长玻纤增强聚丙烯材料在汽车领域的应用

长玻纤增强聚丙烯材料在汽车领域的应用

长玻纤增强聚丙烯材料在汽车领域的应用

长玻纤增强聚丙烯材料是指含有玻璃纤维长度在10到25mm的改性聚丙烯复合材料,经过注塑等工艺形成三维结构,比普通的玻纤增强聚丙烯具有更高的综合性能,在各领域有着广泛的应用,尤其是在汽车领域。

长玻纤增强聚丙烯材料在汽车领域的应用包括保险杠、挡泥板、发动机罩、仪表盘、车门、座椅靠背、暖气机叶轮、前端支架、车门板集成模块、汽车仪表盘骨架、冷却风扇及柜架、车顶窗框架/压条、保险杠、自锁刹车系统、小轴和齿轮零件、汽车行李架和缓冲器、汽车蓄电池外壳/托架、镁铝浇注制件、轿车座椅骨架、换挡器底座、齿轮箱外壳、汽车踏板/刹车板支撑、柴油机风扇外罩、汽车外饰镜框架、导流管的扇叶、电机过滤器罩、汽车雨刷器支架、卡车同轴气缸离合器及辅助件等,可替代目前大量使用的短玻纤增强尼龙或金属材料,帮助汽车实现轻量化。

聚赛龙长玻纤增强聚丙烯材料在汽车领域的应用

玻璃纤维增强聚丙烯复合材料的力学性能

玻璃纤维增强聚丙烯复合材料的力学性能 摘要:本文论述了玻璃纤维增强聚丙烯复合材料的力学性能,主要包括材料的拉伸强度、拉伸模量、弯曲强度、弯曲模量和缺口冲击强度。并分析了复合材料力学性能与玻璃纤维含量之间的关系,最后将复合材料与ABS的力学性能进行比较,发现玻璃纤维增强的聚丙烯复合材料可以替代ABS应用于一些受力领域。关键词:玻璃纤维;聚丙烯;力学性能;ABS 1.引言 聚丙烯是一种综合性能十分优异的热塑性通用塑料,其具有易加工、密度小、生产成本低等特点,所以聚丙烯在家用电器、日常用品包装材料、汽车工业等行业有着广泛的应用,成为近些年来增长速度最快的塑料之一。然而聚丙烯也有一些缺点,比如:抗蠕变性差、熔点较低、尺寸稳定性不好、热变形温度低、低温脆性等,制约了其作为工程受力材料的应用。聚丙烯的一般性能如表1所示[1]。如果想提高聚丙烯的耐热性和冲击强度,拓宽其应用范围,就应对聚丙烯进行改性[2, 3]。 表1 聚丙烯的一般性能[1] Tab. 1 The properties of polypropylene 性能数据 拉伸强度/Mpa 29 断裂伸长率/% 200~700 弯曲强度/Mpa 50~58.8 压缩强度/Mpa 45 缺口冲击强度/(KJ/m2)5~10 洛氏硬度80~110 弹性模量/Mpa 980~9800 玻璃纤维增强聚丙烯复合材料(GFRPP)是以热塑性树脂聚丙烯为基体,以长玻璃纤维为增强骨架的材料[4],其性能与ABS 接近,但价格低于ABS 塑料。目前,国内外已对GF 增强PP 做了大量研究[5, 6]。玻璃纤维增强聚丙稀己广泛应用于汽车零部件、家电行业、飞机制造业等。 2.玻璃纤维增强聚丙烯复合材料的力学性能

玻纤改性聚丙烯简述

玻纤增强聚丙烯 PP作为通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是PP存在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺点。因此,对其进行改性,以使其能够适应产品的需求。每一种改性PP 在家用电器领域和车用领域都有着大量应用。 ABS是最先用在家用电器上的塑料材料之一,由于ABS树脂价恪昂贵,逐步开发出的PP 改性材料,具有成本低、重量轻、性能好等优点;玻纤增强PP可以部分取代ABS、PBT树脂在家用电器产品和汽车领域上的应用。 玻纤增强改性PP 1.一般说来,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。如果要想提高PP的强度性能,必须用玻璃纤维进行增强。通过玻璃纤维增强的PP产品的机械性能能够得到成倍甚至数倍的提高。拉伸强度可以达到65MPa~90MPa,弯曲强度可以达到70MPa~120MPa,弯曲模量可以达到 3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美。 2. 玻纤增强PP更耐热。一般ABS和增强ABS的耐热温度在80℃~98℃之间,而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。它可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇,其成本要比ABS增强产品低很多。也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。 3.玻纤增强改性的PP尺寸稳定性得到改善,受热变形减小,收缩率减小。 4.玻纤增强改性的PP一般硬度得到提高,吸水性能下降。 改性PP在家电行业中有非常好的应用前景。一方面,中国已经成为世界家用电器生产中心,而且拥有一批极有影响力的生产企业,这些企业能够主动选择材料;另一方面,行业竞争也促使企业应用性价比更合理的材料。从未来家电技术发展情况看,家用电器的人性化将更加突出,产品品种更加齐全,传统家电将向小型化、大型化两极方向发展 玻纤增强PP在汽车用料中的应用也不断拓展,新产品的不断涌现,对PP改性也提出了更高的要求,改性PP将有以下主要发展趋势:

玻纤增强聚丙烯改性的意义和前景

玻纤增强聚丙烯的意义 关键词:玻纤增强PP,PP改性,PP加纤阻燃 对PP材料的改性一般有增强增韧、耐候改性、玻璃纤维增强改性、阻燃改性和超韧改性等途径。 PP作为通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是PP存在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺点。因此,对其进行改性,以使其能够适应产品的需求。每一种改性PP 在家用电器领域和车用领域都有着大量应用。 ABS是最先用在家用电器上的塑料材料之一,由于ABS树脂价恪昂贵,逐步开发出的PP改性材料,具有成本低、重量轻、性能好等优点;玻纤增强PP可以部分取代ABS、PBT树脂在家用电器产品和汽车领域上的应用。 玻纤增强改性PP 1.一般说来,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。如果要想提高PP的强度性能,必须用玻璃纤维进行增强。通过玻璃纤维增强的PP产品的机械性能能够得到成倍甚至数倍的提高。拉伸强度可以达到65MPa~90MPa,弯曲强度可以达到70MPa~120MPa,弯曲模量

可以达到3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美。 2.玻纤增强PP更耐热。一般ABS和增强ABS的耐热温度在80℃~98℃之间,而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。它可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇,其成本要比ABS增强产品低很多。也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。 3.玻纤增强改性的PP尺寸稳定性得到改善,受热变形减小,收缩率减小。 4.玻纤增强改性的PP一般硬度得到提高,吸水性能下降。 改性PP发展趋势及展望 改性PP在家电行业中有非常好的应用前景。一方面,中国已经成为世界家用电器生产中心,而且拥有一批极有影响力的生产企业,这些企业能够主动选择材料;另一方面,行业竞争也促使企业应用性价比更合理的材料。从未来家电技术发展情况看,家用电器的人性化将更加突出,产品品种更加齐全,传统家电将向小型化、大型化两极方向发展。玻纤增强PP在汽车用料中的应用也不断拓展,新产品的

长玻纤增强聚丙烯成型工艺

长玻纤增强聚丙烯成型工艺 发布时间:2011-01-13 ;浏览次数:127 返回列表 长玻纤增强热塑性复合材料作为当今玻璃纤维增强材料的一个发展趋势,受到了国内外各大塑料改性生产厂商的高度重视,特别是长玻纤增强pp材料,由于其很高的性价比优势,更被业界所广泛看好。目前这些厂商纷纷投入大量的人力、物力进行该类型材料的生产研发和市场开拓的工作。 长玻纤增强pp产品定义 长玻纤增强pp产品是一种长玻纤增强pp的改性塑料材料。该材料一般为长度12毫米或25毫米,直径3毫米左右的柱状粒子。在这种粒子中,玻璃纤维有着和粒子同样的长度,玻璃纤维的含量可以从20%到70%不等,粒子颜色可以根据客户要求进行配色。该粒子一般可以用于注射及模压工艺,可以生产结构件或半结构件,应用的领域包括汽车、建筑、家电、电动工具等等。 长玻纤增强pp性能优势 lft粒料在进入注射机料斗时,内部的纤维长度和粒子长度相等,为0.5-3公分左右。随着注射机螺杆的输送、注射口的流体冲击以及在材料模腔内的流动等工艺条件的介入,玻璃纤维最后在制品中的平均长度为4毫米左右。相对于传统的短玻纤增强热塑性塑料(这种粒子在制品中的纤维长度在200μ左右),lftp材料在制品中保留了极长的玻纤长度,因此赋予了材料更好的力学性能,使得增强后通用pp材料的性能能够达到或接近增强工程塑料如pa或ppo的性能。 长玻纤增强pp性价比优势 由于lft材料类似于增强工程塑料的卓越性能以及pp基材相对于工程塑料基材极其低廉的价格成本,因此赋予了该材料极佳的性价比:相对于短纤增强pa材料而言,使用lft材料可在材料成本上节约40~50%左右;相对于短纤增强ppo材料而言,使用lft材料可在材料成本上节约100%

汽车新材料:长玻纤增强PP(LFT-PP)

汽车新材料:长玻纤增强PP(LFT-PP) 由于金属不适合成型复杂的形状,限制了它在很多零件中的应用,这也阻碍了成本的下降。与此相反,采用长玻纤增强塑料注射成型则可以克服上述诸多弊病。因此掀起了“以塑代钢”的潮流:LFT-PP替代金属成为汽车新材料。 LFT-PP是长纤维增强聚丙烯材料,聚赛龙LFT-PP塑料是长玻璃纤维经过专门设计的模具浸润PP基体树脂,得到被树脂充分浸润的料条后切成一定长度的粒子。 LFT-PP,也就是长玻纤增强聚丙烯(Long Glass Fiber Reinforced Polypropylene.简称LGFPP),作为汽车模块载体材料,该材料不仅能有效地提高制品的刚性、抗冲击强度、抗蠕变性能和尺寸稳定性,而且可以做出复杂的汽车模块制品。 长玻纤生产工艺 长玻纤增强复合塑料和短纤维增强复合塑料比较 2、高耐热

LFT-PP材料在120℃时的高温疲劳强度是普通玻纤增强PP的2倍,甚至比以耐热性著称的玻纤增强尼龙高10%,因而这种材料具有作为结构件所需的耐久性和可靠性。 3、更好的抗翘曲性 LFT-PP材料的优势特点 1、良好的尺寸稳定性 2、优异的耐疲劳性 3、较小的蠕变性能 4、各向异性小、低翘曲变形 5、优异的力学性能,特别是耐冲击特性

6、良好流动性、适应薄壁产品加工 LFT-PP材料的材料性能 1、优异的物理力学性能 2、优异的热氧老化性能 3、优异的耐低温性 4、良好的分散性和外观效果 5、良好的耐候性 LFT热塑性复合材料的加工成型 长纤维增强PP可用一般的射出成型机成型没有问题,但是若采用混炼度高的螺杆和射嘴会导致玻纤容易断裂,造成无法充分发挥长纤维原有的性能。因此推荐使用注塑机的选择如下: 螺杆长径比为16:1-22:1 压缩比为2:1-2.5:1 在允许的情况下尽量选择直径较大的螺杆 采用深螺槽、低压缩比螺杆 采用开放式大直径射嘴 LFT-PP在汽车领域中的典型应用

SMTC 5 310 041 长玻璃纤维增强聚丙烯材料要求(20140116)

SMTC 长玻璃纤维增强聚丙烯材料要求 Long glass fiber reinforced polypropylene material requirements 发 布Issue 上汽集团技术中心技术标准化委员会 Technical Standardization Committee of SAIC MOTOR Technical Center

前言 为规范车用长玻璃纤维增强聚丙烯材料要求,特制定本标准。 请注意本文件的某些内容可能涉及专利,上汽集团不承担识别这些专利的责任。 当中英文产生疑义时,以中文为准。 本标准由材料分标委提出。 本标准由SMTC标准化技术委员会批准。 本标准由标准化工作组负责标准化审核及归口管理。 本标准起草部门:质量保证部。 本标准主要起草人:邓家战、蒋中、胡仁其。 本标准于2014年1月16日首次批准发布,2014年1月17日实施。 Foreword This standard describes the requirements for Long glass fiber reinforced polypropylene material requirements. This standard is in Chinese and English. If in doubt, the Chinese version is the Master. This standard was proposed by material sub-committee. This standard was approved by the SMTC Technical Standardization Committee. The Standardization Working Team is responsible for the standardization approval and overall management of this standard. The draft department of this standard: Quality assurance department. The main drafters of this standard: Deng Jiazhan, Jiang Zhong, Hu Renqi. This standard was second approved and issued on Jan, 16. 2014 and it will be implemented on Jan, 17. 2014.

长玻纤增强聚丙烯应用介绍

长玻纤增强聚丙烯/PP+LGF 作为汽车模块载体材料,长玻纤增强聚丙烯的开发成功使之不只被应用在马自达汽车上。最近,新福特Fiesta车型前门模块也相继由Owens Coring汽车公司开发成功,该车门模块集成了多种功能元件,诸如门锁、车门玻璃升降器、扬声器、防盗装置等,采用的载体材料是DSM公司的牌号为StaMax P30YM240长玻纤增强聚丙烯材料。在开发该车门模块的过程中,一些专家对注射成型用长玻纤增强聚丙烯材料的性能进行了深入的研究,特别是对该种材料的抗蠕变性能进行了研究,结果表明,长玻纤增强聚丙烯材料即使经受100℃的高温也不会产生明显的蠕变,且比短玻纤增强聚丙烯有着更好的抗蠕变性能。在高温和长时间低负荷条件下,长玻纤增强聚丙烯材料不会产生变形,可使其制品具有良好的尺寸稳定性,这可从批量生产的新福特Fiesta车型前门模块的尺寸实测结果中得到证实。目前,随着汽车零部件模块化日益引起人们的重视且越来越多地得到应用,长玻纤增强聚丙烯无疑将成为一种理想的模块载体材料,为此有人预言,LGFPP材料将成为GMT材料作为汽车模块应用的替代品。以聚丙烯树脂为基材的不同纤维增强的热塑性复合材料,无论是GMT、SR-PP还是LGFPP,它们都有着一些共同的特点,即:与金属材料相比,它们具有密度低、重量轻、比强度高、耐腐蚀、易成型等特点;与热固性复合材料SMC和手糊玻璃钢相比,它们具有成型周期短、冲击韧性好、可再生利用等特点。尤其是可再生利用的特性使得这些材料在环保要求日益严格的今天具有更广阔的应用前景。 长纤PP的比重比尼龙PA轻20%,比铝合金轻62%。比重轻20%的优势在于是同样体积的长纤PP产品可以比尼龙轻20%,以同样重量的长纤PP原材料可以比尼龙多生产20%的产品。长纤PP替代尼龙加玻纤优势最为明显。 _ 独有的无取向的纤维网络结构使材料高低温度条件下及高低温高频交变的环境中的高力学性能保持性; _ 优异的抗冲击性能,高模量、高强度、低翘曲、与金属相近的热膨胀系数; _ 各向同性,低收缩率,低蠕变,高尺寸稳定性; _ 优异的耐磨和耐疲劳性; _ 优异的耐化学性; _ 优异的表面光洁度; _ 优异的成型加工性能:高流动,易脱模,对螺杆伤害低。 汽车工业:前端框架、车身门板模块、仪表盘骨架、冷却风扇及框架、蓄电池托架、保险杠骨架、座椅骨架、发动机罩壳、脚踏板、挡泥板、备用轮胎架等几十多种。 家电行业:洗衣机滚筒、叶轮、洗衣机三角支架、空调导风扇等,用于全面取代短纤增强PA、ABS材料或金属材料。 机电行业:导流管扇叶和电机过滤器罩、风叶/同轴气缸离合器辅助件/高承载力、高扬程潜水电机、水泵/止推轴承、导轴承/机车导轨、真空泵、压缩机转子、线圈轴等。 通讯电子电器行业:通讯、电子行业高精度接插件/点火器零组件、继电器基座/微波炉变压器线圈架、框架/电气联结器、继电器、电磁阀封装件/扫描仪组件等。 石油化工:防腐耐磨部件、平台格栅、过滤机、反应器内件等。 其他:电动工具外壳、自行车骨架、滑雪板、地面机车脚踏板、民用安全鞋头、安全头盔、水泵外壳及叶轮等等。 长玻纤增强PP市场应用

长玻纤增强聚丙烯

一、长玻纤增强聚丙烯(LFT-PP)及LFT塑料托盘 长玻纤增强聚丙烯(LFT-PP)复合材料 1.项目简介 传统玻纤增强聚丙烯因其成本低廉和优异的机械性能,在材料领域得到大量的应用。长玻纤增强聚丙烯(LFT-PP)复合材料与传统的短纤增强聚丙烯材料相比,由于生产工艺的改变,玻纤在粒子中的长度增加,即玻纤保持与粒子同样的长度,即使注塑成型后,纤维的最终长度也比短纤的高很多,在制品中的平均长度可达2毫米左右。相对于传统的短玻纤增强热塑性塑料(这种粒子在制品中的纤维长度在200μ左右),LFT-PP材料在制品中保留了极长的玻纤长度,因此赋予了材料更好的力学性能与热学性能,同时LFT-PP还具有比短纤增强PP更好的高温抗蠕变性能,这些优势使得LFT-PP的性能能够达到或接近增强工程塑料如PA或PPO的性能。具体优势为: (1)刚度与质量比高,变形小,这特别有利于LFT在汽车中的应用; (2)韧性高; (3)抗蠕变性能好,尺寸稳定; (4)耐疲劳性能优良; (5)设计自由度比GMT更高,因为LFT可用于注塑和其他成型方法,而GMT只能压塑; (6)模塑成型性能比SFT更好,纤维以更长的形态在成型物件中移动,纤维损伤少。 由于LFT材料类似于增强工程塑料的卓越性能以及PP基材相对于工程塑料基材极其低廉的价格成本,因此赋予了该材料极佳的性价比:相对于短纤增强PA材料而言,使用LFT-PP 可在材料成本上节约40-50%左右;相对于短纤增强PPO材料而言,使用LFT-PP可在材料成本上节约100%以上。

2.长玻纤增强PP市场应用及容量 2.1汽车工业:保险杠骨架、座椅骨架、发动机罩壳、车身门板模块、仪表盘骨架、脚踏板、挡泥板、备用轮胎架、冷却风扇及框架、蓄电池托架等,用于替代增强尼龙(PA)或金属材料。 2.2通讯电子电器行业:通讯、电子行业高精度接插件/点火器零组件、继电器基座/微波炉变压器线圈架、框架/电气联结器、继电器、电磁阀封装件/扫描仪组件等,洗衣机滚筒、洗衣机三角支架、空调风扇等,用于替代短纤增强PA、ABS材料或金属材料。 2.3其它:电动工具外壳,水泵外壳及叶轮,自行车骨架、滑雪板、地面机车脚踏板、民用安全鞋头、安全头盔用于替代短纤增强PA、PPO等。 2.4石油化工:防腐耐磨部件、平台格栅、过滤机、反应器内件等。 近几年来长纤维增强热塑性复合材料成为增强塑料行业增长速度最快的产业之一。2001年,全球的长纤维增强热塑性复合材料用量为6.2万吨,到2010年已经增长到70万吨,年平均发展速度达到30%。中国目前的长纤维增强热塑性复合材料的需求量大约在10万吨左右,其中长玻纤增强聚丙烯(LFT-PP)复合材料的国内需求量在8万吨左右,年发展速度在60%左右。目前,国内70%的长纤维增强热塑性复合材料来源于进口。 3.项目投资 项目拟建5条生产线。 单台产能500吨/年 总产能2500吨/年 单台设备投入40万元 5条生产线投入200万元 所需电力30*5=150kVA 所需厂房面积1500平方 车间人员配置5人 产值2*2500=5000万 年毛利0.5*2500=1250万

玻纤增强聚丙烯管FRPP管增强聚丙烯管(精)

玻纤增强聚丙烯(FRPP 管道性能指标“星鑫” 牌玻纤增强聚丙烯(FRPP 管道依据 HG20539-92标准生产,规格 De20-De800mm ,公称压力 0.4-1.0MPa ,采用经偶联剂处理的玻璃纤维改性聚丙烯原料生产。产品具有耐腐蚀、强度高、抗渗漏、内阻小、抗拉、抗弯、造价低、寿命长、安装维修方便等特点,广泛应用于石油、化工、电力、纺织、冶金、制药、造纸、食品、矿山、垃圾处理、建筑等行业, 用作腐蚀性液体输送及工艺管道, 深受用户信赖。 (PP 工程级聚丙烯管道是由工程级聚丙烯粒料经挤出成型。该管道无毒、无味、广泛应用于化工、环保、食品卫生、建筑给排水等领域(执行 QB1929-93标准玻纤增强聚丙烯 FRPP 管道规格、性能介绍如下: 玻纤增强聚丙烯 FRPP 管道卓越的品质 ◇长久的使用寿命 -----在额定温度、压力状况下, FRPP 管道可安全使用 50年以上。 ◇卓越的耐腐蚀性能 -----FRPP 管道能耐大多数化学物品的腐蚀,可在很大的范围内承受 PH 值范围在 1-14的高浓度酸和碱的腐蚀。 ◇优异的抗磨性能 -----在输送矿砂泥浆时, FRPP 管的耐磨性是钢管的 4倍以上。 ◇较高的刚度 -----FRPP 管道由于加入了玻纤增强材料使 FRPP 管道不易变形 ◇耐热保温节能 -----FRPP 管道最高使用温度 85度左右,该产品的导热系数仅为钢管的 1/200,故有较好的保温性能。 ◇可靠的连接性能 -----FRPP 管热熔接口的强度高于管道本体,接缝不会由于土壤移动或载荷的作用而断开。◇良好的施工性能 -----FRPP 管道质轻,焊接工艺简单,施工方便,工程综合造价低。

玻璃纤维增强聚丙烯

做个花姐那样的妓女不难,要做个小凤仙那种全城名妓就难——摘自《让子弹飞》。 做改性塑料也一样,做一次高性能不难,难的是性能一直很稳定,价格还不贵,数据还看得过去,这就难了(类似的话,毛主席也说过,我就不啰嗦了)。看到有人在讨论30%玻璃纤维增强聚丙烯材料,发现一个材料能做不难,要做得好,的确还是有难度的,比如很多人集中讨论弯曲强度超过120MPa很难,我就怀疑这帮人要么不做实验,要么做弯曲强度是在睡觉,要么弯曲试验本身就测试不准确,120MPa难吗?不难,220MPa就难了,用《让子弹飞》的话说:这TMD就是惊喜。我顺便调了一下测试数据,以下都是实际测试出来的,不用怀疑:颜色Nature Nature N ature 测试项目单位Units 测试标准ISO 测试数据 拉伸强度 MPa ISO 527 106.41 105.53 104.78 拉伸模量 MPa ISO 527 7210 7158 7121 断裂伸长率 % ISO 527 3.07 3.01 3.20 断裂伸长率变异系数 % ISO 527 2.10 1.04 1.75 弯曲强度 MPa ISO 14125 170.07 168.58 170.29 弯曲模量 MPa ISO 14125 7354 7065 7175 简支梁缺口冲击强度 KJ/m2 ISO 179-1 16.13 14.65 15.88 玻纤含量 % ISO 1172 30.25 29.50 29.75 当然,国内很几家公司都能做到这个性能,也没有什么惊喜的,发帖的目的是赚积分而已。 不要问我这个是不是LFT,答案是:不是LFT。 不要问我这个材料流动性如何,答案是:MFI=10g/10min以上。 不要问我这个材料颜色如何,答案是:白,比城里女人还白。 不要问我这个材料成本如何,答案是:没有回料。

玻璃纤维增强聚丙烯的性能研究

20304050 玻璃纤维含量/% 短纤维增强长纤维增强 长、短纤维增强PP在一定温度(80℃)下弯曲强度的比较 图2长纤维增强PP注塑样断面SEM照片 图3短纤维增强PP注塑样断面SEM照片 20304050 短纤维增强长纤维增强 玻璃纤维含量/% 165 160 图4不同比例纤维含量增强PP热变形温度变化 塑性塑料更优异的热性能。 热变形温度的比较

玻璃纤维增强聚丙烯的性能研究 作者:崔峰波, 曹国荣, CUI Fengbo, CAO Guorong 作者单位:巨石集团有限公司,巨石集团玻璃纤维研究院,浙江省玻璃纤维研究重点实验室,桐乡,314500 刊名: 玻璃纤维 英文刊名:FIBER GLASS 年,卷(期):2011(1) 被引用次数:1次 参考文献(6条) 1.吕召胜长纤维增强热塑性塑料的制备方法与成型工艺研究[期刊论文]-工程塑料应用 2008(10) 2.鸿章长纤维增强热塑性塑料可循环利用 2008 3.庄辉长玻璃纤维增强聚丙烯复合材料的力学性能[期刊论文]-塑料科技 2007(05) 4.张晓明纤维增强热塑性复合材料及其应用 2007 5.李华长玻璃纤维增强热塑性复合材料研究[期刊论文]-工程塑料应用 2008(04) 6.庄辉基体树脂对长玻璃纤维增强PP力学性能的影响[期刊论文]-合成树脂及塑料 2007(03) 本文读者也读过(5条) 1.何巧玲.阮金刚长玻璃纤维增强聚丙烯复合材料力学性能的研究[会议论文]-2009 2.方鲲.张国荣.吴丝竹.李玫长玻璃纤维增强增韧聚丙烯的动态流变性能研究[会议论文]-2009 3.庄辉.刘学习.程勇锋.戴干策.Zhuang Hui.Liu Xuexi.Cheng Yongfeng.Dai Gance长玻璃纤维增强聚丙烯复合材料的力学性能[期刊论文]-塑料科技2007,35(5) 4.庄辉.刘学习.程勇锋.戴干策.Zhuang Hui.Liu Xuexi.Cheng Yongfeng.Dai Gance长玻璃纤维增强聚丙烯复合材料的韧性[期刊论文]-合成树脂及塑料2006,23(6) 5.夏涛玻纤毡浸润剂用PVAc成膜剂乳液的研制[期刊论文]-玻璃纤维2003(3) 引证文献(1条) 1.田永.韦俊车用聚丙烯及其复合材料的性能与应用[期刊论文]-汽车零部件 2012(6) 本文链接:https://www.360docs.net/doc/9c11532685.html,/Periodical_blxw201101003.aspx

玻璃纤维增强聚丙烯作业

高分子101 泰钰 1013141002 玻璃纤维增强聚丙烯 聚丙烯树脂原料丰富、加工性能好, 具有优良的耐腐蚀性、电绝缘性, 它力学性能, 包括拉伸强度、压缩强度、硬度等均比低压聚乙烯好, 而且还有很突出的刚性和耐折叠性,并且价格低廉。而聚丙烯急待克服的缺点为: 成型收缩率较大, 低温易脆裂, 耐磨性不足, 热变形温度不高, 耐光性差等。采用玻璃纤维增强不仅保持了原始树脂的优良性能,而且显著地提高PP 的机械性能、耐热性能和尺寸稳定性能的重要措施。可较满意地代替有色金属。因而在化工、绝缘材料、电子、汽车等工业部门中的应用日益扩大。 增强后的材料与单一聚丙烯相比, 玻纤增强聚丙烯通常有以下几个特点: ( 1) 力学性能在不同程度上得到提高。 ( 2) 热性能得到提高, 加热变形温度增大、热膨胀系数下降。 ( 3) 尺寸稳定性能得到改善, 收缩率减小, 受热变形减小。 ( 4) 具有良好的耐蠕变性能。 ( 5) 其他性能如硬度得到提高, 吸水性降低等。 一、实验主要原料 ( 1 ) 聚丙烯树脂( PP ) , ( 2 ) 玻璃纤维( GF ) 表面用有机硅处理 ( 3 ) N,N , 一4 , 4 产二苯甲烷双马来酞亚胺( DBM ) , 黄色粉末; 熔点:154~156℃, 工业纯。 ( 4 ) 过氧化二异丙苯( DCP ) , 白色晶体颗粒; 熔点: 39 一41 ℃ , 分解温度132℃ 二、主要仪器设备 双螺杆挤出机(SHJ - 5 5 )注塑成型机(CT - 1 2 5 0 ) 电子万能试验机(WDS - 1 0 型)简支梁冲击试验仪 (XCT - 4 0 型) 三、玻纤增强PP 的制备 将PP 与 DCP 及其他辅料、助剂等按比例加入高速混合机内混合,从双螺杆挤出机的主加料装置定量加入共混料,从第4 区加入定量的无碱玻璃纤维,与熔化的混合物料共混、挤出、牵引、冷却、切粒,制成玻纤增强PP 改性料。 玻纤增强PP 粒料的生产工艺流程如图所示: 四、界面处理 玻璃纤维增强PP 的物理化学性能取决于基体树脂与玻纤界面的结合力。通过纤维材料与PP 树脂的牢固粘接,使PP 树脂不能承载的负荷或能量转移到支撑的纤维上,从而提高PP 树脂的力学性能。在制备玻纤增强PP 复合材料时,为了提高玻纤与PP 树脂的界面粘合力,需要用偶联剂对玻纤表面进行处理。一般采用硅烷偶联剂对其进行处理。由于硅烷偶联剂与PP 和玻纤都有一定程度的亲和性,即其分子的一端(亲水基)为可水解基团,水解后的硅羟基可与玻纤表面的硅羟基发生缩合反应,与玻纤表面形成化学键,实现良好的界面结合;而另一端 PP DCP 辅料、助剂 混合 共混挤出 牵引冷却 切粒包装 玻璃纤维 表面处理

玻璃纤维增强聚丙烯复合材料

玻璃纤维增强聚丙烯复合材料的制备及性能研究 一.原材料 1.聚丙烯(polypropylene简称PP) PP是一种热塑性树脂基体,为白色蜡状材料。聚丙烯的生产均采用齐格勒—纳塔催化剂,以Al(C2H5)3+TiCl4体系在烷烃(汽油)中的浆状液为催化剂,在压力为1.3MPa,温度为100℃的条件下按离子聚合机理反应制得。聚丙烯的结晶度为70%以上,密度为0.98,透明度大,软化点在165℃左右,脆点—10~20℃,具有优异的介电性能。热变形温度超过100℃,其强度及刚度均优于聚乙烯,具有突出的耐弯曲疲劳性能、耐化学药品性和力学性能都比较好,吸水率也很低。因此应用十分广泛,主要用于制造薄膜,电绝缘体,容器等,还可用作机械零件如法兰,接头,汽车零部件等。 2.玻璃纤维(glass fiber简称GF) GF是一种性能优异的无机非金属材料。成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺,最后形成各类产品。玻璃纤维单丝的直径从几个微米到十几米个微米,相当于一根头发丝的1/20—1/5,每束纤维原丝都有数百根甚至上千根单丝组成,通常作为复材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等,广泛应用于国民经济各个领域。 玻璃一般人的观念为质硬易碎物体,并不适于作为结构用材,但如其抽成丝后,则其强度大为增加且具有柔软性,故配合树脂赋予形状以后终于可以成为优良的结构用材。玻璃纤维随其直径变小其强度高。作为增强材料的玻璃纤维具有以下的特点,这些特点使玻璃纤维的使用远较其他种类纤维来得广泛,发展速度亦遥遥领先,其特性列举如下:1)拉伸强度高,伸长小(茎3%)。 2)弹性系数高,刚性佳。3)弹性限度内伸长量大且拉伸强度高,故吸收冲击能量大。 4)为无机纤维,具不燃性,耐化学性佳。5)吸水性小。6)尺度安定性,耐热性均佳。 7)透明可透过光线。8)与树脂接着性良好之表面处理剂之开发完成。9)价格便宜。3.乙烯--丙烯共聚物 为了改善聚丙烯的冲击性能、低温脆性,应对之进行增韧处理。通常选用的是含有二烯烃成分的乙烯-- 丙烯-- 二烯烃三元共聚(BPDM) 4.表面处理剂 PP是非极性树脂,与其它材料的熔合性差。玻纤的表面光滑,很难与非极性树脂结合。改进方法主要是对玻纤的表面进行处理。表面处理剂主要用硅烷偶联剂,如KH-550等,但还不理想。因为此时PP依然是惰性的,它没有尼龙、饱和聚酯与玻纤之间那样的粘结力。为了改进这一缺点,可采用以下几种方法: (1) 以过氧化硅烷偶联剂:含有双键置换基团的某些过氧化硅烷,如乙烯基三(特丁基过氧化)硅烷。 (2)以氯化物偶联:将硅烷与全氯环戊烷,氯化二甲苯,氯桥酸酐等高氯化物并用,可显著地改进玻纤增强PP的强度。特别是从氯化二甲苯的热稳定性考虑,最优异。 (3) 对PP进行极性化处理,即在PP链中引入极性共聚单体,常用的极性共聚单体有双马来酰亚胺(BMI)和马来酸酐(MAH)等;或加入过氧化物,如过氧化二异丙苯(DCP)。 采用这些方法能使聚丙烯与玻纤表面产生一定程度的交联或化学作用,因而产品

玻纤增强PP的优缺点和工艺

玻纤增强聚丙烯的优缺点和工艺 玻纤增强PP是在原有纯PP的基础上,加入玻璃纤维和其它助剂,从而提高材料的使用范围。一般的来说,大部分的玻纤增强材料多用在产品的结构零件上,是一种结构工程材料。 优点: 1. 玻纤增强以后,玻纤是耐高温材料,因此,增强塑料的耐热温度比不加玻纤以前提高很多。 2. 玻纤增强以后,由于玻纤的加入,限制了塑料的高分子链间的相互移动,因此,增强塑料的收缩率下降很多,刚性也大大提高。 3. 玻纤增强以后,增强塑料不会应力开裂,同时,塑料的抗冲性能提高很多。 4. 玻纤增强以后,玻纤是高强度材料,从而也大提了塑料的强度,如:拉伸强度,压缩强度,弯曲强度,提高很多。 5.玻纤增强以后,由于玻纤和其它助剂的加入,增强塑料的燃烧性能下降很多,阻燃变得困难。 缺点: 1. 玻纤增强以后,由于玻纤的加入,不加玻纤前是透明,都会变成不透明的。 2 .玻纤增强以后,塑料的韧性降低,而脆性增加。 3 .玻纤增强以后,由于玻纤的加入,所有材料的熔融粘度增大,流动性变差,注塑压力比不加玻纤的要增加很多。 4 .玻纤增强以后,由于玻纤的加入,流动性差,增强塑料的注塑温度要比不加玻纤以前提高10℃-30℃。 5 .玻纤增强以后,由于玻纤和助剂的加入,增强塑料的吸湿性能大加强,原来纯塑料不吸水的也会变得吸水,因此,注塑时都要进烘干。 6. 玻纤增强以后,在注塑过程中,玻纤能进入塑料制品的表面,使得制品表面变得很粗糙,斑斑点点。为了取得较高的表面质量,最好注塑时使用模温机加热模具,使得塑料高分子进入制品表面,但不能达到纯塑料的外观质量。

7 .玻纤增强以后,玻纤是硬度很高的材料,助剂高温挥发后是腐蚀性很大的气体,对注塑机的螺杆和注塑模具的磨损和腐蚀很大,因此,生产使用这类材料的模具和注塑机时,要注意设备的表面防腐处理和表面硬度处理。 玻纤增强PP产品工艺 1. 从产品性能方面考虑,所有的玻纤增强产品均要求剪碎后的玻纤有一定的长度,一般在0.4-0.8mm之间,才能起到增强作用:玻纤过短,只有填充的作用,而浪费其增强性能;玻纤过长,玻纤与物料之间的界面结合不好,会影响其增强效果,会导致产品的表面过于粗糙,不够光滑,表面性能不好。 2. 影响玻纤剪切的条件: 物料在玻纤口处必须熔化了85%以上,否则将因玻纤与物料之间严重的摩檫使玻纤被剪切得过碎; 玻纤口处温度不能过低,必须在所生产物料的熔点以上,否则将因料过冷,摩擦过大使玻纤剪切过碎。一般工艺表上已经考虑到这问题,生产时需要注意是保证温度波动不大即可。 3.增强PP常见问题 生产增强PP产品时,玻纤很难剪断,并且与所用的玻纤有关。生产不顺时会出现这样的现象:因玻纤过长,常把模头模孔堵住,引起断条,判断方法:在模头模孔处可看到一团团的玻纤,成品的截面处可明显看到成团的玻纤或在粒子的表层有切不断的玻纤,料条软而不脆,料条不能完全拗断,拗后将有一层连皮。或从拗断的声音可判断出来:增强效果差的料条拗断时的声音较沉,增强效果好的料条拗断时的声音较脆。俗称“玻纤不熔”。若生产时断条严重,并且料条较软,则成品的性能一定会降低。 根据PP材料的上述特点,生产增强PP时从玻纤口后到机头段的螺杆剪切很强。要避免“玻纤不熔”的现象除了保证螺杆玻纤口后面剪切强之外,螺筒磨损大小对其也影响很大。当机台磨损过大时常常以降低玻纤口后温度,特别时玻纤口至真空口之间的温度,提高熔体粘度来提高剪切,避免“玻纤不熔”。但玻纤口后温度不可降低过大以免玻纤剪切过碎,性能降低。

玻纤增强聚丙烯管材

玻纤增强聚丙烯管材(FRPP) 目前国内外对增强聚丙烯管材所选用的无机增强材料通常是根据应用场合而确定,其有一定的局限性。我厂在江苏省塑料研究所的协助下,选用耐腐蚀无机超细微粒材料Misa&Tec(云母与含硅材料),再经过表面特殊处理和二阶法成型工艺制成玻纤增强聚丙烯管道,从而达到增强、耐磨、防腐的作用,九四年我们查询了美国和苏联的《塑料管道手册》,并参照我国GB4218-84标准;委托上海市塑料制品研究所质量监督检验站对该制品进行了强腐蚀剂(氟化铝、氟硅酸、氢氟酸)的使用试验检测,其防腐蚀效果非常理想。同时我们又委托江苏省塑料研究所对其物理性能进行了检测。其各项性能指标均达到或超过了国内同类产品的指标,九四年七月份该产品顺利通过了中国化工装备总公司和中国防腐蚀协会的鉴定。 该产品除了具备优异的理化特性外,它在工程施工过程中安装方便。(现场可采用:热熔对焊、承插焊接和法兰连接三种形式)不仅成本低、重量轻。同时该制品的耐温(100℃以下),抗压、抗拉、抗弯性能较好。无论是地下埋设,还是空中敷设均具有较长的使用寿命,长期以来广泛应用于化纤、造纸、制药、食品、污水处理、化工、冶金、矿山以及建筑给排水等领域。 玻纤增强聚丙烯管材/FRPP管材除具备聚丙烯管道防腐、质轻、安装维修方便等特点外,另具有增强、抗氧化、耐强腐蚀剂和抗压抗拉强度高等特性,通常采用的连接方式为承插焊接、热熔对焊、法兰(含活套法兰)连接等三种。 玻纤增强聚丙烯管材/FRPP管材具有以下特点: 1. 与其它管道比,重量较轻,可塑性强,安装方便。过去多数化工、化纤厂通常采用的是钢衬玻璃管,钢衬胶管和玻璃钢管道等,上述管道存在着重量大,易碎等缺陷,更主要是受其长度定尺限制,安装极不方便。而玻纤增强聚丙烯管道(FRPP 管道)尽管定尺供应,但在安装过程中可取任意长度焊接组装,能节省安装时间,提高工作效率。 2. 由于化工、化纤等行业管道输送介质大多数为浓度8%~50%左右的硫酸,同时含有Na2SO4、EnSO4和H2S、CS2等气体,使用温度最高在90℃,最大工作压力为0.6MPa

玻纤增强聚丙烯frpp管性能及用途

玻纤增强聚丙烯frpp管性能及用途 玻纤增强聚丙烯FRPP管玻纤增强聚丙烯具有耐腐蚀、强度高、抗渗漏、内阻小、抗拉、抗弯、造价低、寿命长、安装维修方便等特点。该管能在120℃以下输送各种腐蚀性介质,是不锈钢管材的代用材料。工程级聚丙烯管材是由工程级聚丙烯粒料经挤出成型。该管材无毒、无味、广泛应用于化工、环保、食品卫生、建筑给排水等领域等。 主要性能如下: 使用寿命:在额定温度、压力状况下,FRPP管道可安全使用50年以上。 耐腐蚀性能:FRPP管材能耐大多数化学物品的腐蚀,可在很大的范围内承受PH 值范围在1-14的高浓度酸和碱的腐蚀。对非氧化性酸(盐酸。烯硫酸。氢氟酸。稀硝酸。碱和盐溶液)都有良好的耐腐蚀性。 抗磨性能:在输送矿砂泥浆时,FRPP管的耐磨性是钢管的4倍以上。 刚度性能:FRPP管材由于加入了玻纤增强材料使FRPP管材不易变形 耐热保温节能性能:FRPP管材最高使用温度95度左右,该产品的导热系数仅为钢管的1/200,故有较好的保温性能。 连接性能:FRPP管热熔接口的强度高于管材本体,接缝不会由于土壤移动或载荷的作用而断开。 施工性能良好:FRPP管材质轻,焊接工艺简单,施工方便,工程综合造价低. FRPP的用途 1 管材轻,施工方便frpp管、管件的比重为0.95 g/~n3~1.00 g/cm3,是铸铁 管的l/7,运输和安装劳动强度得到一定降低,非常方便。 2 安装效率高 FRPP管切割容易,粘结简单,使用的焊条材质与管材原料配方相同,切割后剩余管段仍能利用,方便灵活。而铸铁管截去承口后的剩余管段利用率不高,接口要打麻、放置接口材料、打口、养护等工序。而H 排水管却无这些工序,安装效率大大提高。 3 外表美观,耐腐蚀,耐老化 FRPP管内外光滑,色泽清鲜;耐腐蚀,对污水处理、酸碱液、氯碱和雨水等流体的抗腐蚀性好,安装后无需防腐。frpp管进行老化试验,其寿命可达50年以上。而铸铁管材质粗糙,易生锈,外壁的防腐易脱落,每隔一段时间,又要重新增刷,而且也不美观。 4 水流阻力小。通水能力强

玻纤增强PP的优缺点和工艺

玻纤增强P P的优缺点和工 艺 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

玻纤增强聚丙烯的优缺点和工艺 玻纤增强PP是在原有纯PP的基础上,加入玻璃纤维和其它助剂,从而提高材料的使用范围。一般的来说,大部分的玻纤增强材料多用在产品的结构零件上,是一种结构工程材料。 优点: 1. 玻纤增强以后,玻纤是耐高温材料,因此,增强塑料的耐热温度比不加玻纤以前提高很多。 2. 玻纤增强以后,由于玻纤的加入,限制了塑料的高分子链间的相互移动,因此,增强塑料的收缩率下降很多,刚性也大大提高。 3. 玻纤增强以后,增强塑料不会应力开裂,同时,塑料的抗冲性能提高很多。 4. 玻纤增强以后,玻纤是高强度材料,从而也大提了塑料的强度,如:拉伸强度,压缩强度,弯曲强度,提高很多。 5.玻纤增强以后,由于玻纤和其它助剂的加入,增强塑料的燃烧性能下降很多,阻燃变得困难。 缺点: 1. 玻纤增强以后,由于玻纤的加入,不加玻纤前是透明,都会变成不透明的。 2 .玻纤增强以后,塑料的韧性降低,而脆性增加。 3 .玻纤增强以后,由于玻纤的加入,所有材料的熔融粘度增大,流动性变差,注塑压力比不加玻纤的要增加很多。

4 .玻纤增强以后,由于玻纤的加入,流动性差,增强塑料的注塑温度要比不加玻纤以前提高10℃-30℃。 5 .玻纤增强以后,由于玻纤和助剂的加入,增强塑料的吸湿性能大加强,原来纯塑料不吸水的也会变得吸水,因此,注塑时都要进烘干。 6. 玻纤增强以后,在注塑过程中,玻纤能进入塑料制品的表面,使得制品表面变得很粗糙,斑斑点点。为了取得较高的表面质量,最好注塑时使用模温机加热模具,使得塑料高分子进入制品表面,但不能达到纯塑料的外观质量。 7 .玻纤增强以后,玻纤是硬度很高的材料,助剂高温挥发后是腐蚀性很大的气体,对注塑机的螺杆和注塑模具的磨损和腐蚀很大,因此,生产使用这类材料的模具和注塑机时,要注意设备的表面防腐处理和表面硬度处理。 玻纤增强PP产品工艺 1. 从产品性能方面考虑,所有的玻纤增强产品均要求剪碎后的玻纤有一定的长度,一般在0.4-0.8mm之间,才能起到增强作用:玻纤过短,只有填充的作用,而浪费其增强性能;玻纤过长,玻纤与物料之间的界面结合不好,会影响其增强效果,会导致产品的表面过于粗糙,不够光滑,表面性能不好。 2. 影响玻纤剪切的条件: 物料在玻纤口处必须熔化了85%以上,否则将因玻纤与物料之间严重的摩檫使玻纤被剪切得过碎; 玻纤口处温度不能过低,必须在所生产物料的熔点以上,否则将因料过冷,摩擦过大使玻纤剪切过碎。一般工艺表上已经考虑到这问题,生产时需要注意是保证温度波动不大即可。 3.增强PP常见问题

玻璃纤维增强聚丙烯材料可行性报告

玻璃纤维增强聚丙烯材料项目可行性报告 09高分子1班 组长:陈小波 组员:小梅、小杨、小双 一、总论

㈠.项目背景 1项目名称唐山玻璃纤维增强PP材料加工厂 2 承办单位略 3 报告编制依据 ⑴《投资项目可行性研究指南》(试用版); ⑵《建设项目经济评价方法与参数》(第三版); ⑶相关设计规范标准等 ㈡..项目概况 1 拟建地点唐山市曹妃甸开发区 2 建设规模与建设内容 在曹妃甸建设厂区,厂区面积约2500平方米,建设面积约1200平方米 3 主要建设条件 4 项目建设进度 本项目计划于2012年10月开始,2013年12月完成,预计建设工期15个月。 5 项目投资和筹资方案 本项目总投资为17967.27万元,其中建设投资14980万元,筹资方案为银行贷款。 6 主要技术经济指标 年产10000吨玻纤增强聚丙烯 二、项目建设必要性 ㈠.项目背景 PP作为四大通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是它也存在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺点。因此,必须对其进行改性,以使其能够适应产品的需求。对PP材料的改性一般是通过添加矿物质增强增韧、耐候改性、玻璃纤维增强、阻燃改性和超韧改性等几个途径,每一种改性PP在家用电器领域都有着大量应用。 改性PP在家电行业中有非常好的应用前景。一方面,中国已经成为世界家用电器生产中心,而且拥有一批极有影响力的生产企业,这些企业能够主动选择材料;另一方面,行业竞争也促使企业应用性价比更合理的材料。从未来家电技术发展情况看,家用电器的人性化将更加突出,产品品种更加齐全,传统家电将向小型化、大型化两极方向发展。玻纤增强PP在汽车用料中的应用也不断拓展,新产品的不断涌现,对PP改性也提出了更高的要求。

相关文档
最新文档