渡到圆曲线上的单向超高横坡,使汽车顺势地从直线驶入圆曲线。如下图示: (二)超高缓和段形式 超高缓和段:从直线上的双向路拱横坡,过渡到圆曲线上具有超高横坡度的单向坡断面所需 要的变化区段。 1.无中间分隔带公路的超高过渡 (1 )超高横坡度等于路拱坡度时,将外侧车道绕中线旋转,直至路拱坡度值。

横断面设计

横断面设计流程 横断面设计中涉及到的数据文件: 必需的文件:地面线文件(*.dmx)、地面高文件(*.dmg)、纵断面文件(*.zdm)、横断面文件(*.hdm)、横坡文件(*.hp)、加宽文件(*.jk)、超高文件(*.cg)其他可有文件:边坡文件、水沟文件、构造物文件(*.gzw)、路槽文件(*.lc)、护栏文件(*.hl)、地表厚度文件(*.dbh)、硬路肩文件(*.ylj)、浆砌沟文 件(*.jqg)、截水沟文件(*.jsg)、挡墙尺寸文件(*.dcc)、挡墙设置文 件(*.dsz) 生成的文件:坡脚线文件(*.pjx)、占地宽度文件(*.zdk)、路基文件(*.lj)、路肩填挖高文件(*.zyg)、边沟排水沟文件(*.bgs)、截水沟设计文件(*.jss)、 左水沟地面高文件(*.zdg)、右水沟地面高文件(*.ydg)、填挖面积文件 (*.mj)、砌体沟面积文件(*.jqm)、防护工程面积文件(*.gmj)、边坡 面积文件(*.bpm)、横断面帽子文件(*.hmz)、防护世纪设置文件(*.hsz)、 水沟世纪设置文件(*.psz)、截水沟实际设置文件(*.jsz)、硬路肩实际 设置文件(*.ysz)、护栏实际设置文件(*.lsz)、填挖分界点桩号文件(*.zh)、 台阶面积文件(*.tjm)、地表面积文件(*.dbm)

1.1建立地面线文件 1、建立地面线文件 1.1 点击菜单“管理”中的“地面线文件”,在弹出的对话框中给定文件名,如下图所示: 1.2 选择“用图形界面编辑”,点击确认按钮,系统会弹出如下图所示对话框, 数据点最大数目指的是地面线单侧变化点的最大数量,用户输入的每个桩号的单侧数据量不可以超过此限定值。 数据格式的规定如下描述: 距离绝对是指各个变化点距中桩的水平距离 高差绝对是指各个变化点距中桩的垂直高差 距离相对是指各个变化点距前一变化点的水平距离 高差相对是指各个变化点距前一变化点的垂直高差 当测量采用"抬杠法"时,则选择“距离相对高差相对”的数据格式。

缓和段曲线参数及超高、加宽计算

第三节 缓和段 一、缓和曲线 缓和曲线是设置在直线与圆曲线之间或大圆曲线与小圆曲线之间,由较大圆曲线向较小圆曲线过渡的线形,是道路平面线形要素之一。 1.缓和曲线的作用 1)便于驾驶员操纵方向盘 2)乘客的舒适与稳定,减小离心力变化 3)满足超高、加宽缓和段的过渡,利于平稳行车 4)与圆曲线配合得当,增加线形美观 2.缓和曲线的性质 为简便可作两个假定:一是汽车作匀速行驶;二是驾驶员操作方向盘作匀角速转动,即汽车的前轮转向角从直线上的0°均匀地增加到圆曲线上。 S=A 2/ρ(A :与汽车有关的参数) ρ=C/s C=A 2 由上式可以看出,汽车行驶轨迹半径随其行驶距离递减,即轨迹线上任一点的半径与其离开轨迹线起点的距离成反比,此方程即回旋线方程。 3.回旋线基本方程 即用回旋线作为缓和曲线的数学模型。 令:ρ=R ,l h =s 则 l h =A 2/R

4.缓和曲线最小长度 缓和曲线越长,其缓和效果就越好;但太长的缓和曲线也是没有必要的,因此这会给测设和施工带来不便。缓和曲线的最小长度应按发挥其作用的要求来确定: 1)根据离心加速度变化率求缓和曲线最小长度为了保证乘客的舒适性,就需控制离心力的变化率。a 1=0,a 2=v 2/ρ,a s =Δa/t ≤0.6 R V l h 3 035 .0≥ 2)依驾驶员操纵方向盘所需时间求缓和曲线长度(t=3s) 2 .16.3V t V vt l h == = 3)根据超高附加纵坡不宜过陡来确定缓和曲线最小长度 超高附加纵坡(即超高渐变率)是指在缓和曲线上设置超高缓和段后,因路基外侧由双向横坡逐渐变成单向超高横坡,所产生的附加纵坡。 p h l c h ≥ 4)从视觉上应有平顺感的要求计算缓和曲线最小长度 缓和曲线的起点和终点的切线角β最好在3°——29°之间,视觉效果好。 《公路工程技术标准》规定:按行车速度来求缓和曲线最小长度,同时考虑行车时间和附加纵坡的要求。

道路横断面设计原则

4.1交通规划方案的一般要求 1)充分性:规划方案必须在适当的原则下能为将来的客货运输需求提供充分的设施和服务→方案比选与检验→最佳的方案。 根本标准:人和物输送→高效性、安全性、可靠性等→即交通系统的服务性能好坏。 服务性能指标: 交通设施的饱和度, 人、货、车的运送速度, 公交系统的准点率、候车时间、换乘次数和换乘时间、车内乘客人均享用的空间, 乘车舒适度, 交叉口的延误, 交通系统的安全性等。 2)与总体规划的一致性:交通规划要与区域和城市发展的总体规划要适应和协调;3)与环境的一致性:交通规划方案必须与环境发展的目标相一致; 4)可接受性:规划方案必须能够为大多数人、政治团体、利益集团及其他可能反对方案实施的人们所接受; 5)财政可行性:方案的投资必须在国家、地区或城市财力所允许的限度之内。 城市交通管理规划的实施计划编制应贯彻“近期细、中期粗、远期有设想”的原则,以达到在规划期内总体建设效益最大的目的。 4.2交通规划的总体评价 评价原则: 全面、客观、公正; 不仅对规划方案本身进行评价,还要对规划方案产生的过程进行评价。 主要方面: 1)规划的整体合理性评价: 规划目标是否明确合理, 规划机构和组织计划是否匹配, 规划范围是否适当,规划年限是否正确, 规划过程是否完整连续等。 2)规划的适应性评价:交通规划是区域或城市总体规划的一部分,应考虑到: 规划与区域或城市的土地利用规划相适应, 与区域或城市总体规划相适应; 与社会经济发展计划相适应; 远近期的交通规划互相适应; 专项交通规划与综合交通规划相适应; 客运交通规划与货运交通规划相适应等。 3)规划的协调性评价:主要包括: 交通用地的协调性; 路网功能的协调性; 配套设施的协调性等。 4)规划的效果评价

横断面的一些知识点

、横断面的组成及布置 公路横断面: 是沿公路中线的法线方向作一剖面图。 横断面设计线与横断面地面线所包围的图形。 高速公路、一级公路的路基横断面分为整体式和分离式两类。其组成包括行车道、路缘带、中间带、硬路肩、土路肩、紧急停车带、爬坡车道、加(减)速车道等;二级与二级以下公路的路基横断面组成包括行车道、路肩和错车道等。 公路横断面设计是确定公路在该桩位处的横断面设计的形状、尺寸和具体位置。 目的: 1、为路基施工提供横断面依据。 2、为路基土石方计算(包括土石方调配)提供断面数据。 横断面设计的主要内容: 1、横断面设计的形式: 断面填挖值(T或W),路基宽(B)路拱坡度、路肩坡度曲线加宽值(Bj),超高横坡度(ib)。 2、路基边沟形式、尺寸,路基边坡设计。 3、路基土石方计算与调配。 二、横断面几何尺寸 路基标准横断面根据设计交通量、交通组成、设计速度、通行能力、公路 等级、断面类型规定公路横断面各组成部分的横向尺寸。 路基横断面组成:

高速公路与一级公路分为整体式、分离式;二、三、四级公路采用整体式断面,不设置中间带。 1、车道数与车道宽度 车道数: 高速公路与一级公路: V=120Km/h( 8、6、4车道)、V=100Km/h( 8、6、4 车道)、 V=80Km/h( 6、4 车道)、V=60Km/h (4 车道)。 三、四级公路:2 车道。 车道宽度是指一个车道边缘之间的水平距离。 车道宽度: V=120—80Km/h (3.75m)、V=60—40Km/h (3.50m)、V=30Km/h (3.25m)、V=20Km/h (3.00m 或3.50m) 2、路面宽度 路面宽度=车道数*车道宽度 3、路肩宽度包括硬路肩与土路肩。 路肩作用: 是保护行车道,供行人、自行车通行和临时停放车辆。 各级公路路肩宽度应符合规定。各级公路路肩宽度中“一般值”为正常情况

曲线超高计算

曲线超高 曲线超高(curve superelevation)为了平衡列车行驶在曲线上所产生的离心力,使曲线地段外股钢轨高于内股钢轨的数值。列车在曲线上行驶时,由于离心力的作用,将列车推向外股钢轨,加大了外... 曲线超高(curve superelevation)为了平衡列车行驶在曲线上所产生的离心力,使曲线地段外股钢轨高于内股钢轨的数值。列车在曲线上行驶时,由于离心力的作用,将列车推向外股钢轨,加大了外股钢轨的压力,也使旅客感到不适、货物产生位移等。因此需要将曲线外轨适当抬高,使列车的自身重力产生一个向心的水平分力,以抵消离心力的作用,使内外两股钢轨受力均匀和垂直磨耗均等,满足旅客舒适感,提高线路的稳定性和安全性。同时,曲线超高还是确定缓和曲线长度及曲线线间距离加宽值等相关平面标准的重要参数。曲线超高的设置方法主要有外轨提高法和线路中心高度不变法两种。外轨提高法是保持内轨高程不变而只抬高外轨的方法,为世界各国铁路所普遍采用。线路中心高度不变法是内轨降低和外轨抬高各为超高值的一半而保证线路中心高程不变的方法,仅在建筑限界受到限制时才采用。曲线超高的大小由列车通过时离心力的大小确定。由于离心力与行车速度的平方成正比,与曲线半径大小成反比,因此曲线半径越小,行车速度越高,则离心力越大,所需设置的超高就越大。在曲线半径R(m)和行车速度υ(km/h)都为已知的情况下,根据列车横向受力平衡条件,可推导出准轨铁路曲线超高h(mm)的计算公式为 (mm)(1) 由于通过曲线的各种列车的速度、质量和次数各不相同,高速列车偏磨外轨,低速列车偏磨内轨,速度高、质量大、通过次数多的列车对钢轨的磨耗程度甚于速度低、质量小、通过次数少的列车,因此为了使内、外轨磨耗均匀,一般应采用某种平均速度来计算曲线超高。中国《铁路线路维修规则》(铁运[2001]23号)规定,在确定曲线外轨超高时,平均速度采用均方根速度,其值按下式计算: (km/h)(2) 式中,V P为平均速度(km/h);G为各种列车的重量(t);υ为实测各种列车的行车速度(km/h);N为一昼夜通过的各类别车次数(列)。

第18讲平曲线加宽

装订线 第二章路线 第四节平曲线加宽 一、加宽的原因 1、汽车在曲线上行驶时,前轮可以自由的转动一定的角度,而后轮只能直行, 不能随便转动,因此汽车在曲线上行驶时前后轮迹不会重叠,如果半径较小,汽车的前轮轮迹在路面上,而后轮轮迹就有可能落在侧石线上。 2、汽车在曲线上行驶有较大的摆动和偏移。 3、《标准》规定:当公路圆曲线半径R≤250m时,应在圆曲线内侧设置加宽。双车道路面的全加宽值如下表。 双车道路面的全加宽值

装 订 线 (1)三条以上(含三条)车道构成的行车道,其路面加宽应另行计算。单车道公路的路面全加宽为表所列值的一半。 (2)加宽分为三类: ①二级公路以及设计速度为40Km/h 的三级公路有集装箱半挂车通行时,应采用第3类加宽值; ② 对不经常通行集装箱半挂车的公路,可采用第2类加宽; ③ 四级公路和设计速度为30Km/h 的三级公路可采用第1类加宽。 二、加宽缓和段 一般在平曲线的圆曲线部分是全加宽段,而直线段的加宽值为零,所以在直线和圆曲线间应插入一段缓和段用于加宽的过渡,称为加宽缓和段。 — — — — 2.5 2.0 1.5 1.0 0.8 5.2+8.8 3 — — — 2.0 1.5 1.2 0.9 0.7 0.6 8 2 2.5 2.2 1.8 1.4 1.2 1.0 0.8 0.6 0.4 5 1 <20 ~ 15 <25 ~ 20 <30 ~ 25 <50 ~ 30 <70 ~ 50 <100 ~ 70 <150 ~ 10<200 ~ 15250 ~ 200 加宽类别

装订线①加宽缓和段的长度一般小于超高缓和段长度; ②当曲线设置缓和曲线同时既有超高又有加宽时,缓和段长度以缓和曲线为准; ③当曲线不设置缓和曲线时以超高缓和段为准; ④当曲线上没有超高只有加宽时,一般用不小于10m的过渡长度即可,全加宽值大,则缓和段长度可略长些,并取5m的整数倍,且应考虑其渐变率为1∶15 。 加宽过渡方式: 1.按直线比例逐渐加宽 该加宽方式适用于二、三、四级公路,有外接法和内切法两种。 ①外接法: 外接法加宽是将加宽缓和段的起点与圆曲线的起(终)点直接相连的。 缓和段上任一点的加宽值可按下列公式计算: 特点:方式很简单,但在缓和段与圆曲线相接处会产生明显突变,小半径曲线尤为显著,使路容不美观,施工也不方便,所以一般仅适用于低等级公路。 ②内切法 内切法加宽是将加宽缓和段的内侧边线向圆曲线全加宽内侧圆弧作切线,使其与圆曲线的全加宽内侧边缘线相切,从而消除突出的转折。 j c jx B L x b= ' = j c jx B L x b j j kB B= '

相关文档
最新文档